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PREFACE TO THE ENGLISH TRANSLATION  
 
 

 Although this treatise dates back to 1744, nonetheless, its subject is sufficiently 
fundamental to other things that the applications of its methodology continue to have 
their utility to this day.  The subject in question is that of the shapes and vibratory modes 
that can be assumed by elastic curves or elastica, which are also the basis for the method 
of spline interpolations in computer graphics. 
 More precisely, one should say lamina elastica, or elastic bands, as opposed to corda 
elastica, or elastic strings.  Hence, although the following fact is mentioned specifically 
only once in all that follows, the objects that will be bending and vibrating will have a 
non-zero, but otherwise negligible, thickness and a width that will usually be assumed to 
be constant, except in one section on non-uniform elasticity.  Other than that, one might 
as well be talking about the deformation of curves, such as the longitudinal curve through 
the band that intersects the center of mass of each cross-section.  In that sense, the 
discussion that follows can be seen as extension of the usual theory of flexible, 
inextensible curves and vibrating strings to a higher order of differential equations, 
namely, four.  Although we say “inextensible,” in a few cases, such as the vibration of a 
band that is fixed in a wall at both ends, the band will be assumed to maintain its original 
length. 
 Although this translator usually avoids the tendency to alter mathematical symbols 
and equations in any way, except to incorporate errata and correct obvious errors in 
typesetting, in the present case, some effort was made to make the logic of Euler’s 
argument more transparent by “modernizing” some of the instances where he employed a 
technique in calculus that is currently frowned upon, namely, treating differentials as if 
they were capable of being multiplied and divided, and not just added, subtracted, and 
multiplied by scalars.  For instance, one will typically find that expressions of the form: 
 

2

2

dx

d y
 and 

2ds

dx
 

 
will be converted into the more modern forms: 
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2

d y

dx

−
 
 
 

 and 
dx

ds
ds

, 

respectively. 
 One should also notice that since this treatise seems to have predated the introduction 
of the term “curvature” (in the Frenet-Serret sense), one must intuit its role in many cases 
where one is dealing with that very concept, but in the form of the radius of curvature.  
For instance, the basic variational problem can be posed as one of finding a planar curve 
that minimizes an action functional that amounts to simply the integral of the square of 
that curvature along the curve from among the planar curves that have the same length. 
 

D. H. Delphenich, 2018 
______________ 



PREFACE TO THE GERMAN TRANSLATION  
 
 

 For a practical understanding of the older ground-breaking works on elastica, a 
knowledge of the connection between the Ansätze that they contain and the methods of 
stereo-mechanics and continuum mechanics is prerequisite. 
 The following introductory remarks shall also make it possible for those readers who 
have not studied general mechanics in detail to make a critical evaluation of the most 
important original works on that topic. 
 
 a) One imagines that the original straight elastic wire (viz., lamina) has been 
replaced with a chain (i.e., series) of infinitely-small, rigid material elements that are 
coupled to each other with pivot joints whose axes all remain perpendicular to a fixed 
plane.  The forces – r  and − r ′ are applied to the joints C and C′, resp., of an arbitrary 
material element K, and those forces are transferred to the previous and following 

elements, resp.  Along with those isolated forces at C and C′, moments – R and R′ will 
also be applied when the links exhibit resistance to rotation of the terms about the pivot 
axis.  Let the resultant of the applied (external) forces on K be d k, and let its moment 

relative to the rotational point C of the link K be d M .  The reaction moments R and R′ 
can be referred to an arbitrary pole O in the plane. 

 If one sets OC  = c, OC′  = c′, c c′ −  = d c′, r r′ −  = d r , R R′ −  = d R then the basic 
rules of elementary statics will give the following conditions for equilibrium of the forces 
on the material element K : 

 
d r  + d k = 0,  d R + dc ⋅⋅⋅⋅ r + d M  = 0 (pole C). 

 
With the introduction of the arc element ds of the equilibrium curve (axis of the flexible, 
inextensible wire), which couples to the pivot (C), one can employ specific quantities k = 
d k / ds and m = d M  / ds, which refer to a unit length of the wire axis, in place of the 
absolute quantities d k and d M , resp.  If one then sets /d dsc = σσσσ then the static Ansatz 
will assume the form: 
 

(1)   
d

ds
+r κκκκ = 0,   (2) 

d

ds
+ +R

r mσσσσ = 0. 

 
 These equations appear many times in recent literature, while they are absent from the 
older authors (Jac. Bernoulli, Euler) in that explicit form.  Euler knew of the 
corresponding form for chains whose links have finite dimensions (confer the discussion 
by Routh in his Dynamik, German edition, v. 2, pp. 71), but he did not pass to the limit.  
Confer also Euler’s Ansatz in no. 57 (pp. 43) of the following. 
 Equations (1) and (2) were presented by Clebsch in his Elastizität fester Körper, 
Leipzig, 1862, pp. 204-222, and were used as the basis for Kirchhoff ’s theory of wires.  
One also finds them in Thomson and Tait , Natural Philosophy, Part 2, 1st ed., Oxford, 
1867, 2nd ed., Cambridge, 1895, pp. 152-155, in Love, Theory of Elasticity, 2nd ed., 
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Cambridge, 1906, pp. 370-372, and their direct relationship to the theory of chains of 
objects with finite links is discussed in K. Heun in the Zeit. Math. Phys. 56 (1908), pp. 
68, et seq.  Those equations are treated thoroughly from a more general viewpoint by E. 
and F. Cosserat, Théorie des corps déformables, Paris, 1909, pp. 5-65. 
 
 b) Let the position of the axis element d c relative to the x-axis of a fixed axis-cross 
Oxy be determined by the angle ϑ.  Let the magnitude and direction of the contingency 
angle of the elastica be denoted by dϑϑϑϑ.  With those preliminaries, dϑϑϑϑ / ds will be the 
specific rotation of the axis element d c.  Along with the direction of the tangent (σσσσ), one 
introduces the direction of the normal to the curve νννν    .  Hence, ηηηη = σ νσ νσ νσ ν is the segment of 
the altitude (of unit length) to the plane of the curve, such that: 
 

d

ds

ϑϑϑϑ
 = w = 

1

1

a
ηηηη , 

 
in which a1 is the radius of curvature of the elastica. 
 From Daniel Bernoulli’s hypothesis, one has R = P w, if P means a constant that 

depends upon the dimensions of the cross-section and the elastic coefficients. 
 Furthermore, let: 

κx = 
x

u

c

∂
∂

, κy = 
y

u

c

∂
∂

, κz = 
u

ϑ
∂
∂

. 

 
The function u can be referred to as the potential of the applied forces.  It will now follow 
from the basic equations of statics (1) and (2) that: 
 

d d d d d du

ds ds ds ds ds ds
+ + +r c R

r
ϑ ϑϑ ϑϑ ϑϑ ϑσσσσ  = 0 

or 
d d du

ds ds ds
+ + +r

rσ σσ σσ σσ σ w
w wP  = 0. 

If one then sets: 
r  = rσ σσσσ + rν νννν  

then one will have: 
d

ds

r
 = 

dr dr d
r r

ds ds ds
σ σ

σ ν+ + + ννννσ ν νσ ν νσ ν νσ ν νw  

and 
d

ds

rσσσσ  = 
dr d

r
ds ds

σ
ν+ ννννσσσσ . 

 However, one has: 
d

ds

νννν
= − w σσσσ . 

It will then follow that: 
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d

ds

rσσσσ  = − w rν +
dr

ds
σ ,  σσσσ r  = rν ηηηη    . 

 
One sees from this that the equation: 
 

dr d du

ds ds ds
σ + +wwP  = 0 

is integrable, such that: 
 
(3)      1

2 P w2 + rσ + u = h0. 

 
That equation exhibits a certain analogy with the principle of vis viva in kinetics. 
 
 c) One can set u = 0 for an elastica with no applied forces.  Equation (3) will then 
assume the simplified form: 
 
(3′)      1

2 P w2 + rσ = h0. 

 
The virtual work due to bending is R δϑϑϑϑ .  One then defines: 
 

( )
d

R
ds

δϑϑϑϑ  = 
dR d

R
ds ds

δδ + ϑϑϑϑϑϑϑϑ , 

 
or with the use of equation (2): 
 

( )
d

R
ds

δϑϑϑϑ  = − rν δϑϑϑϑ + R δ w. 

 
If one denotes the endpoints of the elastica by A and B then an integration along the axis 
of the wire will yield: 

[ ]B

A
Rδϑϑϑϑ  = ( )

B

A

R r dsνδ δ−∫ ϑϑϑϑw . 

 
If one sets the virtual rotation δϑ equal to zero at the limits A and B then one will have: 
 

( )
B

A

R r dsνδ δϑ−∫ w = 0, 

or, since: 
rν δϑ = δ rσ , 

one will have: 

21
2( )

B

A

r dsσδ −∫ wP = 0. 
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 However, from equation (3′), one will have: 
 

− rσ = 1
2 P w2 – h0. 

As a result: 

(4)  2 0
B B

A A

ds h dsδ
 

− 
 
∫ ∫wP  = 0. 

 

In Euler’s way of looking at things, the integral 2
B

A

ds∫ wP  will then be a maximum-

minimum with the isoperimetric condition 
B

A

ds∫ = l (const.). 

 It follows from equation (1) that r  = r0.  One will then have: 
 

rσ = 0 0cos sinx yr rϑ ϑ+  and rν = − 0 0sin cosx yr rϑ ϑ+ . 

 
Ordinarily, one chooses the axes Ox , Oy in such a way that one will have 0

yr  = 0. 

 
 d) One can regard the quantity 1

2 P w2 = e in equation (3) as an energy.  The sum u + 

rσ = u′ can be considered to be a modified potential energy.  We then set e – u′ = f and let 
f denote the Lagrangian function for statics (in analogy to stereo-kinetics).  The static 
analogue to the Lagrangian equation of kinetics will have the form: 
 

d df df

d d dτ ϑ
−

w

 = 0, 

 
and will be identical to the equation: 
 

dR

ds
+ rν + m = 0 

in the present case. 
 With that, the Kirchhoff  analogy is proved.  One can find further details on that 
analogy in Love, Elasticity, 2nd ed., pp. 382, and W. Hess, Math. Ann. 25 (1885). 
 
 e) Euler gives instructions on how to treat the isoperimetric problem in Chapter 5 of 
Methodus inveniendi…, whose German version by P. Staeckel is included in this 
collection as volume 46. 

K. Heun 
 

___________ 
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Introduction  
 

 1. – For some time, some brilliant mathematicians have recognized that the methods 
that are proposed in this book are of use, not only in analysis, but also in the solution of 
physical problems.  Namely, since the plan of the entire universe is complete and was 
established by the wisest Creator, nothing will happen in the world that is not based upon 
some relationship to the maximum or minimum.  For that reason, no further doubt can 
exist that all phenomena in the world can be just as well determined from the final causes 
with the help of the method of maxima and minima as they can from the causes that that 
are in effect.  So many excellent examples of that fact exist already that further examples 
would not be necessary in order to state that truth.  Moreover, in every type of question of 
natural science, one must then strive to determine a quantity that assumes a largest or 
smallest value.  That problem seems to belong more to philosophy than mathematics.  
Since a double path is then given for exploring the phenomena of nature, once in terms of 
the initial causes, which one would prefer to call the “direct method,” and secondly, from 
the final causes, the mathematician might appeal to either of them with the same effect.  
Namely, when the initial causes lie hidden, but the final causes are clear, the problem can 
be solved by the indirect method.  In contrast, the direct method can be applied whenever 
the effects can be defined by the initial causes.  However, one must see, in particular, 
how to make the solution tractable in both cases.  Not only will the one serve to confirm 
the other, but the agreement between them will give us the greatest satisfaction.  The 
curvature of a cable or a hanging chain can be ascertained in two ways: First, a priori, 
from the effects of gravity, and then by the method of maxima and minima, since it is 
clear that such a cable must assume a curvature such that the center of gravity will lie as 
deeply as possible.  In the same way, the curvature of the rays that go through a 
transparent medium of varying density can be determined a priori, as well as from the 
fact that they must arrive at a given location in the shortest time. 
 Very many similar examples were furnished by the esteemed Bernoulli  and others, 
whom we can thank for significantly completing the a priori method of solution and our 
understanding of the initial causes.  Thus, although the great number of clever examples 
means that no doubt remains that the property of being a maximum or minimum will 
appear for all curves that arise by solving the problems of mathematical physics, 
nonetheless, that maximum or minimum is often very difficult to recognize, even though 
one can recognize it from the a priori solution.  Thus, the form that a curved elastic band 
assumes has been known for some time, but up to now no one has remarked how that 
curve could be explored by the method of maxima and minima; i.e., from final causes.  
Now, the most highly honored, as well as most incisive in regard to that way of exploring 
nature, Daniel Bernoulli has communicated to me that the total force that a curved 
elastic band includes, which he called the potential force, can be summarized in a 
formula and that this expression must be a minimum for the elastic curve (1).  Since a 
                                                
 (1) Daniel Bernoulli pointed out the potential force to Euler in a letter on 20 October 1742. (Letter 26, 
vol. 2, footnote v.: Correspondance mathématiques et physique, Petersburg, 1843).  At the end of the letter, 
he said: “Since no one has mastered the isoperimetric method (i.e., the variational calculus that Euler had 
founded as a special branch of analysis) as completely as you, you will solve this problem, in which one 
requires that ∫ ds / R2 must be a minimum.”  Dan. Bernoulli had already known about Euler’s method of 
finding curves before the Appendix on elastic curves had appeared, as he spoke about it with great interest 
in his letter to Euler in 1743.  See no. 63 and the remark on page 63 below. 
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new and wonderful light shines upon my method of maxima and minima because of that 
discovery, and its very far-reaching applications clearly emerge, I have believed that this 
very desirable situation cannot be passed over, without, at the same time, my making the 
application of my method clear by publishing that exceptional property of the elastic 
curve that the renowned Bernoulli  had discovered.  That property also implies second-
order differentials that are still not present in the solution of the isoperimetric problem. 
 

 

A 

R 

B M 
m 

 
Figure 1. 

 
On the curvature of uniform elastic bands 

 
 2. – Let AB (Fig. 1) be an arbitrarily-curved elastic band.  The arc length s will be 
denoted by s and the radius of curvature at M by R.  According to Bernoulli , the force 
potential that is included in the segment AM will be expressed by the formula ∫ ds / R2, 
when the band is equally thick and wide and elastic everywhere, and in the natural state it 
is straight (1).  Therefore, let it be a property of the curve AM that this expression is a 
minimum for it.  However, since second-order differentials enter into the expression for 
that radius of curvature R, one will need four conditions to determine a curve that is 
endowed with that property, and that will correspond precisely to the nature of our 
problem.  Namely, since infinitely many elastic bands of the same length can be drawn 
through two given endpoints A and B, the solution can be unique only when two more 
points are given, in addition to the two points A and B, or (what amounts to the same 
thing) the positions of the tangents at the endpoints A and B.  The given elastic band, 
which is longer than the rectilinear distance AB, can be bent in such a way that it not only 
goes through the endpoints, but also in such a way that the tangents to it at those points 
will possess given directions.  Hence, the problem of finding the curvature of elastic 
bands can be posed as follows: 
 
 Among all curves of the same length that go through the points A and B and contact 
lines at those points whose positions are given, determine the one for which the 
expression  ∫ ds / R2  is a minimum. 

 
 
 3. – Since the solution shall refer to rectangular coordinates, an arbitrary line AD will 
be taken to be an axis.  For it, let AP = x, and let the ordinate PM be equal to y.  As the 

                                                
 (1) For the special formulas that are employed here, confer Chapter II and V of Euler’s Methodus 
inveniendi lineas curvas, etc. (Volume 46 of this collection, published by P. Staeckel.)  



Euler – On elastic curves 3 

method that was found prescribes, one sets dy = p dx, dp = q dx.  Let the curve element 
Mm be: 

Mm = ds = 21dx p+ . 
 

A P D 

M m 

B 

 
Figure 2. 

 
Since the curves from which the desired one is to be ascertained should be isoperimetric, 
one must first consider the expression: 

21dx p+∫ . 

 
When one compares this to the general ∫ Z dx and differentiates it, that will give 

21

d p

dx p+
.  Secondly, since the radius of curvature is equal to: 

1
2 3/ 2(1 )

dp
p

dx

−
  + 
 

 = 
2 3/2(1 )p

q

+
= R, 

 

the formula ∫ ds / R2, which should be a minimum,  will become
2

2 5/2(1 )

q dx

p+∫ . 

 When this is compared with the general formula ∫ Z dx, that will give: 
 

Z = 
2

2 5/2(1 )

q

p+
. 

 
When one sets dZ = M dx + N dy + P dp + Q dq, that will give: 
 

M = 0,  N = 0,  P = − 
2

2 7/2

2

(1 )

pq

p+
, Q = 2 5/2

2

(1 )

q

p+
. 

 

The differential expression that is derived from the formula 
2

2 5/2(1 )

q dx

p+∫ is then: 

− 
2

2

dP d Q

dx dx
+ . 
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One will then have the following equation for the desired curve: 
 

21

d p

dx p
α

+
= 

2

2

dP d Q

dx dx
+ . 

 
If one multiplies this by dx and integrates then one will get: 
 

21

p

p

α
+

+ β = P − 
dQ

dx
. 

 
This equation in then multiplied by q dx = dp, such that what will emerge is: 
 

21

p dp

p

α
+

+ β dp = P dp − q dQ . 

 
However, due to the fact that M = 0, N = 0: 
 

dZ = P dp + Q dq, so P dp = dZ – Q dq. 
 

If one substitutes that value then what will arise is: 
 

21

p dp

p

α
+

+ β dp = dZ − Q dq − q dQ . 

 
After another integration, what will follow is: 
 

21 pα + + β p + γ = dZ − Q dq − q dQ . 
 

However, since Z = 
2

2 5/2(1 )

q

p+
 and Q = 2 5/2

2

(1 )

q

p+
, one will have: 

 

21 pα + + β p + γ = 
2

2 5/2(1 )

q

p

−
+

. 

 
 If one takes the arbitrary constants to be negative then one will get: 
 

q = 2 5/4 2(1 ) 1p p pα β γ+ + + +  = 
dp

dx
. 

 
It will then follow from this that: 
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dx = 
2 5/4 2(1 ) 1

dp

p p pα β γ+ + + +
. 

Since dy = p dx, one also has: 

dy = 
2 5/4 2(1 ) 1

p dp

p p pα β γ+ + + +
. 

 
 These two equations suffice to find the curve by quadratures. 
 
 
 4. – This formula, which was derived in a completely general way, is hardly 
integrable.  However, it can be constrained in such a way that the constraint allows it to 
be integrated.  Namely, since: 
 

2

24

1

1

p p
d

p

α β γ+ + +

+
 = 

2 5/4 2

( )

(1 ) 1

dp p

p p p

β γ

α β γ

−

+ + + +
, 

one will have: 
2

2 1/4

2 1

(1 )

p p

p

α β γ+ + +
+

= β x – γ y + δ. 

 
 Since the position of the origin along the axis is arbitrary, one can drop δ .  One can 
change the axis in such a way that (1): 
 

                                                
 (1) Let it be pointed out for this coordinate transformation that the new axes will again be rectilinear.  
The new x-axis defines an angle of ϕ with the old one that is determined by tan ϕ = γ / β .  When P = dY / 
dX, that will become: 

p = 
P

P

β γ
β γ

−
+

, 

and therefore: 

1 + p2 = 
2 2 2

2

( )(1 )
( )

P

P

β γ
β γ
+ +

+
. 

 
One substitutes this value in Euler’s last equation and obtains: 
 

2 2 2

2 1 / 4
)

2 1

(1

P P

P

α β γ+ + +

+
 = 2 2X β γ+ . 

Let 2 2β γ+ = β1 .  If one introduces the lower-case symbols, in place of the upper-case ones, then one will 
get: 

1
22 1 pα β γ+ +  = β1 x (1 + p2)1/4 , 

as in the text. 



Euler – On elastic curves 6 

X = 
2 2

x yβ γ
β γ

−
+

 and  Y = 
2 2

x yγ β
β γ

+
+

. 

 
One can certainly set γ equal to zero in this, since nothing stands in the way of once more 
denoting the new abscissa by x.  One will then get the equation for the elastic curve: 
 

22 1 p pα β+ +  = 24 1x pβ + . 

Squaring this will yield: 
24 1 4p pα β+ +  = 2 2 21x pβ + . 

 
In order to make this homogeneous, let: 
 

α = 
2

4m

a
  and β = 

2

4n

a
, 

which will make: 

n a2 p = 2 2 2 2( ) 1n x ma p− + , 

so 

p =
2 2 2

2 4 2 2 2 2( )

n x ma

n a n x ma

−
− −

= 
dy

dx
. 

 
 When one changes the constants and either increases or diminishes the abscissa x by a 
given constant (1), one will get the following equation for the general elastic curve: 
 

dy = 
2

4 2 2

( )

( )

x x dx

a x x

α β γ
α β γ

+ +
− + +

, 

from which it will follow that: 

ds = 
2

4 2 2( )

a dx

a x xα β γ− + +
. 

                                                
 (1) One sets: 

n = γ,  x = x1 + 
2
β
γ

, m =
2

2

1

4a
β α γ − 
 

. 

 
Naturally, the quantities α, β, γ that are introduced here are different from the quantities α, β, γ that were 
introduced at the beginning of this section.  One will then have: 
 

n2 x2 – m a2 = γ (α + β x1 + 2

1
xγ ), 

so: 

dy = 
2

1 1 1

4 2 2
1 1

( )

( )

dx x x

a x x

α β γ
α β γ
+ +

− + +
. 

 
If one drops the index on x then one will get the penultimate equation of no. 4 in the text. 



Euler – On elastic curves 7 

 The agreement of the curve that is found in that way with the elastic curve that was 
ascertained before will emerge from that equation. 
 
 
 5. – In order to make this agreement emerge more clearly, I will also examine the 
nature of elastic curves directly.  Although the very learned Jacob Bernoulli has already 
done this excellently, I will nonetheless take this opportunity to add a few observations 
about the properties of elastic curves, such as their various types and figures, that I 
believe have either been overlooked or only touched upon. 

 

D 

T C 

Q 

N 
A P 

M 

B 

 
Figure 3. 

 
 Let the elastic band AB be fixed to a wall or floor (Fig. 3) in such a way that the end B 
will not only remains fixed, but the position of the tangent at B will also be determined.  
Let the band be constrained at A by the rigid rod AC, to which the force CD = P is 
applied perpendicularly.  In that way, one will find the band to be in the curved 
configuration BMA.  Take AC to be the axis, and let AC equal c, AP = x, MP = y.  Now, if 
the band suddenly loses its elasticity at M and is completely flexible then it will be bent 
by a force whose moment is equal to P (c + x).  In order for no motion to follow from that 
bending, the elasticity of the band at M must be in equilibrium with the moment of the 
applied for P (c + x).  However, elasticity depends, first of all, upon the material of the 
band, which I shall assume to be the same everywhere, but then the same thing will be 
true of the curvature of the band at M, such that it will be inversely proportional to the 

radius of curvature at M.  Let that be R = − 
12

2

dx d y

ds ds

−
 
 
 

,  ds = 2 2dx dy+  in this, and dx 

is constant, so E k2 / R will express the elastic force in the band at M that brings about 
equilibrium with the moment of the applied force P (c + x).  The equation then exists: 
 

P (c + x) = 
2k

R

E
= − 

12
2

2

dx d y
k

ds ds

−
 
 
 

E . 

 
When that equation is multiplied by dx, it will be integrable.  That integral will then be: 
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P ( 21
2 x  + cx + f)  = 

2

2 2

k dy

dx dy

−
+

E
, 

so: 

dy = 
21

2

2 4 2 2 21
2

( )

( )

P dx x cx f

k P x cx f

− + +
− + +E

. 

 
 That equation coincides with the one that I derived by the method of maxima and 
minima from Bernoulli ’s principle. 
 
 
 6. – One can derive the force that is required in order to produce the given curvature 
of the band from a comparison of that equation with the one that was found before.  The 
elastic band might be represented by the curve AMB, whose equation is: 
 

dy = 
2

4 2 2

( )

( )

x x dx

a x x

α β γ
α β γ

+ +
− + +

. 

 
E k2 might express the absolute elasticity of that band, such that when E k2 is divided by 
the radius of curvature at an arbitrary location, that might yield the true elastic force. 
 In order to perform the comparison, the numerator and denominator is multiplied by 
E k2 / a2, such that one will have: 
 

dy = 
2 2 2

2 4
2 4 2 2

4

/ ( )

( )

k a x x dx

k
k x x

a

α β γ

α β γ

+ +

− + +

E

E
E

. 

 One will then have: 
 

− 1
2 P = 

2

2

k

a

γE
, − P c = 

2

2

k

a

γE
, − P f = 

2

2

k

a

γE
, 

 
so the applied force will be CD = − 2 E k2 γ / a2, the length will be AC = c = β / 2γ and 
the constant f will be equal to α / 2γ . 
 
 
 7. – Hence, in order for the elastic band AB, one end of which B is fixed to the wall, 
to be bent into the form AMB, that band must be subjected to a force of CD = − 2 E k2 γ / 
a2 in the direction CD that is perpendicular to the axis AP.  As the figure shows, that 
force will act in the opposite direction when γ is a positive quantity.  Since E k2 / R 
represents the moment of the driving force, E k2 / a2 will be equivalent to the a pure 
force, and that force will be determined from the elasticity of the band; let it be F.  The 
bending force CD will then have the same ratio to the force F that – 2γ has to 1, where γ 
is a pure number. 
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 8. – One can now further determine the force that is necessary in order for the 
segment BM of the band to keep its position when the segment AM is cut.  If the segment 
AM is cut then the elastic band will end at the rigid bar MT (Fig. 3), which is coupled to 
the band in such a way that it will always give the direction of the tangent at the point M, 
which will also bend the band.  With those conventions, it will be clear from the 
foregoing that in order to maintain the curvature BM of the bar MT at the point N in the 
direction ND, one must apply a force of − 2 E k2 γ / a2.  ND is normal to the axis AP and 
AC = β / 2γ .  The distance MN will be: 
 

ds

dx
CP = 

2

2

ds x

dx

β γ
γ

+⋅  = 
( 2 )

2

x ds

dx

β γ
γ

+
, 

so: 
ds

dx
= 

2

4 2 2( )

a

a x xα δ γ− + +
. 

 
If the force ND is decomposed into two components, namely, NQ, which is perpendicular 
to the tangent MY, and NT, which is in the direction of the tangent, then one will have: 
 

NQ = 
2

2

2 k dx

a ds

γ− E
 

and 

NT = 
2

2

2 k dy

a ds

γ− E
. 

 
 
 9. – If one cuts out the segment BM then AM will be subjected to the force − 2 E k2 γ / 
a2 in the direction CD, as before.  In order to maintain the curvature of the segment AM, 
the endpoint M, which is regarded as fixed to the rigid rod MN in the direction of the 
tangent, must driven by a force − 2 E k2 γ / a2 at N, but in the opposite direction to the 
one that was found in the previous case.  Namely, one continually removes that force, 
which must be applied at the two endpoints.  It must then be equal and have the opposite 
direction.  The forces that are established in a segment of the cut band in order for the 
existing curvature to remain the same can then be determined very easily. 
 
 
 10. – Let AM be a curved elastic band that is fixed to the rigid fixed rods AB, MN at A 
and M.  The equal forces DE and NR might be applied to those rods in opposite directions 
in order to produce equilibrium with the curvature of the band AM, and the equation for 
that shall be presented.  The line AP that goes through A and is perpendicular to the 
directions of the previous two forces will be taken to be the axis.  The absolute elasticity 
of the band will be set equal to E k2.  Let CAD = m, cos CAD = n, where CAD is the 
angle that the tangent at A makes with the axis.  One will then have m2 + n2 = 1.  
Furthermore, let AC = c and let the bending force be DE = NR = P, and finally let AP = x 
and PM = y.  The curve will then be expressed by the equation: 
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dy = 
21

2

2 4 2 2 21
2

( )

( )

P x cx f dx

k P x cx f

− + +
− + +E

. 

 
 
R 

N 

C 

D 

E 

A P 

M 

 
Figure 4. 

 
Since the direction of the tangent at A is given, one must have: 
 

dy

dx
 = 

m

n
 for x = 0 ; 

hence: 

m = −
2

P f

kE
. 

 
The constant f can be determined from this; it is: 
 

f = 
2m k

P

− E
. 

The entire curve is determined now. 
 
 
 11. – In order to bend the band AM into the curve that expressed by the equation 
above, the force DE = P must be applied to the tangent AB at the point D, where AB = c / 
n .  Let its direction be parallel to the ordinate PM. 
 The force DE must be decomposed into two components Dd and Df that are 
perpendicular to each other; one will then have Dd = Pn and Df = Pm.  In order for the 
consideration of the line AD to be unnecessary in the calculation, two forces can be 
substituted for the force Dd at the given points A and B, where AB = h, namely, Aa = p 
and Bb = q, which are likewise perpendicular to the rod AB.  In order to do that, one must 
assume that p ⋅⋅⋅⋅ h = Pn ⋅⋅⋅⋅ BD = Pn (c / n − h) and that q = p + n P.  However, since it does 
not matter at which point of the rod AD one applies the tangential force Df = Pm, it will 
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be applied to the point A precisely, and one will set AF = mP.  Let AF = r, such that the 
band AM will be under the influence of three forces Aa = p, Bb = q, and AF = r.  We 
would like to investigate the influence that those three forces might have on curvature. 

 

f 

D 

E 

d 

F 
b 

B 
A 

a 

P 

M 

 
Figure 5. 

 
 
 12. – One has m P = r, so P = r / m.  When substituted in the previous equations, that 
will give: 

ph = 
cr nhr

m m
−   and q = p + 

n r

m
, 

so: 
n

m
= 

q p

r

−
, 

 
and the position of the axis AB will be known from that equation, which will be: 
 

tan CAD = 
m

n
 = 

r

q p−
, 

so 

m =
2 2( )

r

r q p+ −
 and n = 

2 2( )

q p

r q p

−
+ −

. 

 
It will follow from the equation: 
 

hp = 
cr nhr

m m
−  = 

cr

m
− hq + hp 

that: 

c = 
mhq

r
 or c = 

2 2( )

h q

r q p+ −
 

and 
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P = 2 2( )r q p+ − . 
Now, since: 

f = 
2m k

P

− E
= 

2

2 2( )

m k

r q p

−
+ −

E
, 

one will have: 

1
2 x2 + c x + f = 

2
21

2 2 22 2 ( )( )

hqx k r
x

r q pr q p
+ −

+ −+ −
E

. 

 
One will get the following equation for the desired curve: 
 

dy = 

2
2 2 21

22 2

2
2

2 2 2 21
22 2

( )
( )

( )
( )

k r
dx hqx x r q p

r q p

k r
k r hqx x r q p

r q p

 
− − + − 

+ −  

 
− − − + − 

+ −  

E

E
E

. 

 
That equation is very convenient for the investigation of the most common kind of the 
bending of a band when one grabs it with either a pair of pliers or two fingers.   The one 
finger pushes in the direction Aa, while other pushes in the direction Bb, and the band can 
still be bent in the direction AF, in addition. 
 
 
 13. – If the tangential force AF = r vanishes then the axis AP will fall along the 
direction of the tangent AF.  One will then have: 
 

dy = 
21

2

22 4 21
2

( )

( )

dx hqx q p x

k hqx q p x

 − − − 

 − + − E
. 

 
If the forces p and q are equal to each other then the axis AP will be perpendicular to the 
tangent AF, since n = 0.  The equation of the curve will then be: 
 

dy = 
2 21

2

2 2 2 21 1
2 22 ( ) ( )

dx k hqx r x

k hqx r x hqx r x

 − − 

+ − +

E

E
. 

 
When one sets r = 0 in this, such that the band is subject to equal, but oppositely-directed, 
forces at A and B, the expression for the associated curve will be: 
 

dy = 
2

2 2(2 )

dx k hqx

hq k x hq x

 − 

−

E

E
. 
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When that equation is integrated, that will give: 
 

y = 
2 22 k x hq x

hq

−E
, 

 
which is then the equation for a circle.  The band is then bent into a circle in this case, 
and the radius of that circle will be E k2 / hq. 
 
 

The new types of elastic curves 
 

 14. – Since we have seen that not just the circle, but an infinite manifold of curves are 
found among the elastic curves, it might be worth the effort to attempt an enumeration of 
all types of curves that belong to that genre.  In that way, not only the nature of those 
curves will be seen more precisely, but in any sort of case in question, one will be able to 
evaluate which type a curve belongs to from its form alone.  We would like to establish 
the difference between the types in such a way that the types can be enumerated in the 
same way that the types of algebraic curves of a given order can be enumerated (1). 
 
 
 15. – The general equation of the elastic curve: 
 

dy = 
2

4 2 2

( )

( )

x x dx

a x x

α β γ
α β γ

+ +
− + +

 

 
will assume a simpler form when the coordinate origin is shifted along the axis by β / 2γ, 
and a2 is written for a2 / γ (or when one sets γ = 1).  The equation will, in fact, become: 
 

dy = 
2

4 2 2

( )

( )

x dx

a x

α
α

+
− +

. 

 
Now, a 4 – (α + x2)2 = (a2 – α – x2) (a2 + α + x2), so one sets a2 – α = c2 or α = a2 – c2 .  
The equation will go to: 

dy = 
2 2 2

2 2 2 2 2 2

( )

( )(2 )

a c x dx

c x a c x

− +
− − +

. 

 
Since β = 0 (see no. 6), the direction of the force at A that bends the band will be 
perpendicular to the axis.  AD will then represent the direction of the applied force whose 
magnitude is 2 E k2 / a2, if E k2 expresses the absolute elasticity (see Fig. 6). 

                                                
 (1) Here, Euler was thinking of Newton’s celebrated classification of third-order curves.  In the 
following discussion, AP (see Fig. 6) will always be the direction of the positive x-axis, and AB will be that 
of the positive y-axis.  The direction of the applied force in no. 5 is parallel to the negative y-axis. 
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 16. – Let x = 0, so one will have 
dy

dx
 = 

2 2

2 22

a c

c a c

−
−

.  That expression represents the 

tangent to the angle that the curve AM makes with the axis AP at A, so the sine of that 
angle will then be (a2 – c2) / a2. 
 When one then has a = ∞ and the bending force 2 E k2 / a2 then vanishes, the band 
will be perpendicular to the axis AP at A and will have no curvature.  For a = ∞, the band 
will take the form of a straight line.  The first type of elastic curves will then be 
represented by lines that extend to infinity in both directions. 

 b 

n 

d 
q 

m 

p e 

c 

A P E 

M 

D C 

B 

N 

Q 

 
Figure 6. 

 
 
 17. – Before we enumerate the remaining types, it would be good to first make a few 
general remarks on the figure of the elastic curve.  When a decreases, the angle PAM 
(Fig. 6) that the curve makes with the axis at A will decrease; i.e., as the bending force 

2 22 /k aE  increases.  If a2 = c2 then that axis AP will contact the curve at A.  If a2 < c2 
then the curve AM, which has moved downwards up to now (as in Fig. 6), will now turn 
upwards until a2 = 1

2 c2.  However, when a2 < 1
2 c2, the angle will become imaginary, and 

as a result, no segment of the curve will exist at A.  Those different cases give rise to the 
different types. 
 
 
 18. – Since the equation will not change form when x and y are both taken to be 
negative, it will further emerge that the curve through A will possess similar and equal 
branches AMC and Amc that lie alternately; A will then be an inflection point.  Therefore, 
when the segment AMC is known, if one takes Ap = AP then one will have pm = PM.  If 
x increases then the curve will move further away on both sides of the axis until the 
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abscissa AE = c is attained.  The ordinate EC will contact the curve because dy / dx = ∞ 
for x = c.  It is clear that beyond AE= c, the abscissa x cannot increase any more, since dy 
/ dx would then become imaginary.  The entire curve would then lie between the limiting 
ordinates SC = ec.  The curve cannot exceed those limits.  Up to now, we have 
established two curve branches AC and Ac that extend to the limits on both sides of A. 
 
 
 19. – How does the curve behave beyond C and c ?  One takes the line CD that is 
parallel to AE to be the axis and sets the new coordinates to CQ = t, QM = u.  One will 
then have  t + x = AE = CD = c and y + u = CE = AD = b ; hence x = c – t, y = b – u, and 
dy = – du, dx = – dt.  If one substitutes those values then that will imply the equation of 
the curve in the new coordinates: 

dy = 
2 2

2 2

( 2 )

(2 )(2 2 )

a ct t dt

t c t a ct t

− +
− − +

. 

 
It will next follow from this that when t is taken to be infinitely small: 
 

du = 
2

2

a dt

a ct
, 

so 

u = 
t

a
c

. 

 
That equation shows that beyond C, the curve will advance to N in a manner that is 

similar to the way that C goes on to M (1).  The double-valuedness of the  sign in the 
denominator of the first equation is enough to make it clear that the ordinate u can be 
taken to be negative and positive in the same way.  It is then clear that CD is a diameter 
of the curve and the arc length CNB is similar and equal to the arc length CMA. 
 
 
 20. – Likewise, the line cd, which runs through c parallel to the other side of the axis 
AE, will also be a diameter, so the branch Axb will then be equal and similar to the branch 
ACB.  The bending at the points B and b will be precisely opposite to the bending at A; 
the curve will then go beyond them in the same way.  The curve will then possess 

                                                

 (1) The form of the curve in the vicinity of C can also be derived from u = /a t c  in such a way that u2 
= a2 t / c will represent a parabola.  If one sets x to be very small in the original equation then one will have 

y = (a2 – c2) dx / 2 22a c , so y = a2 – c2 x / )( 2ac ; i.e., the curve will have the form of a straight line in 
the neighborhood of A.  That will also follow from the fact that A is an inflection point of the curve; one 
will then have that 

2

2

d y

dx
= 

4

2 2 3 2 2 2 3( ) (2 )
2

a

c a a c x
x

− − +
 

 
will vanish for x = 0.  The curve will not possess inflection points for other values of x. 
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infinitely many diameters CD, cd, etc., that are parallel to each other and have the same 
separation distance Dd.  The curve will then consist of infinitely many mutually-similar 
and equal parts.  Therefore, the entire curve will be known when AMC is known 
sufficiently. 
 
 
 21. – Since A is an inflection point, the radius of curvature will be infinitely large 
there.  That is also implied by the nature of the curve itself.  Namely, the force 2 E k2 / a2 
is applied to A in the direction AD.  From the basic property of elasticity, it will be 

2 22 /k x aE  or E k2 / R (no. 5), at an arbitrary point, if R means the radius of curvature at 
that point, so R = a2 / 2x .  The curvature is greatest at those points, which lie as far from 
the line BAb as possible (1). 
 
 
 22. – Although the abscissa AE = c is determined for the point C, EC can only be 
found by integrating the equation: 

dy = 
2 2 2

2 2 2 2 2

( )

( )(2 )

a c x dx

c x a c x

− +
− − +

. 

 
If one sets x = c after integrating then the value of the associated y will yield the distance 
CE, and when that is doubled, it will yield AB or the interval Dd, which is equal to AB 
and lies between the diameters.  Integration is likewise necessary in order to determine 
the length AC of the bent band.  When the arc length is set to AM = s, one will have: 
 

ds = 
2

2 2 2 2 2( )(2 )

a dx

c x a c x− − +
. 

 
The integration of that will yield the length of the curve AC when one sets x = c (2). 

                                                
 (1) The elastic curve was treated at various places in Euler’s “Methodus inveniendi lineas curvas…,” 
but not very thoroughly, either (v. 46 of this collection, pp. 110, 111, 127, 131).  In Chapter 5, § 46, Euler 
proved the important property that among all curves of the same length that go through the same two 
points, the elastic curve is the one that will generate the body of largest volume when it is rotated around an 
axis.  He also mentioned the relationship R = a2 / 2x there; i.e., that the radius of curvature is inversely 
proportional to the abscissa. 
 (2) If one sets x / c = u and c2 / (c2 – 2a2) = k2 then one will have: 

s = 
2

2

2 2 2 2(1 )(1 )2 u k u

a du

a c − −
∫

−
; 

i.e., in Legendre’s terminology, s will be an “elliptic function of the first kind.”  With the same 
substitution, y will go to: 

2

2

22
2 2

2 22 2 2

1

1 (1 )(1 )
2

2

k u

u u k u

adu du
a c

a c

− −
− − −

− ∫ ∫
−

. 

 
The first term is an elliptic integral of the second kind, while the second term is once more an elliptic 
integral of the first kind.  The integrations for s and y cannot be carried in closed form then. 
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 23. – Since that formula cannot be integrated, we will try to conveniently express the 
values of the interval AD and the curve segment AC by approximation.  If we then set z = 

2 2c x−  then: 

PM = y = 
2 2

2 2

( )

2

a z dx

z a z

−
−∫  

and 

AM = s = 
2

2 22

a dx

z a z−∫ . 

 
 However, from a series development, one has: 
 

2 2

1

2a z−
= 

2 4 6

2 4 6

1 1 1 3 1 3 5
1

4 4 8 4 8 122

z z z

a a aa

 ⋅ ⋅ ⋅+ + + + ⋅ ⋅ ⋅ 
⋯ , 

so one will have: 

s = 
3 5

3 5

1 1 1 3 1 3 5

4 4 8 4 8 122

a z z z
dx

z a a a

 ⋅ ⋅ ⋅+ + + + ⋅ ⋅ ⋅ 
∫ ⋯  

and 

s – y = 
3 5 7

3 5 7

1 1 1 3 1 3 5

4 4 8 4 8 122

z z z z
dx

a a a a

 ⋅ ⋅ ⋅+ + + + ⋅ ⋅ ⋅ 
∫ ⋯ . 

 
 
 24. – We shall consider this integral mainly for the case x = c, so z = 0, and the 
integral can be expressed conveniently with the help of the circular periphery.  If the ratio 
of the diameter to the periphery is equal to 1 / π then: 
 

dx

z∫
 = 

2 2
0

c dx

c a−∫  = 
2

π
 . 

 
 The following integral will be determined in the same way (1): 
 

  
0

c

z dx∫  = 21

2 2
c

π⋅ , 3

0

c

z dx∫  = 41 3

2 4 2
c

π⋅ ⋅
⋅

, 

 

 5

0

c

z dx∫  = 61 3 5

2 4 6 2
c

π⋅ ⋅ ⋅
⋅ ⋅

, 7

0

c

z dx∫  = 81 3 5 7

2 4 6 8 2
c

π⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

. 

 
 With the help of this integral, it will follow that: 

                                                
 (1) The reference to the limits of the definite integral has been added for the sake of brevity, but it is not 
found in Euler, since it was first introduced by Fourier  (1882) in his Traité analytique de la chaleur.  
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 AC = 
2 2 2 2 4 2 2 2 6

2 2 2 2 4 2 2 2 6

1 1 3 1 3 5
1

2 2 2 4 4 2 4 6 82 2

a c c c

a a a

π  ⋅ ⋅ ⋅+ + + + ⋅ ⋅ ⋅ 
⋯ , 

 

 AD = 
2 2 2 2 4 2 2 2 6

2 2 2 2 4 2 2 2 6

1 3 1 3 5 1 3 5 7
1

2 1 2 2 4 3 4 2 4 6 5 82 2

a c c c

a a a

π  ⋅ ⋅ ⋅− ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ 
⋯ . 

 
 When AE = c and AD = b are given, one can then find the segment a and the curve 
length AC from those equations.  Conversely, one can also determine the lines AD and 
CD from the given curve length AC and the segment a, since the latter determine the 
bending force. 
 
 
 25. – As is known, we have already established the first type of curve in such a way 
that we would have c = 0 or a / c = ∞ in the general equation: 
 

dy = 
2 2 2

2 2 2 2 2

( )

( )(2 )

a c x dx

c x a c x

− +
− − +

. 

 
That case corresponds to the straight line.  It represents the natural state of the elastic 
band.  However, the cases for which the quantity c is so small that they can be neglected 
in comparison to a should also be counted among the first kind.  However, since x cannot 
dominate the quantity c, x can also be neglected in comparison to a, and one will get the 
equation: 

dy = 
2 22( )

a dx

c x−
, 

 

whose integral is y = arcsin
2

a x

c
.  That is the equation of a trochoid that extends to 

infinity (1).  AD will be equal to 
2 2

aπ
.  The length of the curve AC will deviate infinitely 

little from that, since the angle DAM is infinitely small.  Let the length of the band be 

ACB = 2f, and let its absolute elasticity be equal to E k2 .  Since f = 
2 2

aπ
,  the force that 

this infinitely-small curvature of the band provokes will have a finite magnitude, and 

                                                

 (1) y = arcsin
2

a x

c
 will imply that x = c sin 

2y

a
.  With the current terminology, one calls the curve 

that is represented by that equation a sinusoid.  One now understands a trochoid to mean an extended or 
truncated cycloid.  In fact, the sinusoid can be regarded as a special case of a truncated cycloid. 
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indeed, it will be 
2 2

2 4

k

f

πE
; i.e., when the ends A and B are linked together with a 

filament, that filament will be tensed with a force of 
2 2

2 4

k

f

πE
. 

 
 
 26. – The second kind of curve is defined by the cases in which c > 0, but c < a ; i.e., 
c lies between the limits 0 and a.  The angle DAM will then be smaller than a right angle.  
One will then have sin PAM = cos DAM = (a2 – c2) / a2 .  In that case, the form of the 

curve is the one that it is represented in Fig. 6.  Since c < a, one will have 
2

22

c

a
< 

1

2
, so 

AC = f > 
2 2

aπ
.  Therefore, a2 < 

2

2

8 f

π
, so the force that draws the ends A and B of the 

band towards each other with the help of the filament AB will be greater than in the 

foregoing case, namely > 
2 2

2 4

k

f

π⋅E
. 

  
 
 27. – I take the case of c = a to be the third kind of curve.  Since the axis AP contacts 
the curve at A in that case, that kind of curve will take the special name of a rectangular 
elastic curve.  One has: 

dy = 
2

4 4

x dx

a x−
 and ds = 

2

4 4

a dx

a x−
 

 
for them.  The values of AD and AC in that case are given by: 
 

 AC = f = 
2 2 2 2 2 2

2 2 2 2 2 2

1 1 1 3 1 1 3 5 1
1

2 2 2 4 4 2 4 6 82 2

aπ  ⋅ ⋅ ⋅+ ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅ 
⋯ , 

 

 AD = b =
2 2 2 2 2 2

2 2 2 2 2 2

1 3 1 3 5 1 3 5 7
1

2 1 2 2 4 3 4 2 4 6 5 82 2

aπ  ⋅ ⋅ ⋅− ⋅ − ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
⋯ . 

 
 Although neither b nor a can be expressed in closed form, I have proved elsewhere 
that a remarkable relationship exists between those quantities.  Namely, I have shown 
that 4bf = π a2 (1); the right angle between AD and AC is equal to the area of the circle 

                                                
 (1) The Euler relation 4bf = π a2 can be easily derived with the help of the Legendre relation: 

K E′ + K′ E – KK′ = 
2
π

. 

(For the formulas on elliptic integrals that are needed for this, one can confer, e.g., E. Pascal: Repertorium 
der höheren Mathematik, deutsche Ausgabe von A. Schepp, pp. 156.)  One will then have: 
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whose diameter is AE.  By carrying out the calculation, one will find, approximately, that 

f = 
5

6 2

a π⋅  or a = 
12

5

f

π
.  Therefore, the force that draws the ends A and B of the band 

together will be 
2

2
2

25

72

k

f
π⋅E

.  More precisely, one will find that f = 
2 2

aπ ⋅⋅⋅⋅ 1.1803206.  

Hence: 

b = 
2

4

a

f

π
 = 

2 1.803206

a

⋅
. 

 
 In terms of mere numbers, it will then follow that (1) : 
 

f

a
= 1.311006  and  

b

a
= 0.59896. 

 
 
 28. – When c > a, the fourth kind of curve will arise, although for them one should 
have AD = b > 0.  That will imply a second limit for c, namely, from the equation: 
 

                                                                                                                                            

f = 
2

2 2 2 2
0 ( )( )

a a dx

a x a x
∫

− +
. 

If one sets x = a cos ϕ then one will have: 

f = 
2

/ 2

10
2

2 1 sin

a dπ ϕ

ϕ
∫

−
 = 

2

a
K⋅ . 

Moreover, one has: 

b = 
2

2 2 2 2
0 ( )( )

a dx

a x a x

x
∫

− +
= 

2 2 2

2 2 2 2 2 2
0 0 ( )( )

a adx a x dx

a x a x a x

a+ −∫ ∫
− − +

. 

If one again sets x = a cos ϕ then one will have: 

b = 2
/ 2

0

2 1 sin
2

a
d Ka

π
ϕ ϕ−∫ −   = 

2

a
(2 E – K). 

As the formulas show, the complete integrals K and E belong to the modulus k2 = 1/2 in this case, so 1 – k2 
will also be 1/2 .  However, if one replaces k2 with E and K in 1 − k2 then it will go to E′ and K′, resp.  One 
will then have K = K′ and E = E′ here.  The Legendre relation above will the give the equation: 

K (2 E – K) = 
2
π

. 

However, one now has b f = (a2 / 2) K (2 E – K); hence, 4 b f = a2π .  One will find another proof in 
Todhunter: A History of the Theory of Elasticity, Cambridge, 1886. vol. 1, pp. 36. 
 (1) One will find a computational error in these numerical calculations.  Euler has set: 

b = 
2

a ⋅⋅⋅⋅ 1.1803206, instead of b =  
2 1.1803206

a

⋅
. 

(This was corrected in the text.)  It will then follow that b / a = 0.59896; i.e., approximately 0.6.  That will 

yield the formula f = 
5
6 2
a π

⋅ .  In the text, Euler falsely said that b / a = 0.834612. 
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1 = 
2 2 2 2 4 2 2 2 5

2 2 2 2 4 2 2 2 6

1 3 1 3 5 1 3 5 7

2 1 2 2 4 3 4 2 4 6 5 8

c c c

a a a

⋅ ⋅ ⋅⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
⋅ ⋅ ⋅

 + … 
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Figure 7. 

 
 For the fourth kind of curve, since c > a, the curve will climb above the axis AE at A.  
It will then define an angle PAM whose sine is equal to (c2 – a2) / a2 ; however, we will 
soon see that this angle is smaller than 40o 41′.  The distance AD will vanish when that 
angle assumes that value; I shall treat that case as one of the fifth kind.  The curves of the 
fourth kind include the cases for which c2 / a2 are found between the limits 1 and 
1.6511868.  The form of those curves can be see in the figure, where one must remark 
that the closer that c2 / a2 approaches the limit 1.6511868, the smaller that the distance 
AD will become, and the closer that the endpoints A and B of the band will come to each 
other.  It can happen then that the nodes m and R, as well as M and r, will not only touch 
each other, but even intersect.  Finally, it can happen that all diameters DC, dc might 
coincide with each other and the axis AE. 
 
 
 29. – When that happens, the fifth kind of curve will come about, which is expressed 
by the equation: 

dy = 
2 2 2

2 2 2 2 2

( )

( )(2 )

a c x dx

c x a c x

− +
− − +

, 

 
in which the relationship exists between a and c that AD = b = 0.  One sets c2 / 2a2 = v.  v 
will then be determined from the following equation: 
 

1 = 2 31 3 1 1 3 5 1 1 3 3 5 7

2 2 2 2 4 4 2 2 4 4 6 6
v v v

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 + … 

 



Euler – On elastic curves 22 

 When one seeks the limits between which the true value of v lies, whether by some 
familiar method or mere trial and error, one will find that v = 0.824 and v = 0.828. 

 
M 

P 

N 

A 

p 

m 

c 

 
Figure 8. 

 
 If the two values are substituted in the equation then one can conclude from the 
discrepancy that will arise in both cases that one must have v = 0.825934, so c2 / a2 = 
1.651868 and (c2 – a2) / a2 = 0.651868, and that value is the sine of the angle PAM.  From 
a Table, one will find that this angle is 40o 41′, so the angle MAN, which is twice as large, 
will be 81o 22′.  Therefore, when the endpoints of the elastic band are close enough that 
they will contact, the curve AMCNA (Fig. 8) will be determined, and the two ends will 
meet each other at 81o 22′ (1). 
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Figure 9. 

                                                
 (1) W. Hess treated the problem of the elastic line in analogy with the motion of a pendulum and gave a 
series of figures for their possible forms [Mat. Ann. 25 (1885), 1-38].  For Euler, the force direction for the 
Euler curve of the fifth kind – i.e., the altitude to AP at A (Fig. 8) – defines an angle of 90o + 40o 41′ = 130o 
41′ with the curve.  Hess gave 129.3o for that angle.  He obtained that angle from Legendre’s tables of 
elliptic integrals.  One must find the value of the modulus k2 for which 2 E – K vanishes.  As the editor has 
suggested, that will give 130o 41′, and in addition, a check of Euler’s equation for v will show that Euler 
had calculated in correctly, since one would get 0.8261 for v, instead of Euler’s value 0.8259. 
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 30. – When the two ends A and B of the band first get close enough to touch and are 
then bent in opposite directions with increasing force, a curve of the form AMCNB (Fig. 
9) will result, which defines the sixth kind.  For the curves of this kind, one has c2 / 2a2 > 
0.825934, but c2 / 2a2 < 1.  For c2 = 2a2, one will have the seventh kind, which we shall 
explain immediately. 
 For those curves, the angle PAM that the curve makes with the axis at A will be 
greater than 40o 41′, but smaller than 90o.  If sin PAM = (c2 – a2) / a2 and since c2 < 2a2, 
that value will be smaller than 1, and it will be equal to 1 only when c2 = 2a2. 
 
 
 31. – Let c2 = 2a2, so our seventh kind of curve will be in question.  In that case, the 
equation reads: 

dy = 
2 2

2 2

( )

2

a x dx

x a x

−
−

. 

 
From it, one sees that the branches A and B of the curve extend to infinity in such a way 
that AB will be an asymptote of the curve.  Therefore, each branch AMC and BNC will go 
to infinity, as one can see from the series that was found for the arc length AC before: 
 

AC = 
2 2 2 2 2 2

2 2 2 2 2 2

1 1 3 1 3 5
1

2 2 4 2 4 62 2

aπ  ⋅ ⋅ ⋅+ + + + ⋅ ⋅ ⋅ 
⋯  . 
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Figure 10. 

 
The sum of this series in is infinite.  If the length of the band AC = f is to be finite then 
one must have a = 0, so one will also have CD = c = 0.  Hence, after the band has bent 
into a knot, it will again extend rectilinearly.  In order to achieve that, one will need an 
infinitely-large force.  However, when the band is infinitely long, it will define a curve 
with a node that goes to the asymptote AB, so one has CD = c.  (Fig. 10) The equation of 
this curve can be integrated with the help of logarithms, and one will get: 
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y = 
2 2

2 2 log
2

c c xc
c x

x

+ −
− − ; 

 
The abscissa x is taken to be the diameter DC in this.  One has DQ = x and QM = y, so for 
x = CD = c, one will have y = 0.  y will likewise be zero at the node O.  In order to find O, 
one must set: 

2 22 c x

c

−
 = 

2 2

log
c c x

x

+ −
. 

 

Let cos ϑ = x / c, so sin ϑ = 2 22 /c x c− , and the equation will become: 

 

2 sin ϑ = log tan o45
2

ϑ + 
 

. 

 
The logarithm is taken to be the natural logarithm.  For want of a table of such things, one 
might look up the tangent of the angle 45o + ϑ / 2 in the usual table of logarithms, when 
the 10 is removed from the reference number.  What will remain is ω ; one will then have 
2 sin ϑ = ω ⋅⋅⋅⋅ 2.30258509 (1).  If one again takes natural logarithms then one will have 
log 2+ log sin ϑ = log ω + 0.3622156886, or log sin ϑ = log ω + 0.0611856930.  Upon 
applying this artifice, one will soon find an approximate value for ϑ, and from that, one 
can find the true value of ϑ by the regula falsi (“false position”) method, which will 
determine DO.  One will then find that ϑ = 73o 14′ 12″, from which, it will follow that: 
 

x

c
= 0.2884191 and 

2 2c x

c

−
= 0.9575042. 

 
The angle QOM is 2ϑ − 90o = 56o 28′ 24″, so the angle MON will become 112o 56′ 48″.  
For the fifth kind, the angle at the node will be 81o 22′, so for the sixth kind, the angle at 
the node will be between 81o 22′ and 112o 56′ 48″.  When a node appears in the fourth 
kind, the angle will be less than 81o 22′. 
 
 
 32. – Finally, let c2 > 2a2, so one sets c2 = 2a2 + g2 .  The equation of the curve reads: 
 
                                                
 (1) Here, the well-known relation ln n = log10 n ⋅ ln 10 has been applied.  ln 10 is 2.302585.  At the 
conclusion of this section, one will set ∠ QOM = 2ϑ = 90o, so: 

tan ϕ  =
dy

dx
= 

2 2

2 2

( / 2 )c x

x c x

−

−
. 

One again sets x = c cos ϑ, which will yield: 

tan ϕ = 
21 2cos

2sin cos
ϑ

ϑ ϑ
−

 = − cot 2ϑ . 

Hence, tan ϕ = cos (180o – 2ϕ) = tan (2ϕ – 90o), so ϕ = 180o – 2ϕ . 
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dy = 
2 2 21 1

2 2

2 2 2 2

( )

( )( )

x c g dx

c x x g

− −
− −

. 
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Figure 11. 

 
This equation represents the eighth kind of curve.  The line dDd might be the direction of 
the applied force, so x = DQ, y = QM.  First, it is clear that y can be real only when x > g, 
but then x cannot go beyond the segment DC = c.  Thus, when one sets DF = g, the entire 
curve will lie between two lines that are parallel to dd and go through C and F, and 
simultaneously contact the curve (Fig. 11).  It makes no difference which of the two 
segments c or g is larger.  As long as both of them are unequal, the equation will not 
change when c and g are exchanged with each other.  Furthermore, that curve has 
infinitely many, mutually-parallel diameters DC, dc, dc, etc., and in addition the line that 
is drawn through G and H perpendicular to dDd will be the diameter (1).  Nowhere along 
the entire curve will one find an inflection point, so the curvature will go uniformly to 
infinity in both directions, as is shown in the figure.  The angles MON at the nodes are 
greater than 112o 56′ 48″. 
 
 
 33. – Since these (eight) kinds of curve include not only the cases for which g2 < c2, 
but also the ones for which g2 > c2, all that remains is the case for which c = g.  The entire 

                                                
 (1) The curve will remain unchanged when c and g are exchanged.  Therefore, it must have the same 
form in the neighborhood of G that is has in the neighborhood of C, only the curvature at C will be greater 
than it is at G.  The altitude to Dd at G will then be a diameter of the curve, as well, like the altitude to Dd 
at C. 
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curve will vanish in that case, because CF = 0.  Now, when c and g are both fixed to be 
infinite, but in such a way that their difference remains finite, the curve will possess a 
definite form.  In order to find it, one sets g = c – 2h and x = c – h + t.  Since c is very 
large, but h and t are finite, 2 21 1

2 2c g+  = c2 – 2ch ; x2 − 2 21 1
2 2c g− = 2 ct.  However, one 

will then have c2 – x2 = 2c (h – t) and x2 – g2 = 2c (h + t).  The following equation will 
emerge from that then: 

dy = 
2 2

t dt

h t−
, 

 
which will give a circle.  In that case, the elastic band will be curved into a circle, as was 
mentioned before.  The circle defines the ninth and final kind. 

 

G 

T 

A 

P 
 

Figure 12. 
 
 
 34. – From the classification of these curves, it is easy to find which kind a given 
curve belongs to in a particular case.  Let the elastic band be fixed to a wall at G (Fig. 
12), and hang a weight P from the end A, so that the band assumes the form GA.  If one 
draws the tangent AT then making a decision will be possible only by way of the angle 
TAP.  When it is acute, the curve will be one of the second kind, and when it is a right 
angle, it will be one of the third kind, and the elastic curve will be rectangular. 
 If the angle is obtuse, but smaller than 130o 41′, then the curve will be one of the 
fourth kind.  When the angle TAP = 130o 41′, it will be one of the fifth kind.  If TAP is 
greater than that then the curve will be one of the sixth kind.  It will be one of the seventh 
kind when that angle is equal to two right angles, which cannot happen in reality, though.  
That kind of curve, along with the last two, cannot be produced by hanging a weight on 
the band directly. 
 
 
 35. – In order to explain how the latter kinds of curve can be produced by the 
curvature of the band, let a weight be hung from C that points in the direction CD (Fig. 3 
in no. 5), not directly from the band that is fixed at B, but along the rigid rod AC that is 
coupled solidly with the end A of the band. 
 Let the distance AC be h, let the absolute elasticity of the band be E k2, and let the 
sine of the angle MAP that the band makes with the horizontal at A be m.  Furthermore, 
let AP = t and PM = y, so the equation of that curve will be found to be: 
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I.     dy = 
2 21

2

2 4 2 2 21
2

( )

( )

dt m k Pht Pt

k m k Pht Pt

− −
− − −

E

E E
. 

 
In order to bring this equation into the form that we appealed to in our classification of 
kinds, we will set CP = x = h + t.  We will get (1): 
 

II.     dy = 
2 2 21 1

2 2

2 4 2 2 2 21 1
2 2

( )

( )

dx m k Ph Px

k m k Ph Px

− −
− − −

E

E E
. 

 
A comparison of that equation with: 
 

III.     dy = 
2 2 2

4 2 2 2 2

( )

( )

dx a c x

a a c x

− − +
− − +

 

 
will yield 1

2 Pa2 = E k2, or a2 = 2 E k2 / P, and 12 Pc2 − 1
2 Pa2 = m E k2 + 1

2 Ph2, so: 

 

c2 = 
22(1 )m k

P

+ E
 + h2. 

 
 
 36. – The curve will then be one of the second kind when one has 2m E k2 / P + h2 < 
0 or P < − 2m E k2 / h2 .  If the angle PAM is not negative then the force P must be 
negative, and the rod at C must point upwards.  The curve will be one of the third kind 
when P = − 2m E k2 / h2 .  It will be one of the fourth kind when 2m E k2 + P h2 > 0, but 
at the same time, 2m E k2 + P h2 < 2α E k2, where α = 0.651868.  However, if P = 
2( )mα − E k2 / h2 then the curve will be one of the fifth kind.  If one has P h2 > 2 (α – m) 
E k2, but at the same time P h2 < 2 (1 – m) E k2, then one will be dealing with a curve of 
the sixth kind.  One will get the seventh kind when P h2 = 2 (1 – m) E k2, and one will get 
the eighth kind when P h2 > 2 (1 – m) E k2.  When the angle PAM is a right angle, one 
will have 1 – m = 0, and the curve will always be one of the eighth kind.  Finally, the 
ninth kind will arise when h = ∞, as I pointed our before. 
 
 
 

                                                
 (1) Equation I will become the equation at the end of no. 5 when one replaces x with t, c with h, and sets 

2m kE =  − Pf.  That relation is derived at the end of no. 10.  If one shifts the coordinate origin from A to C 
then I will go to II.  The normal form equation (III) of the elastic curve will not change when the x-axis is 
displaced parallel to itself, since only dy enters into it, but not y.  The origin will then become an arbitrary 
point along the line AB (Fig. 6).  The applied force acts at it in the direction AB, which is also the case at 
the point C for II.  The minus sign in front of dx in III can be explained by the fact that in Fig. 3, no. 5, the 
force acts in the direction of the negative y-axis, but in Fig. 6, it acts in the direction of the positive y-axis 
(see the remark on page 13).  Hence, since II and III are now referred to the same coordinate axes, those 
equations can be made to coincide. 
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Figure 13. 

 
 

On the load capacity of columns 
 

 37. – As was remarked before in regard to the first kind of curve, they can serve to 
determine the load capacity of columns.  Let AB (Fig. 13) be a vertical over the base A 
that the column lies on; it carries the weight P.  Let the column be chosen so that the 
weight cannot slide.  If the weight P is not too large then one might expect at most a 
bending of the column.  In that case, the column can be regarded as also being endowed 
with elasticity.  Let the absolute elasticity of the column be E k2, and let its height be 2f = 
a = AB.  In no. 25, we saw that the force that is required in order to bend the column by a 
very small amount is: 

2 2

24

k

f

π E
= 

2
2

2
k

a

π
E . 

 
Therefore, when the load P is not greater than: 
 

2 2

2

k

a

πE
, 

 
one should not expect any bending.  However, if P is larger then the column then the 
column cannot resist bending, but if the elasticity of the column, and therefore its density, 
as well, remains unchanged then the load P that it can safely carry will behave conversely 
like the square of the height.  A column that is twice as high can carry only one-fourth as 
much load.  That can be especially useful in regard to wooden columns, which are quite 
subject to bending. 
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Figure 14. 

 
 

Determining the absolute elasticity by experiments 
 
 38. – In order to be able to determine the curvature of any elastic band a priori, the 
absolute elasticity that we have expressed by E k2 will be known.  That can be achieved 
conveniently by a single experiment.  Let the uniform elastic band FH whose absolute 
elasticity is to be found (Fig. 14) be fixed at one end F to a solid wall GK, such that it 
will assume the horizontal position FH; one can, in fact, neglect its own weight in this.  
An arbitrarily-chosen weight P is hung at the end H, which will curve the band into the 
position AF.  Let the length of the band be AF = HF = f, let the length of the horizontal 
grade be AG = g, and let the length of the vertical be GF = h.  All of those values can be 
obtained from measurements.  One can compare with the curve AF whose general 
equation is expressed by: 

dy = 
2 2 2

2 2 2 2 2

( )

( )(2 )

c a x dx

c x a c x

− −
− − +

. 

 
In it, a and c are to be determined from f, g, h.  The bending force will be: 
 

P = 
2

2

2 k

a

E
, so E k2 = 1

2 P a2. 

 
 

 39. – Since the tangent is horizontal at F, one will have dy / dx = 0, so x = 2 2c a− .  

AG = g will then become 2 2c a−  and a2 = c2 – g2.  Hence, when one sets x = g in: 
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dy = 
2 2

2 2 2 2 2

( )

( )( 2 )

c g dx

c x c g x

−
− − +

, 

 
that must imply that y = GF = h and s = AF = f.  However, one has: 
 

ds = 
2 2

2 2 2 2 2

( )

( )( 2 )

c g dx

c x c g x

−
− − +

. 

 
The weight P might be chosen to be small enough that the band is bent only slight, so a, 
and therefore c, as well, will be very large.  One will then have: 
 

(c4 – 2 c2 g2 + 2 g2 x2 – x4)−1/4 = 
2 2 2 4

2 4 6 6

1

2

g g x x

c c c c
+ − + , 

 
approximately.  Integration will then yield: 
 

s = 
2 2 2 2 2 2 2 2 3 2 2 5

2 4 6 6

( ) ( ) ( ) ( )

3 10

c g x c g g x c g g x c g x

c c c c

− − − −+ − + , 

 
approximately, and: 
 

y = 
2 4 4 3 2 5 3 2 3 2 5 7

2 4 6 6 2 2 6 63 10 3 3 5 14

g x g x g x g x x g x g x x

c c c c c c c c
+ − + − − + − . 

 
If one sets x = g then one will have (1): 

f = g – 
5

4

37

30

g

c
 

and 

h = 
3 5

2 4

2 2

3 3

g g

c c
+ . 

 
In order to find c, one employs the value of h and also neglects the second term.  One will 
then get: 

                                                
 (1) The value of f is not correct.  From the figure, it is clear that f > g, with no further assumptions.  If 

one continues the series development of (c4 – 2c2 g2 + 2 g2 x2 – x4)−1/2 further then one will get + 10

3 1
8 c

⋅ [4 c4 

g4 + 4 c2 g2 x4 − 8 c2 g4 x2 + …].  If one integrates and multiplies by (c2 – g2) and then sets x = g then the 

first term in brackets will give the term 5

4

3 4
8

g
c

⋅ = 
5

4

3
2

g

c
⋅ .  Euler seems to have overlooked this.  As a 

result, one will have f = g + 
5

4

8
30

g

c
. 
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c2 = 
32

3

g

h
, 

so 

a2 = 
2(2 3 )

3

g g h

h

−
, 

and therefore: 

E k2 = 1
2 Pa2 = 

2(2 3 )

6

Pg g h

h

−
. 

 
That value will differ only slightly from the true value as long as one does not let the 
curvature of the band get too large. 
 
 
 40. – The absolute elasticity E k2 depends, first of all, upon the nature of the material 
of which the band is composed.  Secondly, it depends upon the width of the band, such 
that when everything else stays the same, the expression E k2 will be proportional to the 
width of the band.  Thirdly, however, the thickness of the band will play a significant role 
in the determination of the value of E k2.  E k2 then seems to be proportional to the square 
of the thickness.  The expression E k2 will be a term that relates to the elastic material and 
includes the first power of the width of the band and the second power of the thickness.  
As a result, one can determine the elasticities of all materials and compare them to each 
other by experiments in which one measures their lengths and thicknesses. 
 
 

On the curvature of non-uniform elastic bands 
 
 41. – Up to now, I have assumed that the absolute elasticity E k2 of a band whose 
curvature I determined is constant along its entire length.  However, the solution can 
result from the same method when E k2 is assumed to vary arbitrarily.  Namely, let the 
absolute elasticity be an arbitrary function of the arc length AM = s (Fig. 3).  That 
function will be called S.  Let R be the radius of curvature at M.  The curve AM that the 
band assumes will be arranged so that among all other curves of the same length, 

2/S ds R∫ will be a minimum.  That case will be solved by the second general formula 

(1). 
 Let dy = p dx, dp = q dx, and dS = T ds.  The problem will then come down to finding 
the curve for which: 

2

2 5/2(1 )

S q dx

p+∫  

 

                                                
 (1) Here, Euler is referring to the formulas that were given in “Methodus inveniendi lineas curvas, 
Chapter IV, no. 7, II (pp. 132 of that book).  They are not included in v. 46 of this collection. 
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is a minimum from among all curves for which 21dx p+∫  has the same value.  The 

first formula 21dx p+∫ will then give the differential expression: 

 

2

1

1

p
d

dx p+
. 

When the second formula: 
2

2 5/2(1 )

S q dx

p+∫  

is compared with ∫ Z dx that will give: 
 

Z = 
2

2 5/2(1 )

S q

p+
. 

Now, one has set: 
 

  dZ = L dΠ + M dx + N dy + P dp + Q dq,  Π = [ ]Z dx∫ , 

 

 d [Z] = [ ] [ ] [ ]M dx N dy P dp+ + ,   L dΠ  = 
2

2 5/2(1 )

q T ds

p+
, 

so: 

L = 
2

2 5/2(1 )

q T

p+
; 

but 

dΠ  = ds= 21dx p+ , 

so 

[Z] = 21 p+ ,  [M] = 0, [N] = 0, [P] = 
21

p

p+
. 

 Furthermore, M = 0, N = 0, so: 
 

P = − 
2

2 7/2

5

(1 )

S q p

p+
 and Q = 2 5/2

2

(1 )

S q

p+
. 

One will then have: 

dZ = 
2

2 5/2(1 )

q dS

p+
+ P dp + Q dq . 

 
 
 42. – One defines: 

L dx∫  =
2

2 5/2(1 )

q T dx

p+∫ = 
2

2 3(1 )

q dS

p+∫ . 
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 Let the value of that integral when one sets x = a be H.  The constant a will soon 
emerge once more from calculation.  One will then have: 
 

V = H − 
2

2 3(1 )

q dS

p+∫ . 

 
 The differential expression will then be: 
 

−
2

2[ ]
dP d d Q

P V
dx dx dx

 − ⋅ + 
 

. 

 
 The equation of the desired curve follows from the two differential expressions: 
 

21

d p

dx p
α

 
 
 + 

 = +
2

2[ ]
dP d d Q

P V
dx dx dx

 + ⋅ − 
 

, 

or 

21

p

p

α
+

+ β = 
2

2 32 2 (1 )1 1

H p p q dS dQ
P

p dxp p
− + −

++ + ∫ . 

 
 The constant H can be combined with the constant α, and the constant a will emerge 
from the equation.  One will then get: 
 

21

p

p

α
+

+ β = P − 
2

2 32 (1 )1

dQ p q dS

dx pp
−

++ ∫ . 

 
 
 43. – Multiply that equation by dp = q dx.  From the last equation of number 41, P dp 
can then be replaced with: 

dZ − Q dq − 
2

2 5/2(1 )

q dS

p+
, 

 
and the following integrable equation will arise: 
 

21

p dp

p

α
+

+ β dp = dZ − q dQ − Q dq − 
2 2

2 5/2 2 32(1 ) (1 )1

q dS p dp q dS

p pp
−

+ ++ ∫ . 

 
 Its integral is: 

21 pα + + β p + γ = Z – qQ − 
2

2
2 31

(1 )

q dS
p

p
+

+∫ , 

or 
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21 pα + + β p + γ = 
2 2

2
2 5/2 2 31

(1 ) (1 )

S q q dS
p

p p

− − +
+ +∫ . 

 

 Divided that equation by 21 p+  and differentiate once more: 

 
2 2

2 3/ 2 2 3/2 2 3 2 3 2 4

2 2 6

(1 ) (1 ) (1 ) (1 ) (1 )

dp p dp q dS S q dq S pq dq

p p p p p

β γ− + + −
+ + + + +

 = 0. 

 
 If one multiplies this by (1 + p2)3/2 / 2q then that will imply that: 
 

2 3/ 2 2 5/ 2

3

2 2 (1 ) (1 )

dp p dp q dS S dq S pq dq

q q p p

β γ +− + −
+ +

 = 0. 

 
 However, since dp = q dx and dy = p dx, the integral of the latter equation will be: 
 

α + 1 1
2 2 2 3/ 2(1 )

S q
x y

p
β γ− +

+
= 0. 

 
 However, the radius of curvature is R = − (1 + p2)3/2 / q, so when one doubles the 
constants g and b, the following equation will arise: 
 

S

R
 = α + β x – γ y. 

 
 This equation agrees splendidly with the direct method.  Namely, it expresses α + β x 
– γ y as the moment of the bending force when an arbitrary line is assumed to be the axis 
(1).  That moment must be equal to the absolute elasticity divided by the radius of 
curvature.  With that, not only is the property of the elastic curve that was observed by 
the very distinguished Bernoulli  explained completely, but the application of my 
complicated formulas to this example are also confirmed excellently. 
 

                                                
 (1) That expression can be established more rigorously as follows: Let CP be the arbitrary line whose 
equation (Fig. 3) is Ax + By + C1 = 0, and let it be the axis.  The moment of the force P about the point M 
(corresponding to the developments in no. 5) will be P ⋅⋅⋅⋅ CP.  For the moment, the point M will have the 
coordinates ξ and η, so the equation of MP will be given by A (y – η) – B (x – ξ) = 0.  The point C has the 
coordinates x = k, y = l, so one will have Ak + Bl + C1 ≡ 0, and the length of the altitude to MP at C – i.e., 
CP – is given by: 

2 2

( ) ( )A l B k

A B

η ξ− − −
+

. 

The moment is P ⋅⋅⋅⋅ CP, so when one again replaces ξ and η with x and y, respectively, that moment will be: 

2 2 2 2 2 2

( )Al Bk B A
x y

A B A B A B

−
+ −

+ + +
P P P

, 

which corresponds to α + β x – γ y in the text. 
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 44. – Therefore, when the curve is given that the nonuniform elastic band will define 
under the action of the force P (Fig. 3), the absolute elasticity of the band at an arbitrary 
location can be derived from it.  The line CP that is perpendicular to the direction of the 
applied force is taken to be the axis.  Let CP = x and PM = y, let the arc length AM = s, 
and let the radius of curvature at M be equal to R.  Since the moment of the force P at the 
point M is equal to Px, one will have S / R = Px, and therefore S = PRx, and as a result, 
since R can be assumed to be known at the individual points of the given curve, the 
absolute elasticity will be known at each location.  Hence, when the substance that the 
band is made of and its thickness remains the same everywhere, but the width does 
change, then since the absolute elasticity is proportional to the width, the width at the 
individual locations will be found. 

 
f 

F 
f 

m m M 

A  
Figure 15. 

 
 
 45. – Let the triangular wedge f A f (Fig. 15) be cut out of the elastic band, which has 
the same density everywhere.  The width mm is proportional to the length AM at any 
arbitrary location M.  If one sets AM = s then the absolute elasticity at M will be 
proportional to s.  Let it be E ks.  Let the end ff of the band be horizontal and fixed in a 
wall, and hang a weight P at the vertex A, which will curve the midline AF into a curve 
FmA (Fig. 14), whose nature will be examined.  In the horizontal axis, let Ap = x, pm = y, 
and arc length Am = s, so Px = E ks / R.  One has: 
 

R = − 
12

2

dx d y

ds ds

−
 
 
 

. 

 
 When one multiplies this equation by dx that will yield: 
 

P x dx = − 
12

2

dx d y
ks

ds ds

−
 
 
 

E , 

or 
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12

2

Px dx d y
dx s dx

k ds ds

−
 

+  
 E

 = 0. 

 However, one has: 
dy

d s
ds

 
 
 

= 
dy dy ds

s dy s ds
ds ds ds

− + dy. 

 
 If one assumes that dx is constant then: 
 

d 2s = 2dy
d y

ds
, 

and therefore: 
dy

d s
ds

 
 
 

= 
2

2

dx d y
s dx

ds ds
+ dy. 

 
2

2

dx d y
s dx

ds ds∫  = 
dy

s
ds

− y . 

 
 Upon integration, that will yield the original equation: 
 

2

2

Px

kE
+ a = − dy

s
ds

+ y. 

 
 

 46. – Let dy = p dx, so ds = 21dx p+ .  One sets 2 E k / P = c, so the equation above 
will become: 

a + 
2x

c
= y − 

21

s p

p+
, 

or 
2 2 21 1a p x p

p cp

+ +
+ = 

21y p

p

+
− s. 

 
 When differentiated, that will yield: 
 

2 2

2 2 2 2

2 1

1 1

x dx padp x dp

cpp p cp p

+− + −
+ +

= 
2

2

2 2

1
1

1

dy p y dp
dx p

p p p

+
− − +

+
. 

 

 Since dy = p dx, the right-hand side will reduce to – y dp / 2 2( 1 )p p+ .  Hence: 
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a – y = 
12 22 (1 )p x p dp x

c dx c

−+   − 
 

. 

 
 dp is assumed to be constant, so upon differentiating, one will get: 
 

− p dx = 
1 12 2 22 (1 ) 2 (1 ) 2 (1 3 ) 2p x p dp p p dp x dx p xdx

d dx
c dx c dx c c

− −+ + +   + + −   
   

, 

or 
0 = c dx dp + 2x d 2x (1 + p2) + 2 dx2 (1 + p2) + 6p x dx. 

 
 Solving that equation any further is not possible.  The simplest curve equation (from 
no. 45, conclusion) is: 

y ds s dy

ds

−
= 

2

2

Px

kE
. 

 
When one sets x = 0, y and s must also vanish, so the constant a must be zero. 

 

P 

C A 

P 

M 
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Figure 16. 

 
 

On the curvature of elastic bands that are not rectilinear in their natural state 
 
 47. – In that way, the curvature of the uniform elastic band, just like the non-uniform 
one, is determined when a force is applied, and the band that is being evaluated is 
rectilinear in its natural state.  However, when the band is already curved in its natural 
state, it will assume a different curvature as a result of the applied force.  In order to find 
the latter, one must know the elasticity of that natural figure in addition to the applied 
force.  Therefore, let the curve Bma represent the natural form of the band (Fig. 16) 
whose elasticity is E k2 everywhere.  That natural curve will go over to the form BMA as 
a result of the applied force P.  The line CAP is drawn through A perpendicular to the 
direction of the force, and that line is taken to be the axis.  Let AC = c, AP = x, PM = y, so 
the moment of the applied force at the point M will be P (c + x). 
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 48. – Furthermore, let the radius of curvature of the desired curve at M be equal to R, 
and let the arc length am of the natural curve be equal to s, so: arc length am = arc length 
AM = s.  Let r be the radius of curvature at m, which will be given by the arc length s of 
the known curve amB.  Since the curvature at M is larger, R < r.  The overshoot of the 

elementary angle at M over the one at m is 
ds ds

R r
− .  However, that overshoot is due to 

the applied force.  One then has: 
 

P (c + x) = E k2 
1 1

R r
 − 
 

. 

 
That is the equation of the desired curve, since r is given in terms of s ; i.e., it is a 
function of x and y.  However, that curve cannot be reduced to one of the kinds that were 
considered before. 
 
 
 49. – We would like to assume that the band amB has the form of circle in its natural 

state, so we then set r = a, and: P (c + x) = E k2 
1 1

R a
 − 
 

.  When that is multiplied with 

dx and integrated (see no. 5, towards the end), that will give: 
 

( )21
22

P
x cx f

k
+ +

E
 = 

dy x

ds a

− − . 

 

 Write c – 
2k

Pa

E
for c.  That equation will then become: 

 

( )21
22

P
x cx f

k
+ +

E
 = 

dy

ds

−
. 

 
 That is the same equation that we found before (no. 5) for the band that is rectilinear 
in its natural state.  The bands that are circular in their natural state will then be bent into 
the same curve that the naturally-rectilinear curves will assume, but the point at which the 
force is applied, and so the segment AC = c, as well, must generally be different for each 
of the two cases.  The same nine kinds of curves that we enumerated before will then 
yield figures that the naturally-circular bands can assume.  When AC is assumed to be 
infinite, the circular band can be extended into a straight line.  When yet another arbitrary 
force acts, as well, the same effect can arise as when it alone is applied to a naturally-
rectilinear band. 
 
 
 50. – We would like to assume that the point C is infinitely distant, and that 
assumption is entirely independent of the natural form of the band.  The moment of the 
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applied force will then be the same everywhere, so when it is divided by E k2, let that 
equal 1 / b, and we will now have: 

1

b
= 

1 1

R r
−   and 

1

R
= 

1 1

b r
+ , 

 
ds

R∫
= 

s ds

b r
+ ∫ . 

 
∫ ds / R will be referred to as the amplitude of the arc AM, and likewise ∫ ds / r will be the 
amplitude of arc am.  The most distinguished Joh. Bernoulli cared to apply the 

expression “amplitude” in his excellent treatise “de motu reptorio” (1).  Let 
s ds

b r
+ ∫  be 

an arc of a circle with radius 1.  Since r is given in terms of s, the circular arc will also be 
known in terms of s.  The rectangular coordinates x and y of a point on BMA will be 
found from that, namely: 
 

x = sin
s ds

ds
b r
 + 
 

∫ ∫ , y = cos
s ds

ds
b r
 + 
 

∫ ∫ . 

 
The desired curve can then be found with the help of quadratures. 

 

P 

A 

M 

m 

a 

B 

 
Figure 17. 

 
 
 51. – The form amB that the band must have in the natural position in order for it to 
extend into the straight line AMB in the direction AP of the applied force (Fig. 17) can be 
determined from this.  Let AM be assumed to be equal to s, so Ps will be the moment of 
the applied force at the point M, and the radius of the curvature circle at M is infinite, by 
assumption, so 1 / R = 0.  Furthermore, the length of the arc am = r, so r, viz., the radius 
of curvature at m, must be assumed to be negative here, since the curve is convex to the 

                                                
 (1) One can find Joh. Bernoulli’s treatise “De motu reptorio” in Actis Erudit., Aug. 1705 (Werke I, pp. 
408). 
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axis.  Therefore, Ps = E k2 / r, or rs = a2.  That equation will embody the essence of the 
curve amB.   
 
 

 52. – Since 
1

r
 = 

2

s

a
, one will have 

ds

r∫
= 

2

22

s

a
.  The amplitude of the arc am will 

then behave like the square of the arc length.  The rectangular coordinates of that curve 
are then given by: 

x = 
2

2
sin

2

s
ds

a∫ , y = 
2

2
cos

2

s
ds

a∫ . 

 
 The arc s2 / 2a2 must then be cut from a circular of radius 1, and its sines and cosines 
will serve to determine the coordinates.  It will then follow immediately from the 
equation that with increasing s the radius of curvature will decrease continually, so it will 
be obvious that the curve cannot extend to infinity, even when s is infinite.  The curve 
will then belong to the same kind as the spirals that converge to a certain point, such as a 
center, after winding about it infinitely-many times.  It seems to be very difficult to find 
that point by construction.  It is certain that analysis would be required essentially 
whenever anyone discovers a method by means of which the values of the integrals 

2

2
sin

2

s
ds

a∫  and 
2

2
cos

2

s
ds

a∫  can be given for the case of s = ∞, at least approximately.  

That problem seems to have enough merit that the mathematicians should direct their 
efforts towards it (1). 
 
 
 53. – Let 2a2 = b2, so: 
 

 sin 
2

2

s

b
= 

2 6 10 14

2 6 10 14

1 1 1

3! 5! 7!

s s s s

b b b b
− + − + … − …, 

 

 cos 
2

2

s

b
= 

4 8 12

4 8 12

1 1 1
1

2! 4! 6!

s s s

b b b
− + − + … − … 

 

                                                
 (1) Euler himself has further directed his own efforts to the determination of those two integrals, as he 
said on pp. 339 of the fourth volume of the Institutiones calculi integralis (St. Petersburg, 1794): 
“Recently, I have found by a happy accident with the help of an entirely singular method that (see also no. 
54): 

0

cosdϑ ϑ
ϑ

∞

∫ =
2
π

  and also  
0

sindϑ ϑ
ϑ

∞

∫ =
2
π

.” 

Hence, the coordinates of the desired point are x = y = / 2a π .  The curve that is being investigated here 
is the one whose natural equation reads rs = a2.  It was called the clothoid by Cesaro.  One can find more 
details and an illustration, which Euler also found in the aforementioned place, in Loria , Spezielle 
algebraische und transzendente Kurven der Ebene, German trans. by F. Schütte, Leipzig, 1902, pp. 458. 
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The coordinates x and y of the desired curve can then be expressed conveniently as 
infinite series.  One will then get: 
 

 x = 
3 7 11 15

2 6 10 14

1 1 1 1

1 3 3! 7 5!11 7!15

s s s s

b b b b
− + −

⋅
+ … − … 

 

 y = s − 
5 9 13

4 8 12

1 1 1

2! 5 4! 9 6!13

s s s

b b b
+ − + … − … 

 
The values of the coordinates x and y can be determined precisely from these series, 
which converge strongly for values of the arc length s that are not too large.  However, 
the values that x and y will assume when the arc length s is set to infinitely large cannot 
by any means be excluded from these series. 
 
 
 54. – Since setting s = ∞ will raise very great difficulties, that disadvantage can be 

remedied in the following way: Let s2 / b2 = v, so s = b v  and ds = 
2

b dv

v
; hence: 

 

x = sin
2

b dv
v

v∫  and y = cos
2

b dv
v

v∫ . 

 
However, I now assert that the desired values of x and y when s = ∞, can be found from 
the following integral formulas (1): 
 

x = 
1 1 1 1

2 2 3

b
dv

v v v vπ π π
 

− + − + −  + + + 
∫ ⋯ ⋯  sin v, 

 

y = 
1 1 1 1

2 2 3

b
dv

v v v vπ π π
 

− + − + −  + + + 
∫ ⋯ ⋯  cos v. 

 

                                                
 (1) Namely, one subdivides the interval from zero to infinity in the following way: 1: from 0 to π, 2: 
from π to 2π, 3: from 2π to 3π, etc.  One will then have: 

x = 
2 3

0 2

sin sin sin
2
b dv v dv v dv v

v v v

π π π

π π

 
 + + +∫ ∫ ∫
  

⋯ . 

One sets v = v1 + π in the second integral, v = v2 + 2π in the third, etc., and then gets: 

x = 1 1 2 2

1 20 0 0

sin sin sin
2 2

b dv v dv v dv v

v v v

π π π

π π

 
 − + +∫ ∫ ∫
 + + 

⋯ . 

Since the notation for the variables in the definite integrals is irrelevant, one can set v = v1 = v2 = … That 
will give the value in the text.  The derivation for y is similar.  
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 After integration, one sets v = π, where π means the arc length that belongs to an 
angle of two right angles.  In that way, one can indeed avoid setting anything to infinity, 
but in order to do that, the infinite series: 
 

1 1 1

2v v vπ π
− +

+ +
− … + … 

 
will be introduced into the calculation.  Since its sum is unknown up to now, seeking the 
answer to this question will raise the greatest complications at the present time. 

 

E 

F 

A p P 

m 
q 

µ 

Q 
T 

M 

N 

 
Figure 18. 

 
 
On the curvature of an elastic band with arbitrary forces acting at individual points 
 
 55. – Once the method has been analyzed for the problem of finding the curvature of 
an arbitrary elastic band when one force is applied at one location, one might further 
investigate the problem of finding the curvature when the band is stressed by several 
forces, if not an infinitude of them.  However, since it has still not been established up to 
now what sort of expression is a maximum or minimum in those cases, I will apply the 
direct method in order to perhaps ascertain the property of being a maximum or minimum 
from the solution.  Let the elastic band that is rectilinear in the natural state go to the form 
AmM, initially from the finite forces P and Q, which are applied in the mutually-
perpendicular directions CE and CF (Fig. 18), but then from infinitely-small forces that 
are applied to the individual elements of the band mµ in the directions mp and mq, which 
are parallel to the directions CF and CE.  With those conventions, one seeks the nature of 
the curve AmM. 
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 56. – The line FCA will be taken to be an axis, so let AC = c, AP = x, PM = y, let the 
arc length of the curve be AM = s, and let the radius of the curvature circle at M be R.  Let 
the constant absolute elasticity of the band be E k2, and the sum of the moments that arise 
from the of the applied forces relative to M must equal E k2 / R .  First, the moment P (c + 
x) will be produced by the finite force P that points in the direction CE.  It acts in such a 
way that the elastic force will be in equilibrium.  The moment that is produced by the 
other force Q – namely, Qy – will stress it in the other direction.  Thus, the moment P (c 
+ x) – Qy will be produced by the two finite forces P and Q.  Now, an arbitrary 
intermediate element mµ of the band will be considered whose abscissa Ap is equal to ζ 
and whose ordinate is set equal to η.  Let the force that the element mµ exerts in the 
direction mp be dp, and let the force that it exerts in the direction mq equal dq.  The 
moment that is produced by those forces at the point M will be (x – ξ) dp – (y – η) dq. 
 
 
 57. – In order to find the sum of all those moments, the point M, and therefore x and 
y, as well, must temporarily be considered to be constants, such that only the coordinates 
ζ and η, along with the forces dp and dq, will be regarded as variable.  The sum of the 
moments that are produced by the forces that are applied to the arc Am will then be: xp 

− dpζ∫ − yp + dpη∫ .  In that expression, p expresses the sum of all forces that are 

applied to the arc AM in directions that are parallel to pm, and q denotes the sum of all 
forces that are applied to the arc AM in directions Ap that are parallel to the axis.  
However, one has: 
 

dpζ∫ = ζ p − p dζ∫   and dpη∫  = η q − q dη∫ . 

 
The sum above will then be: 
 

(x – ζ) p + p dζ∫ − (y – η) q − q dη∫ . 

 
 The point m will now be displaced, and then one will have ζ = x, η = y, and dζ = dx, 
dη = dy.  Thus, the sum of all moments taken along the entire arc AM will be 

p dx∫ − q dy∫ . 

 One will then get the following equation for the desired curve: 
 

2k

R

E
= P (c + x) – Qy + p dx∫ − q dy∫ . 

 
 

 58. – When the integrals p dx∫ and q dy∫  cannot be performed, the equation that is 

found by differentiation must be satisfied by the integrals.  One will then get: 
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2

2

k dR

R

−E
= P dx – Q dy + p dx – q dy. 

 
 However, when neither p nor q can be given by closed-form expressions, but only 
represented as the sum of infinitely many, infinitely-small forces, the values p and q must 
be arranged by further differentiation such that dp and dq then appear along with the 
second-order differentials d 2p and d 2q. 
 After a first differentiation (when the previous equation is divided by dx), one will 
get: 

− E k2 2

1 dR
d

R dx
 
 
 

= dp – (Q + q) ⋅⋅⋅⋅ dy dy
d dq

dx dx
− . 

 
Let dy / dx = ω, so from repeated differentiation (when the equation that was just 
obtained is divided by dω), one will get: 
 

− E k2 
2

1d dR
d

d R dxω
  

  
  

 = 2
dp dq

d dq d
d d

ω
ω ω

− − . 

 
That equation will involve fourth-order differentials. 
 
 
 59. – Instead of vertical and horizontal forces p and q, resp., two forces might be 
applied to the individual points, one of which points in the direction of the normal MN = 
dv and the other of which points in the direction of the tangent MT = dt (Fig. 18).  One 
will then have: 

dp = 
dx dy

dv dt
ds ds

+  and dq = 
dx dy

dt dv
ds ds

− . 

 

Since dy = ω dx and ds = 21dx ω+ , one will have: 

 

dp =
2 21 1

dv dtω
ω ω

+
+ +

   and dq = 
2 21 1

dt dvω
ω ω

−
+ +

. 

 
If one substitutes this in the latter equation then that will give: 
 

− E k2
2

1d dR
d

dv R dx

  
  
  

 = 2

2 2

2
1

1 1

dt dv dv
d

d

ω ω
ωω ω

− + + +
+ +

. 

 

When this equation is multiplied by 21 ω+ , it will be integrable.  For the sake of 

brevity, let z = 
2

1 dR

R dx
.  Integration will then yield: 
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 A – t + 
2(1 )dv

d

ω
ω
+

 = − E k2 
2

22

1 1

21

dz z

d R

ω ω
ω ω

 ⋅ +
− + 

 + 

 

 = − E k2 2
2 22

1 1
(1 )

21

d dR

d R Rdx
ω

ω ω

  
  + +

  +  

. 

Now, since: 

R = − 2 3/2(1 )
dx

d
ω

ω
+ dx, 

one will have: 

dω = − 
2 3/2(1 )

R

ω+
 dx. 

 

If one substitutes this value for dω then, since 21dx ω+  = ds, one will have: 

 

A – t – R 
dv

ds
= − E k2 

2 2

1 1

2

d dR
R

R ds R ds

  −   
  

, 

 
or, with some rearrangement: 
 

t + R 
dv

ds
− A = E k2

2 2

1 1

2

d dR
R

R ds R ds

  −   
  

. 

 
 
 60. – It is now clear that the band will turn into a completely flexible string with the 
elastic force E k2 vanishes.  The previous equations will then include all curves that can 
be defined by a completely-flexible string that is subject to arbitrary forces.  If the string 
is pulled down by its own weight then one would have q = 0, p would be equal to the 
weight of the string AM, and P = 0; hence, from the first equation in no. 58, one would 
get p (dx / dy) = Q = constant.  That is the general equation for a catenary of any kind.  
The individual points of the completely-flexible string will be subject to forces whose 
directions (Fig. 18) are themselves normal to the curve; e.g., the string might be subjected 
to the force dv in the direction MN at M.  Since t = 0, (from no. 59) one will have the 
equation R (dv / ds) = A = constant.  That is the general property for the lintearia 
(Muldenkurve) and all similar ones that come about in that way. 
 
 

On the curvature of an elastic band that is produced by its own weight 
 
 61. – I shall return to the elastic curves for which special attention is required for the 
problem of finding the form that an elastic band will assume when it is curved by its own 
weight.  Let AmM be the desired curve (Fig. 18).  Since only the vertical forces that 
originate in gravity will come into question, P = 0, Q = 0, q = 0, and p expresses the 
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weight of the band AM.  Let F be the weight of the band of length a, so p = Fs / a, since 
the band was assumed to be uniform.  The nature of the curve will then be expressed by 
the following equation (from no. 58): 
 

2

2

k
dR

R

−E
 = 

Fs
dx

a
. 

 
Let the amplitude of the curve (i.e., ∫ ds / R) be u, so R = ds / du and dx = ds ⋅⋅⋅⋅ sin u, and 
therefore when the element ds is assumed to be constant, one will find the equation: 
 

s ds sin u − 
2a k du

du
F ds

⋅E
= 0. 

 
However, as mere inspection will show, that equation cannot be reduced any further. 

 A P 

N 

M m 

B 

 
Figure 19. 

 
 
 62. – Special emphasis is warranted by the curves that are assumed by a fluid at rest 
that are a kind of infinitely-extended elastic band.  Let AMB (Fig. 19) be the desired form 
of the curve, and let AP = x, PM = y, AM = s.  The element Mm will be pushed in the 
normal direction MN by a force that is proportional to ds.  Hence, dv = n ds, dt = 0.  One 
derives the vertical force dp = b dx and the horizontal force dq = − n dy from this.  One 
will then have p = nx and q = − ny.  The equation of no. 57 will then become: 
 

2k

R

E
= P (c + x) – Qy + 1

2 n x2 + 1
2 n y2. 

 
The coordinates x and y can be increased or decreased by constant quantities in such a 
way that the equation of the curve will assume the form: 
 

x2 + y2 = A + 
B

R
. 

 
 One multiplies that equation by x dx + y dy in order to make it integrable; namely: 
 

x dx y dy

R

+
∫ = − 2 3/2(1 )

x y
d

ω ω
ω
+

+∫  

[when one sets dy = ω dx] 
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= 
21

y xω
ω

−
+

= 
dx dy

y x
ds ds

− . 

Integration will then imply that: 
 

(x2 + y2)2 = A (x2 + y2) + 
dx dy

B y x
ds ds

 − 
 

+ C. 

Let: 

z = 2 2x y+  and y = u z,  so x = 21z u− , 
so 

y dx – x dy = −
2

21

z
du

u−
;  ds = 

2 2
2

21

z du
dz

u
+

−
. 

If one then sets: 
 

2

1

1
du

u−
= dr then one will have: z4 – A z2 – C = − 

2

2 2 2

Bz
dr

dz z dr+
, 

so 

dr = 
4 2

2 2 4 2 2( )

z Az C
dz

z B z z Az C

− −
− − −

. 

 
When A and C are equal to zero, the associated curve will be algebraic.  One will then 
have the equation: 

dr = 
2

1

1
du

u−
 = 

2

2 6

z
dz

B z−
 = 

2

6 6

3

3

z
dz

a z−
. 

 
Integration will yield: 
 

arcsin u = 
3

1
3 3
arcsin

z

a
 or 

3

3

z

a
= 3u – 4u3 = 

3

3

3 4y y

z z
− . 

 
What will ultimately follow is the equation z6 = 3 a3 y z2 – 4 a3 y3 , or : 
 

(x2 + y2)3 = 3 a3 x2 y – a3 y3 . 
 
 

On the oscillatory motion of elastic bands 
 

 63. – The oscillatory motion of the elastic band and things that are prepared to move 
in an arbitrary way can be derived from the foregoing.  The renowned Daniel Bernoulli 
was the first to address that truly interesting topic, and he had already suggested the 
problem to me of determining elastic oscillations of a band with one end that is fixed in a 
solid wall some years ago.  I gave the solution in Comment. Petropol, vol. VII (1740).  
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Since that time, however, I succeeded in treating that problem more simply, and through 
my communications with the esteemed Bernoulli , I arrived at many questions and 
viewpoints whose clarification I would like to address here due to its relationship to the 
current topic.  If the oscillatory motion is sufficiently fast, a sound will be produced by 
the oscillating band whose height and relationship to other sounds can be determined 
with the help of a study of sound on the basis of these principles.  Since the nature of 
sound is easily accessible to experiments, one can study the agreement between 
calculation and reality in that way, and thus confirm the theory.  Our knowledge of the 
essence of elastic bodies will be extended appreciably by that. 

 

A a 

P π 
m p 

M 

B 

 
Figure 20. 

 
 
 64. – However, one might first object that the problem here has only been treated for 
very small oscillations, such that the interval that the band moves within during its 
oscillations is likewise very small.  However, that restriction does not diminish the utility 
and applications in any way.  Namely, not only would the oscillations be free from 
isochronism if they were to cover great distances, but the formation of different sounds of 
the kind that we have mainly ignored here would also require very small oscillations.  
Therefore, I shall consider a uniform elastic band here that is rectilinear in its natural 
state, whose one end is fitted into an immobile wall, such that the band would have the 
form of the straight line AB (Fig. 20) if it were left to itself.  Let its length be AB = a, and 
let its absolute elasticity at the individual locations be E k2 ; its weight will be considered, 
but we shall assume that it has been arranged in such a way that its state cannot be 
perturbed by the force of gravity. 
 
 

The oscillations of the elastic bands with one end fixed to a wall 
 

 65. – When this band is driven by an arbitrary force, it might carry out very small 
oscillations, during which, it will sweep out the very small interval Aa about both sides of 
its natural state AB.  Let BMa be an arbitrary state that the band assumes during its 
oscillations.  Since that state will be infinitely close to the natural state BPA, the line MP, 
like Aa, will represent the path that the points M and a on the band will pass through, or 
more precisely, that path will have a ratio with the true path that differs only slightly from 
a ratio of unity.  In order to determine the oscillatory motion, it is absolutely necessary to 
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known the nature of the curve BMa that the side assumes under oscillation.  Let AP = x, 
PM = y, arc aM = s, let the radius of curvature at M equal R, and let the very small 
interval Aa equal b.  On the basis of our condition, the arc length s will be very close to 
equal to the abscissa x, so ds can be assumed to be dx, namely, dy will vanish in 

comparison to dx.  With dx taken to be constant, the radius of curvature 
12

2

dx d y

ds dx

−
 
 
 

 will 

be R = 
12

2

d y

dx

−
 
 
 

, in the present case, so the convexity of the curve BMa will point to the 

axis BA.  Since the band is fixed to a solid wall at B, AB will be a tangent to the curve at 
B. 
 
 
 66. – With those conventions, let f be the length of a simple, isochronous pendulum in 
order to determine the curve BMa and the oscillatory motion.  The fact that very small 
oscillations are isochronous can be explained by the nature of things, and in addition, the 
calculations that will be done will show that.  The acceleration by which the point M of 
the band moves to P will be PM / f = y / f.  If one sets the mass of the entire band equal to 
M, by which, its weight will be expressed, then the element Mm = ds = dx will take on the 
mass (M / a) dx.  The force that drives the element in the direction MP will then be (M y / 
a f) dx.  Therefore, the forces that excite the individual parts of the band will be known, 
on the one hand, from the curve BMa, and on the other hand, from the length f of the 
simple, isochoronous pendulum.  However, since the motion of the band is, in reality, 
driven by the elastic force, the nature of the curve BMa and the length of the simple, 
isochronous pendulum will be determined when one knows that force. 
 
 
 67. – Since the band then moves as if forces equal to (M y / a f) dx acted upon the 
individual elements Mm in the direction MP, it will follow that the band will be in 
equilibrium in the state BMa when equal forces (M y / a f) dx are applied to the individual 
elements in the opposite direction Mπ.  As a result, the band will assume the curvature 
under oscillation that it assumes in the rest state when its individual points M are 
subjected to forces (M y / a f) dx in the direction Mπ.  From rule that was found the above 
(nos. 56 and 57), all of those forces that are applied along the arc aM can be combined, 
and that will give the sum (M / a f) ∫ y dx, which must be substituted for p.  Since the 
remaining forces P, Q, and q happen to vanish there, the curve will have the equation: 
 

2k

R

E
= p dx∫    or  

2k

R

E
= 

M
dx y dx

a f ∫ ∫  . 
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Since R = 
2

2
1/

d y

dx
, one will have 

2
2

2

d y
k

dx
E = 

M
dx y dx

a f ∫ ∫  .  Differentiation will yield: 

3
2

3

d y
k

dx
E = 

M
y dx

a f ∫
.  With another differentiation, one will get the fourth-order 

differential equation: 
4

2
4

d y
k

dx
E = 

My

af
. 

 
 
 68. –The nature of the curve BMa can be expressed by that equation, and the length f 
can be determined from it when it is adapted to the present case.  If f is known then the 
oscillatory motion will also be known.  However, above all, that equation must be 
integrated.  Since it belongs to the type of higher-order differential equation whose 
general integration I have pointed out in Misc. Berol., v. VII, one will arrive at the 
following equation for the integral, when one sets E k2 a f / M  = c4, for the same of 
brevity: 

y = / / sin cosx c x c x x
Ae Be C D

c c
−+ + + . 

 
e denotes the number whose hyperbolic logarithm equals 1, and sin (x / c) and cos (x / c) 
denote the sine and cosine of the arc x / c of a circle of radius 1.  A, B, C, D are four 
constants that are introduced by fourfold integration, which one must determine in order 
to adapt the calculations to the present case. 
 
 
 69. – The determination of the constants happens in the following way: First, one sets 
x = 0, so one must have y = b, and that will then imply the first equation: b = A + B + D.  
Secondly, since one has: 

2
4

2

d y
c

dx
 = dx y dx∫ ∫ , 

 

one must have 
2

2

d y

dx
= 0 for x = 0, since p dx∫  vanishes for x = 0.  One will then get the 

second equation: 
A + B – D = 0. 

 

Thirdly: Since 
3

4
3

d y
c

dx
 = y dx∫ , one will also have 

3

3

d y

dx
= 0 for x = 0; i.e., that will imply 

the third equation 0 = A – B – C.  Fourth: y will vanish for x = a, so that will yield the 
fourth equation: 

0 = / / sin cosa c a c a a
Ae Be C D

c c
−+ + + . 
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Fifth: Since AB contacts the curve at B, dy / dx must be zero for x = a.  Therefore, the 
fifth equation will emerge: 
 

0 = / / cos sina c a c a a
Ae Be C D

c c
−− + − . 

 
The four constants A, B, C, D will first be determined from these five equations, and then 

(and this is the main result) the value of c = 
2

4
k af

M

E
will be found.  The length f of the 

simple, isochronous pendulum can be derived from that, and in that way the period of the 
oscillations will also be known. 
 
 
 70. – It follows from the second and third equation that: 
 

C = A – B and D = A + B. 
 
When those values are substituted in the fourth and fifth equation, that will yield: 
 

  0 = / / ( )sin ( )cosa c a c a a
Ae Be A B A B

c c
−+ + − + + , 

 

 0 = / / ( ) cos ( )sina c a c a a
Ae Be A B A B

c c
−− + − − + , 

resp. 
 It follows from this that: 
 

A

B
= −

/

/

sin cos

sin cos

a c

a c

a a
e

c c
a a

e
c c

− + −

+ +
 = 

/

/

cos sin

cos sin

a c

a c

a a
e

c c
a a

e
c c

− + +

+ −
. 

 
One will then get the equation: 

2 + (e a / c + e − a / c) cos 
a

c
 = 0, 

or also: 

e2a / c cos 
a

c
+ 2 ea / c + cos 

a

c
= 0. 

Therefore: 

ea / c = −
1 sin

cos

a

c
a

c

±
.  
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When ea / c is a positive quantity, cos (a / c) must always be negative; i.e., the angle a / c 
must be greater than a right angle. 
 
 
 71. – One sees that the last equation will yield infinitely many angles a / c that satisfy 
it.  Infinitely many types of oscillations of that band will arise from that.  Namely, the 
curve can cut the axis AB at one or more points before it contacts the axis at B.  In that 
way, many (indeed, infinitely many) types of oscillation are possible.  Here, we would 
like to consider mainly the case in which B is the first point that the side has in common 
with the axis.  That case is satisfied by the smallest angle a / c that can appear as a 
solution of the equation that was found.  Since it is greater than one right angle, it might 
be set equal to π / 2 + ϕ, where ϕ is smaller than one right angle.  Since sin (a / c) = cos ϕ 
and cos (a / c) = − sin ϕ, that will imply the double equation: 
 

ea / c = 
1 cos

sin

ϕ
ϕ

∓
; 

it will follow from this that: 
 

ea / c = tan1
2 ϕ  or ea / c =cot1

2 ϕ . 

 
That latter equation yields a smaller value for ϕ ; it will then correspond to the conditions 
that were imposed. 
 
 
 72. – The further possible types of oscillations will be found when the angle a / c is 
set to something greater than 2R, but smaller than 3R.  Let a / c = 3

2 π − ϕ, so sin (a / c) = 

− cos ϕ and cos (a / c) = − sin ϕ.  That will yield: 
 

e a / c = 
1 cos

sin

ϕ
ϕ

±
. 

 
Hence, e a / c = tan (ϕ / 2) or e a / c = cot (ϕ / 2).  Other types of oscillations will be found 
in a similar way when one sets: 
 

a

c
= 5

2 π + ϕ, 
a

c
= 7

2 π − ϕ, etc. 

 
 When one employs natural logarithms, those assumptions will imply the following 
equations: 
 I. 1

2 π + ϕ = log cot12ϕ , II. 1
2 π + ϕ = log tan1

2ϕ , 

 
 III. 3

2 π − ϕ = log cot12ϕ , IV. 3
2 π − ϕ = log tan1

2ϕ , 
 
 V. 5

2 π + ϕ = log cot12ϕ , VI. 5
2 π + ϕ = log tan1

2ϕ , 
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 VII. 7
2 π − ϕ = log cot12ϕ , VIII. 7

2 π − ϕ = log tan1
2ϕ , 

etc. 
 The third of these equations coincides with the second one; namely, if one sets 1

2ϕ = 
1 1
2 2π ϑ−  then one will have cot 1

2ϕ  = tan1
2ϑ .  The third equation will then go to 1

2 π + ϑ 

= log tan 12ϑ ; however, that is the second equation.  Similarly, the fourth one coincides 

with the first one, the fifth one with the eight one, and the sixth one with the seventh one.  
Therefore, the only distinct equations are the following ones: 
 
 I. 1

2 π + ϕ = log cot12ϕ , II. 1
2 π + ϕ = log tan1

2ϕ , 

 
 III. 5

2 π + ϕ = log cot12ϕ , IV. 5
2 π + ϕ = log tan1

2ϕ , 

 
 V. 9

2 π + ϕ = log cot12ϕ , VI. 9
2 π + ϕ = log tan1

2ϕ , 

etc. 
 
 
 73. – Let u be the natural logarithm of the tangent or cotangent of the angle 12ϕ .  

Refer to a table of common logarithms for that tangent or cotangent, and let the value be 
v.  It is then known that u = 2.302585092994 × v, so if one again takes ordinary 
logarithms then: 

log u = log v + 0.3622156886. 
 
Now, u = nπ / 2 + ϕ, so log u = log (nπ / 2 + ϕ).  In order to evaluate that, ϕ must be 
expressed as a fraction of the radius, while π / 2 is 1.57079632679.  One converts ϕ into 
seconds and extracts the number 5.3244252332 (1) as the common logarithm of that 
number, so one will then get log ϕ, and the appropriate value of ϕ by exponentiation.  For 
every arbitrary type of oscillation, one will always have: a / c = u = nπ / 2 + ϕ. 
 
 

                                                
 (1) The start of this number is somewhat truncated, which can be explained by the use of tables, 
similarly to what was said in no. 31.  It yields ϕ in terms of the number β, which is ϕ converted into 
seconds.  One then has, in arc units: 

ϕ = β 2180 60
π
⋅

, so log ϕ = log β – log 
2180 60

π
⋅

. 

The latter logarithm is 5.3144…  That will explain the appearance of that number in nos. 73, 74, 78, and 
85, and the table calculation is truncated in the last of those sections.  In order to get ln cot ϕ / 2, Euler 
used the known formula: 

ln cot 
2
ϕ

= 
1
M

log cot 
2
ϕ

. 

In order to perform the multiplication on the right-hand side, he again employed ordinary logarithms, and 
log 1 / M is 0.362215…  The appearance of this number in the second part of the table calculation becomes 
understandable in that way.  At the conclusion of the calculation, Euler applied the regula falsi method, as 
he also did in no. 85. 
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 74. – When one observes those preliminaries in regard to the calculation, the value of 
the angle ϕ will not be difficult to ascertain by approximation for any type of oscillation.  
If one assigns values to ϕ at will and then determines nπ / 2 + ϕ and log tan ϕ / 2 or log 
cot ϕ / 2 then one will rapidly arrive at a reasonably precise value for ϕ.  If the angle ϕ 
initially lies between relatively wide limits then one will soon find narrower ones, and 
from them, the true value of ϕ.  I have then ascertained the following limits for the first 
equation a / c = π / 2 + ϕ = log cot (ϕ / 2): namely, 17o 26′ and 17o 27′.  Those will imply 
the true value of ϕ by the following calculation: 
 

ϕ = 17o 26′ 0″, 62760″ in seconds 
     log = 4.7976829349 
subtract: 5.3144251332 

 

ϕ = 17o 27′ 0″, 62820″ in seconds 
4.7980979321 
5.3144251332 

 
 log ϕ = 0.4832578017 – 1 

  ϕ = 0.3042690662 
1
2 π = 1.5707963268  

 

      0.4836727989 – 1 
0.3045599545 
1.5707963268 

 
1
2 π + ϕ = 1.8750653930 

1.8753562813 

 
1
2ϕ = 8o 43′ 0″ 

v = log cot12ϕ = 0.8144034109 

log v = 0.9108395839 – 1 
add: 0.3622156886 

 

1
2ϕ = 8o 43′ 30″ 
0.81339819342 
0.9106147660 
0.3622156886 

 
log u = 0.2730552725 
      u = 1.8752331540 

 

0.2728304546 
1.8742626675 

 
Difference: + 1677610 

− 10936138 

 
From the deviation between both limiting values, one then concludes that ϕ = 17o 26′ 
7.98″, so: 

1
2 π + ϕ = 

a

c
 = 107o 26′ 7.98″. 

 
In seconds, ϕ = 62967.98, so:  log ϕ = 4.7977381525 

− 5.3144251332 
 0.4833130193 

in arc units, ϕ = 0.3043077545 
adding 12 π = 1.5707963268 

a / c = 1.8751040813 
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Once that is found, one will have (1): 
 

A

B
= tan 12ϕ  = 0.1533390624. 

 
One then finds the relationship between C and D and A and B from the known 
relationship between the constants A and B. 
 
 
 75. – The first equation b = A + B + D still remains.  Since D = A + B, it will then 
follow that A + B = 1

2 b .  Now, A = B tan 1
2ϕ , so: 

 

B = 
1
22(1 tan )

b

ϕ+
. 

 
However, tan 12ϕ  = 0.1533390624, so the constants can be determined as follows: 

 

  
A

b
= 

1
2

1
2

tan

2(1 tan )

ϕ
ϕ+

 = 
0.1533390624

2.3066781248
, 

 

  
B

b
= 

1
2

1

2(1 tan )ϕ+
 = 

1.0000000000

2.3066781248
, 

 

  
C

b
= 

1
2

1
2

1 tan

2(1 tan )

ϕ
ϕ

− +
+

 = 
0.8466609376

2.3066781248

−
, 

 

  
D

b
= 

1
2

1
2

1 tan

2(1 tan )

ϕ
ϕ

+
+

 = 
1.1533390624

2.3066781248
. 

 

                                                
 (1) One easily finds the formula A / B = tan 12 ϕ , which has not been derived up to now as follows: Add 

the first two formulas in no. 70, which contain only A and B; it will then follow that: 
 

2A e a / c – 2B sin (a / c) + 2A cos (a / c) = 0, 
 

or, since sin (a / c) = cos ϕ, cos (a / c) = − sin ϕ, and e a / c = cot ϕ / 2, one will have: 

cos ϕ = cot sin
2

A

B
ϕ ϕ − 

 
, 

cos ϕ = 21 2sincot
22

A
B

ϕ ϕ − 
 

 = cot cos
2

A
B

ϕ
ϕ , 

so 
A
B

 = tan 
2
ϕ

. 
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Once the constants have been found, the nature of the curve that the band assumes during 
its oscillation will be expressed by this equation: 
 

y

b
= / / sin cosx c x cA B C x D x

e e
b b b c b c

−+ + + . 

 
 
 76. – Most of what is worth knowing about the rapidity of the oscillations can be 
recognized from the equation a / c = 1.8751040813.  For the sake of brevity, let n = 
1.875…, so a = nc.  Now, c4 = E k2 a f / M, where M / a expresses the specific weight of 
the band (i.e., the mass per unit length).  One will then have a4 = n4 E k2 a f / M, so f = 

4

4 2

1a M

n k a
⋅ ⋅
E

; i.e., the length of the simple isochronous pendulum is proportional to the 

fourth power of the length of the band and the specific weight and inversely proportional 
to the absolute elasticity.  Let g be the length of the simple second pendulum, so g = 
3.16625 Rhenish feet.  Since the period of oscillation is proportional to the square root of 
the length of the pendulum, the period of an oscillation that our elastic band will 
complete will be: 

f

g
seconds = 

2

2 2

1 1a M

n g k a
⋅
E

. 

 
The number of oscillations that are completed in one second will then be: 
 

2
2

2

n a
g k

a M
⋅E . 

 
That number expresses the height of the sound that excites the band. 
 That sound that is produced by various bands with one end attached to a solid wall 
will then behave like the square root of the absolute elasticity, and inversely like the 
square root of the specific weight, and inversely like the square of the length.  Hence, 
when two elastic bands differ only in their lengths, the associated sound will behave like 
the square of the length; i.e., a band that is twice as long will give a sound that is two 
octaves lower.  However, a tensed string will give a sound that is only one octave lower.  
It then becomes clear from this that the sounds of elastic bands behave quite differently 
from the sounds of tensed strings (1). 
 
 
 77. – As far as the behavior of a curve beyond its ends a and B is concerned, it will 
first be clear that the curve beyond a will advance in such a way that it will be continually 
separated from the axis AB.  Namely, if x is taken to be negative then: 
 
                                                
 (1) Here, Euler is referring to the difference between the oscillations of bodies that are elastic due to 
stress – viz., tensed strings or corda elastica – and the ones that are elastic due to rigidity – viz., elastic 
bands or lamina elastica. 
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y = / / sin cosx c x c x x
B e Ae C D

c c
−+ − + . 

 
All terms in this are positive, since only the coefficient C has a negative value (no. 75).  
When x increases, so does y, since B is greater than A, and therefore outweighs the term 

/x cB e .  However, if x / c has attained only a middle value then the term /x cB e  will have 
already decreased so much that the remaining terms will vanish along with it.  Since the 
radius of curvature is not infinite at B, namely, one has: 
 

2k

R

E
= 

M
dx y dx

af ∫ ∫ , 

 
the curve will have no inflection point at B; it will then advance further on the same side 
of the axis.  When the abscissa x increases beyond AB = a, the first term A e x / c will soon 
become so large that the other ones will appear to be very small in comparison. 

 

a A 

M P 

O 

B 

 
Figure 21. 

 
 
 78. – Up to now, the first kind of oscillations were treated as ones among the 
infinitely-many oscillations that the same band can accommodate.  The second kind, 
which is represented in the figure (Fig. 21), in which the band that is fixed at B cuts the 
axis AB at a point O, will be derived from the equation: 
 

a

c
 = 1

2 π  + ϕ = log tan1
2ϕ , 

or 
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3
2 π  − ϕ = log cot12ϕ =

a

c
. 

 
Here, I have found, from some experiments, that the angle ϕ is included within the limits 
1o 2′ 40″ and 1o 3′ 0″.  The true value of that ϕ can be ascertained from them, as before. 
 

ϕ = 1o 2′ 40″, in seconds: 3760″ 
 

ϕ = 1o 3′ 0″, in seconds: 3780″ 

 
log 

minus 

 
3.5751878450 
5.3144251332 

 
3.5774917998 
5.3144251332 
 

 
log ϕ = 

ϕ = 
3
2 π  = 

 
0.2607627118 − 2 
0.0182289944 
4.7123889804 
 

 
0.2630666666 − 2 
0.0183259571 
4.7123889804 

3
2 π − ϕ = 

a

c
 = 

 

4.6951599860 
 

4.6940630233 

 
1
2ϕ  =   

 

31′ 20″ = 31′ 30″ 

 
log cot 12ϕ = 

 
2.0402552577 

 
2.0379511745 

log v = 0.3096845055 0.3091937748 
add 0.3622156886 

 
0.3622156886 

 
log u = 

 
0.6719001941 

 
0.6714094634 

u = 4.6978613391 4.6925559924 
a

c
= 

 

4.6941599860 
 

4.6940630233 
 

 
Deviation: 

 
37013531 

 
− 15070309 

 
The true value of the angle ϕ is ascertained to be 1o 2′ 54.213″ from those deviations, and 
a / c = 268o 57′ 5.787″.  That will yield a / c = 4.6940910795 in arc units. 
 The pitch of the oscillating band of the previous type will relate to the pitch of this 
band as the square of the number 1.8751040813 relates to the square of 4.6940910795; 
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i.e., like 1 to 6.266891, or, in smaller numbers, like 4 : 25 or like 1 : 6 
4

15
.  The latter 

pitch will be two octaves plus a fifth plus the next half-tone from the former one (1). 
 
 
 79. – The angle ϕ will be much smaller for the following types of oscillations of the 
same elastic band under which the band cuts the axis AB in two or more points.  One will 
then have the following equation: 
 

5
2 π + ϕ = log cot 12ϕ  = 

a

c
, so e 5π / 2 + ϕ = cot 1

2ϕ   

 
for the third type.  Due to the very small value of ϕ, e 5π / 2 + ϕ can be developed into: 
 

e 5π / 2 ( )2 31 1
2 61 ϕ ϕ ϕ+ + + +⋯ , 

 

cot 1
2ϕ  = 

1
2

1
2

cos

sin

ϕ
ϕ

 = 
21

8
31 1

2 48

1 ϕ
ϕ ϕ

− + −
− + −

⋯ ⋯

⋯ ⋯
 = 

2

6

ϕ
ϕ

− . 

One will then have: 

e 5π / 2 = 
2

ϕ
, so ϕ = 2 e −5π / 2, 

 
approximately, or more precisely (2): 
 

ϕ = 
5 / 21

2

1

1 e π+
. 

Hence: 
a

c
= 5

2 5 /2

2

2e ππ +
+

; 

                                                
 (1) If the lower tone is C then the higher one will not be as low as G sharp.  If C has the oscillation 

number N then G sharp will have 25
4 N  (i.e., 4

166 N , instead of 4
156 N , as in Euler’s calculation).  See the 

remark in the next section. 
 (2) Namely, one has e 5π / 2 (1 + ϕ) = 2 / ϕ, approximately, so e 5π / 2 + ϕ ⋅⋅⋅⋅ e 5π / 2 = 2 / ϕ .  However, from 
the first approximation in the text, ϕ ⋅⋅⋅⋅ e 5π / 2 = 2, so 2 / ϕ = e 5π / 2 + 2; i.e.: 

ϕ = 
5 / 21

2

1

1 e
π+

. 

If one sets v = 2
2

1 a
g k

a M
E  then the various types of oscillations will correspond to tones with the 

oscillation numbers: 

1.8152ν , 4.692ν ,  25
4 π 2ν ,  49

4 π 2ν ,  … 

All of those tones were found experimentally by Chladni (Chladni, Akustik, Leipzig 1802, pp. 94-103).  
They are in the best agreement with Euler’s results, as Chladni also found for the following cases (see the 
remark on page 63). 
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the last term is very small.  Similarly, one will get: 
 

a

c
= 7 /27

2 2e ππ −− , etc., 

 
approximately, for the fourth type of oscillation.  Since the second term will always be 
smaller, a / c will assume the values 9

2 π , 11
2 π , etc., which will deviate from reality less 

and less as one advances in that series. 
 

a 

A P 

M 
E C 

c 

F 
B 

b  
Figure 22. 

 
 

The oscillations of a free elastic band 
 

 80. – We shall now consider an elastic band that is nowhere fixed and either lies 
freely in a very smooth plane or is found to be weightless in empty space.  It is quite clear 
that such a band can assume an oscillatory motion, namely, when the band acb (Fig. 22) 
moves with alternating curvature, on one side and the other of its rest position AB.  That 
oscillatory motion can be determined in a similar manner to the foregoing case, except 
that the associated calculations in this case must be adapted suitably.  Hence, let acb be 
one form of the band that will appear during its oscillation, and let ACB be the position of 
that band in its equilibrium state, through which it will go during any oscillation.  As 
before, the length of the band will be AB = a, its absolute elasticity = E k2, and its weight 
or mass will be set to M.  Furthermore, let AP = x, PM = y, arc aM = s, which coincides 
with the abscissa x, such that one can set ds = dx.  The radius of curvature at M then 
proves to be R = 1 / (d 2y / dx2).  Furthermore, let the first ordinate by Aa = b.  From the 
conventions, one can pose the same argument as before (nos. 66 and 67), and arrive at the 
same equation: 

2k

R

E
= 

M
dx y dx

af ∫ ∫  = 
2

2
2

d y
k

dx
E . 

 
 
 81. – One sets c4 = E k2 a f / M, in which f expresses the length of the simple 
isochronous pendulum, as before.  Upon integration, one will get the following equation 
for the curve: 

y = / / sin cosx c x c x x
Ae Be C D

c c
−+ + + . 

 
That equation is adapted to the present case as follows: If one sets x = 0 then one must 
have y = b, so: 
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b = A + B + D. 
Secondly, since: 

2
4

2

d y
c

dx
= dx y dx∫ ∫ , one must have 

2

2

d y

dx
= 0 for x = 0 ; 

therefore: 
0 = A + B – D. 

Thirdly, since: 
3

4
3

d y
c

dx
= y dx∫ , one must have 

2

2

d y

dx
= 0 for x = 0 ; 

 
one will then have: 

0 = A – B – C. 
 

Fourthly, when one sets x = a, y dx∫  must vanish, since y dx∫  expresses the sum of all 

forces that pull the band in a direction that is perpendicular to the axis.  When that sum is 
not zero, the band will be subject to a local motion, contrary to assumption.  On that 
basis, d 3 y / dx3 will then be equal to zero; i.e.: 
 

0 = / / sin cosa c a c a a
Ae B e C D

c c
−− − + . 

 
Fifth, since the band is free at the end B, it cannot have any curvature there, so one will 
also have d 2 y / dx2 = 0 for x = a ; hence: 
 

0 = / / sin cosa c a c a a
Ae B e C D

c c
−+ − − . 

 
 In regard to these five conditions, not just the four constants A, B, C, D will be 
determined, but also the value of the fraction a / c, with which, the length of the simple 
isochronous pendulum can then be known. 
 
 
 82. – It follows from the second and third equation that: 
 

D = A + B, C = A – B. 
 
One substitutes these values in the following ones and then finds that: 
 

A

B
 = 

/

/

cos sin

cos sin

a c

a c

a a
e

c c
a a

e
c c

− − −

− +
 = 

/

/

sin cos

sin cos

a c

a c

a a
e

c c
a a

e
c c

−− − +

− −
. 

 
That equality will imply the equation: 
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0 = 2 − / /cos cosa c a ca a
e e

c c
−−  or e a / c = 

1 sin

cos

a

c
a

c

±
. 

However, the following equations can be derived from this: 
 

 I.    
a

c
 = 1

2 π  − ϕ = log tan 12ϕ . 

 
That will yield a / c = 0 ; i.e., the band will keep its natural position (1). 
 

 II. 
a

c
 = 1

2 π  − ϕ = log cot12ϕ ,  III. 
a

c
 = 3

2 π  + ϕ = log cot12ϕ , 

 

 IV. 
a

c
 = 5

2 π  − ϕ = log cot12ϕ ,  V. 
a

c
 = 7

2 π  + ϕ = log cot12ϕ , 

 

 VI. 
a

c
 = 9

2 π  − ϕ = log cot12ϕ ,  VII. 
a

c
 = 11

2 π  + ϕ = log cot12ϕ , 

etc. 
 

a 

A 

C B 

b 

 
Figure 23. 

 
 
 83. – These equations again yield infinitely-many kinds of oscillations.  For the 
second equation, the band AB will cut the axis AB just once, for the third one, twice, for 
the fourth one, three times, for the fifth one, four times, etc.  From this, it is clear that the 
second, fourth, and sixth kinds are not appropriate for the present problem.  Namely, 
since the number of intersection points is odd for those types, on the second case, the 
band will have a position as is represented in Fig. 23 during its oscillation, and for which, 
although the sum of the forces that act upon the entire band will vanish, nonetheless, they 
will cause the band to execute a rotational motion about the midpoint C, since the forces 
that are applied to the two halves aC and bC would combine to produce that rotation of 
the band.  On that basis, since the rotational motion must be excluded entirely, the form 
of the band under oscillation must be arranged in such a way that not only must the sum 

                                                
 (1) The case a / c = 0, which will also occur more frequently in what follows, is dealt with thus: Since a 
is not zero, one must have c = ∞ ; i.e., since c4 = E k2 a f / M, one must have f = ∞.  The associated 
isochronous pendulum would be infinitely long, so its period of oscillation would also be infinite.  The 
band would need an infinitely-long time in order to complete its oscillation; i.e., it would remain at rest. 
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of the forces that are applied to the entire band be zero, but the sum of their moments 
must also vanish.  That will demand that the curve must possess a diameter cC at the 
midpoint c (Fig. 22).  However, that will appear when the curve cuts the axis AB in either 
two or four, or more generally, an even number of points.  Hence, only the third, fifth, 
seventh, etc., equations will yield suitable solutions (1). 
 
 
 84. – That restriction on the solutions is based in the problem itself when we allow 
only those curves that have the line Cc for their diameter; i.e., ones for which the same 
value of y will result when one replaces x with a – x.  If we set a – x in place of x in the 
general equation then we will get: 
 

y = / / / / sin cos cos sin cos cos sin sina c x c a c x c a x a x a x a x
Ae e Be e C C D D

c c c c c c c c
− −+ + − + + . 

 
That equation must coincide with: 
 

y = / / sin cosx c x c x x
Ae Be C D

c c
−+ + + . 

One will then have: 
 

A e a / c = B, C 1 cos
a

c
 + 
 

 = D sin
a

c
, C sin

a

c
= D 1 cos

a

c
 − 
 

. 

 
The last two equations amount to the same thing.  Since one then has: 
 

A

B
= e− a / c, 

 
a comparison of this value with the previous one (no. 82) will give: 
 

                                                
 (1) Only the case that is represented in Fig. 23 of oscillatory motion with one node must be rejected for 
free elastic bands, but not the other ones.  Dan. Bernoulli expressed his amazement at Euler’s error in a 
letter on 4 Sept. 1743 (Letter 20 in Fuß’s Correspondance math. et physique): 
 “These motions proceed freely, and I have calculated various properties of them and performed very 
many beautiful experiments on the position of the nodes and the height of the sound that agreed with the 
theory beautifully.  I have arrived at the conclusion that the few words that you said about that in the 
Supplemento should be deleted.” 
 In the Actis Acad. Petrop. (1779), Part 1, page 103, Euler once more carried out his examination of 
oscillating bands under other viewpoints and allowed the oscillations with an odd number of nodes with no 
further restrictions.  He also treated six types of oscillations in regard to the ends of the band (whether free, 
fixed to the supports, or embedded in a wall), whereas here, he only treated four.  Lord Rayleigh gave a 
thorough presentation of the transverse oscillations of elastic bands in Chap. VIII of his Theory of Sound 
(German edition by Fr. Neesen, Braunschweig, 1879), where he also gave, e.g., a figure for the free 
oscillation with three nodes.  See also Strehlke, Poggendorfs Annalen, Bd. 27 and A. Seebeck, Abhandl. d. 
Kgl. Sächs Ges. d. Wiss, 1852. 
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e− a / c – cos
a

c
 – sin

a

c
= 1 – e− a / c cos

a

c
 + e− a / c sin

a

c
. 

or 

e− a / c = 
1 cos sin

1 cos sin

a a

c c
a a

c c

+ +

+ −
 = 

1 sin

cos

a

c
a

c

+
 = 

cos

1 sin

a

c
a

c
−

. 

 
 
 85. – We will then have: 

e a / c = 
1 sin

cos

a

c
a

c

−
. 

Previously (no. 82), we found the equation: 
 

e a / c = 
1 sin

cos

a

c
a

c

±
. 

 
That implies that we now have only half of the cases of solutions to the problems that 
were derived from this equation above (no. 82, end), and indeed only the cases that were 
indexed by odd numbers.  Since the first equation represents the rest state of the band, all 
types of oscillations will be represented by the following equations: 
 

 I. 
a

c
= 3

2 π  + ϕ = log tan 12ϕ , 

 

 II. 
a

c
= 7

2 π  + ϕ = log tan 12ϕ , 

 

 III. 
a

c
= 11

2 π  + ϕ = log tan 12ϕ , 

etc. 
 The first of these equations represents the main type of oscillation, for which the 
value of the angle ϕ can be found approximately in a manner that is similar to what was 
done before.  The limits to the angle ϕ will soon prove to be 1o 0′ 40″ and 1o 1′ 10″.  The 
true value of ϕ can be ascertained in that way by the following calculation [which is 
shortened and analogous to the ones in nos. 74 and 78]: 
 

ϕ = 1o 0′ 40″ = 3640″ 1o 1′ 0″ = 3660″ 
ϕ = 0.2466762504 – 2 0.2490559522 – 2 
ϕ = 0.0176472180 0.0177441807 
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a

c
= ϕ + 3

2 π = 
 

4.7300361984 
 

4.7301331611 

1
2 ϕ = 30′ 20″ 30′ 30″ 

log v = 0.3126728553 0.3121694510 
log u = 0.6748885339 0.6743851396 

u = 4.7302983543 4.7248186037 

Deviation: + 6336341 + 53145574 
       636341 

 Difference:    52509233 

 
 From this, one will see that the true value of that ϕ does not lie within those limits, 
but is somewhat smaller (1).  Nevertheless, it will be implied by the deviations.  Let ϕ = 
1o 0′ 40″ − n, so one will have the proportion: 
 

20″ : 52509233 = n″ : 636341. 
 
One finds that n = 2423 / 10000, so: 
 

ϕ = 1o 0′ 39.7556″ = 3639.7556″, 
 
or, in arc units, 0.0176460438, so: 
 

a

c
 = 

3

2
π  + ϕ = 4.7300350232 [correct value = 4.7300408]. 

 
 
 86. – Let the last number be m, so since: 
 

c4 = 
2k af

M

E
,  it will follow that a4 =

4 2m k af

M

E
  and f = 

4

4 2

1a M

m k a
⋅ ⋅
E

. 

 
In the same way (as in no. 76), that will imply the number of oscillations that this band 
completes in one second: 

                                                
 (1) The deviation in the table on the left is incorrect.  It must read – 2621559, namely, 4.73003… − 
4.73029… The angle ϕ will then lie between 1o 0′ 40″ and 1o 1′ 0″.  If one sets ϕ = 1o 0′ 40″ + n then the 
regula falsi method will give: 

20

n

′′
= 

2621559

53145574 2621559+
. 

One finds that n = 0.94, so ϕ = 1o 0′ 40.94″.  That value was found by, e.g., Rayleigh in Theorie des 
Schalles, v. 1, pp. 298.  One will then set a / c equal to 4.7300408.  Since the error first shows up in the 
fifth decimal place, the other numerical values will remain correct up to that point.  The correct value will 
be used in the following sections. 
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2
2

2

m a
g k

a M
E , 

 
in which g = 3.16625 in Rhenish feet.  Hence, when that band is arranged in such a way 
that, in one case, it has one end fixed to a wall and in the other case, it is free to produce a 
tone, the two tones will relate to each other like n2 : m2 ; i.e., like: 
 

1.87510408132 : 4.73004082, 
 

which is like 1 : 6.36324 or approximately 11 : 70.  The interval between those sounds 
will then be defined by two octaves, a fifth, and the next half-tone.  However, when the 
latter free band is assumed to be twice as long as the former, fixed, band, the interval 
between the tones will be almost a minor sixth: 
 

8 72 70
i.e., , instead of  

5 45 44
 =  

. 

 
 
 87. – The equation of the curve can be determined more closely once that value for 
the fraction a / c has been found.  Namely, one has: 
 

e a / c = 
1 sin

cos

a

c
a

c

−
, 

and A e a / c = B, so: 

B = 
1 sin

cos

a

c
a

c

−
A. 

C = A – B = A cos sin 1
a a

c c
 + − 
 

: cos 
a

c
, 

 

D = A + B = A cos sin 1
a a

c c
 − + 
 

: cos 
a

c
. 

Now: 

b = A+ B + D = 2D = 2A cos sin 1
a a

c c
 − + 
 

: cos 
a

c
. 

One will then have: 

  A = 
cos

2 cos sin 1

a
b

c
a a

c c
 − + 
 

 = 
1 sin cos

4sin

a a
b

c c
a

c

 + + − 
  , 
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  B = 
1 sin

2 cos sin 1

a
b

c
a a

c c

 − 
 

 − + 
 

 = 
1 sin cos

4sin

a a
b

c c
a

c

 − + + 
  , 

 

  C = 
1 sin cos

2 cos sin 1

a a
b

c c
a a

c c

 − + + 
 
 − + 
 

 = 
1 cos

2sin

a
b

c
a

c

 − 
  , 

 

  D = 
2

b
= 

sin

2sin

a
b

c
a

c

. 

 
 If one substitutes those values then that will imply the equation: 
 

y

b
=

/ /cos 1 sin 1 cos sin sin cos

2sin2 1 sin cos

x c x ca a a x a x
e e

c c c c c c
aa a
cc c

−    + − − +   
   +

 − + 
 

. 

 
 
 88. – However, since the line cC is a diameter to the curve, the computed abscissa of 
the midpoint C will be CP = z, so x = 1

2 a − z.  One will then have: 

 

e x / c = e a / 2c ⋅⋅⋅⋅ e – z / c = /
1 sin

cos

z c

a

ce
a

c

−
−

⋅  

and 

e – x / c = /
cos

1 sin

z c

a

ce
a

c

⋅
−

; 

one will then have: 

/ /x c x cAe B e

b

−+
= 

( )/ / cos 1 sin

2 1 sin cos

z c z c a a
e e

c c
a a

c c

−  + − 
 

 − + 
 

 = ( )
/ /

/ 2 / 22

z c z c

a c a c

e e

e e

−

−

+
+

. 

 Furthermore: 



Euler – On elastic curves 68 

1 cos sin sin cos
a x a x

c c c c
 − + 
 

= sin
x

c
+ sin 

a x

c

−
= sin 

2

a z

c c
 − 
 

+ sin 
2

a z

c c
 + 
 

 

 

= 2 sin
2

a

c
cos 

z

c
. 

 
 If one substitutes everything into the equation of the curve then one will get: 
 

2y

b
 = 

/ /

/ 2 / 2

cos

cos
2

z c z c

a c a c

z
e e c

ae e
c

−

−

+ +
+

. 

 
 That is the simplest form for the equation of the curve aM cb.  It is obvious that 
regardless of whether z is taken to be positive or negative, that will yield the same value 
of y (1). 

/ 2 / 2a c a ce e−+  is also equal to  
2cos

2

cos

a

c
a

c

, 

 

                                                
 (1) This formula must read: 

e a / 2c + e – a / 2c = − 
2 cos

2

cos

a

c

a

c

. 

Since a / c = 270o 0′ 40.94″, cos (a / 2c) = cos 135o 30′ 20.47″ must necessarily be negative, so the right-
hand side of the formula will have a positive value, which is as it should be, since e a / 2c + e – a / 2c is positive.  
The formula can be derived as follows: One has: 

e a / 2c + e – a / 2c = / /a c a ce e−+ = 
1 sin cos

cos 1 sin

a a

c c

a a

c c

 − + 
 

 − 
 

. 

That value was used before in order to calculate ( )/ /1 x c x cAe Be
b

−+ .  If one introduces half-angles then: 

e a / 2c + e – a / 2c = 

2

2 2

2cos 2cos sin
2 2 2

cos sin cos 2sin cos
2 2 2 2

a a a

c c c
a a a a a

c c c c c

−

⋅ + −
=

2cos cos sin
2 2 2

cos sin cos
2 2

a a a

c c c

a a a

c c c

 − 
 

 ⋅ − 
 

= − 
2cos

2

cos

a

c
a

c

. 

One sets the second square root in the denominator equal to sin 
2
a

c
– cos 

2
a

c
, since that value is positive. 

 The formulas of no. 89 are the ones that correspond to the correct values that were derived here, as 
opposed to the ones that Euler’s published.  The last formula is correct in the text, and likewise, the 
numerical values are also correct.  Cc / Aa proves to be negative, since those ordinates have different 
directions in Fig. 22. 
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and we have found that the angle a / c = 271o 0′ 40.94″. 
 
 
 89. – If one sets z = 0 in the equation thus-obtained then y will assume the value of 
Cc, namely: 

2Cc

b
= − 

2 cos
1

2cos cos
2 2

a

c
a a

c c

+  

or 

Cc

Aa
= 

1 cos

2cos
2

a

c
a

c

−
. 

 
Now, cos a / c = sin 1o 0′ 40.94″ and cos a / 2c = − sin 45o 30′ 20.5″.  One finds from this 
that Cc / Aa = − 0.60784 (Fig. 22). 
 The points E and F at which the curve intersects the axis will be found when one sets 
y = 0.  That will imply: 

/ /z c z ce e−+ = − ( )/ 2 / 2
cos

cos
2

a c a c

z
c e e
a
c

−+  = 
2cos

cos

z
c
a
c

. 

 
 One finds that CE / CA = 0.551685 and AE / AC = 0.448315 by approximation.  
Those points E and F will remain immobile while the band performs its oscillations.  
Therefore, that oscillatory motion, which can be hard to produce by a direct impact, will 
still be easy to produce.  If the band were held fixed at the points E and F that were just 
determined, it would continue to oscillate as if it were completely free. 
 
 

 90. – When the second of the equations that were found above – namely, 
a

c
= 7

2 π  + ϕ 

= log cot 1
2ϕ  − is treated in the same way, one will find ϕ = 0, approximately, for that 

case, and the second type, for which the free end can oscillate, will emerge from that, 
namely, when the axis AB is cut at four points.  Hence, the band will further oscillate as if 
it were fixed at those four points.  Thus, when the band is fixed at those four points or 
only at two of them, it will likewise oscillate as if it were free.  However, it will have a 
much higher pitch.  Its oscillation number will relate to that of the sound that the previous 
type of oscillation produced almost like 72 to 32.  Both of those tones are separated by an 
interval of two octaves, plus a fourth, and one-half of the next half-tone.  For the third 

type of oscillation, one will have the equation 
a

c
= 11

2 π  + ϕ = log cot 12ϕ .  The curve acb 

has six points of intersection with the axis AB.  It creates a pitch that is one octave and a 
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minor third higher then the previous one (121 / 49 = 2 ⋅⋅⋅⋅ 6
5 , approximately).  The band will 

produce that pitch when it is fixed at two of those points.  It is clear from this how 
different sounds can be created by the same band, according to whether it is fixed at two 
points in different ways.  When the two fixed points do not coincide with the intersection 
points of the first, second, or third kind, the oscillations will continue from any of the 
following kinds up to infinity.  It will then create a sound that is so high that it can no 
longer be heard, or (what amounts to the same thing) the band will not exhibit any 
oscillatory motion at all, but it will generate an indeterminate sound of the kind that is 
produced by an oscillating string that is plucked at a point where the parts do not possess 
a rational ratio. 

 

α 

A 
P 

µ 

M m 
B 

β  
Figure 24. 

 
 

The oscillations of an elastic band that is fixed at both ends 
 

 91. – The elastic band is now fixed at both endpoints A and B (Fig. 24), but in such a 
way that the tangents to the curve at those points are indeterminate.  In order to realize 
that case in an experiment, let two very thin knife-edges Aα, Bβ be rigidly coupled with 
the band, which embed the band in a wall at the endpoints A and B and make it immobile 
there.  In order to deduce the oscillatory motion of that elastic band, as before, set: The 
absolute elasticity = E k2, the length AB = a, its weight = M, the length of the simple, 
isochronous pendulum = f.  Let AMB be the curvilinear form that the band assumes under 
oscillation.  Furthermore, set AP = AM = x, PM = y, and set the radius of curvature at M 
equal to R.  One lets P denote the force that the knife-edge Aα must support in the 
direction Aα.  Since the force to which the element Mm must be subjected in the direction 
Mµ in order for the band to keep its position is equal to M y dx / a f, one will obtain the 
following equation for the curve from the rules that were given above (nos. 57, 66, 67): 
 

2k

R

E
= Px − 

M
dx y dx

a f ∫ ∫ . 

 
Since the curve is concave to the axis, R will be − 2 21/ /d y dx  here; one will then have: 
 

2
2

2

d y
k

dx
E = 

M
dx y dx

a f ∫ ∫  − Px . 

 
For x = 0, that will imply R = ∞ ; i.e., one will also have d 2y = 0. 
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 92. – If this equation is differentiated twice then the same equation will follow that 
we found before in the previous cases: 
 

E k2 d 4y = 
M

a f
 y dx4 . 

 
If one then sets E k2 a f / M = c4 then one will get the integral of the equation: 
 

y = / / sin cosx c x c x x
Ae Be C D

c c
−+ + + . 

 
For the further determination, one sets x = 0, so one will also have y = 0, and 0 = A + B + 
D.  Secondly, one sets x = a, so y will again be 0, and one then has: 
 

0 = / / sin cosa c a c a a
Ae B e C D

c c
−+ + + . 

 
Thirdly, 2 2/d y dx  must vanish for x = 0 and x = a.  One will then have: 
 

A + B – D = 0  and  / / sin cosa c a c a a
Ae B e C D

c c
−+ − − = 0. 

 
The equations A + B – D = 0 and A + B + D = 0 imply: 
 

D = 0 and B = − A. 
 
If one substitutes these values in the other two equations then one will get: 
 

0 = ( )/ / sina c a c a
A e e C

c
−− +  

and 

0 = ( )/ / sina c a c a
A e e C

c
−− − . 

 
Those equations can be satisfied only when A = 0, so / /a c a ce e−−  can vanish only for the 
case of a / c = 0 (see the remark on pp. 62).  However, one must then have C sin (a / c) = 
0.  One cannot set C = 0 in that, since otherwise no oscillatory motion would exist 
anymore, since all constants would then be zero.  One must then have sin (a / c) = 0, so 
one will either have a / c = π or a / c = 2π, etc.  That will once more yield infinitely-many 
different kinds of oscillations, according to whether the curve AMB cuts the axis nowhere 
except for the endpoints A and B or at one or two or more points.  That follows from the 
equation y = C sin (x / c).  However, no matter how many points of intersection arise, 
they will have equal distances between them. 
 



Euler – On elastic curves 72 

 93. – For the first and most important kind of oscillation, a / c = π, so: 
 

a 4 = π4 c4 = π 4 ⋅⋅⋅⋅ E k2 ⋅⋅⋅⋅ a

M
⋅⋅⋅⋅ f . 

Hence: 

f = 
4

4 2

1a M

k aπ
⋅ ⋅
E

. 

 
The pitches will then (no. 76), in turn, be inversely proportional to the square of the 
length of the band.  The pitch that this band will produce for a / c = π will relate to the 
pitch of the same band when the end B is fixed as π2 relates to the square of 
1.8751040813; i.e., as 2.807041 : 1 or, in smallest numbers, like 160 to 57.  The interval 
between them is one octave plus almost a third half-tone.  If the oscillations occur as the 
second kind, for which a / c = 2π, then the pitch will be two octaves higher, and when a / 
c = 3π, it will be three octaves plus the next whole tone higher than in the case a / c = π , 
etc. (1).  In order to be able to easily test this experimentally, it should be remarked that 
the oscillation must be made to be as small as possible, such that no essential elongation 
of the band will arise.  Therefore, in order for the rigidity of the band that opposes a very 
small extension of the band, but without any oscillations taking place, to not be harmful 
here, the points must be arranged such that such a small extension is possible.  That will 
happen when they lie on an entirely smooth plane.  It will be such that the elastic band 
AB that is equipped with the points Aα and Bβ at A and B, resp., will produce a sound 
that corresponds to the calculation when the points are placed on a mirror. 
 

 

A P 

M 

B 
 

Figure 25. 
 
 

The oscillations of an elastic band that is fixed to a wall at both ends 
 
 94. – Now that we have dealt with the previous cases, our treatise on elastic bands 
might conclude with the oscillatory motion that an elastic band exhibits when both of its 
ends A and B are attached to a wall (Fig. 25) such that not only the points A and B will 
remain immobile under the oscillation, but the line AB will continually contact the curve 
AMB at A and B.  However, one must once more be careful that the bolts that fix the 
endpoints A and B are not rigid, but admit a small extension, which the curvature would 
necessitate.  Therefore, one will arrive at the sort of forces one that one would also need 

                                                
 (1) On the tonal intervals that occur in this section, let it be remarked: In the C-major scale, the first 
interval 160 / 57 is in the interval from the root tone C to F-sharp of the next-higher octave (2.78, instead of 
2.81).  The second interval 4 : 1 is the one from the root tone C to the C that is two octaves higher, the third 
interval 9 : 1 reaches from the root tone C to the D tone that lies three octaves higher.  On the realization of 
those oscillations in practice, which Euler thought would be complicated, see Chladni, Akustik, pp. 99. 
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in order to fix the band at the endpoints A and B by using the following fourth-order 
differential equation: 

E k2 d 4 y = 
M

a f
y dx4 . 

Let: 
2k af

M

E
= c4. 

As above, one will get the integral: 
 

y = / / sin cosx c x c x x
Ae Be C D

c c
−+ + + . 

 
 
 95. – The constants A, B, and D must be determined in such a way that not only y, but 
also dy, will vanish for x = 0, since the curve must contact the axis AB at A.  The same 
thing must take place when one sets x = a.  That will yield the following four equations: 
 
 I. 0 = A + B + D, 
 II. 0 = A − B + C, 

 III. 0 = / / sin cosa c a c a a
Ae B e C D

c c
−+ + + , 

  IV. 0 = / / cos sina c a c a a
Ae B e C D

c c
−− + − . 

 
It follows from the first and second one that: 
 

C = − A + B, D = − A – B. 
 
One substitutes these values in the remaining two equations.  It will follow that: 
 

0 = / / ( )sin ( )cosa c a c a a
Ae B e A B A B

c c
−+ − − − + , 

 

0 = / / ( )cos ( )sina c a c a a
Ae B e A B A B

c c
−− − − + + . 

 
One takes the sum of both equations and gets: 

A

B
= 

/

sin

cos a c

a

c
a

e
c

−
. 

 
It follows from the difference between the two equations that: 
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A

B
= 

/ cos

sin

a c a
e

c
a

c

− −
, 

so: 

2 = ( )/ / cosa c a c a
e e

c
−+  or e a / c = 

1 sin

cos

a

c
a

c

±
. 

 
That equation agrees with the one that was found in no. 82.  The following infinitude of 
solutions will satisfy it: 
 

 I. 
a

c
= 1

2 π − ϕ = log cot12ϕ , II. 
a

c
= 3

2 π + ϕ = log cot12ϕ , 

 

 III. 
a

c
= 5

2 π − ϕ = log cot12ϕ , IV. 
a

c
= 7

2 π + ϕ = log cot12ϕ . 

 
 
 96. – The first of these can be satisfied only when ϕ = 90o, so one will then have a / c 
(see the remark on pp. 62).  The first type of oscillation is derived from the equation 
a

c
= 3

2 π + ϕ = log cot12ϕ .  That was dealt with before (no. 85) and will give a / c = 

4.7300408.  Therefore, the elastic band that is embedded in a fixed wall at both ends will 
carry out its oscillations just as if it were entirely free.  However, that agreement relates 

to only the first kind of oscillation (1).  Namely, the second kind, for which 
a

c
= 5

2 π − ϕ = 

log cot1
2ϕ , and for which the band cuts the axis at one point during oscillation, does have 

its equivalent for the free band.  The third type of oscillation of the band that is fixed at 
both ends coincides with the second type for the free band, and so forth. 
 
 
 97. – The last two genres of oscillations (nos. 91 and 94) cannot be rigorously tested 
by experiments, on the cited grounds.  However, the first genre (no. 65) is not only very 
suited to the demands of experiments, but can also be converted in such a way that the 
absolute elasticity of any band, which we have denoted by E k2, can be ascertained.  
Namely, when the sound that a band that is fixed at one end in a wall creates is heard, and 
one produces the same sound with a string, the number of oscillations in one second will 

                                                
 (1) That agreement will be found for all types of oscillation.  Euler’s misleading statement is based 
upon the fact that he rejected oscillations with an odd number of nodes for the free band; see the remark on 
pp. 63. 
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be known.  If that were set equal to the expression 
2

2
2

n a
g k

a M
⋅ ⋅E  then one would find 

the value of the expression E k2, since the number n would be known and the quantities g, 
a, and M could be obtained by measurement.  One would then know the absolute 
elasticity.  It can then be compared with the one that is found from the curvature (no. 35) 
(1). 
 

_____________ 
 
 
 
 
 

                                                
 (1) These experiments, which are very important to engineering, were carried out quite extensively.  
Admittedly, the formulas that were given here did not lead to any useful results, since they did not bring the 
cross-section of the elastic band under consideration; see, e.g., Kupffer , “Recherches expérimentales sur 
l’élasticité des métaux,” St. Petersburg, 1860. 


