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Introduction

Halpern?) and Debye) have remarked that one must expestattering of light by
light in Dirac’s theory. The two light quanta can creatpasr — a positron and an
electron — and this pair can, moreover, immediatelyatad two light quanta can
therefore spontaneously convert into two other light cudahder the conservation of
total energy and impulse).

In this process, one must distinguish two cases:

Either the energiesg® andcg of the two light quanta and the angle between their
impulsesg* andg? are so large that the law of energy and impulse altbevsreation of a

virtual pair @'g® - (g*g®) > 2(md?). One then obtains the probability for the scattedh

the light quanta by each other when one multiplie ptiodabilities for pair creation and
re-radiation and sums over all possibilities. This earsied out by Breit and Wheef®t

Or the energy and impulse of the two light quanta doesttain the magnitude that
is necessary for the creation of a virtual pair:

(0.1) [ 9'9°~(g's") <2(m9*, J

i.e.,in a particular reference systemg:< mc ¢ < m

The light quantag', g° can then go over to two other light quanta with #rtual
possibility of pair creation, and in this case as weBibke light, say) there must still be
the scattering of light by light. Its interactioross-section shall be computed here. (8
10, formulas 9 and 10).

Part |

The probability for the transition of two light quania g into two other —gs, — g4

will be given by the square of the matrix elemfitin Dirac’s theory (which, as will
later be shown, is of fourth order in the electriarge).

1) 0. Halpern, Phys. Red4, pp. 885, 1934.
2) P. Debye, in a verbal discussion with Herrn Profseleberg.
®) G. Breit and J. Wheeler, Phys. Réd8, pp. 1087, 1934.
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The direct computation of this matkik’ in Dirac’s theory [i.e., the matrix element

for the general case of arbitrary scattering and polarization diresfiovould be very
tedious. One can however revert to a simpler probletheo€Eomputation of two matrix

elements [i.e., the calculation ofi! for two special scattering and polarization
directions] by the following general considerations (Part

§ 1. Provisional statement of an intuitive expression for thenteractionU, of light

with light that leads to the transition from two light quanta g, g»
into two others —gs, — g4

(9192 |U,| =g —ga) = H.).

When two light waves scatter off of each other,g@adtof passing through each other
undisturbed, that implies a violation of the superpositpmnciple. The optical
superposition principle is given its expression in the ligarf the vacuum Maxwell
equations. The scattering of light by light can also described by a nonlinear
contribution to the vacuum Maxwell equations, in whichecas intuitive description is
possible. This intuitive description whose possibilityll ide proved later (8 7), is
suggested by the following analogy that exists in Dirte®ry between light quanta and
electrons:

Two electrons can create light quanta and thus introdunatual interaction, which
perhaps expresses the scattering of electrons fromm ether, and which gives an
intuitive expression for the Coulomb law in a cerigaproximation.

Likewise, two light quanta create a set of virtual paand there thus exists an
interaction between them that leads to the scatteridght by light. One should also
expect a simple, intuitive expression for this intaoacof light quanta with each other
that is analogous to the Coulomb law.

The Coulomb interaction in a matter field, which Iwke described by a density
operatory , is:

2 O Of 1 4
2 €=<)

One obtains the interaction cross-section for tatering of an electron by an electron
from the square of the matrix element for (1.1)tfee transition that takes the form of the
scattering of two electrons from each other in #endield.

In order to find an interaction for light quantaat is analogous to (1.1), one must

look for a functiotJ, of the degree of freedom the radiation field repn¢s, hence, the

field strengthFy , whose matrix element for the transition intadiation field, which the
scattering of two light quanta from each other espnts, will be equal to the one

mentioned above and later to the matrix elerhEntcalculated from Dirac’s theory for
this process.
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Concerning this interactiod, for the light quanta as a function of the field sttés,

one may state the following:
Since it shall lead to processes in which two light tpugo in while two come out, it
must include the field strengths or their derivativethefourth power:

U’ =const.j[FFFF + con§t%—F%—F FF +} dv .
X 0X

(Here, and in what follows, indices for vectors aedsors will be omitted or represented
by special indices that make their connection &itftalar obvious).
However, since the interactid has the dimension of energy (as a fourth orden ter

in Dirac’s theory), the electron charge must appeadhe fourth power (and there as only
a dimensionless number that can be constructedfdbe four universal unite, m, ¢, h,

2
namely, the Sommerfeld fine-structure consgam%); the constant is determined up
c

to a numerical factor:

_hc 1
const. o=
(1.2) with E; = % ="field strength at the electron rad."
€
mc’

On the same grounds, the terms in the derivato¥ése field strengths must include a
length that is independent of the electron changace, the Compton wavelendtimc as
an additional factor.

One next wonders whether the electron mass sbatefin vacuum electrodynamics,
since it is assumed that only light quanta and labsly no electrons are present.
However, whether the terms considered here ard wvaly as long as no actual pairs are
created, nonetheless, they come into being onlyutir the virtual possibility of pair
creation, and that expresses itself by the introdnof the electron mass.

One thus expects that along with the Maxwellia@rgy of the individual light quanta
there is a mutual interaction between the lightnt@®f the form:

(1.3) g="et {FFFF +(iiFj(iiFjFF+.-1dV.
e E mco X ma@ X

It will later be shown that the matrix elemét that was mentioned above, and which

follows from Dirac’s theory, can also actually engerted into the matrix element of an
expression such as (1.3).
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Since we would like to restrict (0.1) for soft liglid| <mg, hence, for slowly varying
fields(ia—F
mc 0 X

field strengths.

We thus assume, in advance of the later proof (8 7#)thkascattering of weak light
by light can be described through an additional (to thewWwé#ian) energy density in the
radiation field that has the form:

<|F |j, we can neglect the terms in (1.3) that involve denrestiof the

(1.4) Ui = h—gizF FFF
e
namely:
(1.5) Hiﬁ:(gng J‘Uld\/‘_ &~ 91)
Fik are the field strength¥, is the volume of the radiation spaég,= :2 , and:
)
0,9, light quanta before the collisiol for
-0g,— 0, lightquanta after the collision this
(0,9,]0|-g,— g,) matrix element of the operatOr tran -
H;  matrix element of Dirac's theol sition.

§ 2. Approximate determination of the interactiorlJ, of light by light from the
invariance of the associated corrected Maxwell equations:

(Jl =h—§i2j[a(%2 -9?)%+ S(BD) ﬁdvj b,
e K

The form of this interactiotJ; (1.4) of light by light shall now be determined
approximately by the requirement of relativistiganiance.

In the general quantum theory of light and mattédr the tensor of electric field
strength and magnetic induction, which shall beotlesh bye, 93, satisfies the equations:

1. .
= + = =
2.1) C% rot¢ =0, divi8=0

1) The mathematical proofs of this paragraph are idantiith the ones that were used by Born (M.
Born, M. Born and L. Infeld, Proc. Roy. Soc. Londori 48 pp. 410, 1933; A4, pp. 425, 1934; M7,
pp. 522, 1934). They will be repeated because here we alk mther physical assumptions. Cf., also pp.
(?).

2) W. Heisenberg and W. Pauli, Zeit. f. Ph§8, pp. 1, 1930; pp. 168, 1930.
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which means the same thing as the existence of a pot#ntia

(2.2) QE:—%Q'I, B =rotA

and the equations:

~Lé v ot =47 dive =4mp
(2.3) C C

which couples the field, B to the matter with density and current. The evolution of
the matterp, i and its reaction to the field is, in its own rightrther determined through
the Dirac equation.

This general connection (2.1, 2.2, 2.3) exists beforergr@duces the hole theory.

However, something new appears in the hole theory whentregs the following
specialization:

When no electrons are present, one bafpre introducing hole thearpmit p andi
and obtain the Maxwell equations of the vacuum: (2.12),(2and:

(2.4) - %é+ rot8 =0, divB =0.

In the hole theonjhowever, also when no electrons aresprd ant
(2.5) also when the energy of the radiatiogidiis not sufficient for the
creation of electrons and positrons,

as we saw, there is the possibility of the creatdnmatter finds, which finds its
expression in the behavior of the field.

The equations for this special case (2.5) must, on teéhand, be in agreement with
the general equations (2.1, 2.2, 2.3), and, on the othdr harst include only the field
strengths. Thus, all that can emerge from (2.1, 2.2,i21B fact that the currem i
will be replaced by certain functions of the field sg#as &, B that one can think of as

“the virtual matter created by the fiet] 95.”

In other words: For our special case (2.5), equationsZ2) remain the same, but
the vacuum Maxwell equations (2.4) are corrected by cestgplementary terms that
can be neglected only for small fields (compareHgo

We assume that the altered field equations can be lleddoy aHamilton function
U and its canonical equations. We can (from 2.2) choasedibrdinatesof the system
to be the (negative) four-potentiak: Theimpulsethat is canonically conjugate to%

shall be calle®/4. Hence, it shall be defined by:

(2.6) Di(§) (<) —A(S) Di(§) = hei A$—4) A

or:



H. Euler. On the scattering of light by light, etc. 7

. 0
(2.7) Di(4) BL) — BL)Di(4) = i Y A$-4)

(with cyclicikl).
The energy is then a function of all the coordinates and the inguls

(2.8) g=Judv

which shall, in general, include only the field strengtug,not their derivatives:

(2.9) U =U(B, D).

The canonical equationsf the Hamilton functiorJ will now be:

B, (&) = %f [U(B(S), D(4)) Bi(&) —Bu(&) U(B(S), ()] d¢

ouU
=-4croty —,
b 09
or, with (2.1):
(2.10) ou_¢
00 4
one has):
2.10): .
( ) E% +rot& =0
c
and:

D (&)= %f [U(B(S), D(4)) D<) —Du(&) U(B(S), D(4))] d§

=—47x rot a—U ,
0B
or, with the definition:
(2.11) U_9H
0B 47
one has: 1
R ; + ]
(2.12) C@ rot$) =0
which further implies:
div® =0

1) Translators note: This form of the first canohieguation was not included in the original paper,
although it is inserted here for completeness, amifptements (2.12).
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With that, the field equations for any enelgyare established: (2.1) and (2.2) give
the time evolution of the field, while (2.10) and (2.11) couple field strengthst, 95

with the field functionsD, §). As equations (2.12) and (2.1) shasvmeans the electric
displacement, whileés is the magnetic induction and, as such, the force entrire

current).

The general schema (2.1, 2.2, 2.12, 2.10, 2.11), which rests upothenhduction
law (2.1) and the dependence of energy on the fieldgitienfirst gains significance
when one is given a particular Hamilton functldn

2+ 2

If U :%S—NQ: Up then (2.10) become® = ¢ and (2.11) become§ = B and
(2.12) becomes eq. (2.4) for the uncorrected Maxwell vadialdy which is true only in
the first approximation. In the next order, (1.4) gitles Hamilton function:

2 2
(2.13) U=2"D", A1 t8 D) =Up+U,
8 e E

in whichf is a function of degree four B and®.

However, only certain particular will agree with the relativity principle. We
determine them when we show that the field equat{@rt, 2.2, 2.12, 2.10, 2.11) can also
be derived from a variational principle and arratethe conclusion that the Lagrange
functionL that is extremized in this variational principsea Lorentz invariant.

Thus, in line with a general mechanical procedueealefine the function:

(2.14) L_ (€9
4 4

and calculate its partial derivatives with respec® and &: We find (after varying the
fields by d¢, &8, 59, 99):

OL_€ 50+ 2 5¢ UDBD) 5 UDBD) 5

air 4 ar 0B 09
or, from (2.10):
OL_9 5o UBD) 5y
air 4 0B
hence:

1) The addition of a true current to eq. (2.1, 2.12),fieal, electrons such as one might see in a Wilson
chamber, as opposed to the virtual ones (2.3) that aedened here, but which do not contribute to the
radiation of the field and are introduced into this themrly as test particles, would show that:

® describes the streamlines of true charges,

9 describes the vortex lines of true currents,

and would confirm tha€ refers to the force on the true charge whilés the force on a true current. Cf,,
also, C. F. v. Weizsacker, Ann. d. PhiE. pp. 869, 1933.
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(2.15) OL(B.E)_ 4
o¢

and, due to (2.11):

(2.16) oL(BE)__
0B

and see that these partial derivativesLofre coupled by eq. (2.12) to a differential
equation for:

(2.17) 100b ol o,
cotoe 0B

which is equivalent to the variational principle:

(2.18) ” L(B, &) dV dt= extremum

for theLagrange function L= L(28, &) with the associated conditions (2.1) or (2.2). The
Lagrange equations (2.1, 2.15, 2.16, 2.18), which, like the Hameljuations (2.1, 2.10,
2.11, 2.12) determine the evolution of the field, shall naketon their significance
through the choice of a Lagrange functiorr L(®8, &), which must be a Lorentz and
parity invariant.

All Lorentz invariants of the anti-symmetric tens®s ¢ must be functions of the
Lorentz invariants¢? — 82 and ¢ B), the second of which is not, however, parity
invariant.

Thus, to lowest degree — viz., second — the only Lorentz parity invariant
expression ist? — B2, which, from (2.15, 2.16, 2.18), leads to the well-knownaline

vacuum Maxwell equation® = ¢&, $ =B and (2.4) when it is used as a Lagrange
function.

In the next higher degree — viz., fourth — one constrakg the Lorentz and parity
invariant expressions¢f — B2)? and ¢ B)% Therefore, corresponding to the most

general corrected Hamilton function (2.13) to fourth oidehe field strengths, there is a
Lagrange function:

(2.19) L _&-% hcl Lo L1
e Tl A - -Ae D))=

in which —a and -8 are numerical coefficients.
For this Lagrange function the equations that coupldeltestrengths®, 98 with the

guantities®, $ (2.15, 2.16) become:

D ¢ hcl ,
¢ Aa _2
= 47T+62€2[ a(€? -B2)E -2 8(B ¢ )B]
(2.20) §_%B  hc 1

ET 47T Z EOZ[—4 a(€*—B%)B +2B(BE)E]
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whose inverse equations (as a consequence of neglectingspoimie field strengths
that are higher than four) read:

¢ _® Kl ,
— == 4a(D D+4B(®D
an 477 e E0[+ a(D* - H)D+4B(D$H)H)]

% _9 hcl B
A4q(D 4B(0H)D].
o @ E)[+a( - H)H—4B(D0H)D]

(2.20)

Therefore, from (2.14, 2.20) the Hamilton function thalohgs with the Lagrange
function (2.19) is:

(2.21) UZQZSJ;T%Z ’;20;02[0(@ — 8% + ADB)] = Uo + Us

With that, the interaction energy; of the light quantum is determined up to two
numerical constante and 5. These will be established in § 8 by computing the Dira
matrix elementH.} in two special, simplest possible cases and comparitg(221).

8 3. Discussion of the commutation relations for the field stnegths
in the system of corrected Maxwell equations

Equations (2.20) lead to the noteworthy result that thetreefield strength¢ and

guantity® (2.6) that is conjugate to the potentialzl—ﬁl are different, while we still
7IC

assume the general theory of light and mditein which they are the same. The self-
evident contradiction that this represents warrantsoeotiyh discussion. It has been
suggested that the physical situation that we are preseittedan be best clarified when
one compares the system composed of a radiation freldaamatter field with the
mechanical system of two atoms. We shall followotigh with this comparison by
placing each property of the one system next to the sworeling property of the other
system:

1) W. Heisenberg and W. Pauli, Zeit. f. Ph§8, pp. 1, 193059, pp. 168, 1930.
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A light and matter field can be
described by the potential of the
radiation and the density of matter.

When no actual electrons are present and

the energy of the field is not sufficient
for the creation of pairs, the field
strengths  will  suffice for the
characterization of the state.

There can, however, be virtual pairs

created, and through these transitions
there arises an interaction between light

quanta.

If one now describes the field
through equations that include only the

field strengths then one must consider
the interaction between the light quanta,

i.e., the nonlinear corrections to the
Maxwell equations.

The additionL; to the Maxwell
Lagrange function Lo includes the
magnetic induction and the electric

field strength¢ (= time derivative of the
potential):

L =L,(€B) +L,(€3),
(319) LO :'[sz—%z
2

The quantity ® (2.6) that is
conjugate to—i is therefore not the
47c

electric field strength, but:

i |

3.20

Two atoms can be described by the
coordinates of their nuclei and the
coordinates of their electrons. |If it is
assumed that the electrons are in the
ground state then the coordinates of the
nuclei alone succeed in characterizing
the state.

The electrons of both atoms can thus
be virtually excited and then return to
the ground state, and as a result of this
transition there will be an interaction
between the nuclei: the van der Waals
attraction.

If one now describes the system,
perhaps by the calculation of the band
spectra of the molecule, through only the
degrees of freedom of the nuclei then the
van der Waals force must be included in
its equations of motion.

The van de Waals contributidn to
the Lagrange function depends upon the
coordinatesg and, by more precise
computation, which we shall only
assume here, also on the velociti@gsf

the nuclei:

L=L,(q9)+L(qq)
Lo :quf + funct(;).

The quantitiesy; that are conjugate
to the nuclear coordinates are
therefore not the velocities multiplied by
mass, but:

%: p :mq+a_|‘1
oG 0

p#gm
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field
not the

Therefore, between the
strengths there now exist,
ordinary commutation relations:

E(OBUE) - BiE)E(D)
= 2hei % &é-2),

but the altered ones:

Qi (ﬂ%k (5') _%k (5’)©i (4()
= 2hci%5(5—g").

(3.7)

Thus, in the general case, in which
the radiation field can also create pairs,
one must describe the total field by the
field strengthsand the matter density,
and the interaction of the light quanta
does not appear explicitly in the
equations. The Lagrange function
includes the field strengths only in the
form:

L = Lo(€ B) + L'(matter).

However, the electric field that is
conjugate to the potentials is again:

m

and commutation relations read:

E(OBUE) - BE)E(D)
= 2hei % &&= 2),

in contrast to the special case.

Therefore, between the coordinates
and the velocities of the nuclei there now
exist, not the ordinary commutation
relations:

, . h
maq - g mg=—

but the altered ones:

/)
piQi—Qipi:i—.

Thus, in the general case, in which
the electrons can also rise above the
ground state, one must then describe the
system by the degrees of freedom of the
nucleiandthe electrons, and the van der
Waals forces do not appear explicitly in
the equations. The Lagrange function
includes the nuclear coordinates and
velocities only in the form:

L =L,(qq) +L'(electrons).

However, the nuclear coordinates are
again conjugate to the mass multiplied
by the velocities:

_= i:m'
oq P =md

and the commutation relations read:
, R
mqaa — di mq:T’

in contrast to the special case.
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Just as in Lagrangian mechanics, the phenomena thatdescribed above can also
be expressed in Hamilton mechanics (we denote the caationab — baby [a, b]).

In general the Hamilton functiorH
of the field includes the enerdy of the
light the energyH’ of the matter. The
field potential2l commutes with theéd’

and therefore one h&=%:

H =Hy(2(, ®) + H' (matter),

2 2
Ho :J (rotA)"+D av.
8

® is conjugate to (2.6), ® and H
commute withH':

henceg¢ =9.

However, in the special case in
which no actual matter is created, the
energy of the electrons can be replaced

by an interactionH;((®) of the light

guanta. However, it now no longer
commutes with the field potentid@dsand

therefore® 3.

(2.22)  H=Ho@ D) +Hy(2 D),

® is conjugate tal (2.6):
=——[H
Ch[ ]
[ [
=——[HA] -—H
Ch[ o] Ch[ 2
=D+,

e=-Lg=_ !
Cc
|

(3.21)

hencee¢ .

In general the Hamilton functiorH
of the molecule includes the enerbly
of the nucleus and the energly of the
electrons. The nuclear coordinatgs
commute withH' and therefore one has

mg=pi:
H =Ho(qgi p) + H'(electrons)

2
Ho :zzp_rln + funct(),

pi is conjugate tai, i.e.,p G — g pi =
nli, g commutes withH':

mi
mg =—1[H g
q h[ ]
mi
:#[Ho gl =pi;
hence,mg=p; .
However, in the special case in

which the atoms are not actually excited
the energy of the electrons can be
replaced by the van der Waals force
between the nucldii(g p). However,

it now no longer commutes with the

nuclear coordinates and therefonad#
p:

H = Ho(pi ) + Hu(pi 9),
pi is conjugate taj, i.e.:

1/
Pg-—-q pi:i—.

mi mi mi
- Haql=—[Hoq] +—[H1q
mq h[CI] h[oQ]+h[1Q]
=p+ ...,

hence,mg# p; .
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This comparison once again makes it clear that the rmaéoregoned alteration of the
Maxwell equations of the vacuum is not a alteratioprefsent-day field theor$), but
only a particular example of it.

Furthermore, the following situation must be stressdet ihteraction between the
light quanta and the alteration of the Maxwell equatidra was assumed here exists
only as long as no actual pairs can be created, but ohlahvpairs. Likewise, one can
deal with the van der Waals forces only as long as tmasaére in the ground state (or at
least in a well-defined state), whether or not the ®rddually excite the atoms out of
the ground state.

One may present the mathematical process of altefitige @ommutation relations in
a mechanical system by specialization in such a manatthé specialization that was
assumed here to the case in which no actual pairsecareated refers to a choice of term
in the total system of light and matter, hence, a

restriction of all matrices to sub-matrices, 0
neglect of certain transition and occupatio

probabilities by deleting certain matrix boxes 0 0
such that the remaining sub-matrices ha

other commutation relations than the complete

ones.

1) cf., footnote pp. (?).
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Part Il

After the foregoing considerations about the generah fof the results, we now must
exhibit the matrix elemenitl,} of Dirac’s theory for the scattering of light byHig and to
show that it is identical with the corresponding maglement of the interaction energy
of light with light:

(2.21) j=rel

1 2 2'[ [a(sBZ_@Z)Z"',asB@)Z] dV,
e 5

namely:
4

(91 @ |U,| - gs—as) =H,,,

so ultimately one comes down to the calculationtwb simple special cases that
determine the two constants 8inU,. We begin with a thorough representation of the
perturbation schema that will be used for theseutations.

8 4. General perturbation schema that will be used in the caldation
of the scattering of light by light

Suppose that a closed system with the approxistat®nary stateis k, I, m, n, x4, #/,
which have the energids, Ey, ... and the occupation probabilities; |, | a [, ..., is
subjected to a perturbation with the time-indepah@aergy matri¥/i that provokes the
change of state:

- a ' i - h
(41) Ihaaﬂ(t):ze(Eu Eu)t/r\/lw’ql(l).
u

(t: time, h = 27 : Planck’s quantum of action). If one develops ferturbatiorv and
the state, in a small parameter:

V= V+V2+ Vi Vit
(4.2)

g =g g g e,
and assumes that initially the statis realized (af,(t) =3du, a;()=0, fora>1) then it
follows in the first approximation that:
oAl =Y P, d(h= €5
U
and integration gives:

Lo (eEEwn g .
(4.3) a.(t) —[?j Vi .
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The second factor of this approximation is the matexneint of the perturbatiov*
for the transition — k. The first factor is considerable only inside the edmmain |Ex
—Ei | < hit; i.e.,al(t) always has meaning for smalbut for larget, it is meaningful only
in the case where the system can go from statestatek while conserving energhi =
Ei.

Therefore, a transition probability- k of first order:

(| a'(t)  # 0 for larget)
exists only whewi # 0 andEx = E; .

When these conditions are fulfilled, one calculahesttansition probability — k in
a well-known way following Dirac:

1 1 .21 ¢+ _1-cosE. —-E )/ _2m_ 1
(4.4) E§|a,(t)r~;\vk\ 3202 E-E7 dg. = ~~C o4l

in which 1AE means the number density in the energy spectrutreafystem in the final
statek.

However, when there is a vanishing transition pholidy in first order one must
consider higher approximations. We now assume ahldtansition probabilities (from
each state to any other state of equal energy) up to ogglerl vanish and that one first
encounters transitions in ordérso:

@5)  [ao o] =R = =l =0, [al®[ =0
for larget and alli# i whenE, =E; .

Under these assumptions, we makeclaen: All approximations up to ultimately the
A" have the time dependency:

i(E,~E)t/h i(E,~E, )t/

o _| e -1 o e -1\

(4 6) aﬂ(t) _( E-E jEHi/‘ +Z{ — J[KK#
. E, Z|TE-E

fora'=1,2;-- B-10.
In this expression:

i is the index of the initial state,
M is the index of the states considered,
k is the index of an “intermediate” state that idatiént fromi and.

The first summand leads from the initial state the statg/in question; i.e., for large
t its time factor is large only fdg = E, .



H. Euler. On the scattering of light by light, etc. 17

The second summand leads from a skata that is different from the initial state to
the stateu in question; i.e., for largeits time factor is significant only whe, = E,, .
H& and K¢, shall not include time

Proof: The claim is already proved in first order by (4.3 ane has, in fact:

4.7) HL=Vy | Ki,=0.

We now assume that the claim has been proved foolatiens up to ultimately thea(—
1)" with:
(@=12,...a-1);a-1<p),

and show that it is also true for th® (¢ = a< ). Thed" approximation will be (when
we regard the initial stateas being realized and consider the temporary final sidte

1)
(4.8) m 0= T LN, e 4 A Y]

and, with (4.6):

Haod/L HivL
(48) z |(E;/ E)t/n %Zﬁ-f-.}.z El;i;él_*_va z I(Eﬂ E, )t/h
H i H K'#i

In this expression, the first part encompasses allssevhose time factor has the energy
differencel; —E, between the initial state and temporary final sgaten its exponent
(and which comes about by substituting the first pattefirst summands (4.6) in (4.8)).

The second part encompasses all terms that do notlnaveroperty, and which can be
written out more explicitly as:

Z |(Eﬂ EOUR e :_z

K'#i

ei(Eu‘Eu)t/h %Hizﬂvﬂlﬂ’ R HI/IV;Z/ '
(4.9) -5 5
%M+...+H Vi’ |

+Z( i(E,-E)t/h _ |(EA,—E )t/h) K

HEi EK - E,u E( Ez |

K#i

Time integration of (4.3 yields, in thea" approximation, an expression of the form
(4.6) when one sets:

HI VL H!vat
Hia’ — w [ iu N +\/In
(4.10) H Z E -E, Zﬂ: E-E H
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with which the claim is proved.
With the assumption (4.5) the first and second summanhd4.6) are small to all
orders of approximation up to thg 1)" for larget:
ie. E,ZE when HS #
(4.6) { w* 5 W

forad =1, 2,..0-1
and E,#E_ when K¢ #

Furthermore, the second summand (4.6) of@happroximation is small for large(i.e.,
E, # E« when Kij # 0). In the other case, as one sees from (4.®)oalready given a
transitionx — £/ in less than thgg" approximation, which contradicts the assumption.
On the same grounds, all of the terms that appe@r.10) are non-zero.

However, since there must exist a transition podiba i — 4 in the ,[:‘h

approximation it must come from the first summamads(4.6). Hence, it must be
determined by:

1-cosg, -E } /n
(Ei - Ep')z

af, (0] = [HE[ 2

from which, with the final Dirac expression (4.4boae, the transition probability
follows:

(4.11) 2m 1 sp
h DE T

(4.11), (4.10), and (4.7) include thesult of perturbation theory: The transition
probability in the smallest non-vanishing ordelz(,vthe,[z‘h) Is the product (multiplied by
271 h) of the number of statesE per energy interval in the final state with theiae
of a “matrix element.”

The matrix eIemenHif, of 8" order (4.10), which leads from the initial state the

final statey/, is composed of the matrix elemeM$=# of the perturbation energy, e.g.:
VAV VL .

(412) Hiﬁ: i Im "mn +"'+Vin
(E-BXNE-E)E-F)

b,

Thus, some parts of the perturbation enekdy ¢an lead directly from the initial state to
the final state in first order, but, by contrasthey perturbations\) can do this only
through sub-processes:

i -kk->1LI-mmsn)

1) The matrix (4.12) is symmetric in the initial and firste: Q—|E= Hin), which follows from the

symmetry of the perturbationy =VkiDand conservation of ener§y=Ey .
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involving intermediate stateg, (I, m) of higher (viz., 4) order. These sub-processes do
not imply any energy conservation for the “virtualtermediate states, but only the total
processi( — n) to theactual final state. Therefore, whether the std¢els m cannot, by
any means, be assumed to be actual system states msadlfer energy law is concerned
(or else there would be transitions in lower order appradoms that would contradict
the assumption on the formula that was given hene); virtual possibility brings about
the transitioni — n in question.
circumstances.

The scattering of light by light rests ugbese

§ 5. Presentation of the matrixH,. for the scattering
of light by light in Dirac’s theory

We now apply this perturbation schema tosystemradiation field and matter field.
For its approximate stationary states, we choose gdlghe waves and plane matter
waves. Theperturbation energythen exists as the coupling between light and matter,
along with certain subtraction terms that HeisenBrgould have us combine with the
Hamilton function of ordinary hole theory in order taiee at finite results that are
compatible with the conservation laws.

In the following we denote by:

(5.1)

2

W(£.9),(s=1,2,3,4)

a=a,
¢, dv

Vv

g,¢
p,o - 1A - 1

dp

M., B,

ge?

Npa/i ' A[f/‘

c,h=2mh
em

the vector potential of the radiation field,

the wavefunction of the matter field,
the Dirac operator,
position and volume element in the iaen field,
the volume of &ube in which the field is assume
to be periodic,
impulse and polarization of a light quantum,
impulse, spin, and sign of the eneof an electror
the impulse space element,
occuption number and amplitude of the plane
light waveg ¢ ,
occupation number and amplitude for the plane
matter wave 4 g
velocity of light and Planck quantum of action,
electron chargand mass.

The decomposition of the field into plane waves is:

1) W. Heisenberg, Zeit. f. Phy30, pp. 209, 1934.
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0 _ lchn e
Q[:;Q[Q(BQQ+B_QE), A, =e Wé( Y
gd)/n
(52) ¢/ :ZT@MU(S) D’%)a’ (ee) =1 (eg): 0,
pAo
Z‘a\ﬁﬂa(s)‘z :1-

The potentials and densities are operators that arectbared by the matrix
properties of their Fourier amplitudes:

BgD(Bg, resp.) refers to the creation (annihilation, respg light quantum,
AE(A,,, resp.) refers to the creation (annihilation, respgro¢lectron;

i.e., the matrix element @‘;is non-zero for a transition in which a light quantusn i
created:

(M ~~-|B§|~-Mg+1~-): M,+1,

(M- |B, |...|\/|g—1..-):\/M_,
("'Np"'|AbD|""\|p+l"): 1- N, 1Y,
("'Np"'lpb|"'Np_1'"):\/WDJ'

with the Jordan-Wigner sign function:

(5.3)

oA

>N
J= (-~

A process of light scattering from light will bestribed by:

2

g.g% o'=|g*|, 9%=1lg?| the impulse and energy of the primary,
absorbed light quanta,

-¢°,-9*,-9°=|g®|,-g*=|g"|, theimpulse and energy of the secondary,
emitted light quanta,

ete? el e’ (le*E lLe'«gh--) theassociated polarizations,
(5.4) .
(0, 9°|10|-¢¢—g") the matrix element of an operatr for the
scattering of light by light, i.e., fahe transition
between two light quantgl g into two
others-g°® -g* (instekhof the detailed notatiol
[N 1y N 2" N_ 3 N_ 4| Ol Nl_l, NZ_ 1,
[¢] 9 [¢] 9 g g
- N_g3 +1, N_gA +1-]).
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The perturbation energy of the field that is approxich&tgthe plane waves includes,
when developed in powers of the electron charge
The coupling of light and matter, which is determined leydinrent and potential:

(5.5) Vi=el (o) yadv
and the subtraction termjs

= ezj dV(function of second order in the fieltengths)
(5.6) V3= egj dV(function of third order in the field stngths),

4_ .4 1 AEx)
v _e( 12#)(?10) j v |* dv.

V! is of first order in the potentials and second ordehénrhatter waves, and thus, from
(5.3), gives rise to transitions in which a light quaniyim created (or annihilated) and
an electrorp jumps from one state into another @e The matrix element d&f; for this

transition is (5.2, 5.3):

Ao i(p—p)éln
e
j dv,

(5.7) Vi = ej%(plalp

Chh Ao Ao’
5.8 = ",
(5.8) el lv[ a |pj

in the case where the impulse is conserved uneetréinsition § —p' =+ g) and is 0 in
the case where it is not.

Ao Ad’
In the latter expressior{,p |ae| p’j refers to the matrix element of the four-rowed

Ao Ad’
Dirac matrix (@ ¢) for the pair of electron statgsandp’ . Here and in the sequel, for the

sake of brevity the factorgng +land JMg are omitted.

V2 (V2 resp.) is of second (third, resp.) order in ib&lfstrengths and therefore leads
to matrix elements that combine two (three, rebght quanta with an impulse sum of
zero.

Finally, V* includes the potential to fourth order and carrefoee take two light
quanta +g* + g° to two other ones g — g* with the same impulse sum. Its matrix

element for this transition is (5.2), 5.3):

1) W. Heisenberg and, Zeit. f. Phy@0, pp. 209, 1934, formula 59, 60, 61; Zeit. PI8&. pp. 692,
1934.
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59 @ FIVI-¢-d)=lim 6‘;’702 (elt)(ezf)(ft)(e%): VA
-0 perm v

In this,z refers to the sum over all 24 permutations of the indice®, 3, 4 in the

perm

vectorsel, ¢2, ¢, ¢*, and one has:

2\2 2
(5.10) C:_;(e_j i( ij [ \2/ S
32|:(27T)3 ac) ac\ V g'g°g°g

For the scattering of light by light/; can therefore matter only in fourth order, while
V4, can matter only in first order. The other terMsand Vs give no contribution.
(WhereasVsz must be combined witl;, which would amount to a source electrys,
however, must be combined with twh terms or itself, which would place special
conditions on the incoming light quanta.)

In other words: The scattering of light by light i8"aorder process in Dirac’s theory.
Its matrix element will be composed of the ordinary ydadtionV; in the fourth order
and the Heisenberg subtraction terfrin the first order: (4.12)

VAV
5.11 H,4: ik kI Vim Vmn V4.
o L EENE-EE-E)

Therefore, one has conservation of impulse for thepsabessi( - k, k - I, - m m
- n) and therefore for the entire process, but therenservation of energy only for the
total processi(- n):
: g+g’+gi+g’=0
(5'11) 1 2 3 4
g+tg°+g+g =0

The sub-processes that the couphMigmplies for the scattering of light by light are
then:
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Light quanta . . o o
_ Absorption Absorption Em|55|3on Em|55|?n
Electrons ofg’ of g’ of —g of —g
=1 pair creation source electron source electron | pair annihilation
=2 pair creation source electron source positron | pair annihilation
U= pair creation source positron source electrc pair annihilation
u=4 pair creation source positron source positron | pair annihilation
=5 pair creation pair creation radiation of the radiation of the
electron from pair 1 positron from pair
with the positron} 1 with the electron
from pair 2 from pair 2
H=6 pair creation pair creation radiaton of thg radiation of the
positron from pair 1 electron from pair
with the electron 1 with the positron
from pair 2 from pair 2

23

In this, the first pair creation, instead of by thecaption ofg', as assumed in the
figure (and as represented in the following calculaticihgxe can also be an emission of
— g’ from it, etc. l.e., the four headings of the cohsnin the table in the upper row (and
which will be given the light quanta indices 1, 2, 3, 4lirof the following formulas) can
be permuted arbitrarily while preserving all of the remainaige (and formula) rows.

Hu=1
| Hotgta’re)o.

+mc
n 1
—p series| ¢

Electron energy

Fig. 1. The six possible transitions

Indeed, from the behavior of the created pair there sixedifferent possible
transitions, which are denoted jpy= 1 to 6, and each of these six transitions can be
combined with all 24 permutations of the light quanta.

In the following, we denote (cf., figure):
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p=p the (negative) impulse of the first pens created,
p=|p| its magnitude,
pt=p+g the impulse of the electrons in the imbediate states
pP=p+g+g’

p’=p+gi+g®+g’=p—g*

o=+ /(qu +(pp), (i=1- 4)} the corresponding energy magnitude (diéd byc ),
0 ’
eg.:p = p+a )

(5.12) A AL ALAY the signs of these electron energies fogthe
' transition,
Z,= VIV VEVE (up to a factor) the product dfi¢ matrix elements

for the coupling/! in theumerator of (5.11) for
theu™ of the six transition types,

the product of the energy differences in the

denominatoof the frst term of (5.11) for thg" of
the six transition types.

Lk Ey(E- (-
N, ==55 (B~ E)(E- B)( E- )

In the fourth order matrix element, the following suations are to be carried out:

Mo

over the six transition types,

=
1
=

z = %Idp over all possibilities for the first pair creation,
p

z over the spins of the electrons in the initial artdrimediate states,
z over the 24 series of light quanta, i.e., the 24 permuotbf the four
perm

indicesi in g', ¢, ande'.

(By exchanging the emission of light quantung®*with the absorption of the light
quantumg® the impulse of the electroms = p + g* will be exchanged withp* = p + g°,

while the energy of the intermediate st&e ¢ = const. +g" will be exchanged with
E, /c= const. +g°. Thus, exchanging absorption and emission energieseksas

impulses of the light quanta, in formulas (5.11), (5.12) etiinge the sign, which, under
our notation (5.4), will be altered by permutations ofitiagcesi in g'.)

The matrix element can thus be written:



H. Euler. On the scattering of light by light, etc. 25

(5.13) Hii‘CIdPZZ Zu +V1

permu =1

In this, the denominators are:

=(+/-9) (B+B-d-&) (@g+ g+
8N, =(p+ P-9) (B+g-d-d) (g+ g+
8N, =(pp+®-9¢) (B+Rg-d-d) (g+ g+
8N, =(p+P-9) (R+Rg-d-d) (@g+ g+
8N, = (po+ B~ 9N B+ B+ B+ -9 - )R+ B+ 9
8N, = (P + - ) B+ B+ g+ g— d- O g+ g+ 9

S Q

In thenumeratorsZ,, , one must sum over the spins in the intermediates(1, 2, 3)
and the final (= end) state (4).
The spin summation in the state of an electron wibuilsep’ and energy sigi’ can

be carried out with the help of the operator:

[1 Jav )+/J’m0j
2 Po

which yields 1 when applied to the state with impuyiseand energy,, and 0 when
applied to the state with impulgéand energy A'po .

The signs of the energiel, A%, A°, A* of the intermediate electron states and the
productsy’ of the Jordan-Wigner sign function for the six posstibdnsitions are:

sign " 12 ¥ Iy 7
case “ g “ g “
u=1 + + + - +
H=2 + + - - -
u=3 + + - - -
H=4 + - - - +
H=5 + - - -
H=6 + - - -

from which, one sees tha, = /]2/]3 )
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Therefore, the numeratoZg will be:

_ Spur @ p* + Amc
” —Txij/ij(ael) 1_Tj
)+
(O,QZ) 1_/1/12 (ap )paz :BmC]
%) +
(0'23) 1_/13 (ap )p3 :BmC]
0
(5.15) A
(@ (1+ (ap )pojﬁmc]
with:
M= |1 2 3 45 6
,];: + + + - - -
,];’: + - - - + +

(one ha¥Z; = Z3 andZs = Zs).

§ 6. Development of the matrix H;! to order zero in light frequency
and comparison with Heisenberg’s subtraction term

In (5.13, 5.9, 5.10, 5.14, 5.15) in the previous section thtmelement ' was
examined in Dirac’s theory for the scattering of lightligiyt. It is a function of the four
light quanta that take part in the scattering and, gimedight is assumed to be soft, (0.1)
shall be developedn terms of the impulseg/mg g?’mc —g*/mc —g*/mc and energies
g'/mg g?mg, - g¥mc - g“/mg of the light quanta.

Along with the development in the electron chagg®r whose fourth-order term we
have already distinguished between the types of petimnbealculations, we now also
carry out a development in the light frequencies:

The zero-order term in the development of the magi@ment;! in light
frequenciesy/mc vanishes, because the part of it that is constructed the ordinary
couplingV* will be cancelled by the Heisenberg subtraction ¥tmwhich we show as
follows:

In order zero, the denominator (5.14) is:

(61) Ni=N=N3=Ns= pg, N5:N6:2pg.

The numerator (5.15), when divided by this, namely:
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Z,

D) I DI I

perm u perm yu

(62) E{}'el) (1—%} (aez)(l—)l 2 (ap) + ﬁm(j
Po B

ms)[l_ e (ap)+,6’mCJ (ae‘;)(l_ ),4(ap)+ﬁm0j
P

0

will be, after taking the spur and summing over all seesaofis:

63 =Y {(elez)(ﬂ) NN (pel)(pe%(pe%(pe‘)}_
m o

perm 0

In order to carry out the comparison of this ordinargntevith the subtraction term (5.9),
one converts it, with Heisenberg, into a total deriaativ

e G Gl Gt
bl op )L op) ap)
ela _eliﬁ-eli-{-eii ,
dp op, 'op, “op,

and one goes from the matrix element (6.4) to theespanding (in¢ = r) mixed energy
density:

(6.4)

depZZ— - dep é"’“)’hZZ Zy

perm u perm u

. 9 9 9 9
:_C d é(pt)/h 1Y 2 Y 3 Y 4 v
3 pZmI ! (e Gpj(e Gpj(e Gpj(e ap] &

_ 6gﬂcz (elt)(ezft)(ft)(e%) =- (' M |-’ -9

Udp p, €7 =-8m* /v [ if one artificially makes the integral convergent and

calculates fore] <« h/mc.] The claim is thus proved: In order zero the developrnment

light frequencies the subtraction texthgives, as a consequence, no scattering of light by
light.

If the Heisenberg term (5.9) were not added to the matexnent then for a
sufficiently large wavelength Dirac’s theory would giaebitrarily large scattering of
light by light, in contradiction to the result (5.916).
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§ 7. Proof of the identity of the matrixH} that follows from Dirac’s theory
with the aforementioned interaction energyU, of the light quanta

It can be easily shown that the matii% that was just derived in Dirac’s theory

(5.13), whose transition elements describe the scagtefilight by light, is identical with
the previously described interaction of light quanta (2.21).
a) The matrix elemeit’ (5.13, 5.14, 5.15) of Dirac’s theory can be described as a

simple integraf dV over a product of four plane light waves (5.2):
A= et gl S
¢ ¢ ¢ ¢ lg* |V

Then, due to the conservation of impujse- g° + g° + g* = 0 one has:

Hin 1603h3 zSpUI:[dp,[ dv

perm u
1@ p+g)+ﬁmc - (@p+g'+g°)+Bme
1 2

(
¢’ pt(ptg)-¢ | prpre+e),- 9 - o

_(a,p—g")+pBmc
(p_g4)0 . (O,Q[)[l_ (ap)+ﬁij +\/I:
@ Ppt(-1),+4g o Po

b) This total matrixd! can be regarded as a simple matrix element thafuiscéion
U of the radiation field that is the integral of an exgsien in the potentials and their
derivatives (multiplied byz/mc). Theorder of the derivativeorresponds to therder
of the development in the light quantum energies:

If one then carried out the first part of (7.1), vizkitg the spur, integrating over
and summing oveg, and develops in the light quantum energiéacthen what remains
is an expression of the form:
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e’ g g g’ g*
Hiﬁ=?2jdv 2 A+ AAAA+-- -+ L2 2 AYAA+--- [+V?
16c°h” Jom Lo*?®¢* mecd & ¢ mcmcmcmé § 3 4

e i
= oo 2 4V 24 ﬂi”’[

perm Lo" o &g

(o) (323l
mc) \ 0xgd /{ cod te* )\ 0 X¢*
=(g'd° [V, dvI- ¢~ ¢)

with :

4 4
U1: 63 3 Q[Q[Q[Q[+ia_mmmm++[ig [@J[EQJ[@J[}@)-F .
16c°h mc o X m 0 (03] 0 @

(7.2)

In this, the Heisenberg term is included as:

C L) O, L e
vis 12772[Ehcj o e | av 12#%#51(2[%)@@”\/

when one takes the limit— O of the mean-square over

c) The terms that include the potentilslirectly, and cannot be expressed in terms
of the fields strengthBi, therefore ifiter alia) the development terms of ordér 1, 2, 3
in the light frequencigesnustvanish.

Then, since the assumptions from which these lkdions proceed are gauge
invariant this must also be a result; i.e., theyamdmbinations of the derivatives of the
potentials that can appear must refer to fieldnsiites or derivatives of the field strengths.

The vanishing of the null-order terms in the depetent oH? in g/mg which can

come about by means of the Heisenberg subtraationvf', is therefore understandable

in terms of the requirement of gauge invarianceiciviwas indeed also the basis for the
termV*. The vanishing of the terms of order 1, 2, ard the development ig/mcshall
be confirmed later (8 9) for the first order in gea, and by direct computation in some
special cases for order 2 and 3.

Thus, all that remains of our expression (7.2) is:

=) |Gl S5
T 16 me ox)\ cot)lax\ cot

+(Li£6_ﬂj(iia_ﬂj(a_ﬂg(_la_ﬂ3+...
mcox co x)\ ma x0 t)\ 0 @

or.
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73 u=rl 1 [FFFF s LOF A OF e, }
E0 16(2r)’ mcad X mcd X

and one has:

(7.4) Hi= (g'e*|Juad - ¢~ ¢,

i.e., the interaction of the light quanta, in facan be described by an intuitive law and
this is true for soft light of the form (1.4) thats expected above, thus, on the grounds
of invariance, of the form (2.21).

We therefore do without terms of order higher tiaur in the development of in
light quantum energies, hence, to the terms wighdirivatives of the field strengths, and
furthermore, as is already suggested by the tygeedtirbative calculations, to terms of
order higher than four in the development of tleddfiequations in the electron charge
i.e., to powers higher than four in the field sg#rs. That is, we restrict ourselves to
fields that are not too strong and not too quickdyying, in which no pairs can be created
and for which, moreover, it is assumed that thefuste no electrons that take part in the
radiation.

Field strengths small compared to treddistrength at the boundary of the

electron : F. €E .
Wavelengths large compared to the Compi@velength; i.e., the invarial
(7.5) conditions (0.1, 5.2) take therm :

(55545
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Part Il

§ 8. Computation of the matrix element for the scattering of ligh by light (to order
four in the development in light frequencies) for two spcial cases of the
determination of the numerical coefficientsa, Sin the interaction of light with light

Up to now, the interaction of the light quanta wia$ermined up to two constars
£ (2.21). In order to calculate these two constar@aow consider a special process in
which two light quanta of equal energy and oppasiteulse collide with each other and
exchange impulses (or, which cannot be distinguliskitethis point, pass through each
other undisturbed).

The polarizations of both primary quanta shalejeal to each other, as well as those
of the secondary ones. In order to compute twateorns we need two specializations: In
the first one a) the polarizations of the primaight quanta are perpendicular to the
polarizations of the secondary ones, and in therskcase, b) all four light quanta have
the same polarization.

With the notation:

g _g! g _g
one shall thus have:
[ I
(8.1) 9=t 8" =g g =tg| 8 =g
. 3 _ 4 _ _ 3 _ 4 _ _ !
g=tg|g =-9g g-=-"919 =79

and in a coordinate system along wheseis the vectog lies one shall have:

in thespecial casea): in the special cas®) :
[[impulse and] polarizations || impudsel || polarizatior
X Z
©.2) _() (y) (2 _(>9 (y (2
g=(g, 0, 0 g=@, 0 0

O, 1, 0 e=¢’=(0, 1, 0)
e2=e¢'=(0, 0, 1) e=e¢'=(0, 1, 0)
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(y) (y|)
| 61262 61262263264
gl gz gl 92
— - —
3 4 3 .
-9 -g -g 9

o e=e

(2 (2
Fig. 2

We now calculate the Dirac matrix elemef [(5.13), (5.14), (5.15)] for these two
special cases (in terms of fourth order in the developinelight frequencyg/mc and
the matrix element of the field functids, (2.21), set both of them equal to each other:

©3) Hi= %é[glgz Jlato?-%9"+ AOB T8V~ o'~ o),

and thus obtain two linear equations for the detsation of the constanig andf.

(Therefore, the definition of the special casevirich the final state &°, - g* is equall
to the initial stateg', g% in which one therefore finds no actual radiat@mnall, is
generally not worth discussing. It must, moreoberspecified that the final light quanta
—¢®, - ¢* deviate from the initial light quanta only relaly little, since the development
is in terms of these deviations and the terms d&ioeero in this development will be
equated.)

We next compute the matrix element of the fieldction Ul (2.21) for both special
cases (8.2a), (8.2b):

[--] vector produc
(---) scalar product].
|-{ determinant

Therefore, (8.6), (8.7) are calculated to be thegrma elements of the two field
functions (2.21) in the two special cases (8.2a) @12b). As one sees, the transition a)
(viz., parallel polarization) is determined by othe interaction term&? — 8?2 The

other term PB)? gives no contribution here, beca@®@& for a plane wave. However,
for the transition b) (viz., perpendicular polatipa) both of the interaction term®)?
and (©? —B%)? contribute, because perpendicular, as well adlphnolarizations can be
combined in it.
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We must now compute the matrix elemetf [(5.13), (5.14), (5.15)] of Dirac’s
theory for the same two transitions (8.2a, b), and trext the summatiori over the

perm

24 sequences of light quanta that can take part in them.
A symmetry between the light quanta comes about thrtheybpecialization (8.2a, b)
that allows us to easily sum over only some of thenpéations:

As (8.1), (8.2) shows, the matrix element depends upgrtibalvectory, the number
g, and the exchange:

| of g withg®andg® withg* in the matrix element

refers to a change of signsfor....................... g--g .,
but while keeping the same signsfpr .............. g.— +g ,
and the same polarizatians............ccccvvvvevnnnnnn. P, - B, B~ P,

The exchange:

Il of g" with g°andg® withg* in the matrix element,
by contrast, refers to keeping the same signg forg - +g
but while changing the signs fgr
and switching the polarizatms...............cccceeveeeee. P~ P, P~ Py

The four-group of exchanges that is generated by the pdromstd, 11 (I, I, product
| OIl, identity) can thus be schematically applied te farmulas. The six remaining
“classes” of all 24 permutations in these four, howewaust be specially computed.
They can be represented by the following six sequencdgtuf quanta, which are
associated with particular polarizations and intermedsgctron states.
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(5.2) (6.3
(2.2) (2.6
element of the field functior

, the matrix
(8.4)

~(ofenred- g- d)

34

%(glgz‘j(%zigz)zdv‘_ g3_ 94)

is equal to: T Z‘elezgl“ezeAQ"‘glg3 T Z(elez)(e3e4)glg 29394
perm perm
(8.5); in which,D refers to the consta _22 (€%*)g'g*(et M 9°g?)
2 perm
ha )™ 1 \%
D:(Lj ——— + Lt 2 ¢ e
V) T Jgee s peZ{;ﬂ([ g'Tea¥ el e b1
In.the case oE.I polarizations =2 25tg%9%g* + 2370 “g"g? - Z €)%Y [ (a'9)(e%%
this becomes:: 1.3 2 4 14 23 perm o 1.2\ 34
8.5 0,8:9°9"~ 99.9°0 2(g'9°)9°9
() (x)(y)(z) 2314 2 4.1 3 +ata?adat
el:e2 = (0' lv O) gxgcg g gcgcg g g g g g
e=e¢'= (0, 0, 1)
and by further specialization
(8.6)1 to || and opposing impulses, =8|g|4 =32p|4
hence, in thepecial case (8.2a
By contrast, in the case offplarizations =0 :Z L2070 - 2(a'a D) g% ¢
86) ® ) (2 o (g? )2(9394) (99979
91:92:93:94:(0, l’ O) +gggg
and by furthers.pe(.:ialization -0 —64f|4
(8.7)4 to|| and opposing impulses,
hence, in thepecial case (8.2b
8.80 8.88 8.8y 8.80 8.8¢
Sequence P‘I)riac”;?:%')‘ P?riacrzsaéi%';‘ Intermediate states
Iig;t used in (5.15)| used instead used in (5.14), (5.15)
quanta el 62 63 64 el 62 63 64 pl p2 p3 pl g1 g2 g3 g4
1,234 —ql =
ggg9g yivlz|lz|ly|Y|Y|Y]|prte| » |[pta|p |9 9799
1,234 —ql =
gggg yivlz|lz|ly|Y|Y|Y]|prte| p [ptg|p|9]| 9799
1,234 —
9999 |y|z|z|y|Y|Y|Y|Y]|Prto|p+t2g|p+tg|p |99 790
1,234 —

9999 |y|z|z|y|y|Y|Y|Y]|prte| p |p+a|p|O|79 790
1,234 _ —
9999 |yl|z|y|z|y|Y|Y|Y]|prs| »p |pre|p[O|79 99
1,234 _ —
9999 [y|z|y|z|y|Y|Y|Y]|#ts|pr2pra|p|[0|79 970
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The matrix element (5.13) is a sum of products of thmaratorsZ,,, which refer to
the collective matrix elements (5.15) and the reciprdeabminators N, , which refer
to the energy differences (5.14).

Certainly, in the denominators one can sum over thaygations of the polarizations
(Il: py - pz, P2 — Py), because the polarization directiggsandp, appear only in the

numerator and not in the denominator, and becausaibs®guent mean over the angle

of p does not distinguish between these two polarizatioactians (pj Pl =p?pl).

Therefore, one can indeed qejz p2 in the numerator (in expressions of second order in
y)-

One can sum over the permutations of the light quarnengies in the reciprocal
denominators N,, because they do not appear in the numerators (5.15)one.can
omit all odd powers of from the computation of the reciprocal denominators.

However, the permutations of the impulsesy(l» — g) must be carried out by first

multiplying the numerator by the reciprocal denominatogsabsey appears in both; i.e.,
under this multiplication, all odd powersgf, ... drop out.
After these simplifications, all that remains in Emmz over the 24 permutations

perm
of the light quanta is just the summation of the maglement over the six sequences
(8.8) and the multiplication of the results by the daet.

The reciprocal denominators Nl/will be, as one finds by substituting the
specialization (8.8 in (5.14), developing in light frequencigéng g/mcup to order four
and omitting all of the odd powers g{cf., eq. (8.9)).

(The number in thé" row and thg™ column of the table refers to the magnitude of
the term in the development that is at the top oktheolumn for the expression that is at
the left end of thé&" row)

For the numerator of the matrix element in theecay one obtains, when one
substitutes the specialization to polarizations (8.8) in (5.15), takes the spur, and
replaces th@ quadratic termsp; with p; :

For thesequenceg'g’g’g* and g'g’g’g®:

Z/I:Sl_l_sz{ A; — A/f _A/fA/IS_}_ 1 — ZA/IZ
y 1.2 3 4 4
e B BE ERB BB

o FﬁSRfFf
PoPs B B[ +2p2[=('p?) = (D) = (0PI - (p b I +2(0 D - 2(mc) 1.
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Eq. (8.9)
Sequence Reciprocal | 1 | (°9) | o | (bg)’ | (b9)0” | (0)* | 9" |(p0)°0°| (b)*
denominatol by | 2Py | 4pS 4p | 8p; | 8p | 16| 16p; | 16p;
1 _ | 1] -2 9 5| -22|-14 | 30| 56 | 42
g'g’s’g* N,
1.1_ ] 2 -6 8 20| -10| -70 | 32| -28 | 252
N> N
1
N, S| 1| -4 -3 15| 24| -5 | 10 [-140 | 210
1,1
Ne Ng | 1 -3| -1 9 8| -28| 2|-44| 90
1
glgzg4gs ~ 1 0 9 3 0 0 30| 28 22
1
1 1
o] 2 0 8 8 0 0| 32 0| 64
1 _
E = 1 -2 -3 7 10 | - 18 10| -60 66
1,1
. & =| 1| -4| -5| 17| 48| -80| 38|-372| 414
1
1 1
NN | 2] -2 -4 68 | 72 |-392| 44| -840]|2332
1
N, | 1| -6 3 33| -18 |-182|-18| 281030
1 1
[ S
N5 Ng 1| -5| -5 25| 56 |-132| 34| -484| 738
9'g'c’s? 1 1 -2 -1 5 6 | -14 2| -28 42
Ny
1.0 2| -6 8| 20 |-50| -70| -8| 252 | 252
N> N
1
N, | 1| -4 7| 15| -48 | -56 | -6| 252 | 210
1 1
Ne Ng | 1| -3 -1 9 8 | -28 2| -44| 9
9'9’d’d’® l\ll - |1 0 1 3 0 0| -2 -4| 22
1
1 1
N72+W3: 2 0 -4 8 0 0 12 -60 64
1
1N41‘ 1| -2 -1 7 2| -18 2| -28 66
T4+~ =
N5 Ng 1 -1 3 5| -4 -8 6| 12 42
R Nl = | 1| -4| -3 17| 36| -80| 26| -312| 414
1
1 1
N—2+W3= 2 | -12 | -16 68 | 192 |-392 | 144|-1740| 2332
1
N, | 1| -6 -5 33 62 |-182 | 30| -564| 1030
1.1 _
Ne N | 1| -5| -1| 25| 24 |-132| 2| -276| 738

36
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For thesequenceg'g’g’g* and g'g*g’g™

s i L2
'\ BE RE BB ﬁé

1 |S+8p@
pépéIOS'DSLijl—(plpz)—(pSp“)—(p?p3—(pb‘)+2(pb3—2(mc)21-

In this,S;, S are abbreviations for:

Sl:/]i/]s_/]j(p p?) +(mo)* Az(psp)+(mc) Ag(p?p‘)+(m¢

P 5 B SR o
+)|5)|3(p p)+(mG” o) +(mg” Az(pb3+(m¢,
P P5 oo a3fe}

_| [0'p?) +(mQ(pP) +(mE ] H(p D) H mecfi( pb)* K md®
A(P'p?) +(MYN(p%p) +(mp ]

Under further specialization to parallel impulsas,one finds by substituting in (8)8
and developing ig/mcup to order four, these expressions become @f(8e10)).

In order to divide the numerators (5.15) by theadeinators (5.14) and sum over the
six transitionsy and the 24 sequences @.&ne must multiply the columns of table
(8.10) with the corresponding columns of table Y&8d by the factor four. One then
obtains, in terms of fourth order gdimc after taking the mean over the positron direction

p: [cf., 8§ 9.7]:

—63+10023L 7734p— 315'0—

P 305p, 505
(611 ZZN_ s 3 ; 47606
perm u pO +2280 p 5 + 752 p 5 —_
2(5007p, SUrp, 81091111

and after integratiof) 477/ p* dp over the positron energy :

) 2 1
Jo m”p P me3)(me5) (my”
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Eq. (8.10)
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Eqg. (8.10) (cont.)

(rg)lgP (pg)° lgf (pe)’IgP (pg)*
P P P P pe
2
1| 2Py |spyps| 1 | 20) |8efRE | 1 | 20f [8RfP3| 1 | 2P 8p§4p§ 1 | 200 | 8eke3
P2 | m @ o B | o p2 | Po B | o
-4 | -4 4| 16 8 -2l o|-1]|10]| 16| 12| -8| -2 | -8
-4 | -4 4| 16 8 -2 o|-1|10| 16| 12| -8| -2 | -8
12| -4 4 |-16 8 -2 4|-1]10|-32| 12| -8| -2 8
18| -4 |-8|-26 8 |-72| 12| -1 | 19 (=47 | 12 |-312| -4 | 14
0 0 0 0 0 0 2 o|l-11]-6 0 6 4| 0| -6
0 0 0 0 0 0 2| o|-11]-6| o 6 4/ o -6
4| -6 0 |-4 | 10 0 -2 4|-1]| 10|-mx; 6| -8| 24| -6
0 0 0 0 0 0 |-712] 1172 | -1 19 |- 39 6 |-31/2|832| -6
78 | -22 | 12 |-138 | 48 |-10 38|-9 66 |-402| 118 | — 56| 488| —166
0|-221| -8 0| 48 g 0|9 |[-34 0| 118 28 0| — 166
0|-221|-8 0| 48 d o0|-9 |-34 0| 118| 28 0| — 166
84 | -22 | 16 |-148 | 48 |-237 792|-9 | 75 |-417| 118 [-1272|1011/2 ~ 166
12| -4 4 |-16 8 | -2| 4| -1|10]|-32| 12| -8| 32|-16
12| -4 4 |-16 8 | -2| 4| -1|10]|-32| 12| -8| 32|-16
12| -4 4 |-16 8 -2 4| -1| 10| -3 12| -8 32|-16
18 -4 8 |-16 g |-72|1w2 | -1 10 | —47| 12 | -31/2| 99/2|-16
0 0 0 0 0 |-2| 4| 6|-16| 6 | -4| 12| -6
0 0 0 0 0 |-2| 4| 6|-16| 6| -4| 12| -6
6 0 4 |-10 0 2| o | -1 |-10 8| 6 8| -12| -6
0 0 0 0 O | 72F32 | -1 |-19| 23| 6 | 31u2|-592| -6

-38| —-22|-12| 82| 48 | 10| —18| -9 |-66| 230]| 11€ 56 | -316| —166
40 | -22 8|-56 | 48 | -6 20| -9 34| -172| 118 | -28| 172|-166
24| -22 8|-24 | 48 | -6 16| -9 | 34|-124| 118 | -28| 108|-166

-60 | —-22|-12 | 124 | 48 |232 |-472| —9 |-75| 203 | 118 |127/2 |-795/2| —166

Likewise, one carries out the calculations for thecsal case (8.2b): When one takes
the spur in the numerator (5.15) for parallel polarizei(8.8), one obtains:
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Eqg. (8.15)
1 (pg) laf (rg)®
2 2
Sequenceé Numer Po Po Py
-ator 1| 207 [8eypz| 1 | 202 |8piP3| 4 | 2pf |8PVPZ| 4 | 203 |8p2p3
<Py 2py e e 2Py
| m | Py g | P B |
T 272 3 4 —
91949392 “a=| 0| -4 1] o 41l-21|-2 4 | -1 2| -8
099y | 2=%=| 0| -4 1 0 4 1-2 | =2 4 | -1 2| -8
%=1 0| -4 110 4 1-2 -2 4|1 2| -8
Z="%=| 8 | -8 110 8|l-2 | -4 6 | -1 4 |-14
RORCKN ~z=| O0|-4 | 1|0l 0| 0] 2| 4|-1]-2] -8
14230 0| -4 1 0 0 0 2| 4 |-1|-2| -8
V) Z3
9999 —z,= 0| -4 1 0|-4 0| -2 4 | -1 2| -8
—z=-2=| 8|-8 1| 0| 0| O| -4| 6 |-1| 4|-14
9'0’g’y’ ~z=| 0o|-4| 1|0 | 12|-4|-2|1|-3| 2|-40
132t 2=2%=| 0| -4 110 8| -4| 2| 8|-3|-2|-24
gggg —2,= 0| _4 1 0 8| -4 2 g8 |-3|-2]-24
-z=-2%=| 8 | -8 110 | 16| -4|-4| 14 |-3| 4]|-46
a2 22 a3
Z#:§+2I€ gt -
Y Y
1 S,+8H
1.2 3,4 2 1.2 3.4 4
(8.14) P05 5 ko | —2P;[(p'p?) + (0 )+ () +(p b ) +4(mo)

(88 cf,pp(?).

When one substitutes the further specializationptrallel impulse (8@ and
develops in light quanta energgscthis becomes (cf., eq. (8.15)).

Multiplication of these numerators (8.15) with t@responding denominators (8.9),
addition over the six sequences (8.8) and the asesy, multiplication by four, and
taking the mean over the anglepofives, to terms of fourth order in the development

light frequencies:
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Eqg. (8.15) (cont.)
(rg)lgP (o)’ lgf (pe)’IgP (pg)*
P P Py o pe
L[ 20| oer| 1 | 20 |80t | o | oo [oefel 1 | 205 (OB | 2 | evked
5| o B e | oo | P B |
4| -12 4 | -4 | 16 | -8 -2 -4| 1|-10| 32|-12 8] -32 16
4| -12 4 -4 | 16 | -8 2| -4 1]|-10| 32|-12 8] -32 16
41 -12 4 -4 | 16 | -8 2| -4 1]|-10| 32|-12 8] -32 16
8|-18| 4 |-8| 26 | -8 2|11z 1 |-19| 47 | -12| 32| —g9;0| 16
ol ol o| of| o| O |-2| -4 1| 6| o| -6| -4 of| 6
ol ol of o| o| O |-2| -4/ 2| 6| of| -6| -4 o 6
4 6| O 4 -10| O 2| -4| 1 |-10|-24| -6 8| 24| 6
O o O 0 0| o | 72|-q1p| 1 |-19|-39 | -6 | 312 832| 6
-78 22 |-12 | 138 | -48 10| -38| 9 |-66|-402(-118 56| 488| 166
-48 | 22 8| 80 |-48 | -6|-24| 9 |+34 0-118| -28| 0| 166
-48 | 2 8 80 | -48 -6|l-241 9 |+34 0|-118| - 28 0| 166
-84 | 22 |-16 | 148 | —48 | 232|-792 | 9 |-75|-417|-118| 127/2|1011/2| 166
1 “o_
2379 * *
(8.16) 4917 P+ 8400
:4|g|‘1 2 3p0 2 5p, 350,
7
P | 26316+ 238082
50 3056L7p;
and this becomes, after integrating oper
C J' dpzz
perm u
(8.17) 41 917+ 2379
= C@m(-2)# 2806 3HI7 ZIWET9
8400 26316+ 23803
3MBYP HI19111 BB 71T 1k
32 )
(8.18) = 4nm6t(——j(ij [T = H?
509/ mc

41



H. Euler. On the scattering of light by light, etc. 42

The matrix elements of Dirac’s theory (8.13, 8.18) an nalculated to fourth order
terms, as well as the matrix elements of the lgghanta interaction (8.6, 8.7), for both of
the transitions considered (8.2a, b).

Setting them equal to each other (8.3):

he 1 4n®B2 g\
a) O (320- D——=-2""932|C
) ( 89 gl o= c (mcj

b) I (64  )lg['D

4
he 1 _ 4m01608 gj c
e E 5 mc

determines the two constantspg.

1

3607
7

3607

(8.19)
:8:

The simplicity of the results makes one suspeatitmust be possible to arrive at the
results that were derived here by a simpler patis simpler path is described in a work
that appeared in the meantife

8 9. Confirmation of the method

In the foregoing sections two constamss were determined in such a manner that
the Dirac matrix element ! for the scattering of light by light (in terms fofurth order

in the development in light frequencig¥md) in two special cases (&2 would be
represented by the expression (2.21):

fe 1

(9.1) 7 e

j[a(%©)2+ﬁ(%2—532)2] dv.

The possibility of making this determination reets the fact that both expressions
give a non-vanishing matrix element to the twogiaons in question.

However, the assertion that it comes down to, (Bal) completely represents the
scattering of light by light in all cases (up toufth order ing/mc, includes the
assumption that there is a corresponding expredsiothe scattering of light by light
whose development terms of order 1, 2, and 3 irDihec matrix elementH;} in light

frequencies always vanish (due to gauge invariaand)(due to its Lorentz invariance)
the term of order four in this development of theaD matrix has the form (9.1).

1) W. Heisenberg and H. Euler, Zeit. f. Ph§8, pp. 714, 1936.
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The assumption and the assertion that follows fitothat we also obtained the result
(9.1) without specialization by carrying out the computatibthe Dirac matrix element
for four arbitrary light quanta, shall now be confirmedsbyne numerical calculations.

In the development of the Dirac matrix elementghtl frequencies, we calculate:

1. in the first approximation in the general case,

2. in the second approximation under restricting assonmgpan the polarizations,

3. in the third approximation for the two special cagearal b) that were treated
above, and determine:

4. the constantr, once again, in a manner that is completely independéhe mne
above.

When 1, 2, and 3 yield the result 0, and 4 again givesthdto = — 1/360/7, we can
see a direct confirmation of our method in this. _

1. The first order term in the development of the ®iratrix element ig'/mc must
always vanish since it is linear in the impulses andge® of the light quanta as first-
order terms, symmetric in the four light quanta, due to shenmation over the

permutations of the light quanta, hence 0, as a restitteodonservation Iaw§ g'=0,

perm
> g'=0.

perm

2. The second-order term g’ﬁmcin the Dirac matrix element shall be calculated in
the special case in which all four light quanta have [@rpblarizations, but arbitrary
coplanar impulseg', g% g°, ¢*.

In this case, one obtains, by developing the numerdfo(s.15), which include the
products of four ordinary matrix elements for the sukepss, up to order two ig/mc
(instead of for the six transitiops= 1, ..., 6, of which only four are distinct, one has four
equations, which give four individual equations, and are suimethinto one equation

Zl
Z,=2,

for the column of four numbers):

ZSZZG
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zZ, 0 1 1 3 -~
Z = 0 211 411 z 2 -
=5 =g va el g0l U 4Pl gigt) % g7 1+ po
Z, 0 P |1 Py |1 o 1 -
Z. =7, 1 1 1 4 -
1 [ ] -1 10 -
Py 1 (g'e)| (-1 .P| 8 |-
(9.2) +8—2(p, 20 +g°-g") . |—— +8—=| _|+80=
P 1 6p | |-l |8 B -
1 | 6 13 -~
1 -28
n2| | -1 21-20
_ g )7l g 7 g Py T 30
6P, 1 Py | —20
6 -37

In this, one has already taken the mean over4hmePmutations of the light quanta in
the second-order terms, while observing the follgmielation, which follows from the
conservation laws:

(9.3) .= (g'9) =D (s°8H)=-3D (g'9?)=-3 D (g'd°) = ...

perm perm perm perm

The development of the reciprocal denominatofs, 6.14), which represent energy
differences between the intermediate states andiribé state, up to the same degree
becomes (in the notation above):

[\ 1 -2 -1 1
NN o112 1 N 2| 73 4
== |t + +
Nz [l 2 (pg’) _a (pg”) _1 (pg”) 1
Ng'+ NS* 1 -3 -1 1
(9.4)
5 25

L(@g”)| 0], (rg)| 90
12p5 |-1| 2p! |55/
-3 39

in which the mean over the permutations of ligharja was likewise already taken in the
highest order term.

Multiplication of these numerators (9.2) and reegal denominators (9.4) yields, in
its second-order terms @Vmg, after summing over the six transition tyges 1, ..., 6,
taking the mean ovey, and summing over the permutations of the lightrga, and

considering (9.3):
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¥ Z, . _(a'9)[ 54, 564p° _3876p*  3564p°
3 ¢ 36 p0 517

and after integratiof) overp:
1 2
36 564 3876 356
Y Y =4y
IPZZ z[mcM 3 306 3BHL 5]7D§

perm u perm

=0.

In fact, the second order termdtimc in the Dirac matrix element for the scattering of
light by light therefore vanishes for arbitrary ioipes and parallel polarizations.

The corresponding second-order term for non-paradilarizations shall be examined
only in the special case (8.2b) of perpendiculalaqmation and parallel impulses of
equal magnitudes.

Here, one obtains for the second-order term ofCinac matrix element, when one
multiplies the numerators in the columns of ((8.1h the reciprocal denominators in
the columns of (8.9), which leads to terms of secorder ing/mc and takes the mean
over the positron directioj

ZZ Zy _ Z:|g|2 _332p° 11801‘_ 3564p°
36 g 3BTRS

perm u perm po 3 po

and after integration over the positron engugthis becomes:

3 3[5 37 33T

( j[44 332 1180 3564J

jdpzz Zy = 478y

perm u perm

=0

in agreement with our general assertion.

3. The vanishing of the third-order terms in thtevelopment of the Dirac matrix
element in light frequencies shall, in any casegdreied out only in the two special cases
that were treated above (8.2a, b) of parallel imgsilwith equal magnitudes, along with
either parallel or perpendicular polarizations; ave already confirmed this, though.
Then, from pp. (?) all of the odd powers of thénliguanta impulses and energies drop
out, because one sums over all permutations cddbal (opposite, resp.) light quanta.

4. The constant, which is definitive for the scattering of lightittv light, shall now
be calculated in a new way. Instead of considemsgve did above, a special case (8.2b)
of equal (opposite, resp.) impulses and equatiegntltrix element (5.13) of Dirac’s
theory with the field function (8.4), we now considhe general case of arbitrary impulse

(mc)2 n+3’

o p" 1 1
DDl s
3
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(with parallel polarization), but restrict ourselveseguating with one of the terms in
(8.4) that refers to the transition considered.
From (8.4), the matrix element of:

gl t j(asz D)2V

for a transition with || polarizations includes theee terms:

(9.5) D mm@ LS le'de) - 26 90" + o'ofae’].

perm

We focus on the middle term and determine the emmatby equating this term:

(9.53) an’C é( 2 (g'¢)

with the corresponding term of the Dirac matrixnedst, which we now compute.
The matrix elementd;’ in Dirac’s theory takes the form (in its termsfofirth order

in the development im/mc of a symmetric form of degree four in the foughl
guantum impulses and energies. Due to the corigamviaws, however, they are not
independent, and furthermore, they may all be liggsmmposed of the four forms:

> (g'e®)(e’s "), > (g'g?)a’g’, > g'g’d’d", D (g'a)(e%

perm perm perm perm

which are mutually linearly independent.
As a simple application of the conservation laws:

zglzo’ zglzo

perm perm

shows, these linear relations between the diffetergns of fourth order ig/mc of the
Dirac matrix element read:
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Eq. (9.6)
Y @)Y | 2 (a'e)9°e’ | D g'd’d’g’ | D (a'a))(e’s?)
perm perm perm perm
> (g'6")9%°0°= Y. (g'a")(g’") = 0 0 -3 0
perm perm
> (g'g")9'0°= D (g'g) (8" = 0 0 + 2 -1
perm perm
Z (glgl) 2 = O O - 2 3
perm
> (g'9))g'g’= 0 -1 +1 0
perm
D (g'g7)g'g’= 0 +1 -1 1
perm
> (g's*)(g's®)= -3 0 +1 0
perm
> (g'9?)2= +1 0 -1 1
perm
The linear relations between terms like:
> (ra")(pg®)9’°g”,

perm

which includes the positron impulsep;-when integrated, follow with the help of their
properties relative to the mean over the anglgs of

(pg")(pg®)(pg®)(pg? =3L[5[(919 SR DEICEDICR-DEICE-D R D]

p; Wpg")(pg®)(pg)(pg ) =%%V[(gb SICRDEICE-DICEDEICE-DICFD

py [pg")(pg®)(pe’)(pg?) =$[(gb ot )+(ab (o b F+(ad*)(a’s))]
(9.7)

(pa")(pg?) = %(glg ?)

v P
Py g (pe") =5 (0 a?)

. P
Py ra)(pg ) = - (o 7).

The demand of gauge invariance now says that inaile (9.6) the linear relations do
not appear in the four columns (in the sum oveteaxlns of the Dirac matrix elements)
and the demand of Lorentz invariance says thatfitstethree columns (summed over all
terms), which have the ratios412 : 1, are coupled (9.5).
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We now arrange (9.5a) for only the terms of the secohdnn to matter i.e., (9.6),
(9.7) in the Dirac matrix elemertand compute only the terms:

> (g'9%)9°0* =) (g9 00"
perm perm
> (e (pe?) 99" =D (rg?)(pe) 9°0"
perm perm
D (g'9")9'9’=> (899 9%
perm perm
(9.8) > (pg")(pg®)9'e* =D (pg")(pe) 9°0"
perm perm
1
> (g'g?)g'g’ =5 D (s9) 9’0"
perm perm
1
> (rg")(pg?) 'y’ = - D (rg")(pg?) g°g",
perm perm

and the ones that can lead to them, and omit allsther
With this simplification, one obtains the numeratof the Dirac matrix element by

developing (5.15) im/mc (in the same notations as the transition typesi, ..., 6 by
putting them in columns, as in (9.2)):

Z 0 1 1
Z,=Zy _ g0 L8 (1] _8p)i1
z, | lo] p(1 ml|1
Z. =2, 1 2 1
3 2 -1
4p5 1 2 2 1 4 -1 Sp;f 1.2 4
-—r + + ——Y(p,-2g"—g°+
of (pg)| |+ (pe?)| [+ (e _, pg(p g -9 +g")
4 2 -2
-1 0 1
1.2 1 2 0 [/ 1 4 0 2 4 2 1
(9.9) _2{(9%)_@9)(?9)} o (ggz)_m*)(fg‘)} +2{<ggz)_<pg pg )}
Po P o [ m ¥ 1 Po P 1
-1 1 1
5 1 1
o] a8, a1 _(eg)(pg) | 7|, (be)(p.a'+0?)
; (g79) 3 (09 +g )l 2 . ~
5 1 1
1
_g P | _(aazys Ag)pe®) _ (e (pe®) _ (pa)pa ) |11
5| —(@9°) > - _
Po L a5 a5 S
1
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Here, the development goes only up to terms of orderdwoe the terms, which will
be summed over, will include two powers of the lightrquen energies®g” ..., which
appear only in the denominators (5.14).

In a similar way, the development of the recipradahominators (5.14) simplifies
into:

N;* 6 -4 -2
N+ N _g'¢’|12| ¢'¢’| 12 &’¢d’
NG LR |4 | 6 R |2
N+ Ng' 4 -4 0
I -12 -8 3|]
glgz |30 2| 722 4 8
+ + +
o (pg) 14 (bg)| 4| +(pg?) _3
|0 i |-l
| 6 3 4|
g'g*|, ..|-30 | —12 | 18
+ + +
(9.10) o (pg) _18 (pg”) _3 (pg”) 8
b e [l
3 2 -2|]
g°g* n| O | 2 n| ~2
+ + +
q (pg’) . (pg”) 5 (pg”) 5
-1 ~3 ~3(]
-21 91
L (@'97)9°g"| 30| (pg)(pg)g’g’| 70
2p; 9 2p; -119°
5 -21

in which the terms of order 0 and 1 can be omitted.
Multiplication of these numerators (9.9) and reciptadesnominators (9.10) yields the
fourth order terms by taking the mean over the posdigctionyp:

Z, 1f_ 25p* 231p* 99p° 69’ o°g’
ZZN_#__E Y B a e N
U p po po perm po

perm u 0

and by integrating over the positron enepgy
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Zdep—
perm u
1.2 344
(9.11) :_4,7Cz(gg)g4g [ 5,25 231 99 }1
< (mo* |30 3B 3579 HUgl
_4770( jz (99 )9394
perm (mc)4

With this, the definitive term of the Dirac matrix mlent for scattering of light by
light for parallel polarization is calculated.
The matrix element for the corresponding terms m light quantum interaction
(2.21) is, from (9.5):
h

cl 1 3.4
(9.12) T E = D(-2)Y (g'9")9°g

perm
Setting both expressions (9.11), (9.12) equal th @sher determines the coefficiemt

L
36077

in agreement with the earlier calculation.

8 10. Discussion of the results

We can regard our method as having been confianddsummarize the result in the
following way:

Just as in the ordinary Maxwell theory an electrisn surrounded by an
electromagnetic field, so is the light quantum afehtheory surrounded by a matter field.
The Hamilton function of such a field is thus themsover the energies of light and
matter, so it includes the degrees of freedond ttength@nd charge waves.

However, just as in the special case in whichraasversal light quanta are present
and the electron moves so slowly that nothing carcieated, this Hamilton function,
includes only the degrees of freedom of the elestr@vhose energy then replaces the
electromagnetic field and whose creation will béicated by the Coulomb interaction of
the electrons): likewise, in the special case amsd here, in which no actual electrons
are present and the energy of the light quantatisulfficient for the creation of electron
pairs (0.1), one can approximately replace thegnef the total field with a Hamilton

function that depends on the field strength&3 alone:
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D E,, (gradd, j- (1659) < {ij %

(10.1) U=Judv for i me S
108, h )
|B < E,, (gradB, j- ( atj < {Wcj B
By =
_D2+B 1 e 1 e\
(109 U=—— EO[(% -D9)2+7(BD)7 [mczj
(10.3) Di()Bu(&) = B()Di($) = 2hci AE-¢).

This Hamilton functionU is to be regarded as the beginning of a developrtieit
corresponds to the powers of the field strengthsouprder four (corresponding to the
development of the Dirac theory in the electronrgbaup to fourth order) and is carried
out in the degree of the derivative of the fieleesgths up to order zero (corresponding to
the development of the Dirac matrix element up tdeo four in the light frequencies
g'/ma.

The addition to the Maxwell energy in (10.2) is iateraction between the light
guanta, which refers to the creation of virtual texaaind replaces the energy of the matter
field that surrounds the light quanta. The appr@ation that is considered here (in which
the derivatives of the field strengths are negtbctdescribes a local interaction of the
light quanta. The canonical equations that cooedpo this Hamilton function (10.2)
read:

%‘B+r0t€ =0, divB =0;

—%@Hoth =0, divD =0;
(10.4)

.. lncl. .,
R EO[ (@2 —B2)¢ - 14EB B ]
_ 1nc 1, .,

h=Br o E0[4(ez —B)B-14EB ]

or, in other notation:
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%%+rot€ =0, divB =0

—%éﬂot%: 0, div¢ =4p;

(10.5) i 11 iit[4(e32—932)ez+14(€93)%]
¢ 90TE B4 - BB - 14¢B ]

NI
4;7;9_907762 EOZd|v[ A@E*-B%)E-14¢B 1B |.

They can also be derived from the variational gipite [ L dV dt= extremum for the
Lagrange function:

2 _m?2
(10.6) L=% 2% +9$ %é[(ez—%z)%?(e%)z]
7T

under the associated conditign= - Eﬁl, B =rot2. In the first form (10.4), these
c

equations will refer to the coupling of the fieldthvthe virtual matter by a coupling of
the electrical field strengtk€ with the electrical displacemer®® and the magnetic

induction® with the quantity, just as in the electrodynamics of polarizableiésdhis
will represent the coupling of the actual mattethwhe field.

In the second notation (10.5), the virtual mattet is created by the fieltl, 5 enters
directly in the form of the apparent density: o€, 98) and the apparent currant i(&,
$B). Moreover, this nomenclature (10.5) shows that @quations (10.2, ..., 10.6) that

were assumed here are in agreement with the geeguations’) for light and matter,
except with the mattep, i being replaced with particular functions of theldi strengths
that produce it.

As one easily deduces from (10.2), (10.3), or4L@ne has the conservation laws:

10U, . [eB]

0;
c ot 4T

_u-1
(10.8) T=U-— (€D, 4D +HB +HP)

10 [BD], 0 1
== +—T,=0; T, =—(@ED,+
cot 4m  0x 'k Y 477( Py *tH.3,)

T =Ty, [€9] =[D%],

1) W. Heisenberg and W. Pauli, Zeit. f. Ph§8, pp. 1, 193059, pp. 168, 1930.
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which shows that§B]/4r = [DB]/475 the energy current and impulse density, are in
agreement with the general formulas of quantum dynanfiesee fields).

The equations are nonlinear, i.e., there is no cornelspg superposition principle for
them and they describe a scattering of light by light ttecomes large when the fields
have sufficiently strong field strengths (compared Hg) and sufficiently short
wavelengths (compared t/ mc).

One obtains the interaction cross-secti@nhfor the scattering of light by light when

one takes the square of the matrix elemetft of the interaction in (10.2) for the
transition of two light quanta with impulse} g° energiexg', c¢, and polarizations',
¢ into two other ones with impulses; - ¢*, energies ¢, — cg’, and polarizations®,
¢!, and multiplies this by the numberAW, which is the number of secondary light

quantum pairs -g°, — g* per energy intervad(| g° | + | g* |) for the spatial angldQ,

aroundg”, and finally multiplies it by%” o
Cc

(ee®)(e%")g'g’g’g"
:_;@i(ﬂjz_l 5 ~2(['g' e (e %) g g *
3607 ¢ & g’ g’g" |+ Il"a DA e ol e b
+7|ee’g” |le%’g " l9'g°
g+g’+g’+g*=0
[gl+92+g3+ g“=0j

__do, (& V(&) 1
dQ_(lSOﬂ)z[mczj [hcj (mg?
(10.9) (ee®)(e’)g'9"g°g"
0 g* —2(e'gle’aN(ee) 99"
9’0" g1-cosy") | fep | +(oTe oD ol ]
1 et o 'g?

In order to give an example, we calculate theramion cross-section for the case in
which two light quanta of equal energies, oppomsitpulses, and the same polarizations
collide with each other and turn into the sametlighanta with the same polarizations.
For the wavelengtil and the scattering anggeone then has:
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(10.10) dQ 2d9[3+co§¢]{ Mij —16
mc? mc¢/ A

The interaction radius for the scattering of lidplyt light
4 is then of the order of magnitude 10cm for yrays, 10%
for Rontgen rays, and 19 for visible light, and is therefore
quite difficult to establish experimentally.
2 ¢ 1 The fact that (despite the representation by idakeld
— functions) it will be treated here as a purely dquan
mechanical effect has already been suggested byatie
that the additional term in (10.2) is proportiotah.
3 It is now interesting to compare the deviatiorcaédted
Fig. 3 here for the Maxwell equations due to the quanthetmte'gic
possibility of pair production with the one givey Born )
as a consequence of the classical theory.

As is well known, Born, on the grounds of the falkat the classical Maxwell
equations give an infinite field energy to the &lew, set down alternative field equations
in which he could determine a certain constanuirhsa manner that the field of a point
chargee possessed an energy mf?, and then quantized these equations in such a
manner that they are described by their propeasea canonical system. Born’s theory,
when developed in field strengths, has for itg fesm, the Hamilton function:

2 2
U:j% +D7 . (1.236) 1

(10.11)
8 321 E

= [[(B° -2 +4(3D)7 dv.

On the grounds of invariance, the additional teimghe Maxwellian energy in
Born’s theory (10.11) and in Dirac’s theory (10&)ree up to numerical coefficients.
The numerical coefficients differ in the two thesriby the factors:

4 e

_— for the term -9
4577[11.236§ €’ ® oY’
and:

7 hc

—— — for the term B
457[{1.236§ €’ ®o)".

Due to the actual value for the Sommerfeld finedture constant, the numerical
values of these factors are 1.7 and 2.9, resp. ebder, it is noteworthy that the
guantum-theoretic deviation from the Maxwell eqoiasi is, in any event, of the order of
magnitude of the classical expression that one avexbect on the basis of self-energy.

1) M. Born, M. Born and L. Infeld, Proc. Roy. Soc. Londéh 143 pp. 410, 1933; [All44 pp. 425,
1934; [A] 147, pp. 522, 1934.
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This agreement in the order of magnitude naturally méaatsin Dirac’s theory the
guestion of self-energy will really be solved when one goesufficiently high-order
terms in its development in electron charge.

However, regarding the question of the convergence, kmaws that the
consideration of higher-order terms in this developneant lead to another situation, as
one finds in the lower-order approximations.

As eq. (10.2), (10.4) shows, it does not, by any means, slagad to be permissible
to truncate the usual development that one writes dowthe field theory in the electron
chargee (i.e., here, in the field streng®#/E, [J72/ mc) after the first non-vanishing term.

If the fourth-order terms that were written down heaa, (as is true, as Weisskopf has
remarked, for the terms in the derivatives of the figtikengths, which are no longer
written-down, for sufficiently short wavelengths), ufficiently strong fields, be given
quite nicely by a contribution that is of the same oafanagnitude as the previous terms
of order 1, 2, and 3 that have sufficed for all problemsilupow, i.e., the development
in the couplinge of light and matter need not converge when (say, &irdarticles or in
the neighborhood of an electron) this coupling becomesirttimate through matter
creation.

One almost gets the impressidn in the development of scattering theory in the
electron charge, that something similar is going on, anvame would calculate a finite

expression for:
J'l‘ /1+E dr
0 r
through a development:

_ wdr _ pprdr
J'\/ljdr Idr+ej ezj‘oaz ,

whose individual terms diverge with increasing orde

The results of this work thus mean that in ordergb further into the principal
difficulties of scattering theory one must next lse® replace the development
in €’ / hcwith something else.
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