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PREFACE TO THE ENGLISH TRANSLATION

Although this treatise dates back to 1744, nonethelesssubject is sufficiently
fundamental to other things that the applications ofmethodology continue to have
their utility to this day. The subject in question is tbbthe shapes and vibratory modes
that can be assumed by elastic curveslastica which are also the basis for the method
of spline interpolations in computer graphics.

More precisely, one should skamina elasticaor elastic bands, as opposedtoda
elasticg or elastic strings. Hence, although the following faanentioned specifically
only once in all that follows, the objects that will bending and vibrating will have a
non-zero, but otherwise negligible, thickness and ahatight will usually be assumed to
be constant, except in one section on non-uniformietgs Other than that, one might
as well be talking about the deformation of curves, sisctihe longitudinal curve through
the band that intersects the center of mass of esw$s-section. In that sense, the
discussion that follows can be seen as extensiomhefusual theory of flexible,
inextensible curves and vibrating strings to a higher ordediféerential equations,
namely, four. Although we say “inextensible,” in a femses, such as the vibration of a
band that is fixed in a wall at both ends, the bandveilassumed to maintain its original
length.

Although this translator usually avoids the tendencglter mathematical symbols
and equations in any way, except to incorporate errata amdct obvious errors in
typesetting, in the present case, some effort was n@adeake the logic of Euler’s
argument more transparent by “modernizing” some of thanees where he employed a
technique in calculus that is currently frowned upon, manteeating differentials as if
they were capable of being multiplied and divided, and unit added, subtracted, and
multiplied by scalars. For instance, one will typigdihd that expressions of the form:

dx? ds’
>— and —
dy dx

will be converted into the more modern forms:

d2y)" dx
( j and —ds,

dx® ds

respectively.

One should also notice that since this treatise se@erhave predated the introduction
of the term “curvature” (in the Frenet-Serret senseg, must intuit its role in many cases
where one is dealing with that very concept, but in trenfof the radius of curvature.
For instance, the basic variational problem can bedoas@ne of finding a planar curve
that minimizes an action functional that amountsitoply the integral of the square of
that curvature along the curve from among the planaesuhat have the same length.

D. H. Delphenich, 2018




PREFACE TO THE GERMAN TRANSLATION

For a practical understanding of the older ground-lingakvorks onelastica a
knowledge of the connection between the Ansatze thgtatwetain and the methods of
stereo-mechanics and continuum mechanics is prerequisite.

The following introductory remarks shall also make itgiols for those readers who
have not studied general mechanics in detail to make ieatmtvaluation of the most
important original works on that topic.

a) One imagines that the original straight elasticewiriz., lamina has been
replaced with a chain (i.e., series) of infinitetpal, rigid material elements that are
coupled to each other with pivot joints whose axeseatiain perpendicular to a fixed
plane. The forces +and- r' are applied to the jointS andC’, resp., of an arbitrary
material element], and those forces are transferred to the previous diwviiag
elements, resp. Along with those isolated force€ ahdC’, moments -R andR’ will
also be applied when the links exhibit resistance toiootatf the terms about the pivot
axis. Let the resultant of the applied (externalcésronf bed k, and let its moment

relative to the rotational poir®@ of the link 8 bed M. The reaction momen® andR’
can be referred to an arbitrary p&@en the plane.

If one setsOC =c, OC' =¢, ¢’ -c =dc, r'-r =dr, R- R =dR then the basic
rules of elementary statics will give the followingnditions for equilibrium of the forces
on the material elemers :

dr+dk =0, dR+dc+dM =0 (poleC).

With the introduction of the arc elemetd of the equilibrium curve (axis of the flexible,
inextensible wire), which couples to the piv@),(one can employ specific quantities
dk /dsandm =d M / ds which refer to a unit length of the wire axis, in pla¢ehe
absolute quantitied k andd M, resp. If one then setdc/ ds= othen the static Ansatz
will assume the form:

(1) £+K:0, (2) d—R+ar+m:O.
ds ds

These equations appear many times in recent literathrle, tvey are absent from the
older authors Jac. Bernoulli, Euler) in that explicit form. Euler knew of the
corresponding form for chains whose links have finiteahsions (confer the discussion
by Routh in his Dynamik German edition, v. 2, pp. 71), but he did not pass tdirttie
Confer alscEuler’s Ansatz in no57 (pp. 43) of the following.

Equations (1) and (2) were presented@igbsch in his Elastizitat fester Koérper
Leipzig, 1862, pp. 204-222, and were used as the baskartdrhoff 's theory of wires.
One also finds them ifhomson andTait, Natural Philosophy Part 2, i ed., Oxford,
1867, 29 ed., Cambridge, 1895, pp. 152-155,Liave, Theory of Elasticity 2" ed.,
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Cambridge, 1906, pp. 370-372, and their direct relationship tohtdwy of chains of
objects with finite links is discussed K Heun in the Zeit. Math. Phy$6 (1908), pp.
68, et seq. Those equations are treated thoroughly from a more genewpoint byE.
andF. Cosserat Théorie des corps déformabldéaris, 1909, pp. 5-65.

b) Let the position of the axis elemant relative to thex-axis of a fixed axis-cross
Oxy be determined by the ange Let the magnitude and direction of the contingency
angle of the elastica be denotedd With those preliminariegd# / ds will be the
specific rotation of the axis elemesht. Along with the direction of the tangerd)( one
introduces the direction of the normal to the cuwe Hence,7 = o v is the segment of
the altitude (of unit length) to the plane of the curvehsthat:

d? _ _ 1
__m__”,
ds a

in whicha; is the radius of curvature of the elastica.
From Daniel Bernoulli’'s hypothesis, one h&® = P to, if P means a constant that

depends upon the dimensions of the cross-sectthanelastic coefficients.
Furthermore, let:

The functionu can be referred to as the potential of the appgéecks. It will now follow
from the basic equations of statics (1) and (2) tha

e, RE, &, du_g

dsds ds ds ds ¢
or

dr dro  du
—0o+0rw+Pw—+— =0
ds ds ds

If one then sets:
r=roo+r,v
then one will have:

dr _ dr, dr, dv
— =—20+—ZVv+wry+r,—
ds ds ds <
and
dr _ dr, dv
_ = —_ 4+ R

However, one has:

It will then follow that:
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dr dr,
oO— =—-twr,+—<, or=r,n.
ds ds

One sees from this that the equation:

%+ |Z)rnd_rn+$J =0
ds ds ds

is integrable, such that:

3) 1P w?+r,+u=h.

That equation exhibits a certain analogy with the ppiecofvis vivain kinetics.

c) One can seti = O for an elastica with no applied forces. Equaf®)nwill then
assume the simplified form:

(3) 1P w’+r,=h"
The virtual work due to bending& 2. One then defines:

9 (Rag) = Rag+r 9
ds ds ds

or with the use of equation (2):
d _
—(RO9) =-r, 03+ R Io.
ds

If one denotes the endpoints of the elastic&landB then an integration along the axis
of the wire will yield:

[RAS] = T(Ram— r, &9) ds.

A

If one sets the virtual rotatiod? equal to zero at the limi#s andB then one will have:

B
j(Ram— [ &9)ds= 0,
A

or, since:
r,o?=0r,,
one will have:

B
5](% Pt -r, )ds=0.
A
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However, from equation {8 one will have:

~ro=1P ® —h",
As a result:

4) 5ﬁPm2ds— hof ds} = 0.

B
In Euler’'s way of looking at things, the integréIszds will then be a maximum-
A
B
minimum with the isoperimetric conditioﬁds: | (const.).
A
It follows from equation (1) that=r°. One will then have:
ro=r,cosd+r, sing and r,=-r’sind+r) cosd.
Ordinarily, one chooses the ax@s, Oy in such a way that one will ha\ré =0.

d) One can regard the quantiyp w? = ein equation (3) as an energy. The sum

r-=u’can be considered to be a modified potential enevgg.then seé — u=f and let
f denote thd_agrangian functionfor statics (in analogy to stereo-kinetics). Thdista
analogue to theagrangianequation of kinetics will have the form:

ddf _df _,
dr dwo dJ '

and will be identical to the equation:
ar, r,+m=0

ds

in the present case.
With that, theKirchhoff analogy is proved. One can find further details on that
analogy inLove, Elasticity, 2" ed., pp. 382, and/. Hess Math. Ann.25 (1885).

e) Euler gives instructions on how to treat the isoperimetridfam in Chapter 5 of
Methodus inveniendi, whose German version by. Staeckelis included in this
collection as volumd®6.

K. Heun
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Introduction

1. — For some time, some brilliant mathematicians havegmized that the methods
that are proposed in this book are of use, not only afyais, but also in the solution of
physical problems. Namely, since the plan of the entnigerse is complete and was
established by the wisest Creator, nothing will happehemtorld that is not based upon
some relationship to the maximum or minimum. For teason, no further doubt can
exist that all phenomena in the world can be just akdeetrmined from the final causes
with the help of the method of maxima and minima ag tan from the causes that that
are in effect. So many excellent examples of theit éxist already that further examples
would not be necessary in order to state that trutbredver, in every type of question of
natural science, one must then strive to determine atiuéimat assumes a largest or
smallest value. That problem seems to belong more tosplphy than mathematics.
Since a double path is then given for exploring the phenaménature, once in terms of
the initial causes, which one would prefer to call tieect method,” and secondly, from
the final causes, the mathematician might appeal teretththem with the same effect.
Namely, when the initial causes lie hidden, but the fiaaises are clear, the problem can
be solved by the indirect method. In contrast, thectlimeethod can be applied whenever
the effects can be defined by the initial causes. Hewewne must see, in particular,
how to make the solution tractable in both cases. ddbyt will the one serve to confirm
the other, but the agreement between them will givéhesgreatest satisfaction. The
curvature of a cable or a hanging chain can be asataintwo ways: Firsta priori,
from the effects of gravity, and then by the method okima and minima, since it is
clear that such a cable must assume a curvature sudhehagnter of gravity will lie as
deeply as possible. In the same way, the curvaturtheofrays that go through a
transparent medium of varying density can be determanpdori, as well as from the
fact that they must arrive at a given location inghertest time.

Very many similar examples were furnished by the estéddeenoulli and others,
whom we can thank for significantly completing #g@riori method of solution and our
understanding of the initial causes. Thus, although tbat grumber of clever examples
means that no doubt remains that the property of beingpanmam or minimum will
appear for all curves that arise by solving the problems athematical physics,
nonetheless, that maximum or minimum is often veffjcdit to recognize, even though
one can recognize it from tl@epriori solution. Thus, the form that a curved elastic band
assumes has been known for some time, but up to noen@das remarked how that
curve could be explored by the method of maxima and miniia;from final causes.
Now, the most highly honored, as well as most incisivegard to that way of exploring
nature, Daniel Bernoulli has communicated to me that the total force that @edur
elastic band includes, which he called thatential force can be summarized in a
formula and that this expression must be a minimumHerefastic curve'). Since a

() Daniel Bernoulli pointed out the potential force Euler in a letter on 20 October 1742. (Letter 26,
vol. 2, footnote v.Correspondance mathématiques et physigatersburg, 1843). At the end of the letter,
he said: “Since no one has mastered the isoperimetticach (i.e., the variational calculus titatler had
founded as a special branch of analysis) as completefglasyou will solve this problem, in which one
requires thaf ds/ R? must be a minimum.”Dan. Bernoulli had already known abofuler’s method of
finding curves before the Appendix on elastic curves had aggheas he spoke about it with great interest
in his letter taEuler in 1743. See n&@3 and the remark on page 63 below.
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new and wonderful light shines upon my method of maximanaindma because of that
discovery, and its very far-reaching applications clearherge, | have believed that this
very desirable situation cannot be passed over, withbthgasame time, my making the
application of my method clear by publishing that exceptigmaperty of the elastic
curve that the renownedernoulli had discovered. That property also implies second-
order differentials that are still not present in sh&ition of the isoperimetric problem.

Figure 1.

On the curvature of uniform elastic bands

2. — Let AB (Fig. 1) be an arbitrarily-curved elastic band. Thelangths will be
denoted bys and the radius of curvature st by R. According toBernoulli, the force
potential that is included in the segmeéxit! will be expressed by the formulas / R,
when the band is equally thick and wide and elastic evergyhed in the natural state it
is straight ). Therefore, let it be a property of the cuA®! that this expression is a
minimum for it. However, since second-order differ@stenter into the expression for
that radius of curvatur®, one will need four conditions to determine a curve that
endowed with that property, and that will correspond pricige the nature of our
problem. Namely, since infinitely many elastic bandshef same length can be drawn
through two given endpointd andB, the solution can be unique only when two more
points are given, in addition to the two poiftsand B, or (what amounts to the same
thing) the positions of the tangents at the endpdnédB. The given elastic band,
which is longer than the rectilinear distai® can be bent in such a way that it not only
goes through the endpoints, but also in such a wayhbaianhgents to it at those points
will possess given directions. Hence, the problemiradirig the curvature of elastic
bands can be posed as follows:

Among all curves of the same length that go through the points A and B and contact
lines at those points whose positions are given, determine the onehicin the
expression] ds/ R? is a minimum.

3. — Since the solution shall refer to rectangular coatéis, an arbitrary lin&D will
be taken to be an axis. For it, &P = x, and let the ordinateM be equal tg. As the

() For the special formulas that are employed here, cabfepter Il and V oEuler’s Methodus
inveniendi lineas curvatc. (Volumelb6 of this collection, published by. Staeckel)



Euler — On elastic curves 3

method that was found prescribes, one dgts p dx dp =g dx Let the curve element

Mm be:
Mm=ds= dx/1+ p’.

A P D
Figure 2.

Since the curves from which the desired one isstadrertained should be isoperimetric,
one must first consider the expression:

jdxm.

When one compares this to the gendrdl dx and differentiates it, that will give
d p

&,/1+ p2

. Secondly, since the radius of curvature is etpal

-1 213/2
(d_pj (1+ p2)3/2 = (1+ p ) - R,
dx q

2
the formulal ds/ R?, which should be a minimum, will beco (13 (2))(5/2 .
p

When this is compared with the general fornfuladx, that will give:

2

_ q
Z= (1+ p2)5/2 :

When one setdZ=M dx+ N dy+ P dp+ Q dq that will give:

2pg’ 2q
M= N = P=- — =
O’ 0’ (1+ p2)7/2 ! Q (1+ p2)5/2
. . . . : gidx .
The differential expression that is derived frora fhrmulaj—ls then:
(1+ p2)5/2
2
_dP dQ

dx d¥ '
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One will then have the following equation for the dedicurve:

d p _dP_ o&Q

a_
dx /14 p? dx e

If one multiplies this bylx and integrates then one will get:

+,[>’PdQ

[1+p dx

This equation in then multiplied liydx= dp, such that what will emerge is:

92D, pdp=P dp-q dQ.
«/1+p

However, due to the fact thist = O,N = O:
dZ=P dp+Qdq SO P dp=dZ-Q dg
If one substitutes that value then what will arise is

PR | Bdp=dz-Q dg- q dQ.
J1+p®

After another integration, what will follow is:

a1+ p’ + Bp+y=dZ-Q dg-q dQ.

. g 2q .
H SR B -9 Il have:
owever, sinc& L )" andQ )2 one will have
_
a1+ p* + Bp+y= g

(1+ p )5/2'

If one takes the arbitrary constants to be negahien one will get:

= @ Py a1+ p+ Bpry = d—p

It will then follow from this that:
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_ dp
dx = :
@+ pz)s"‘\/ a1+ p’+pp+y
Sincedy = p dx one also has:
pdp

dy=

@+ pz)s"‘J a1+ p*+Bp+y |

These two equations suffice to find the curve bgdratures.

4. — This formula, which was derived in a completgigneral way, is hardly
integrable. However, it can be constrained in saietay that the constraint allows it to
be integrated. Namely, since:

dJaJH P’ +Bpty _ dp(B-yD)
Y1+ p? @+ p2)4 a[1+ p*+ Bp+y

2\/0\/1+ p*+LBp+y

(1+ p2 )1/4

one will have:

=px—yy+o

Since the position of the origin along the axigibitrary, one can drop. One can
change the axis in such a way that (

() Let it be pointed out for this coordinate transfornmatioat the new axes will again be rectilinear.
The newx-axis defines an angle gfwith the old one that is determined by tam y/ f. WhenP =dY/
dX that will become:

= PPy
BryP’
and therefore:
2 1+P2)
1 st BHPY)
P (Brypy

One substitutes this value iuler’s last equation and obtains:
2\/a 1+P?+Py f2+y?
J VB T
(1+P2)l/4

Let \ B*+y* = B . If one introduces the lower-case symbols, in ptd¢be upper-case ones, then one will
get:

2 ay #p*+By =[x (1 +p),

as in the text.
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x= Px-yy and y= VX+By

One can certainly sgtequal to zero in this, since nothing stands in the waynoé more
denoting the new abscissayOne will then get the equation for the elastic curve

2fa 1w+ oo = pxif1e 7

Squaring this will yield:
A\ 1+ p* + 48p = B°x*\ 1+ p°.

In order to make this homogeneous, let:

a= 4_r2n and pB= 4—?
a a
which will make:
nap=(M°x’-ma),/1+ ¢,
SO
n°x? - me _dy

Po \/nza“—(nzxz— mg)2 dx

When one changes the constants and either insreasiiminishes the abscissay a
given constant'}, one will get the following equation for the geaieelastic curve:

dv = (a + Bx+ yx?) dx
y= :
Jat—(a+Bx+yx)?

from which it will follow that:

q a’ dx

> Jat—(a+Bx+yR)?

() One sets:

2
n=y x=xl+zii/, mzé(ﬁ—ayj.

Naturally, the quantities, S, y'that are introduced here are different from the quasititigs, ythat were
introduced at the beginning of this section. One wilhthave:

X —ma=pya+Lfx+ <),
SO:

dy= dx (a+Bx+yX)
Ja'~(a+Bx+yx)’

If one drops the index anthen one will get the penultimate equation ofhim the text.
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The agreement of the curve that is found in that wily the elastic curve that was
ascertained before will emerge from that equation.

5. — In order to make this agreement emerge more cleavil] klso examine the
nature of elastic curves directly. Although the vearitedJacob Bernoulli has already
done this excellently, 1 will nonetheless take this opputy to add a few observations
about the properties of elastic curves, such as thelougatypes and figures, that |
believe have either been overlooked or only touched upon.

M
N
A P
T C \
D qQ
Figure 3.

Let the elastic bandB be fixed to a wall or floor (Fig. 3) in such a way ttia endB
will not only remains fixed, but the position of the gant atB will also be determined.
Let the band be constrained Atby the rigid rodAC, to which the forceCD =P is
applied perpendicularly. In that way, one will find tband to be in the curved
configurationBMA. TakeAC to be the axis, and I&C equalc, AP=x, MP =y. Now, if
the band suddenly loses its elasticitywatind is completely flexible then it will be bent
by a force whose moment is equaRdc + x). In order for no motion to follow from that
bending, the elasticity of the bandMtmust be in equilibrium with the moment of the
applied forP (c + X). However, elasticity depends, first of all, upon thaterial of the
band, which | shall assume to be the same everywhatghen the same thing will be
true of the curvature of the bandMt such that it will be inversely proportional to the

2 -1
radius of curvature afl. Let that beR = - [%%j , ds= ./ dxX’ + dy’ in this, andix

is constant, s& K / R will express the elastic force in the bandvathat brings about
equilibrium with the moment of the applied foreéc + xX). The equation then exists:

2 2 N\t
pieon= = ae(E .
S

When that equation is multiplied lol, it will be integrable. That integral will then be:
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—-Ek?dy

Jd@+dy

_ —Pdx(t X+ o 1)
JEK* - P23 5%+ ox+ )2

P(ix® +cx+f) =

SO:

dy

That equation coincides with the one that | defiby the method of maxima and
minima fromBernoulli’s principle.

6. — One can derive the force that is required ireotd produce the given curvature
of the band from a comparison of that equation withone that was found before. The
elastic band might be represented by the cAMB, whose equation is:

dy = (a + Bx+ yx?) dx
Ja'-(a+px+yR)?

E k* might express the absolute elasticity of that bandh that whek k? is divided by
the radius of curvature at an arbitrary locatitwat imight yield the true elastic force.

In order to perform the comparison, the numerata denominator is multiplied by
E K*/ &, such that one will have:

Ek®/a*(a + Bx+yxX) dx

21,4 )
\/EZ k4—Eaff (@ + Bx+ yx)?

dy=

One will then have:

2 2
:Ekzy’ —Pc:Ekzy, _pf
a a a

_EK’y

2 H

_%P

so the applied force will bED = - 2 E k* y/ &, the length will beAC = ¢ = 8/ 2y and
the constant will be equal toa / 2y.

7. — Hence, in order for the elastic ba#B, one end of whiclB is fixed to the wall,
to be bent into the forAMB, that band must be subjected to a forcEBf=- 2 E I y/
a’ in the directionCD that is perpendicular to the axdd®. As the figure shows, that
force will act in the opposite direction whenis a positive quantity. Sincé k* / R
represents the moment of the driving forEel? / a® will be equivalent to the a pure
force, and that force will be determined from thestcity of the band; let it bE. The
bending forceCD will then have the same ratio to the fofe¢hat — 3/has to 1, wherg
is a pure number.
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8. — One can now further determine the force that is sserg in order for the
segmenBM of the band to keep its position when the segmdhis cut. If the segment
AM is cut then the elastic band will end at the rigid Mar (Fig. 3), which is coupled to
the band in such a way that it will always give thedion of the tangent at the pot
which will also bend the band. With those conventiohswill be clear from the
foregoing that in order to maintain the curvatBid of the barMT at the pointN in the
directionND, one must apply a force ef2 E k* y/ a®>. ND is normal to the axi&P and
AC= B/ 2y. The distanc®N will be:

d—SCP: d_sD3+2yx _ (B +2yx)ds
dx dx 2y 2y dx

SO:

ds a’

dx Jat-(a+dx+yx)’

If the forceND is decomposed into two components, nanme(y, which is perpendicular
to the tangenMY, andNT, which is in the direction of the tangent, ther ovill have:

-2EK?y dx
NQ = =
Q a> ds
and
_ 2
NT= T2EKV Y
a ds

9. — If one cuts out the segmeBiv thenAM will be subjected to the force2 E i y/
a? in the directiorCD, as before. In order to maintain the curvaturéhefsegmentM,
the endpointM, which is regarded as fixed to the rigid ribiN in the direction of the
tangent, must driven by a foree2 E K y/ a® atN, but in the opposite direction to the
one that was found in the previous case. Namelg, apntinually removes that force,
which must be applied at the two endpoints. Ittntlisn be equal and have the opposite
direction. The forces that are established ingaeat of the cut band in order for the
existing curvature to remain the same can therebermhined very easily.

10.— LetAM be a curved elastic band that is fixed to thalrfgied rodsAB, MN at A
andM. The equal forceBE andNR might be applied to those rods in opposite dioei
in order to produce equilibrium with the curvatafethe bandAM, and the equation for
that shall be presented. The liA® that goes througlh and is perpendicular to the
directions of the previous two forces will be takerbe the axis. The absolute elasticity
of the band will be set equal ®k?. Let CAD = m, cosCAD = n, whereCAD is the
angle that the tangent & makes with the axis. One will then hamé + n® = 1.
Furthermore, leAC = c and let the bending force B = NR =P, and finally IetAP = x
andPM =y. The curve will then be expressed by the equation
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_ —PExX+cx+ f) dx
JEK* = P23 5%+ ox+ )2

dy

R M

Figure 4.

Since the direction of the tangentfails given, one must have:

ﬂ:m forx:O;
dx n
hence:
Pf
m=- )
Ek?

The constant can be determined from this; it is:

_ -mE K
5

f

The entire curve is determined now.

11. — In order to bend the bam&M into the curve that expressed by the equation
above, the forc®E = P must be applied to the tangeB at the poinD, whereAB=c/
n. Let its direction be parallel to the ordin&egl.

The force DE must be decomposed into two componedts and Df that are
perpendicular to each other; one will then hBxke= Pn andDf = Pm In order for the
consideration of the lindD to be unnecessary in the calculation, two forcas loe
substituted for the forcBd at the given pointé& andB, whereAB = h, namely,Aa = p
andBb = g, which are likewise perpendicular to the 8 In order to do that, one must
assume thgd Ch=Pn[BD =Pn(c/n-h) and thatg=p + n P. However, since it does
not matter at which point of the r@kD one applies the tangential forbé = Pm, it will
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be applied to the poirk precisely, and one will s&&F = mP. Let AF =r, such that the
bandAM will be under the influence of three forcAa = p, Bb = q, andAF =r. We
would like to investigate the influence that those thoegegls might have on curvature.

M

Figure 5.

12.— One hasn P=r, soP =r / m. When substituted in the previous equations, that

will give:
nr

cr nhr
and gq=p+—,
m

So:
g-p

=

n
m
and the position of the ax#sB will be known from that equation, which will be:

_ I

tanCAD =

SO
' and n-= 9-p

m= .
Jr2+@-np)’ r’+(q-p)’

It will follow from the equation:

that:
hq

and
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_-mEK _  -mEK
P r’+(q-p)*’

Now, since:

one will have:
hgx EKr

\h2+m—pf_fkﬂq—m2'

One will get the following equation for the desiaatve:

dx{\/ EK’r —hgx-1 Xy F+(q pz}

r2+(q - p)?
dy= @-p)

Ekzr{ EkT —hgx-1 X\/ P+(qg- pz}
VIE+@-p)’

That equation is very convenient for the invest@abf the most common kind of the
bending of a band when one grabs it with eitheaia @f pliers or two fingers. The one
finger pushes in the directigke, while other pushes in the directiBb, and the band can
still be bent in the directioAF, in addition.

13. — If the tangential forcdF = r vanishes then the ax&P will fall along the
direction of the tange&AF. One will then have:

i ~dx| hax-4( o P %]
y= .
\/EZ k*~[hox+3 (- P X]

If the forcesp andq are equal to each other then the @swill be perpendicular to the
tangentAF, sincen = 0. The equation of the curve will then be:

dx [ E K~ hgx-4 X |

dy= .
4 J 2EKE(hax+1 1) = (hgx- 1 1 %)2

When one sets= 0 in this, such that the band is subject to bdug oppositely-directed,
forces atA andB, the expression for the associated curve will be:
dx [ E ¥ ~ hgx

dy= .
4 JhaQE K x- hg¥%)
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When that equation is integrated, that will give:

_\/2Ek2x—hq>3
y_
hq

which is then the equation for a circle. The b@nthen bent into a circle in this case,
and the radius of that circle will lEek? / ha,

The new types of elastic curves

14.— Since we have seen that not just the circleahunfinite manifold of curves are
found among the elastic curves, it might be wohnth éffort to attempt an enumeration of
all types of curves that belong to that genre.thist way, not only the nature of those
curves will be seen more precisely, but in any ebdase in question, one will be able to
evaluate which type a curve belongs to from itsnf@one. We would like to establish
the difference between the types in such a wayttietypes can be enumerated in the
same way that the types of algebraic curves of@mgorder can be enumeratey (

15. - The general equation of the elastic curve:

dy = (a + Bx+yx) dx
Ja'-(a+Bx+yx)’

will assume a simpler form when the coordinateiong shifted along the axis g/ 2y
anda’ is written fora® / y(or when one setg= 1). The equation will, in fact, become:

(a +x%) dx

Now,a*— (@+x)? =@ -a-x) (@ +a+x),soonesetd —a=c’ora=a’—c*.
The equation will go to:

dy=

dy = (a® — ¢+ x°) dx
J (@ - 2ai- ¢+ ¥)*

Since £ = 0 (see nob), the direction of the force & that bends the band will be
perpendicular to the axisAD will then represent the direction of the appliedcé whose
magnitude is E k*/ &, if E k¥ expresses the absolute elasticity (see Fig. 6).

() Here, Euler was thinking ofNewton's celebrated classification of third-order curves. ttie
following discussionAP (see Fig. 6) will always be the direction of the pesik-axis, andAB will be that
of the positivey-axis. The direction of the applied force in Bas parallel to the negatiweaxis.
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. dy a’—-c .
16.— Letx = 0, so one will have—= = —————_. That expression represents the
dx ¢/2a8- ¢

tangent to the angle that the cuA® makes with the axi&\P at A, so the sine of that
angle will then beg? —c®) / &%

When one then has= « and the bending force R k? / a then vanishes, the band
will be perpendicular to the ax#sP at A and will have no curvature. Far= o, the band
will take the form of a straight line. The firsgpe of elastic curves will then be
represented by lines that extend to infinity intbdirections.

T
i

q
m
A P E
e p
M \
D Q / C
/N
—
B
Figure 6.

17.— Before we enumerate the remaining types, it ddel good to first make a few
general remarks on the figure of the elastic curVéhena decreases, the ang”kAM
(Fig. 6) that the curve makes with the axisAawill decrease; i.e., as the bending force

2Ek?/a’ increases. |8 = c? then that axi?AP will contact the curve aA. If a® < c?
then the curvé\M, which has moved downwards up to now (as in Figwél now turn
upwards untig? = %cz. However, whem? < %cz, the angle will become imaginary, and

as a result, no segment of the curve will exish.afThose different cases give rise to the
different types.

18. — Since the equation will not change form wheandy are both taken to be
negative, it will further emerge that the curveotlgh A will possess similar and equal
branche AMC andAmcthat lie alternatelyA will then be an inflection point. Therefore,
when the segme®MC is known, if one takefp = AP then one will havgpm=PM. If
x increases then the curve will move further awayboth sides of the axis until the
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abscissaE = c is attained. The ordinateC will contact the curve becaudyg / dx = «
for x =c. Itis clear that beyondE= c, the abscissacannot increase any more, siraye
/ dx would then become imaginary. The entire curve would tieebetween the limiting
ordinatesSC = ec The curve cannot exceed those limits. Up to now, haee
established two curve branch®€ andAc that extend to the limits on both sidesfof

19. — How does the curve behave beydh@ndc ? One takes the lin€D that is
parallel toAE to be the axis and sets the new coordinaté&3Qa=t, QM = u. One will
then havet + x=AE=CD=candy+u=CE=AD=b; hencex=c—-ty=b -y and
dy =—du, dx =—dt. If one substitutes those values then that willlynipe equation of
the curve in the new coordinates:

(a®—-2ct+t*) dt

dy= .
4 Jt(2c-t)(2a? - 2ct+ £)

It will next follow from this that whet is taken to be infinitely small:

2
du = a“ dt

~2act’

SO

That equation shows that beyof@ the curve will advance tdl in a manner that is

similar to the way tha€ goes on taM (*). The double-valuedness of the sign in the
denominator of the first equation is enough to mikdear that the ordinate can be
taken to be negative and positive in the same waig then clear tha€D is a diameter
of the curve and the arc lend@iNB is similar and equal to the arc lengiMA.

20.— Likewise, the lineed, which runs througk parallel to the other side of the axis
AE, will also be a diameter, so the braotb will then be equal and similar to the branch
ACB. The bending at the poinBandb will be precisely opposite to the bendingfat
the curve will then go beyond them in the same wdaye curve will then possess

() The form of the curve in the vicinity & can also be derived from=a4/t/ ¢ in such a way that’
=a’t/cwill represent a parabola. If one set® be very small in the original equation then one kale

y=@ - dx/y2a’c’, soy=a2 —x/(acy2); i.e., the curve will have the form of a straighlim
the neighborhood oA. That will also follow from the fact thai is an inflection point of the curve; one

will then have that
2

d 4
7y: 2X a
dXz \/(Cz_az)3(2a2_ A+ )(2)3

will vanish forx = 0. The curve will not possess inflection pointsdther values of.
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infinitely many diameter€D, cd, etc., that are parallel to each other and haveahe s
separation distanded. The curve will then consist of infinitely many mutyadimilar
and equal parts. Therefore, the entire curve will bewkn when AMC is known
sufficiently.

21. — SinceA is an inflection point, the radius of curvature vio# infinitely large
there. That is also implied by the nature of the citsedf. Namely, the force B K / &°
is applied toA in the directionAD. From the basic property of elasticity, it will be
2Ek*x/ & or E k¥ / R (no.5), at an arbitrary point, R means the radius of curvature at
that point, slR =a?/ 2x. The curvature is greatest at those points, whicsligar from
the lineBAbas possible'].

22. — Although the absciss&E = c is determined for the poir€, EC can only be
found by integrating the equation:

(a® —c?+ ) dx

dy = .
4 J (@ -x)(2a - G+ X)

If one setx = c after integrating then the value of the associgted! yield the distance
CE, and when that is doubled, it will yieldB or the intervaDd, which is equal tAB
and lies between the diameters. Integration mswike necessary in order to determine
the lengthAC of the bent band. When the arc length is sétMo= s, one will have:

ds= a’ dx
J (@) (28 -+ X)

The integration of that will yield the length oftleurveAC when one sets= c (9).

() The elastic curve was treated at various placesuler’'s “Methodus inveniendi lineas curvas...,”
but not very thoroughly, either (v. 46 of this collentipp. 110, 111, 127, 131). In Chapter 3,68Euler
proved the important property that among all curves ofsdrae length that go through the same two
points, the elastic curve is the one that will gergetia¢ body of largest volume when it is rotated aramd
axis. He also mentioned the relationsRig= & / 2x there; i.e., that the radius of curvature is inversely
proportional to the abscissa.

() If one sets</ c =uandc?/ (¢ — 25%) = k? then one will have:

2
a
s= [ du :

\/ 2a°-¢ \/ (1-u?)(1-k22?)

i.e., in Legendres terminology, s will be an *“elliptic function of the first kind.” Withthe same

substitutionyy will go to:
2,2 2
lzaz_czj 1-k“w*du fz 2.[ du _
\/1—u2 \/Za -C \/(1—u2)(1—k2Lf)

The first term is an elliptic integral of the sedokind, while the second term is once more an elliptic
integral of the first kind. The integrations andy cannot be carried in closed form then.
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23. - Since that formula cannot be integrated, we wiltdrgonveniently express the
values of the intervaAD and the curve segmeAC by approximation. If we then set

\ ¢ =X then:

(a® - Z%) dx
PM=y=[~2 2227
zy2a&-7
and
2
AM = s = a- dx
z/2& -7

However, from a series development, one has:

1 _ 122 1BZ 1135 f
= 1+==—+ -+ e |,
J2a-7 af2\ 4a 4mBa' AE128
so one will have:

a 1z 1[32” 11375 2
'[d
y4 4a 4[8&” 4[8]123?
and

z,17 1BZ 135 7
S—y= — jd ~+ .
J2° \a "1a aBa  aHl2a

24. — We shall consider this integral mainly for thesex = ¢, soz = 0, and the
integral can be expressed conveniently with thp béthe circular periphery. If the ratio
of the diameter to the periphery is equal tortiien:

The following integral will be determined in therse way 1):

Izdxzid_—[cz, .[z3dx:Ed_—[c4,

) 2 2 ) 204 2

.[25 dx:lmjﬂces, .[27 dx = 1[3[5D7|£08
) 2046 2 ) 20468 2

With the help of this integral, it will follow tha

() The reference to the limits of the definite intedras been added for the sake of brevity, but it is not
found inEuler, since it was first introduced Byourier (1882) in hisTraité analytique de la chaleur
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WhenAE = ¢ andAD = b are given, one can then find the segneeand the curve
length AC from those equations. Conversely, one can alsermee the line?AD and
CD from the given curve lengtAC and the segmerd, since the latter determine the
bending force.

25.— As is known, we have already established tls fype of curve in such a way
that we would have = 0 ora/c =« in the general equation:

(a® —c®+ ) dx
\/(c -¥)(28 -+ X)

That case corresponds to the straight line. Itesgnts the natural state of the elastic
band. However, the cases for which the quantis/so small that they can be neglected
in comparison t@ should also be counted among the first kind. Hemesincex cannot
dominate the quantity, x can also be neglected in comparisom,tand one will get the
equation:

adx

J2@-x)

: . . X . . .
whose integral iy = iarcsm—. That is the equation of a trochoid that extetwls

J2 C

infinity (). AD will be equal tozﬂ—\/%. The length of the curv&C will deviate infinitely

little from that, since the anglBAM is infinitely small. Let the length of the band b

dy=

jTa
—— . the force that
2/2

this infinitely-small curvature of the band provskeill have a finite magnitude, and

ACB= 2, and let its absolute elasticity be equaEtk? . Sincef =

yxf

that is represented by that equatiosirausoid One now understands a trochoid to mean an extended or
truncated cycloid. In fact, the sinusoid can be regardedspecial case of a truncated cycloid.

A y= \/7 arcsw% will imply that x = ¢ sin . With the current terminology, one calls the curve
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EK2 72 . _
e i.e., when the endé and B are linked together with a

Ek? 7

f2 4

indeed, it will be

filament, that filament will be tensed with a forck

26.— The second kind of curve is defined by the caseghichc > 0, butc <a; i.e.,
c lies between the limits O ared The angldAM will then be smaller than a right angle.

One will then have siPAM = cosDAM = (@ —¢?) / a® . In that case, the form of the
2

. . - : C 1
curve is the one that it is represented in Fig.Sihcec < a, one will have?< > SO
a

2

ma 2
. Thereforea” <
2/2 s

band towards each other with the help of the filatn#B will be greater than in the

AC=f> , SO the force that draws the elsndB of the

2
foregoing case, namerEfdesz.

27.— | take the case af= ato be the third kind of curve. Since the aXR contacts
the curve afA in that case, that kind of curve will take the @ggename of aectangular
elastic curve. One has:

2 2
dy= X—dX and ds= a_ dx

Jat-xt Jat-xt

for them. The values @D andAC in that case are given by:

Ta
AC=f= |1+ &+ E
2J2" 2272 2# 4 Z0406 8

1+12B1+12[B2 1 fo308 1+_“j’

AD=b=—"—=I1-= 3 F— =
2/2\" 2212 Z04 314 20406 B8

ma(, ¥ 3 F®_5_ fos08 7 j

Although neithelb nor a can be expressed in closed form, | have provesivbisre
that a remarkable relationship exists between tlhpsmtities. Namely, | have shown
that 4f = 7a (*); the right angle betweeAD andAC is equal to the area of the circle

() The Euler relation#f = 77a? can be easily derived with the help of thegendrerelation:
KE +K’E—KK'= izT .

(For the formulas on elliptic integrals that are neddedhis, one can confer, e.g, Pascal Repertorium
der héheren Mathematik, deutsche AusgabeAd@chepp pp. 156.) One will then have:
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whose diameter IBE. By carrying out the calculation, one will find, approaiely, that
= 5—:% ora= 15if Therefore, the force that draws the eAdandB of the band
T

2
Esz %ﬂz. More precisely, one will find thdt= ﬂ|:|1.1803206.

22

together will be

Hence:
1’ a

b=""-= .
4t [201.80320¢

In terms of mere numbers, it will then follow tH3t :

%= 1.311006 and 22 0.59896.

28. — Whenc > a, the fourth kind of curve will arise, although fdrem one should
haveAD =b > 0. That will imply a second limit faz, namely, from the equation:

a?dx

J@-x)(a+x)

f=]
0

If one setx = a cos¢ then one will have:

Moreover, one has:

bz? X* dx :? dxy/ a2+><2_fl a’dx
o\ @=X)(@+X) o JaoxX  oy(@-x)(d* K)
If one again sets = a cos¢ then one will have:

b= aﬁ”f2d¢1/1—sirf¢ —% K = % (2 E —K).

As the formulas show, the complete integtélandE belong to the modulu€ = 1/2 in this case, so 1k&

will also be 1/2 . However, if one repladésnith E andK in 1 - k? then it will go toE’ andK’, resp. One

will then haveK = K’andE =E' here. Thé.egendrerelation above will the give the equation:
KQE—m—g.

However, one now has f = (&% / 2) K (2 E —K); hence, 4o f = &. One will find another proof in
Todhunter: A History of the Theory of Elasticjt¢ambridge, 1886. vol. 1, pp. 36.
() One will find a computational error in these numerizdtulations.Euler has set:

b= 2 M1.1803206,  insteadof b= — o>
J2 /211.180320¢

(This was corrected in the text.) It will then @l thatb / a = 0.59896; i.e., approximately 0.6. That will
yield the formuld = 5—; E)g In the textEuler falsely said thalb / a = 0.834612.
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Figure 7.

For the fourth kind of curve, sinee> a, the curve will climb above the ax4sE at A.
It will then define an angl®AM whose sine is equal to’(— &) / a®; however, we will
soon see that this angle is smaller thah44. The distancéD will vanish when that
angle assumes that value; | shall treat that casa&a of the fifth kind. The curves of the
fourth kind include the cases for which / a®> are found between the limits 1 and
1.6511868. The form of those curves can be sékeirfigure, where one must remark
that the closer that® / a®> approaches the limit 1.6511868, the smaller thatdistance
AD will become, and the closer that the endpaiendB of the band will come to each
other. It can happen then that the noteendR, as well asvl andr, will not only touch
each other, but even intersect. Finally, it cappea that all diametedSC, dc might
coincide with each other and the a&is.

29.— When that happens, the fifth kind of curve wdime about, which is expressed
by the equation:

dy = (a® —c?+ x°) dx
J(@-X)2a-+xX)

in which the relationship exists betweeandc thatAD =b = 0. One set&’/ 2a°=v. v
will then be determined from the following equation

1B 1I@5 DOy E 7
1= v+ Ve + Vot
22 2p4 2121414161 6
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When one seeks the limits between which the trugevafv lies, whether by some
familiar method or mere trial and error, one willdithatv = 0.824 and/ = 0.828.

M

Figure 8.

If the two values are substituted in the equation thes @an conclude from the
discrepancy that will arise in both cases that onet magev = 0.825934, s@® / a° =
1.651868 andcf —a?) / a® = 0.651868, and that value is the sine of the aRglé. From
a Table, one will find that this angle is®4l’, so the angI®AN, which is twice as large,
will be 81° 22. Therefore, when the endpoints of the elastic mardclose enough that
they will contact, the curv@MCNA (Fig. 8) will be determined, and the two ends will
meet each other at 822 (4.

N
N

p
A P
n
O
c d
N
m
b
Figure 9.

() W. Hesstreated the problem of the elastic line in analog e motion of a pendulum and gave a
series of figures for their possible forms [Mat. A@6.(1885), 1-38]. FoEuler, the force direction for the
Euler curve of the fifth kind — i.e., the altitude Ad atA (Fig. 8) — defines an angle of90 40 41 = 130
41 with the curve. Hess gave 129f8r that angle. He obtained that angle frbegendres tables of
elliptic integrals. One must find the value of the modfuer which 2E —K vanishes. As the editor has
suggested, that will give 13@1', and in addition, a check &uler’s equation forv will show thatEuler
had calculated in correctly, since one would get 0.826\, fostead oEuler’s value 0.8259.
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30. — When the two end& andB of the band first get close enough to touch and are
then bent in opposite directions with increasing foroeyrae of the formrAMCNB (Fig.
9) will result, which defines the sixth kind. For the curgéthis kind, one has” / 2a° >
0.825934, but? / 2a° < 1. Forc® = 2a% one will have the seventh kind, which we shalll
explain immediately.

For those curves, the angRAM that the curve makes with the axisAatwill be
greater than 4041, but smaller than 90 If sin PAM = (¢ —a?) / a® and since? < 27,
that value will be smaller than 1, and it will be equal tonly wherc? = 222,

31.— Letc? = 2a%, so our seventh kind of curve will be in question.that case, the
equation reads:

(a® - x°) dx

Xy 28% = X

From it, one sees that the brancAeandB of the curve extend to infinity in such a way
thatAB will be an asymptote of the curve. Thereforehdam@anchAMC andBNCwill go
to infinity, as one can see from the series tha f@and for the arc lengthC before:

dy=

_m (. ¥ PFE FEFE
AC= —|1+—+ + +. |
2/20 22 ¥ 220406

B
M
D C
0 Q
N
A
Figure 10.

The sum of this series in is infinite. If the leimgf the bandAC = f is to be finite then
one must hava = 0, so one will also haveD = c = 0. Hence, after the band has bent
into a knot, it will again extend rectilinearlyn brder to achieve that, one will need an
infinitely-large force. However, when the bandnfinitely long, it will define a curve
with a node that goes to the asymptdi; so one ha€D =c. (Fig. 10) The equation of
this curve can be integrated with the help of lagars, and one will get:
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2 2 CI gC+ﬂCZ_X2_
X

=yct-x-=lo ,
Y 2

The abscissa is taken to be the diametec in this. One haBQ =x andQM =Yy, so for
x =CD = ¢, one will havey = 0. y will likewise be zero at the nod2 In order to findO,

one must set:
2ycc-x Iogch/ =X
c X '

Let cos?=x/ ¢, so sind= 2,/ ¢ - x* / ¢, and the equation will become:
. 4
2 sind = log tan(45° +Ej.

The logarithm is taken to be the natural logarithffer want of a table of such things, one
might look up the tangent of the angle® 459/ 2 in the usual table of logarithms, when
the 10 is removed from the reference number. Wiihtemain isw; one will then have
2 sin 9 = w2.30258509Y). If one again takes natural logarithms then wilehave
log 2+ log sind = log w+ 0.3622156886, or log sifA = log w+ 0.0611856930. Upon
applying this artifice, one will soon find an appimate value forg, and from that, one
can find the true value of by theregula falsi (“false position”) method, which will
determineDO. One will then find thai? = 73 14 12', from which, it will follow that:

2 2

E: 0.2884191 and %: 0.9575042.

The angleQOM is 22 — 90° = 56’ 28 24", so the angl&ON will become 11256 48'.
For the fifth kind, the angle at the node will b 82, so for the sixth kind, the angle at
the node will be between 822 and 112 56 48'. When a node appears in the fourth
kind, the angle will be less than®812.

32.— Finally, letc? > 222, so one set&’ = 28 + g>. The equation of the curve reads:

() Here, the well-known relation In = log;o n CIn 10 has been applied. In 10 is 2.302585. At the
conclusion of this section, one will set QOM = 29 = 90, so:

ﬂ/: (c?12-x2)

tang =
dX  xyc?-x
One again sets= c cos, which will yield:
1-2cos ¥
tang = snd ol cot 29.

Hence, tang = cos (180— 2¢) = tan (2 — 90), sog = 180 — 2¢.
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This equation represents the eighth kind of cufliee linedDd might be the direction of
the applied force, so=DQ, y = QM. First, it is clear thag can be real only whex> g,
but thenx cannot go beyond the segm®& =c. Thus, when one se¥ = g, the entire
curve will lie between two lines that are paralieldd and go througlC andF, and
simultaneously contact the curve (Fig. 11). It swko difference which of the two
segmentg or g is larger. As long as both of them are unequmed, équation will not
change wherc and g are exchanged with each other. Furthermore, ¢bate has
infinitely many, mutually-parallel diameteB¥C, dc, dc, etc., and in addition the line that
is drawn througlG andH perpendicular talDd will be the diameter’). Nowhere along
the entire curve will one find an inflection poirsp the curvature will go uniformly to
infinity in both directions, as is shown in theuirg. The angleMON at the nodes are
greater than 156 48'.

33. - Since these (eight) kinds of curve include mdy dhe cases for whictf? < ¢,
but also the ones for whigf > ¢, all that remains is the case for which g. The entire

() The curve will remain unchanged wherandg are exchanged. Therefore, it must have the same
form in the neighborhood @ that is has in the neighborhood@fonly the curvature & will be greater
than it is atG. The altitude tdd at G will then be a diameter of the curve, as well, like altitude tdd
atC.
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curve will vanish in that case, becau3€e = 0. Now, whert andg are both fixed to be
infinite, but in such a way that their difference remdinge, the curve will possess a
definite form. In order to find it, one sejs=c— 2h andx =c—h +t. Sincec is very

large, buth andt are finite,1c?+1 g = ¢® — Zh; x¥* - 1c* -1 g®= 2ct. However, one
will then havec® —x* = 2c (h — ) andx? —g® = X (h + t). The following equation will
emerge from that then:

_ tdt
o= h2—t2

which will give a circle. In that case, the elastand will be curved into a circle, as was
mentioned before. The circle defines the ninth and Iimal.

T

P
Figure 12.

34. — From the classification of these curves, it is g@asfind which kind a given
curve belongs to in a particular case. Let the ieldstnd be fixed to a wall & (Fig.
12), and hang a weiglt from the endA, so that the band assumes the f@m If one
draws the tangerAT then making a decision will be possible only by wayhaf angle
TAP. When it is acute, the curve will be one of theoseckind, and when it is a right
angle, it will be one of the third kind, and the elastirve will be rectangular.

If the angle is obtuse, but smaller than %3@, then the curve will be one of the
fourth kind. When the anglEAP = 130 47, it will be one of the fifth kind. ITAP s
greater than that then the curve will be one of tkid &ind. It will be one of the seventh
kind when that angle is equal to two right angles, wiketnot happen in reality, though.
That kind of curve, along with the last two, cannot be predury hanging a weight on
the band directly.

35. — In order to explain how the latter kinds of curve canpboduced by the
curvature of the band, let a weight be hung fi©@ihat points in the directio@D (Fig. 3
in no. 5), not directly from the band that is fixed Bit but along the rigid rodC that is
coupled solidly with the end of the band.

Let the distanc&C beh, let the absolute elasticity of the bandBbé&?, and let the
sine of the angI®AP that the band makes with the horizontaRate m. Furthermore,
let AP =t andPM =Yy, so the equation of that curve will be found to be:
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B dt(mE K - Pht-1 Pt)
dy = 21,4 2 2
JEZK*—(mE K- Pht-1 PP)

In order to bring this equation into the form tat appealed to in our classification of
kinds, we will seCP=x=h+t. We will get {):

_ dx(mE K- PR-1 PR
. dy= :
JEZK = (ME -1 PR -1 P®)?

A comparison of that equation with:

—dx(a& -+ %)
1. dy=
y \/a4—(8.2—02+)(2)2

will yield 1Pa® =E K, ora®=2E K*/ P, andiP¢& - 1Pa® =mE K + 1PIY, so:

. 2(1+rF1)1)E €,

h?.

36.— The curve will then be one of the second kinémvbne has@E k¥ /P + h* <
OorP<-2mE K /h?. If the anglePAM is not negative then the foré&must be
negative, and the rod & must point upwards. The curve will be one of tied kind
whenP =-2mE K*/h?. It will be one of the fourth kind whem®E k? + P h? > 0, but
at the same time,i2E kK’ + P h? < 2a E K, wherea = 0.651868. However, P =
2(a —m)E K/ h? then the curve will be one of the fifth kind. oliie ha®® h* > 2 (@ — m)

E k4, but at the same timfeh? < 2 (1 —-m) E K2, then one will be dealing with a curve of
the sixth kind. One will get the seventh kind wielf = 2 (1 —m) E k%, and one will get
the eighth kind whe® h? > 2 (1 —m) E k. When the angl®AM is a right angle, one
will have 1 —m = 0, and the curve will always be one of the digkind. Finally, the
ninth kind will arise whein = «, as | pointed our before.

() Equation | will become the equation at the end oBnwehen one replaceswith t, ¢ with h, and sets

mME K*= - Pf. That relation is derived at the end of b@. If one shifts the coordinate origin frofto C

then | will go to Il. The normal form equation (lbf the elastic curve will not change when thaxis is
displaced parallel to itself, since ordy enters into it, but not. The origin will then become an arbitrary
point along the linéB (Fig. 6). The applied force acts at it in the di@TiAB, which is also the case at
the pointC for 1l. The minus sign in front afx in 11l can be explained by the fact that in Fig. 3, Biahe
force acts in the direction of the negatyexis, but in Fig. 6, it acts in the direction of thesitive y-axis

(see the remark on page 13). Hence, since Il anddlhaw referred to the same coordinate axes, those
equations can be made to coincide.
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9

A
Figure 13.

On the load capacity of columns

37.— As was remarked before in regard to the first kind ofesuthey can serve to
determine the load capacity of columns. B& (Fig. 13) be a vertical over the ba&e
that the column lies on; it carries the weidht Let the column be chosen so that the
weight cannot slide. If the weiglit is not too large then one might expect at most a
bending of the column. In that case, the column caredgarded as also being endowed
with elasticity. Let the absolute elasticity of #t@umn beE K, and let its height bef 2
a = AB. In no.25, we saw that the force that is required in order twllibe column by a
very small amount is:

2
TEK T gy,
4f a

Therefore, when the lodelis not greater than:

E 7 k?

az

one should not expect any bending. HoweveR i§ larger then the column then the
column cannot resist bending, but if the elastiotyhe column, and therefore its density,
as well, remains unchanged then the |IBatat it can safely carry will behave conversely
like the square of the height. A column that igcanas high can carry only one-fourth as
much load. That can be especially useful in reg@andooden columns, which are quite
subject to bending.
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Figure 14.

Determining the absolute elasticity by experiments

38.— In order to be able to determine the curvature of aamstielbanda priori, the
absolute elasticity that we have expressed k¢ will be known. That can be achieved
conveniently by a single experiment. Let the uniforastt bandH whose absolute
elasticity is to be found (Fig. 14) be fixed at one éntb a solid wallGK, such that it
will assume the horizontal positidfH; one can, in fact, neglect its own weight in this.
An arbitrarily-chosen weigh® is hung at the endl, which will curve the band into the
positionAF. Let the length of the band B¢ = HF =f, let the length of the horizontal
grade beAG = g, and let the length of the vertical @& = h. All of those values can be
obtained from measurements. One can compare witlcuhee AF whose general
equation is expressed by:

(c*—a*- x°) dx

dy= .
@ 0ea-ér 0

In it, a andc are to be determined frofng, h. The bending force will be:

_ 2EK®

az '

P so EK=1Pd.

39. — Since the tangent is horizontaFatone will havedy/ dx = 0, sox = 4/ ¢ —a” .

AG = g will then become\/ ¢ -a® anda® =c?—g®. Hence, when one sets g in:
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(c* - g*) dx
dy= ,
Y \/(cz—xz)(c2—2g2+ x)

that must imply thay = GF = h ands = AF =f. However, one has:

ds= (c" -~ g7) dx |
J (@ -X)(E-2g+ X)

The weightP might be chosen to be small enough that the bmibént only slight, sa,
and therefore, as well, will be very large. One will then have:

1

(-2 P+ 2% —x) M= >

2 2
S X
(o C 2C

approximately. Integration will then yield:

= o)X (€= Gx (6 9 GR (& 9

c c! 3c® 10¢c°

approximately, and:

_g%x g“x_g“x" gzi_ i_gzﬁ gj)’i_ X
Y= @ T T3¢ T10¢ 3¢ 3@ 56 1aé

If one sets< = g then one will have'{:
379°
f=g—-—=
97 30¢
and
3 5
h= 292 + 294 :
3c® 3c

In order to findc, one employs the value bfand also neglects the second term. One will
then get:

() The value of is not correct. From the figure, it is clear thatg, with no further assumptions. If
one continues the series developmentbt(X? g* + 2g° x* —x*) ™2 further then one will get -% E’Clio [4c*

g'+4cfF X -8c%g* @+ ...]. If one integrates and multiplies by ¢ ¢°) and then sets = g then the

. . S 3 4 3 ¢° .
first term in brackets will give the terrﬁg E)C—4g5= E[«)2—4. Euler seems to have overlooked this. As a

. 8 ¢°
result, one will havé =g+ — =-.
9 30 c*
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3
2 = 29 ,
3h
SO
2= 9°(29-3n)
3h ’
and therefore:
£ = 1pgt = P9 (29-3N)
2 6h

That value will differ only slightly from the true ke as long as one does not let the
curvature of the band get too large.

40. - The absolute elasticify k* depends, first of all, upon the nature of the material
of which the band is composed. Secondly, it depends tigowidth of the band, such
that when everything else stays the same, the expneSsiwill be proportional to the
width of the band. Thirdly, however, the thicknesshef band will play a significant role
in the determination of the value Bfi. E k? then seems to be proportional to the square
of the thickness. The expressiai will be a term that relates to the elastic mateiad
includes the first power of the width of the band andsgweond power of the thickness.
As a result, one can determine the elasticitieslahaterials and compare them to each
other by experiments in which one measures their lengthshicknesses.

On the curvature of non-uniform elastic bands

41. - Up to now, | have assumed that the absolute @tgsk k* of a band whose
curvature | determined is constant along its entire lendd#owever, the solution can
result from the same method whEer¢ is assumed to vary arbitrarily. Namely, let the
absolute elasticity be an arbitrary function of the lamgth AM = s (Fig. 3). That
function will be calledS LetR be the radius of curvature it The curveAM that the
band assumes will be arranged so that among all aines of the same length,

des/ Rwill be a minimum. That case will be solved by thews® general formula
O.

Letdy=p dx dp=q dx anddS=T ds The problem will then come down to finding
the curve for which:

'[ SCde
1+ p2)5/2

() Here, Euler is referring to the formulas that were given in “Meths inveniendi lineas curvas,
Chapter IV, no. 7, 1l (pp. 132 of that book). They areinduded in v46 of this collection.
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is @ minimum from among all curves for whiq'hjx 1+ ° has the same value. The

first formulajdxd 1+ p* will then give the differential expression:

1 p
dx [1+ p2 .
When the second formula:
.[ qudX
(1+ p2)5/2
is compared witth Z dxthat will give:
Z= %
(1+p%)
Now, one has set:
dZ=_Ldn +M dx+N dy+P dp+Q dg n:j[Z]&,
o — _ qTds
d[Z] = [M]dx+[ N dy{ P dy, LdM Sy
SO:
_ 9T
L= (1+ p2)5/2 ’
but
dn = ds= dx 1+ (7,
SO

2 p
= 1 1 M:Ol N:O, P: .
[2]= y1+p [M] [N] [P] i

FurthermoreM = 0,N =0, so:

_ 550 p _ 2S5
P=- 1+ p2)7/2 and Q= 1+ p2)5/2 .
One will then have:
g°dsS
=———+P )
dz o p2)5’2 + P dp+Qdq

42.— One defines:

¢ o°Tdx _ g°dS
e Il g
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Let the value of that integral when one sets a be H. The constana will soon
emerge once more from calculation. One will therehav

g°ds
I(1+|0)

The differential expression will then be:

_dP_(d &Q
dx (dx[P]jw+ dx

The equation of the desired curve follows fromtilie differential expressions:

dj_p |-,9P,(d _dQ
a&{ /1+p2}_ dx{ [P]j dx ’

or
a H dS d
p2+’8: pz_ . 2.[ q223+P__c'
J1+p J1+p® 1+ 27 1+ p%) dx

The constanH can be combined with the constantand the constarat will emerge
from the equation. One will then get:

+pB=P- ¢ dS

«/1+p dX 1+p 1+ )

43.— Multiply that equation bgp =q dx From the last equation of numi, P dp
can then be replaced with:

g°dsS

RN

and the following integrable equation will arise:

apdp . g°ds pdp 4 ds
———=+fdp=dZ-qdQ-Qd - :
1+ 2 q aq- @+ p?2 14 0 .[ (1+ p?)?
Its integral is:
2
ay1+p® + Bp+y=Z-qQ- 1+ pzj(li gf')g :

or
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i oy =SS ] 48

(1+ p*)*
Divided that equation by/ 1+ p®> and differentiate once more:

Bdp  ypdp +Z(i dS+28qdq_6 Shq
/2 2\3/2 243 213 24
@+p*)*? @+ p?)** @+ p?® @+ p?)® (I p?)

If one multiplies this by (1 $%)%?2/ 2q then that will imply that:

,de_ypdp+ qdS Sdg3 Spgc_
29 29 @p)* @)

However, sincelp = q dxanddy = p dx the integral of the latter equation will be:

Sq

a+3px—5yy+ 1+ p2)3/2:

However, the radius of curvatureRs= - (1 + p?)®? / g, so when one doubles the
constantg andb, the following equation will arise:

=a+BXx-yy.

olwn

This equation agrees splendidly with the directhod. Namely, it expresses+ [ X
— yy as the moment of the bending force when an arpiti@e is assumed to be the axis
(). That moment must be equal to the absolute igitysdivided by the radius of
curvature. With that, not only is the propertytbé elastic curve that was observed by
the very distinguishedBernoulli explained completely, but the application of my
complicated formulas to this example are also cov@d excellently.

() That expression can be established more rigorousigllasvs: Let CP be the arbitrary line whose
equation (Fig. 3) i®\x + By + C; = 0, and let it be the axis. The moment of the fér@bout the poinM
(corresponding to the developments in Bpwill be P OCP. For the moment, the poiM will have the
coordinatesf and/s, so the equation &P will be given byA (y —77) =B (x =& = 0. The poinC has the
coordinatex = k, y =1, so one will havéAk + Bl + C, = 0, and the length of the altitudeP atC —i.e.,
CP—is given by:

A(l-1)-B(k=¢)
NS
The moment i$ [OCP, so when one again replacgands with x andy, respectively, that moment will be:
P(AI-BK) BP AP

+ X = ,
VAR BB \/A2+Bzy
which corresponds ta + Sx— yyin the text.
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44. — Therefore, when the curve is given that the nooumifelastic band will define
under the action of the forée(Fig. 3), the absolute elasticity of the band at artrarlyi
location can be derived from it. The li@ that is perpendicular to the direction of the
applied force is taken to be the axis. G =x andPM =Yy, let the arc lengtihM = s,
and let the radius of curvatureMtbe equal tdR. Since the moment of the forBeat the
point M is equal taPx, one will haveS/ R = Px, and therefor& = PRx and as a result,
sinceR can be assumed to be known at the individual pointhefgiven curve, the
absolute elasticity will be known at each locationenkk, when the substance that the
band is made of and its thickness remains the same dwenrgwbut the width does
change, then since the absolute elasticity is propottionthe width, the width at the
individual locations will be found.

f F f
m M m
A
Figure 15.

45. — Let the triangular weddeA f (Fig. 15) be cut out of the elastic band, which has
the same density everywhere. The widim is proportional to the lengtAM at any
arbitrary locationM. If one setsAM = s then the absolute elasticity & will be
proportional tos. Let it beE ks Let the endf of the band be horizontal and fixed in a
wall, and hang a weighR at the vertexA, which will curve the midlineAF into a curve
FmA (Fig. 14), whose nature will be examined. In the hotaloaxis, letAp =X, pm=Yy,
and arc lengthm=s, soPx=E ks/R. One has:

_ (dxdty)
R=-|———21 .
ds d$
When one multiplies this equation ty that will yield:

2 -1
P x dx=- Eks %M ,
ds dg

or
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= dx o y)
PXax+d XIY gu=0,
Ek ds d$

d(sﬂj: s I dy— s 95 4ot gy,
ds ds ds

However, one has:

If one assumes thdk is constant then:

dy
d?s=—2d?y,
ds y
and therefore:
2
d (dej Sd—XMdX+ dy.
ds ds dg

jsdx o ydx dy

ds d¢ ds Y

Upon integration, that will yield the original equation:

Px dy
——+a=-s—2+Y.
2Ek ds

46.— Letdy =p dx sods= dx/1+ p*. One sets E k/P =c, so the equation above

will become:
2
X S
at—=y- P

C ,[1+p2’
a1+ p° N xz\/l+ P _ y\/1+ p°
p p

cp

or

-S.

When differentiated, that will yield:

—adp  2xdy/1+F _ Xdp _ dyi+pg _ ydp g
+ = dxy/ 1+ pz .
p2/1+ p? cp iy 1+ P P p*y 1+ p?

Sincedy = p dx the right-hand side will reduce toy-dp/ (p®/ 1+ p°). Hence:
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a-— .
y c dx c

- M(ﬂo}_l_ﬁ

dpis assumed to be constant, so upon differentiatingydhget:

1

2px (1+ pz)d(ﬂ:)j_l+ 2 p(1+ ;3)( d;j‘ s 2 X O 3p) 2xd
- —— = ,

dx c C (o

—pdx=
pex dx

or
0 =cdx dp+ 2 d? (1 +p?) + 2d¥ (1 +p?) + 6p x dx

Solving that equation any further is not possible. Thelgish curve equation (from
no.45, conclusion) is:

yds- sdy_ PxX
ds 2Ek

When one sets= 0,y ands must also vanish, so the constambust be zero.

m a
M

Figure 16.

On the curvature of elastic bands that are not rectilineain their natural state

47.— In that way, the curvature of the uniform elastindygust like the non-uniform
one, is determined when a force is applied, and the batdighbeing evaluated is
rectilinear in its natural state. However, when thedis already curved in its natural
state, it will assume a different curvature as alteduhe applied force. In order to find
the latter, one must know the elasticity of that natfigare in addition to the applied
force. Therefore, let the curi@ma represent the natural form of the band (Fig. 16)
whose elasticity i€ k* everywhere. That natural curve will go over to therfBMA as
a result of the applied forde. The lineCAP is drawn througA perpendicular to the
direction of the force, and that line is taken tolmedxis. LeAC=c, AP=x, PM =y, so
the moment of the applied force at the pdinwill be P (c + x).
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48. — Furthermore, let the radius of curvature of the deésiteve atM be equal tdr,
and let the arc lengtéam of the natural curve be equalgoso: arc lengtlam = arc length
AM =s. Letr be the radius of curvature i@ which will be given by the arc lengtof
the known curveamB Since the curvature M is larger,R <r. The overshoot of the

elementary angle &l over the one ain is %S—ES However, that overshoot is due to

r
the applied force. One then has:

P(c+x):Ek2(%——ﬂ.

That is the equation of the desired curve, sindge given in terms of ; i.e., it is a
function ofx andy. However, that curve cannot be reduced to oriteeokinds that were
considered before.

49. — We would like to assume that the bamB has the form of circle in its natural

state, so we then set a, and:P (c +x) = E K (%—Ej When that is multiplied with
a

dx and integrated (see ng.towards the end), that will give:

_ —dy_x
% (%x2+cx+ f) =% &
. Ek? . .
Write ¢ — B for c. That equation will then become:
a
2 _ —dy
£ (%x + cx+ f) ST

That is the same equation that we found beforegntor the band that is rectilinear
in its natural state. The bands that are circalaheir natural state will then be bent into
the same curve that the naturally-rectilinear ceimvél assume, but the point at which the
force is applied, and so the segmAft = c, as well, must generally be different for each
of the two cases. The same nine kinds of curvaswle enumerated before will then
yield figures that the naturally-circular bands @asume. WheAC is assumed to be
infinite, the circular band can be extended ingtraight line. When yet another arbitrary
force acts, as well, the same effect can arisel@nwt alone is applied to a naturally-
rectilinear band.

50. — We would like to assume that the pofdtis infinitely distant, and that
assumption is entirely independent of the natwahfof the band. The moment of the
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applied force will then be the same everywhere, senwihis divided byE I, let that
equal 1 b, and we will now have:

1 1 1 1 1 1
—= === and —=-—+-—,
b R r R b r

ds_s ds

—_— = 4| —.

R b r

[ ds/ R will be referred to as themplitudeof the arcAM, and likewisd ds/ r will be the
amplitude of arc am  The most distinguishedoh. Bernoulli cared to apply the
ds

- be
an arc of a circle with radius 1. Sinces given in terms o$, the circular arc will also be

known in terms ofs. The rectangular coordinatgsandy of a point onBMA will be
found from that, namely:

x:jdssin(§+jd75j, y:jdsco{§+jd75j.

The desired curve can then be found with the hetuadratures.

expression “amplitude” in his excellent treatise “detum@ptorio” ¢). Let E+ I

a

Figure 17.

51. - The formamBthat the band must have in the natural positioorder for it to
extend into the straight lineMB in the directionAP of the applied force (Fig. 17) can be
determined from this. LeAM be assumed to be equalgcsoPs will be the moment of
the applied force at the poim, and the radius of the curvature circlévats infinite, by
assumption, so 1R = 0. Furthermore, the length of the ama=r, sor, viz., the radius
of curvature am, must be assumed to be negative here, since the muconvex to the

() One can findloh. Bernoulli’s treatise “De motu reptorio” iActis Erudit, Aug. 1705 (Werke I, pp.
408).
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axis. ThereforePs=E K*/r, orrs =a. That equation will embody the essence of the
curveamB

52. - SinceE = % one will havejd—sz % The amplitude of the ammm will
ra r
then behave like the square of the arc length. r€btangular coordinates of that curve

are then given by:

B s B s
X = jdssmz—az, y= jdscosz—az.

The arcs’ / 2a® must then be cut from a circular of radius 1, sdines and cosines
will serve to determine the coordinates. It wiieh follow immediately from the
equation that with increasirgthe radius of curvature will decrease continuaty,it will
be obvious that the curve cannot extend to infiretyen whers is infinite. The curve
will then belong to the same kind as the spiradg tonverge to a certain point, such as a
center, after winding about it infinitely-many tise It seems to be very difficult to find
that point by construction. It is certain that lges would be required essentially
whenever anyone discovers a method by means ofhwhie values of the integrals

& s . :

j dssm? and j dscosF can be given for the case ©f o, at least approximately.
a a

That problem seems to have enough merit that thihematicians should direct their

efforts towards itY).

53.— Let 2% =b?, so:

s _ s 1¢ 18 1¢°
sSN——=—w—-———+——F7+-———-—+ ... — ..,
b> b*> 3!b° 5!'b° 7!b*

oS T o Ay e

() Euler himself has further directed his own efforts to theedrination of those two integrals, as he
said on pp. 339 of the fourth volume of thestitutiones calculi integralis(St. Petersburg, 1794):
“Recently, | have found by a happy accident with the bégn entirely singular method that (see also no.
54):

Id19cos§:77'r and also Id19sm19:77'r_,,
ANERN- NERN-

Hence, the coordinates of the desired pointxarey = a./ 77/2. The curve that is being investigated here
is the one whose natural equation remds a°. It was called thelothoid by Cesara One can find more
details and an illustration, whickuler also found in the aforementioned place,Lioria, Spezielle
algebraische und transzendente Kurven der Ep&eeman trans. bly. Schiitte Leipzig, 1902, pp. 458.



Euler — On elastic curves 41

The coordinatex andy of the desired curve can then be expressed conveniently a
infinite series. One will then get:

1s 169 1 &t 1 &

X=——-_— = i il —

1Bb*> 3!7b° 5111b° 7115b*

y_S_ls_5+1§ 1 8, _
215b* 4191° 6'13b12

The values of the coordinatesandy can be determined precisely from these series,
which converge strongly for values of the arc lengthat are not too large. However,
the values that andy will assume when the arc lengihs set to infinitely large cannot
by any means be excluded from these series.

54. — Since setting = c will raise very great difficulties, that disadvantacpn be

remedied in the following way: Lef / b? =v, sos= b,/ v andds= m; hence:

20V

_b .
x—E —=sinv and y=-— j—cow

However, | now assert that the desired values aridy whens = «, can be found from
the following integral formulas'Y;

1 1 1 j .
+ - Foi—. sinv,

x:EJdv 1 _
20 v Jm+v Jem+v 3y

jd ! 1 o COSV.
\/77+v J2mtv \/377+v

() Namely, one subdivides the interval from zero tanityiin the following way: 1: from 0 taz 2:
from 7rto 277 3: from 2rto 377 etc. One will then have:

= b[}’dvsinvff” dvsin v+3J” dvsin \41 _
20 WV AV A
One sety = v, + 77in the second integral,= v, + 277in the third, etc., and then gets:
X = b{}’dvsmv ’I’d\{smy ™ dysmy 1

2| v Jutm \/vz+2rr

Since the notation for the variables in the defimtegrals is irrelevant, one can set v; =V, = ... That
will give the value in the text. The derivation fois similar.
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After integration, one sets = 77 where/r means the arc length that belongs to an
angle of two right angles. In that way, one caesd avoid setting anything to infinity,
but in order to do that, the infinite series:

1 1

1
Jv \/77+v+\/277+v

will be introduced into the calculation. Since its sismnknown up to now, seeking the
answer to this question will raise the greatest comicaiat the present time.

+ ...
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Figure 18.

On the curvature of an elastic band with arbitrary forces ating at individual points

55. — Once the method has been analyzed for the probldindafg the curvature of
an arbitrary elastic band when one force is appliednat location, one might further
investigate the problem of finding the curvature when thel barstressed by several
forces, if not an infinitude of them. However, sinickas still not been established up to
now what sort of expression is a maximum or minimumhosé cases, | will apply the
direct method in order to perhaps ascertain the propebging a maximum or minimum
from the solution. Let the elastic band that is heetar in the natural state go to the form
AmM, initially from the finite forcesP and Q, which are applied in the mutually-
perpendicular direction€E andCF (Fig. 18), but then from infinitely-small forces that
are applied to the individual elements of the bampdin the directiongnp andmg, which
are parallel to the directiortsF andCE. With those conventions, one seeks the nature of
the curveAmM
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56.— The lineFCA will be taken to be an axis, so € =c, AP =x, PM =y, let the
arc length of the curve &M = s, and let the radius of the curvature circlé/abeR. Let
the constant absolute elasticity of the band 8, and the sum of the moments that arise
from the of the applied forces relativeNbmust equaE k* / R. First, the momerf (c +
x) will be produced by the finite forde that points in the directioBE. It acts in such a
way that the elastic force will be in equilibrium. The®ment that is produced by the
other forceQ — namely,Qy — will stress it in the other direction. Thus, the neoii (c
+ X) — Qy will be produced by the two finite forcdd and Q. Now, an arbitrary
intermediate elememty of the band will be considered whose abscigs#@s equal tod
and whose ordinate is set equalsto Let the force that the elememiy exerts in the
directionmp be dp, and let the force that it exerts in the directing equaldg. The
moment that is produced by those forces at the pbmill be (x —¢&) dp— (y —#) da.

57.— In order to find the sum of all those moments, thatpd, and thereforex and
y, as well, must temporarily be considered to be cotstauch that only the coordinates
{ and n, along with the forcedp anddg, will be regarded as variable. The sum of the
moments that are produced by the forces that are agpligee arcAm will then be:xp

- j( dp-yp +j/7dp. In that expressiorp expresses the sum of all forces that are

applied to the ar&\M in directions that are parallel fom, andq denotes the sum of all
forces that are applied to the a#d/ in directionsAp that are parallel to the axis.
However, one has:

[¢dp=¢p-[pd¢ and  [ndp=na-[ady.
The sum above will then be:
x-Qp+[pdi-(y-ma-[ad;.

The pointm will now be displaced, and then one will hage x, 7 =y, andd{ = dx,
dn = dy. Thus, the sum of all moments taken along the eerdaic AM will be

j p dx—j gdy.
One will then get the following equation for the desitadve:

EK® =P(c+x)—Qy+jpdx—jqdy.
R

58. — When the integral§ p dxand jq dy cannot be performed, the equation that is
found by differentiation must be satisfied by the intesgr&®ne will then get:
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2

yipd x — Q dy p dx—gq dy

However, when neithgp nor g can be given by closed-form expressions, but only
represented as the sum of infinitely many, infinitelyafirforces, the valugs andqg must
be arranged by further differentiation such tbptand dq then appear along with the
second-order differentiatsp andd q.

After a first differentiation (when the previous eqaatis divided bydx), one will
get:

B 1 dR 3 dy dy
Ekzd( dj dp—(@Q + q)mldx ddq

Let dy / dx = g so from repeated differentiation (when the equmtihat was just
obtained is divided bgle), one will get:

—EKRd d(lde -4 _54q-wd 99,
dw\ R dx dw dw

That equation will involve fourth-order differena

59. — Instead of vertical and horizontal forgesandq, resp., two forces might be
applied to the individual points, one of which gsiin the direction of the norm&N =
dv and the other of which points in the directiortleg tangenMT = dt (Fig. 18). One
will then have:

- X dydt and dq= %dt— Zidv.

Sincedy = wdx andds= dx,/ 1+« , one will have:

dp= dv_ wdt and dg= dt  wdv
Jita?  J1+a? Jite? J1+a?

If one substitutes this in the latter equation ttiext will give:

_Eld (1dRﬂ —dt | 2wdv | oS dv
{ R dx \/1+w’- \/]_+(4)2+ ¥ dw

When this equation is multiplied by 1+«/ , it will be integrable. For the sake of

brevity, letz = Rid—R Integration will then yield:

dx



Euler — On elastic curves 45

A_t+dv(1+0.)2):_Ek2 dzQ/1+of wz L1
dw dw \/1+af 2R

_ d[1 dr 1
= Ek{a%)dw{#dmmﬁ}zﬁ}

Now, since:
R=- 1+ )2 gx
dw
one will have:
3/2
da): —_ % dx

If one substitutes this value fdewthen, sincedx/ 1+« =ds one will have:

A-t-r¥-_gp 12—Ris(id—RJ,
ds 2R ds\. R d

or, with some rearrangement:

t+RV_A=ER %—R%{iﬁj .
ds 2R ds\ R d

60.— It is now clear that the band will turn into @ntpletely flexible string with the
elastic forceE k? vanishes. The previous equations will then ineladl curves that can
be defined by a completely-flexible string thasigject to arbitrary forces. If the string
is pulled down by its own weight then one would éngv= 0, p would be equal to the
weight of the strindAM, andP = 0; hence, from the first equation in &8, one would
getp (dx/ dy) = Q = constant. That is the general equation fortanzay of any kind.
The individual points of the completely-flexiblerisg will be subject to forces whose
directions (Fig. 18) are themselves normal to thee; e.g., the string might be subjected
to the forcedv in the directionMN at M. Sincet = 0, (from no.59) one will have the
equationR (dv / dg) = A = constant. That is the general property for lihtearia
(Muldenkurvé and all similar ones that come about in that way.

On the curvature of an elastic band that is produced by itewn weight

61.— | shall return to the elastic curves for whipledal attention is required for the
problem of finding the form that an elastic bandl @ssume when it is curved by its own
weight. LetAmM be the desired curve (Fig. 18). Since only theica forces that
originate in gravity will come into questio®, = 0, Q = 0,q = 0, andp expresses the
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weight of the band\M. LetF be the weight of the band of lengthsop = Fs/ a, since
the band was assumed to be uniform. The nature oltie will then be expressed by
the following equation (from n&8):

-EK?

RZ

dR = de.
a

Let the amplitude of the curve (i.¢.ds/ R) beu, soR = ds/ du anddx = ds [sinu, and
therefore when the elemeaig is assumed to be constant, one will find the equation:

2
s dssinu — Eak E—I@duzo.
F ds

However, as mere inspection will show, that equatiamatbe reduced any further.
A P B

Figure 19.

62.— Special emphasis is warranted by the curves thatsstemed by a fluid at rest
that are a kind of infinitely-extended elastic band. ARIB (Fig. 19) be the desired form
of the curve, and leAP = x, PM =y, AM =s. The elemenMm will be pushed in the
normal directionlMIN by a force that is proportional ts Hencedv=n dsdt=0. One
derives the vertical forcdp = b dxand the horizontal forceq = — n dy from this. One
will then havep = nxandq = - ny. The equation of nd&7 will then become:

Ek®
= =P+ -Qy+in ¥ +iny.

The coordinatex andy can be increased or decreased by constant quantitieshrasu
way that the equation of the curve will assume thefor

B
XY =A+ =,
Y R

One multiplies that equation ydx+ y dyin order to make it integrable; namely:

xdx+ ydy_ X+yw
[ e
[when one setdy = wdX
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y-wxX _ dX_Xﬂl

[1+ - yd_S ds’

Integration will then imply that:

OC +yD?=A(E+y)) + B[yd—x—xiy}c.

ds ds
Let:
z=x*+y and y=uz SO X=2zJ1-U,
S0
2 2
y dx — x dy= - Z_du: ds=,|dZ +Z dlf.
1-u? 1-u

If one then sets:

! du=dr then one will have: 2 -AZ-C=-

Ldr
1- 2 JdZ+ Z2dé

_ z'-AZ-C
2| BZ2-(2- A3- @7

SO

dr dz.

WhenA andC are equal to zero, the associated curve will gelahic. One will then
have the equation:

1 z 37

dr= du = dz = dz.
1-u? B? -2 at-7
Integration will yield:
. 7 z 3y 4
arcsinu = Larcsin— or = =3u-4’= 3y_4y
a a z 27

What will ultimately follow is the equatioff = 3a’y 7 —4a®y*, or :

C+y)’=3axy-a’y’.

On the oscillatory motion of elastic bands

63. — The oscillatory motion of the elastic band amdds that are prepared to move
in an arbitrary way can be derived from the foregoi The renowne®aniel Bernoulli
was the first to address that truly interestingidppnd he had already suggested the
problem to me of determining elastic oscillatiom&drand with one end that is fixed in a
solid wall some years ago. | gave the solutiol€@mment. Petropol, vol. VIl (1740).
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Since that time, however, | succeeded in treating thadilggm more simply, and through
my communications with the esteemBernoulli, | arrived at many questions and
viewpoints whose clarification | would like to addregsehdue to its relationship to the
current topic. If the oscillatory motion is suffioidy fast, a sound will be produced by
the oscillating band whose height and relationship toragbends can be determined
with the help of a study of sound on the basis of tipegeiples. Since the nature of
sound is easily accessible to experiments, one can shelyagreement between
calculation and reality in that way, and thus confifra theory. Our knowledge of the
essence of elastic bodies will be extended apprecialtlyaby

B
p m
T
Pl M
A a
Figure 20.

64.— However, one might first object that the problem Herg only been treated for
very small oscillations, such that the interval thla¢ band moves within during its
oscillations is likewise very small. However, thastriction does not diminish the utility
and applications in any way. Namely, not only would tiseillations be free from
isochronism if they were to cover great distancesthmiformation of different sounds of
the kind that we have mainly ignored here would also requery small oscillations.
Therefore, | shall consider a uniform elastic band libat¢ is rectilinear in its natural
state, whose one end is fitted into an immobile walthsthat the band would have the
form of the straight liné\B (Fig. 20) if it were left to itself. Let its length B3 = a, and
let its absolute elasticity at the individual locaidseE K ; its weight will be considered,
but we shall assume that it has been arranged in swehyahat its state cannot be
perturbed by the force of gravity.

The oscillations of the elastic bands with one end fixed ta wall

65. — When this band is driven by an arbitrary force, it micgrry out very small
oscillations, during which, it will sweep out the very dnr@erval Aa about both sides of
its natural stateAB. Let BMa be an arbitrary state that the band assumes during its
oscillations. Since that state will be infinitely séoto the natural staBPA the lineMP,
like Aa, will represent the path that the poiMsanda on the band will pass through, or
more precisely, that path will have a ratio with thee path that differs only slightly from
a ratio of unity. In order to determine the oscillatomytion, it is absolutely necessary to
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known the nature of the cur&Ma that the side assumes under oscillation. ARE X,
PM =y, arcaM = s, let the radius of curvature 8 equalR, and let the very small
interval Aa equalb. On the basis of our condition, the arc lergthill be very close to
equal to the abscissg so ds can be assumed to lakx, namely,dy will vanish in

2
comparison talx. With dx taken to be constant, the radius of curva(u%é C;)gyj will
S

2 -1
beR = (%} , in the present case, so the convexity of the cBiMa will point to the
axisBA. Since the band is fixed to a solid walBatAB will be a tangent to the curve at
B.

66.— With those conventions, [ebe the length of a simple, isochronous pendulum in
order to determine the cun&Ma and the oscillatory motion. The fact that very Bma
oscillations are isochronous can be explained by theaaf things, and in addition, the
calculations that will be done will show that. Theeaeration by which the poii of
the band moves tB will be PM /f =y /f. If one sets the mass of the entire band equal to
M, by which, its weight will be expressed, then the eletrivim = ds= dx will take on the
mass M / a) dx. The force that drives the element in the direchit® will then be M y/

a f) dx. Therefore, the forces that excite the individuatpaf the band will be known,
on the one hand, from the curBa, and on the other hand, from the lengtbf the
simple, isochoronous pendulum. However, since theomaif the band is, in realiy,
driven by the elastic force, the nature of the cuBia and the length of the simple,
isochronous pendulum will be determined when one knoatsadice.

67. — Since the band then moves as if forces equality ( a f) dx acted upon the
individual elementavim in the directionMP, it will follow that the band will be in
equilibrium in the statBMa when equal forcedM y/ a f) dx are applied to the individual
elements in the opposite directivz As a result, the band will assume the curvature
under oscillation that it assumes in the rest statenwits individual pointdv are
subjected to forceM y/ a f) dxin the directioM 7z From rule that was found the above
(nos.56 and57), all of those forces that are applied along theadlacan be combined,
and that will give the sumM / a f) [ y dx which must be substituted fpr Since the
remaining force®, Q, andqg happen to vanish there, the curve will have the equation

Ek®
R

Ek?
R

jpdx or :%jdxjydx.
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: _ ., d%y : ,d’y M : - L
SinceR = 1/—, one will haveEk” —= —J'de' ydx . Differentiation will yield:
dxt d¢ af
,d’y M : : - .
Ek e —ijdx. With another differentiation, one will get theufth-order
a
differential equation:
d'y_ My
Ek*—= —.
dx! af

68.—The nature of the cun®Ma can be expressed by that equation, and the léngth
can be determined from it when it is adapted topttesent case. ffis known then the
oscillatory motion will also be known. However,oale all, that equation must be
integrated. Since it belongs to the type of highwler differential equation whose
general integration | have pointed out Misc. Berol, v. VII, one will arrive at the
following equation for the integral, when one sEt&® a f/ M = ¢, for the same of
brevity:

y= A/ + Be¥°+ GsinZ+ Deos’.
c c

e denotes the number whose hyperbolic logarithmlsduaand sinX/ c) and cosX/ c)
denote the sine and cosine of the xarcc of a circle of radius 1.A, B, C, D are four
constants that are introduced by fourfold integmatiwhich one must determine in order
to adapt the calculations to the present case.

69. — The determination of the constants happenseifialiowing way: First, one sets
x = 0, so one must haye= b, and that will then imply the first equatiom=A + B + D.
Secondly, since one has:

c“?j—;y = jdxjydx,

2
one must have(;lITz: 0 forx =0, sincej p dx vanishes fox = 0. One will then get the

second equation:

A+B-D=0.
. . d’y d’y
Thirdly: Sincec* ™ = jydx, one will also haved?: 0 forx = 0; i.e., that will imply

the third equation 0 A — B — C. Fourth:y will vanish forx = a, so that will yield the
fourth equation:

0 =A€'° + BE¥°+ Gin®+ Deos?.
c c
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Fifth: SinceAB contacts the curve &, dy/ dx must be zero fox = a. Therefore, the
fifth equation will emerge:

0 =A€'° - Be¥°+ os®— Dsin®.
C C

The four constants, B, C, D will first be determined from these five equationg] #men

2
(and this is the main result) the valuecof ‘4/ Ei/laf will be found. The lengtlh of the

simple, isochronous pendulum can be derived from thdtjrathat way the period of the
oscillations will also be known.

70.— It follows from the second and third equation that:
C=A-B and D=A+B.
When those values are substituted in the fourth and filatéon, that will yield:

0 =A€’°+ Be¥°+( A- Bsin2+( A Bcosa,
C C

0=A¢"°- B6¥°+( A- Bcoso— (A Bsind,
C C

resp.
It follows from this that:

e L@@ a _.a
A €7°#sin—-cos.  e¥“+cos+ sin-
A_ c C — c C
B

. a a a .a
e +sin®+cos-  e¥°+cos- - sin-
c c c c

One will then get the equation:

_ a
2+@*+e @9 cosZ =0,
c

or also:
a a
e2/¢cosZ+ 26+ cos==0.
c c
Therefore:
. a
1+ sin—
ea/c - _ C
a
COS—
c
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Whene®/ ¢is a positive quantity, cos ( ¢) must always be negative; i.e., the aralec
must be greater than a right angle.

71.— One sees that the last equation will yield infinitelgny angles / ¢ that satisfy
it. Infinitely many types of oscillations of that lhwill arise from that. Namely, the
curve can cut the axiB at one or more points before it contacts the axB. atn that
way, many (indeed, infinitely many) types of oscillatiare possible. Here, we would
like to consider mainly the case in whiBhs the first point that the side has in common
with the axis. That case is satisfied by the smalesflea / ¢ that can appear as a
solution of the equation that was found. Since it isgmethan one right angle, it might
be set equal tar/ 2 + ¢, whereg is smaller than one right angle. Since sirh€) = cosg
and cosd/c) =- sin ¢, that will imply the double equation:

ea/c: 11 COS¢ .
sing
it will follow from this that:
e'°=tant ¢ or &/°=cotlg.

That latter equation yields a smaller value garit will then correspond to the conditions
that were imposed.

72.— The further possible types of oscillations ved found when the angé/ c is
set to something greater thaR, but smaller thanR Leta/c= 37— ¢, sosiné&/c) =

—cos¢ and cosd/c) =-sing. That will yield:

ealco 1+ cosp
sing

Hence.e?'®=tan @/ 2) ore®'°=cot (#/ 2). Other types of oscillations will be found
in a similar way when one sets:

=Lfm-¢, etc.

When one employs natural logarithms, those assangpwill imply the following
equations:

l. im+ ¢=logcoty, . i+ ¢g=logtarkg,
Il 3m-¢=logcoty, IV. 3m-¢=logtarkg,

V. s+ ¢ =logcotg, VI.  2m+¢=logtartg,
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VIl.  Zm—¢=logcotg, VIll. Zm—-¢=logtartg,
etc.
The third of these equations coincides with the secoed mamely, if one setsg =
$m—39 then one will have cot¢ =tan;$. The third equation will then go tbrr+ &
= log tan$4&; however, that is the second equation. Similarlg, fdurth one coincides

with the first one, the fifth one with the eight gaad the sixth one with the seventh one.
Therefore, the only distinct equations are the folf@aones:

l. im+ ¢=log cot g, Il. i+ ¢g=logtarkg,
Il s+ ¢ =log cot @, IV. 3m+¢=logtarkg,
V. 2m+ ¢=logcotg, VI. Sm+ ¢=logtarkg,

etc.

73. — Let u be the natural logarithm of the tangent or cotangenhefainglei¢.

Refer to a table of common logarithms for that tangertotangent, and let the value be
v. It is then known thau = 2.302585092994 v, so if one again takes ordinary
logarithms then:

logu=logv+ 0.3622156886.

Now, u=nm/ 2 + ¢, so logu = log (h7z/ 2 + ¢). In order to evaluate thap must be
expressed as a fraction of the radius, while2 is 1.57079632679. One convegtéto
seconds and extracts the number 5.3244252332as(the common logarithm of that
number, so one will then get lafy and the appropriate value ¢y exponentiation. For
every arbitrary type of oscillation, one will alwayave:a/c=u=nm/ 2 + ¢.

() The start of this number is somewhat truncatedclvitan be explained by the use of tables,
similarly to what was said in n@1 It yields ¢ in terms of the numbeB, which is ¢ converted into
seconds. One then has, in arc units:

_ Vg _ 180066
¢—ﬁm, SO logg = log - log —
The latter logarithm is 5.3144... That will explain the appeee of that number in no83, 74, 78, and

85, and the table calculation is truncated in the lagsho$e sections. In order to get In got 2, Euler
used the known formula:

¢ ¢

2 2°

In order to perform the multiplication on the right-haside, he again employed ordinary logarithms, and
log 1 /Mis 0.362215... The appearance of this number in the secanaf plae table calculation becomes
understandable in that way. At the conclusion of #ieutation,Euler applied thaegula falsimethod, as
he also did in na85.

1
In cot — log cot
M g
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74.— When one observes those preliminaries in regarcetoaleulation, the value of
the angleg will not be difficult to ascertain by approximatiorr fany type of oscillation.
If one assigns values g at will and then determinewz/ 2 + ¢ and log tang / 2 or log
cot ¢ / 2 then one will rapidly arrive at a reasonably mewalue forg. If the angleg
initially lies between relatively wide limits theme will soon find narrower ones, and
from them, the true value @. | have then ascertained the following limits for finst
equatioma/c =7/ 2 +¢ = log cot ¢/ 2): namely, 1726 and 17 27. Those will imply
the true value og by the following calculation:

¢ =17 26 0", 62760 in seconds ¢ =17 27 0", 62820 in seconds
log = 4.7976829349 4.7980979321
subtract: 5.3144251332 5.3144251332
0.4836727989 — 1
log ¢ = 0.4832578017 — 1 0.3045599545
¢ = 0.3042690662 1.5707963268

+m=1.5707963268

1.8753562813
+m+ ¢ =1.8750653930

3¢=8430 1p=843 30
v = log cotl ¢ = 0.8144034109 0.81339819342
log v =0.9108395839 — 1 0.9106147660
add: 0.3622156886 0.3622156886

0.2728304546
logu=0.2730552725 1.8742626675
u=1.8752331540

— 10936138

Difference: + 1677610
From the deviation between both limiting values, one thencludes thap = 17 26
7.98, so:

m+¢=2 =107 26 7.98.

Nl

a
C

In secondsg = 62967.98, so: log = 4.7977381525
— 5.3144251332

0.4833130193

in arc units,¢ = 0.3043077545

adding4 7= 1.5707963268

a/c= 1.8751040813
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Once that is found, one will havB:(
A
—=tanl¢ =0.1533390624.
B

One then finds the relationship betwe€nand D and A and B from the known
relationship between the constaAtandB.

75. — The first equatio = A + B + D still remains. Sinc® = A + B, it will then
follow thatA+B=1b. Now,A=Btan3¢, so:

B = L
20+ tani @)

However, tan} ¢ = 0.1533390624, so the constants can be deterrasmélows:

A_  tanjg _ 0.153339062
b 2(1+tanig) 2.306678124'
B 1 _1.000000000(

b 2(@1+tanig) 2.306678124

C_ -1l+tanj¢ _ —0.846660937¢

b 2@1+tanig) 2.3066781248'

1+tanlg _ 1.153339062:
2(1+tantg) 2.306678124

b.
b

() One easily finds the formula/ B = tan%¢ , which has not been derived up to now as follows: Add
the first two formulas in naZ0, which contain onlyA andB; it will then follow that:

2Ae*'°— Bsin (@/c) + 2Acos &/ c) = 0,

or, since sind / ¢) = cosg, cos @/ ¢) = - sin ¢, ande?®’®

cos¢ = g(cot%—sinqzﬁj .

_A_P( .¢j_A ¢
cos¢ = EcotE (1 23|nz§ = EcotE cosp,

=cotg/ 2, one will have:

SO

w >
IRSY

=tan
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Once the constants have been found, the nature of thetbatvihe band assumes during
its oscillation will be expressed by this equation:

A, B _ 4. C. x D X
—e'*+—e"*+—sin—+— cos-.
b b b c b Cc

o<

76. — Most of what is worth knowing about the rapidity bé toscillations can be
recognized from the equatian/ ¢ = 1.8751040813. For the sake of brevity, et
1.875..., s;a=nc. Now,c*=E K’ a f/M, whereM / a expresses the specific weight of
the band (i.e., the mass per unit length). One wil thevea’ = n*E ¥ a f/ M, sof =

4
%GI;?EM; l.e., the length of the simple isochronous pendulsiproportional to the
n a

fourth power of the length of the band and the specifighteand inversely proportional
to the absolute elasticity. Letbe the length of the simple second pendulumg so
3.16625 Rhenish feet. Since the period of oscillation ipgitmnal to the square root of
the length of the pendulum, the period of an oscillatiost tur elastic band will

complete will be:
i Ly

2 /1 1
~=seconds = [— >
Jg n“\ g Ek

The number of oscillations that are completed insew@nd will then be:

n? a
— E k% [3—.
az\/g M

That number expresses the height of the sound thi¢exce band.

That sound that is produced by various bands with one éschatl to a solid wall
will then behave like the square root of the absolutstieity, and inversely like the
square root of the specific weight, and inversely like tigase of the length. Hence,
when two elastic bands differ only in their lengths, dssociated sound will behave like
the square of the length; i.e., a band that is twiclras will give a sound that is two
octaves lower. However, a tensed string will giveansl that is only one octave lower.
It then becomes clear from this that the sounds atielaands behave quite differently
from the sounds of tensed strings (

M
~

77.— As far as the behavior of a curve beyond its endsdB is concerned, it will
first be clear that the curve beyoaavill advance in such a way that it will be contifyal
separated from the ax#B. Namely, ifx is taken to be negative then:

() Here,Euler is referring to the difference between the osiilles of bodies that are elastic due to
stress — viz., tensed stringsawrda elastica— and the ones that are elastic due to rigidity — viastie
bands otamina elastica.
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y=Be'*+ Ae¥°- GsinZ+ Deos?.
c c

All terms in this are positive, since only the coefiiti€ has a negative value (ngb).
Whenx increases, so dogssinceB is greater thar,, and therefore outweighs the term

Be’°. However, ifx / ¢ has attained only a middle value then the t&ei'° will have

already decreased so much that the remaining terlinganish along with it. Since the
radius of curvature is not infinite Bf namely, one has:

E—S:%jdxjydx,

the curve will have no inflection point Bt it will then advance further on the same side
of the axis. When the abscissincreases beyontiB = a, the first termA e*/ ¢ will soon
become so large that the other ones will appear toryesweall in comparison.

B

PIAM

A a
Figure 21.

78. — Up to now, the first kind of oscillations were texh as ones among the
infinitely-many oscillations that the same band canommodate. The second kind,
which is represented in the figure (Fig. 21), in which thedbidat is fixed aB cuts the
axisAB at a pointO, will be derived from the equation:

%:%n+¢:bgm@¢,
or
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a
2m-¢=log cot%¢:z.

Here, | have found, from some experiments, that tiggeap is included within the limits
1°2 40" and £ 3 0". The true value of that can be ascertained from them, as before.

¢ =1°2 40", in seconds: 3760

¢=1°3 0", in seconds: 3780

log 3.5751878450
minus 5.3144251332

3.5774917998
5.3144251332

log = 0.2607627118 2 | 0.2630666666 2
$= 0.0182289944 0.0183259571
377 = 4.7123889804 4.7123889804
- ¢= % = 4.6951599860 4.6940630233
1= 3120 =31 30’

log cotig= 2.0402552577

logv = 0.3096845055
add 0.3622156886

2.0379511745

0.3091937748
0.3622156886

logu= 0.6719001941
= 4.6978613391

—= 4.6941599860

0.6714094634
4.6925559924

4.6940630233

Deviation: 37013531

- 15070309

The true value of the angleis ascertained to bé 2 54.213 from those deviations, and
al/c=268 57 5.787. That will yielda/c = 4.6940910795 in arc units.

The pitch of the oscillating band of the previous typk ielate to the pitch of this
band as the square of the number 1.8751040813 relates to the ciqh&@40910795;
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i.e., like 1 to 6.266891, or, in smaller numbers, like 4 : 28ker1 : 6%. The latter

pitch will be two octaves plus a fifth plus the healf-tone from the former oné)(

79.— The anglep will be much smaller for the following types of osailbns of the
same elastic band under which the band cuts theA&«is two or more points. One will
then have the following equation:

S+ ¢g=logcotigp ==, so e?*?=cotig

oo

for the third type. Due to the very small valuegoe®™2*? can be developed into:

572 (1+¢+%¢2+%¢3+...),

1 —1h2 .=
cotp = X0 L L ko 2 9
singg ;@ —p@ * ¢ 6
One will then have:
eSr[/Z — %1 S0 ¢ — 26—571/2,

approximately, or more preciseR)(

Hence:

() If the lower tone is C then the higher one witlt e as low as G sharp. If C has the oscillation
numberN then G sharp will havé2 N (i.e., 615 N, instead of6x N, as inEuler’s calculation). See the
remark in the next section.

() Namely, one has®"? (1 + ¢) = 2 / ¢, approximately, se>” ?+ ¢ (2> 2= 2/ ¢. However, from
the first approximation in the tex,2°7%=2,s0 2 ip=e>"2+ 2; i.e.:

1
¢= 1+ lesnlz '
2

1 . - . .
If one setsv = pa gEkzﬁal then the various types of oscillations will correspaodones with the

oscillation numbers:
1-81§V. 4.6gl/, %n’zvi %nzv,

All of those tones were found experimentally ®gladni (Chladni, Akustik Leipzig 1802, pp. 94-103).
They are in the best agreement viithler’s results, a€hladni also found for the following cases (see the
remark on page 63).
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the last term is very small. Similarly, one will get

approximately, for the fourth type of oscillation. Sinthe second term will always be
smaller,a / ¢ will assume the value$sr, 4 77, etc., which will deviate from reality less

and less as one advances in that series.

c
A P B
V E C F\w
M
a b
Figure 22.

The oscillations of a free elastic band

80. — We shall now consider an elastic band that is noavfiged and either lies
freely in a very smooth plane or is found to be weigistia empty space. It is quite clear
that such a band can assume an oscillatory motion,Iypawigen the banacb (Fig. 22)
moves with alternating curvature, on one side and ther atf its rest positioAB. That
oscillatory motion can be determined in a similar marnoehe foregoing case, except
that the associated calculations in this case mustidgted suitably. Hence, latb be
one form of the band that will appear during its oscillatend IetACB be the position of
that band in its equilibrium state, through which it vgtt during any oscillation. As
before, the length of the band will B = a, its absolute elasticity E k?, and its weight
or mass will be set tM. Furthermore, leAP = x, PM =y, arcaM = s, which coincides
with the abscissa&, such that one can sds = dx. The radius of curvature & then
proves to bR = 1 / d %y / dx®). Furthermore, let the first ordinate Bg =b. From the
conventions, one can pose the same argument as badst6q and67), and arrive at the
same equation:

EK> M d’y
— = —|dx| ydx=Ek*—2.
R a\fJ jy dx?

81. — One sets’ = E k¥ a f/ M, in whichf expresses the length of the simple
isochronous pendulum, as before. Upon integrationwalhget the following equation
for the curve:

y=Ae'°+ Be¥+ GsinZ+ Deos>.
c c

That equation is adapted to the present case as follbase setsx = 0 then one must
havey = b, so:
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b=A+B+D.
Secondly, since:

d’y d’y
C4d_x2: jdxj ydx, one must have&: 0forx=0;
therefore:
0=A+B-D.
Thirdly, since:
d’y d’y
c’ = | ydx, one must have—>-=0forx=0;
dx Jy dx?
one will then have:
0=A-B-C

Fourthly, when one sets= a, jydx must vanish, sincéydx expresses the sum of all

forces that pull the band in a direction that is perperalido the axis. When that sum is
not zero, the band will be subject to a local moticomtrary to assumption. On that
basis,d ®y / dx will then be equal to zero; i.e.:

0=A&'* - Be¥°~ &in2+ Dcos®.
C C

Fifth, since the band is free at the éhdt cannot have any curvature there, so one will
also haved 2y / dx¢ = 0 forx = a ; hence:

0=A&'*+ B6¥°~ &in2 - Dcos®.
C C

In regard to these five conditions, not just the foomstantsA, B, C, D will be
determined, but also the value of the fract@ohc, with which, the length of the simple
isochronous pendulum can then be known.

82.— It follows from the second and third equation that:

D=A+B, C=A-B

One substitutes these values in the following ones awdfiids that:

—alc

a _.a -1 a
e¥°-cos—-sin- -e*¥°-sin—+cos-

A _ c C c C
a .a . a a
B o _cos? + sin® e —sin= - cos—
c c c c

That equality will imply the equation:
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. a
a a 1+sin—
0=2- e’ cos=-€?° cos- or e*°=_—__€
c c a
cos™
c

However, the following equations can be derived from this:

=1m—-¢g=logtanig.

olo

That will yielda/c =0 ; i.e., the band will keep its natural position (

Il. %:%n—¢:logcot%¢, [1I. %:§n+¢:logcot%¢,
V. 2 =57 - g=log cott g V. 2=I74+¢=logocot
=73 = log co& ¢, E—En ¢ =log cot ¢,
a a
V|_E:%n—¢:|ogcot%¢, VII. E:1?17'[+¢:|0gC0t%¢,
etc.
b
A
a
Figure 23.

83. — These equations again yield infinitely-many kinds of aaalhs. For the
second equation, the baAd will cut the axisAB just once, for the third one, twice, for
the fourth one, three times, for the fifth one, fames, etc. From this, it is clear that the
second, fourth, and sixth kinds are not appropriateHerpresent problem. Namely,
since the number of intersection points is odd for thgges, on the second case, the
band will have a position as is represented in Fig. 23 dusrascillation, and for which,
although the sum of the forces that act upon the dpdind will vanish, nonetheless, they
will cause the band to execute a rotational motion att@umidpointC, since the forces
that are applied to the two halva€ andbC would combine to produce that rotation of
the band. On that basis, since the rotational motiost be excluded entirely, the form
of the band under oscillation must be arranged in sucayathat not only must the sum

() The casea/c = 0, which will also occur more frequently in what ésils, is dealt with thus: Sinee
is not zero, one must haee= « ; i.e., sincec’ = E k¥ a f/ M, one must havé = ». The associated
isochronous pendulum would be infinitely long, so its perio@stillation would also be infinite. The
band would need an infinitely-long time in order to conml&t oscillation; i.e., it would remain at rest.
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of the forces that are applied to the entire bandebe, 2ut the sum of their moments
must also vanish. That will demand that the curve rpossess a diamete€C at the
midpointc (Fig. 22). However, that will appear when the curve thesaxisAB in either
two or four, or more generally, an even number of poiriignce, only the third, fifth,
seventh, etc., equations will yield suitable solutidhs (

84. — That restriction on the solutions is based in the prohtself when we allow
only those curves that have the li@e for their diameter; i.e., ones for which the same
value ofy will result when one replaceswith a — x If we seta — xin place ofx in the
general equation then we will get:

_ _ _a X a X a X a X
y=Ad°e’°+ Be?°d°+ GBin—cos-— Ccos- sik+ Dces cest D sii  si.
c ¢ cC ¢ cC ¢ cC C

That equation must coincide with:

y=Ae'°+ Be¥°+ GsinZ+ Deos>.
c C
One will then have:

A ea/c — B, C (1.}. COSEJ =D Sine, C SinE: D (1— COSEJ
c c c ¢

The last two equations amount to the same thingceSne then has:

é: e—a/c,
B

a comparison of this value with the previous ore 82) will give:

() Only the case that is represented in Fig. 23 of lasmily motion with one node must be rejected for
free elastic bands, but not the other onBsin. Bernoulli expressed his amazementaler’s errorin a
letter on 4 Sept. 1743 (Letter 20Rn3s Correspondance math. et physique):

“These motions proceed freely, and | have calculatetbws properties of them and performed very
many beautiful experiments on the position of the nodes antdight of the sound that agreed with the
theory beautifully. | have arrived at the conclusion tha few words that you said about that in the
Supplementshould be deleted.”

In the Actis Acad. Petrop. (1779), Part 1, page Hi8er once more carried out his examination of
oscillating bands under other viewpoints and allowed#udlations with an odd number of nodes with no
further restrictions. He also treated six types ofllegimns in regard to the ends of the band (whether free,
fixed to the supports, or embedded in a wall), whereas herenly treated fourLord Rayleigh gave a
thorough presentation of the transverse oscillatansastic bands in Chap. VIl of hieheory of Sound
(German edition byFr. Neesen Braunschweig, 1879), where he also gave, e.g., a figuréhe free
oscillation with three nodes. See a&teehlke, Poggendorfs Annalen, Ba7 andA. Seebeck Abhandl. d.
Kgl. Séchs Ges. d. Wiss, 1852.
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_ a . .a _ a  _....a
g3/¢_cosT —sin©=1-e2¢cosZ +e?'sinZ.

c c c c
or
a . a . a a
1+ cos—+ sin- 1+sin— cos—
e—a/c: C Cc — cC _ C .
a . a a . a
1+ cos— - sin- CcOS— 1-sin—
c (o c c
85. - We will then have:
. a
1-sin—
ea/c: C
3
CcoS—
c

Previously (n082), we found the equation:

. a
1+sin—
ea/c: C.

a
COS—
c

That implies that we now have only half of the casksolutions to the problems that
were derived from this equation above (88, end), and indeed only the cases that were
indexed by odd numbers. Since the first equation representsdt state of the band, all
types of oscillations will be represented by the folligvequations:

a

I E:§n+¢:logtan%¢,
a— 7 — 1

I E—5n+¢—logtan5¢,
a_p - 1

[l o Umr+g¢=logtanig,

etc.
The first of these equations represents the main dypescillation, for which the

value of the anglg can be found approximately in a manner that is similaviat was
done before. The limits to the angtewill soon prove to be®0 40’ and £ 1' 10'. The
true value ofg can be ascertained in that way by the following calmra]which is
shortened and analogous to the ones inTband78|:

= 1°0 40" = 3640 1°1 0" = 3660
¢= 0.2466762504 — 2 0.2490559522 — 2
¢= 0.0176472180 0.0177441807
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a
< =¢+3m= 4.7300361984 4.7301331611
1= 30 20’ 30 30
logv= 0.3126728553 0.3121694510
logu= 0.6748885339 0.6743851396
u= 4.7302983543 4.7248186037
Deviation: + 6336341 + 53145574
636341

Difference: 52509233

From this, one will see that the true value of thatoes not lie within those limits,
but is somewhat smallet)( Nevertheless, it will be implied by the deviatioriset ¢ =
1° 0 40' - n, so one will have the proportion:

20" : 52509233 ;" : 636341.
One finds thah = 2423 / 10000, so:
¢ =1°0 39.7558 = 3639.7556,

or, in arc units, 0.0176460438, so:

olo
0
N w

7T + ¢ =4.7300350232 [correct value = 4.7300408].

86.— Let the last number b, so since:

2 4 2
¢ =EKa i will folow that  at =" =X and =2 gt M
M m Ek® a

In the same way (as in n@6), that will imply the number of oscillations that thiand
completes in one second:

() The deviation in the table on the left is incorredt.must read — 2621559, namely, 4.73003...
4.73029... The angl¢ will then lie between 10’ 40" and £ 1' 0". If one setgp = 1° 0 40" + n then the
regula falsimethod will give:

n _ 2621559

20" 53145574 262155
One finds thain = 0.94, sog = 1° 0 40.94. That value was found by, e.@Rayleigh in Theorie des
Schallesv. 1, pp. 298. One will then sat/ ¢ equal to 4.7300408. Since the error first shows up in the
fifth decimal place, the other numerical values withegn correct up to that point. The correct value will
be used in the following sections.
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v a
M gEK2-2,
al g M

in whichg = 3.16625 in Rhenish feet. Hence, when that band is arramgedh a way
that, in one case, it has one end fixed to a wall anlda other case, it is free to produce a
tone, the two tones will relate to each other fiken? ; i.e., like:

1.8751040813: 4.7300408

which is like 1 : 6.36324 or approximately 11 : 70. The intepetveen those sounds
will then be defined by two octaves, a fifth, and th&thelf-tone. However, when the
latter free band is assumed to be twice as long afotheer, fixed, band, the interval
between the tones will be almost a minor sixth:

[i.e.,§ :7—2 , Instead o@} .
5 45 44

87. — The equation of the curve can be determined rosely once that value for
the fractiona / c has been found. Namely, one has:

. a
1-sin—
ea/c: C’
a
COS—
c
andA e?/¢=B, so:
. a
1-sin—
B= CAa
a
COS—
c
a .a a
C=A-B=A|cos—+ sin—— 1: cos—,
c C c

D :A+B:A(cos§— sin9+ 9: cosé.
c (o c
Now:
b:A+B+D:ZD:2A(cos§— sin§+ 9: cosé.
c (o c
One will then have:

hcos> b(+1+ sin® - cosaj
A= c - C C

a .a . a ’
2| cos—— sin—+ 4sin—
c C c
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b(l— sinaj b(—1+ sin§+ co&aj
_ c _ c C
B= = - ,
2(00@— sir&+ 3 4sin—
c C c
b(—1+ sin§+ co&aj b(l— co&aj
_ c C c
C= = o
2(00&8\— sir3+ 3 2sin—
c C c
b bsinE
D=—= C
2 25inE
c

If one substitutes those values then that willlympe equation:

a _ . a a) .Xx a X
e/°cos”+e¥° 1- sin- t cos | sin+ sin cos
c c), C C cC c

Y.
. a

b 2(1— sin§+ co&aj 2sin—
c c c

88. - However, since the lineC is a diameter to the curve, the computed absoiksa
the midpointC will be CP=z sox=4{a -z One will then have:

ex/c:ea/2c I:b—z/c: —z/cD

a
COS—
c
and
e—X/C: Z/CD .
one will then have:
_ a . a
z/c Zc _
e e (e +e ) coS—| 1~ sin- e e
Ae’“+Be"° C c) _ e€e'"+e
- - al/2c -a/2c\ ’
b 2(1—sina+co&aj 2(e té )
c C

Furthermore:
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a) . X . a X . X . a-x . [(a z . (a z
1-cos- | sin-+ sin- cos=sSin—+sin——=sin| ——— [+ Sin| —+—
c C C o c c

. a z
=2 sin—cos—.
2c c

If one substitutes everything into the equation of theectiten one will get:

Z
/ —7 COS—
2y ey gZc N c

al2c -al2c '
+ a
b e e COS
2c

That is the simplest form for the equation of the ciavech It is obvious that
regardless of whetheris taken to be positive or negative, that will yield #ame value

ofy ().

a
2c0s,,
e+ g¥2¢ s also equal to C

() This formula must read:

a
2cos—
—al2c _ _ 2c

a
COS—
Cc

Sincea/c = 270 0 40.94, cos &/ 2c) = cos 13830 20.47 must necessarily be negative, so the right-
hand side of the formula will have a positive value, wiigchs it should be, sineé'* + e~/ % s positive.

The formula can be derived as follows: One has:

ea/ZC_'_e

. a a
1—S|mj+ COoS-

e;11/2c_'_e—a/2c= /ea/c+ /e—a/c: ( c c _
a .a
cos— | I sin-
c c

That value was used before in order to calcuﬁeex’% Be C). If one introduces half-angles then:

a a _.a
2c0¢ 2 - 2c08 st 200%( cos - swj 2cos®
ea/2c 4 g-al2c _ 2c 2c__2c - 2\ 2 2¢) __ 2
a L, a a .a a al . a a a
\/co& Q/ sif—+ co$—- 2sin- ces cos— [0 sin—— cos— \/co&
o] 2c 2c 2c 2c (o] 2c 2c o]

One sets the second square root in the denominatortecﬁiralz% - cosziC , Since that value is positive.

The formulas of no89 are the ones that correspond to the correct valuesnvdrat derived here, as
opposed to the ones thRuler’'s published. The last formula is correct in the texid likewise, the
numerical values are also correcCc / Aa proves to be negative, since those ordinates haveretitf
directions in Fig22.
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and we have found that the angléc = 271 0 40.94.

89. — If one setz = 0 in the equation thus-obtained thewill assume the value of
Cc, namely:

2CC: _ c 1

or
a
CC_ 1 CO%C
Ad 5epsd
2c

Now, cosa/c = sin P 0 40.94 and cosa/ 2c = - sin 45 30 20.5'. One finds from this
thatCc/Aa=-0.60784 (Fig. 22).

The pointsE andF at which the curve intersects the axis will beniduvhen one sets
y = 0. That will imply:

z z
COS— 2C0S-

de_ _ C ( al2c —a/2c) — C

e+ g e+ g

a a .
CoS_— cos—
2c o}

One finds thatCE / CA = 0.551685 andAE / AC = 0.448315 by approximation.
Those pointsE and F will remain immobile while the band performs itscdlations.
Therefore, that oscillatory motion, which can bedht produce by a direct impact, will
still be easy to produce. If the band were hetddiat the pointg& andF that were just
determined, it would continue to oscillate as Wwére completely free.

90.— When the second of the equations that were faboge — namely%: LT+ ¢

= log cot¢ - is treated in the same way, one will figd= O, approximately, for that

case, and the second type, for which the free andoscillate, will emerge from that,
namely, when the axi&B is cut at four points. Hence, the band will fertloscillate as if

it were fixed at those four points. Thus, when blaed is fixed at those four points or
only at two of them, it will likewise oscillate afsit were free. However, it will have a
much higher pitch. Its oscillation number willags to that of the sound that the previous
type of oscillation produced almost lik& 6 3. Both of those tones are separated by an
interval of two octaves, plus a fourth, and ond-bélthe next half-tone. For the third

I : a
type of oscillation, one will have the equatierr 77 + ¢ = log cot¢. The curveach
c

has six points of intersection with the aRiB. It creates a pitch that is one octave and a
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minor third higher then the previous one (121 / 49 2approximately). The band will

produce that pitch when it is fixed at two of those points.is clear from this how
different sounds can be created by the same band, aggdodwhether it is fixed at two
points in different ways. When the two fixed pointsndt coincide with the intersection
points of the first, second, or third kind, the osdlas will continue from any of the
following kinds up to infinity. It will then create awgnd that is so high that it can no
longer be heard, or (what amounts to the same thingpahd will not exhibit any
oscillatory motion at all, but it will generate arde@terminate sound of the kind that is
produced by an oscillating string that is plucked at a pom@re/the parts do not possess
a rational ratio.

Figure 24.

The oscillations of an elastic band that is fixed at both ersd

91. - The elastic band is now fixed at both endpofnegndB (Fig. 24), but in such a
way that the tangents to the curve at those poietsnaleterminate. In order to realize
that case in an experiment, let two very thin knife-edgesBS be rigidly coupled with
the band, which embed the band in a wall at the endpaiat&lB and make it immobile
there. In order to deduce the oscillatory motion of tastic band, as before, set: The
absolute elasticity £ K2, the lengthAB = a, its weight =M, the length of the simple,
isochronous pendulumf= Let AMB be the curvilinear form that the band assumes under
oscillation. Furthermore, sétP = AM = x, PM =y, and set the radius of curvatureMat
equal toR. One letsP denote the force that the knife-edge must support in the
directionAa. Since the force to which the eleméfin must be subjected in the direction
My in order for the band to keep its position is equaVitg dx/ a f, one will obtain the
following equation for the curve from the rules that evgiven above (no%.7, 66, 67):

Ek®
R

_ M
=Px- gjdxj y dx.
Since the curve is concave to the aRisyill be — 1/d*y/ d¥ here; one will then have:
d’y M
Ek®*—2= — | dx| ydx - Px.
d¢ af J J y

Forx = 0, that will implyR = ; i.e., one will also have %y = 0.
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92. — If this equation is differentiated twice then the sageation will follow that
we found before in the previous cases:

Elld% = M yd¥ .
af
If one then sets E a f/ M = ¢* then one will get the integral of the equation:

y=Ae'°+ Be¥°+ GsinZ+ Deos>.
c c

For the further determination, one sets 0, so one will also hawe=0,and 0 -A+B +
D. Secondly, one sexs= a, soy will again be 0, and one then has:

0= Ac'°+ Be¥°+ Gin2+ Deos®.
c Cc

Thirdly, d*y/ d¥ must vanish fox = 0 andx =a. One will then have:

A+B-D=0 and A€’°+ Be?°~ Gin2 - Dcost= 0.
C C

The equation& + B—D =0 andA + B + D = 0 imply:
D=0 and B=-A

If one substitutes these values in the other two ezpgthen one will get:

0= A(e'°-e¥°)+ Gsin2

C
and

0= A&’ - e¥°)- Gsin? .

C

Those equations can be satisfied only wAen0, soe® - e ¥° can vanish only for the
case ofa/ c =0 (see the remark on pp. 62). However, one must thenthsin @/ ¢ =

0. One cannot se€ = 0 in that, since otherwise no oscillatory motion wioakist
anymore, since all constants would then be zero. Onethers have sina/ ¢ = 0, so
one will either havea / c = rrora/ c = 277 etc. That will once more yield infinitely-many
different kinds of oscillations, according to whethiee curveAMB cuts the axis nowhere
except for the endpoin# andB or at one or two or more points. That followsnfrthe
equationy = C sin X / . However, no matter how many points of intersecaoise,
they will have equal distances between them.
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93. — For the first and most important kind of oscillatiar ¢ = 7z so:

a“:n“c“:n“EEszll\%Ef.

Hence:

The pitches will then (no76), in turn, be inversely proportional to the square ef th
length of the band. The pitch that this band will prodiacea / ¢ = /rwill relate to the
pitch of the same band when the eBdis fixed as 77 relates to the square of
1.8751040813; i.e., as 2.807041 : 1 or, in smallest numbers, like 160 thB7nterval
between them is one octave plus almost a third ha#-tdf the oscillations occur as the
second kind, for which / ¢ = 27z then the pitch will be two octaves higher, and waé

¢ = 37z it will be three octaves plus the next whole tbigher than in the case/ ¢ = 7,
etc. ). In order to be able to easily test this experinigntia should be remarked that
the oscillation must be made to be as small as possiné that no essential elongation
of the band will arise. Therefore, in order for tiggdity of the band that opposes a very
small extension of the band, but without any oscillati@mkéng place, to not be harmful
here, the points must be arranged such that such aesttexision is possible. That will
happen when they lie on an entirely smooth planewillltbe such that the elastic band
AB that is equipped with the pointgr andBg at A andB, resp., will produce a sound
that corresponds to the calculation when the pointplaced on a mirror.

.
A P B
Figure 25.

The oscillations of an elastic band that is fixed to a wall dtoth ends

94. — Now that we have dealt with the previous cases, reatite on elastic bands
might conclude with the oscillatory motion that aastic band exhibits when both of its
endsA andB are attached to a wall (Fig. 25) such that not only thetpA andB will
remain immobile under the oscillation, but the I&RB will continually contact the curve
AMB at A andB. However, one must once more be careful thatbties that fix the
endpointsA andB are not rigid, but admit a small extension, whichdhevature would
necessitate. Therefore, one will arrive at the sbforces one that one would also need

() On the tonal intervals that occur in this secti@,ii be remarked: In the C-major scale, the first
interval 160 / 57 is in the interval from the root t@& F-sharp of the next-higher octave (2.78, instead of
2.81). The second interval 4 : 1 is the one from tbetame C to the C that is two octaves higher flirel
interval 9 : 1 reaches from the root tone C to theri2 that lies three octaves higher. On the readizadf
those oscillations in practice, whi&uler thought would be complicated, s8bladni, Akustik pp. 99.
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in order to fix the band at the endpoitsand B by using the following fourth-order
differential equation:

Ekzd“y:ﬂydx“.
af
Let:
2
Ek af:C4.
M

As above, one will get the integral:

y=Ae/°+ Be¥°+ GinZ+ Deos.
c c

95. — The constants, B, andD must be determined in such a way that not gntut
alsody, will vanish forx = 0, since the curve must contact the #&sat A. The same
thing must take place when one setsa. That will yield the following four equations:

l. 0=A+B+D,
Il 0=A-B+C,

. O0=Ae'°+B6¥°+ GinZ+ Dcos?,
C C

IV. 0=A&°-Be¥ + Gos>- Dsin®.
c C
It follows from the first and second one that:

C=-A+B, D=-A-B

One substitutes these values in the remaining two equatiowsl follow that:

0= A&+ Be¥°—( A Bsin2—( A Bcos?,
C C

0= A€/°— BE¥°—( A Beoso+ (A Bsin%.
C

One takes the sum of both equations and gets:
sinE
A" c
B cos?-eve
c

It follows from the difference between the two edpad that:
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a
A €7°-cos”
"= C
.a
B sin=
c
so:
1£sin®
2=(e"+e"°) cos— or e*°=_C
c a
cos™
c

That equation agrees with the one that was found i8210.The following infinitude of
solutions will satisfy it:

a a
I E:%77—¢:Iog cotk ¢, Il. E=%n+¢:log cotk ¢,

a—5 — 1 a—7 — 1
[l E—En— ¢ =log cot ¢, V. E—5n+ ¢ =log cot¢g.

96.— The first of these can be satisfied only wigen 9¢°, so one will then hava/ ¢
(see the remark on pp. 62). The first type of osciltai derived from the equation

a . I
E=§n+ ¢ = log cot¢. That was dealt with before (n85) and will givea / ¢ =

4.7300408. Therefore, the elastic band that is embedded irdaxfadeat both ends will
carry out its oscillations just as if it were entyrélee. However, that agreement relates

to only the first kind of oscillation”. Namely, the second kind, for whie =2-¢=
c

log cot} ¢, and for which the band cuts the axis at one point duriadjad®n, does have

its equivalent for the free band. The third type ofillasion of the band that is fixed at
both ends coincides with the second type for the fage band so forth.

97.— The last two genres of oscillations (n®%.and94) cannot be rigorously tested
by experiments, on the cited grounds. However, thedeste (no65) is not only very
suited to the demands of experiments, but can alsorbeted in such a way that the
absolute elasticity of any band, which we have denoteét lx§, can be ascertained.
Namely, when the sound that a band that is fixed at oehénea wall creates is heard, and
one produces the same sound with a string, the numlossiciiations in one second will

() That agreement will be found for all types of ostitla. Euler's misleading statement is based
upon the fact that he rejected oscillations with an addber of nodes for the free band; see the remark on

pp. 63.
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2
be known. If that were set equal to the expres&g gEK [—ll\% then one would find
a

the value of the expressi@ik?, since the numbarwould be known and the quantitigs
a, and M could be obtained by measurement. One would then kihewabsolute
elasticity. It can then be compared with the on¢ ithébound from the curvature (n85)

).

() These experiments, which are very important to engimgewere carried out quite extensively.
Admittedly, the formulas that were given here did natll® any useful results, since they did not bring the
cross-section of the elastic band under considerasem; e.g.Kupffer, “Recherches expérimentales sur
I'élasticité des métaux,” St. Petersburg, 1860.



