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Abstract. — There exist two kinds of proof of adiabatic invariarares of which is derived on the basis
of mechanics, while the other is derived from thernmaahyic theory and by using Boltzmann’s formulas.
The identity of the two methods, which is obviously nsaeg is not always perfectly clear, and this paper
intends to state precisely the physical hypothdsasdre at the basis of both of them, and how they a
related to one another.

The recent work of L. de Brogliel]] on the unification of the principle of the
maximum of entropy and the principle of the minimunthef action integral has directed
my attention to the mechanical theory of thermodyeamiln the course of the year
1961-1962, | was then led to reflect upon Boltzmann’'s formula taedtheory of
adiabatic invariants, and to attempt to present adlathat | could, on the suggestion of
L. de Broglie, submit for publication.

That attempt might surprise one, upon first glancedeéd, it is generally assumed
that the theory is perfectly well-founded, and it is,fact, if one considers only the
formalism. However, upon more careful reading, thremmain several obscure points
that | will examine in detail below, but which | will emerate briefly here: Exactly what
hypotheses were made regarding the constraint foredsh@v does one combine them
with the hypothesis of reversibility in order to fixetiparticular properties of reversible
transformations? Why do the purely mechanical proofs iabatic invariance appeal to
a hypothesis of phase incoherence between the condtnaies and the internal motions,
although the thermodynamic proof omits that hypothesirs@ general manner, at what
moment does the adiabatic hypothesis (in the proper sEnfieat term: zero heat
exchange) intervene in the mechanical proof, since fousid in it implicitly, and it
figures explicitly in the thermodynamic proof? How dahe equations of analytical
mechanics modified in the latter in order to make exgésarof heat appear, which are
absent, in general?

This paper, which recalls the major ideas of Boltzmarprasentation 4] on
mechanical thermodynamics and the proof of L. Brilloi8jp consists of a clarification
of the physical hypotheses that permit one to answese tipgestions.

1. Analytical mechanics in the case of arbitrary forces- As a preliminary, it is
necessary to recall or establish some formulas dftace mechanics in the case, which
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has generally been considered very little, in which fdrees that are applied to the
system separate into two groups that play differeeisr@nd one of which is not required
to depend upon a potential.

One considers a systemith perfect, bilateral, holonomic constrainend in order to
avoid useless generality, ones thatiatependent of timeln Lagrange coordinate (i
= 1, toN), the kinetic energy is a quadratic form irf = dd / dt whose coefficients

depend upon onlg’. The applied forces are assumed to be divided intagteops: One

of them depends upon a potent#@dl), which we assume is also independent of time; the
other one can depend, partially depend, or not depend at allaupotential. Leaving
aside its physical origin, for the moment, we contanselves by lettingr; & (with the
summation convention) denote its virtual work.

For the moment, we make no hypothesis on the separatithe coordinates that
would be parallel to that of the forces: The same coatdid can be simultaneously
subject to the two forces 0V / dq or F; . As one knows, the Lagrange equations are
written as:

YT @
dt\og ) od oq'

We introduce the Lagrange functib(q, ¢ ) by the usual relation:
L=T-W.

Beyond its total kinetic energl is then defined bynly forces the first groypand
that will still be true even in the case where thedsrof the second group depend upon a
potential. As we will confirm later on, the obviousisbitrary character of this definition
resides in the physical necessity of having to define annat energy. Equations (1) can

be written:
Grot] ot g @
dt\og ) od

As usual, one further introduces the momenend the Hamilton functioH:

=F=—.i~q(qk,pk), H=p d -L=H(q,p).
q o9

SinceT does not depend upon time explicitly, one will have:
H=T+V,

and we further give the sui + V the name of “energy of the system,” and we also
denote it by the lette in order to conform to the usual notation.

Similarly, L, H, or E are defined by starting with forces of only the first group

The well-known differentiation ol and the utilization of equations (2) lead to the
modified Hamilton equation:
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-—+F,

dg _ oH dp __oH
dt oq,

and sinceH does not depend upon time explicitly, an immediate cuesge of these
equations is that: _
dH=dE=F; dd . (3)

We now pass on to the action integral. It will be:
t .
s= [, L@adt,

which is an integral that is taken along a regéttary of the system. [f andl"" are two
infinitely close real trajectories (goes fromq;, t; to d,, to, " goes fromg, +dq, t1 +

& to g, +94,, t2 + &2) then the variation of the action integral betwEeandl™" will be
given by the equation, which generalizes the ufawai:

&= 5[ Ldt = p o - Hot] - [ " Fad dt. (4)

Aq is the variation in the course of motion of thebnatesg with t constant §
denotes a variation that is taken in an arbitraayner).

Subtract the variatiozfj:zZT dtfrom both sides of (4); on the left-hand side, oié
get:
3[*(L-2T)dt =- o[ " (T +V) dt = [Eat]} - [ SE .

and sincee = H, we arrive at:
t (72 t, )
5L 2T dt= [ p, &g l*L (JE- FA() dt. (5)

¢E is the variation of energy with constant That equation generalizes the known
variation of the Maupertius integral; however, onest note that, contrary to the usual
custom, the system is not conservative by virtuegefation (3), and neith&; nor & are
constant along the unvaried trajectbry

2. Definition of a Boltzmann system- It is a system in which one distinguisies
kinds of coordinates, three kinds of forces, an@ pwossible modes of dynamical
evolution.

A. COORDINATES. — They are divided into two class
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- Coordinates that pertain to rapid motions, which we delmptee symbolg (i = 1
to n); their motions can be vibratory or random.

- Coordinates that pertain to slow motions, which we debgtthe symboly ” (o =
n+ 1toN). These coordinates are restricted to either remaistaot in the course of
motion of theq' or to vary, but in a very slow manner in comparisothtg. These are
the constraint coordinates or the hidden coordinates.

There is no need to insist upon the illustrations af ttassification. We remark only
that the coordinateg do not appear in energetics, since they are all comlimedhe
quantity of temperature, and one reasons solely withctimstraint coordinates. The
opposite (or almost the opposite) is true in mechartivatmodynamics, where the
coordinatesy ” are often masked by their constancy. _

For the moment, it is unimportant to know whether ¢herdinatesy, on the one
hand, andy”, on the other, refer to material points of difféareqpes: One may very well
imagine that the same molecule possesses coordioatiesth kinds. Boltzmann, to
whom is due the essentials of the classification haecalled here, effectively treated
the problem in generalized coordinates, but he likewiieete systems that were more
specialized, in which the material points that were mpred by the coordinateps
formed a material system that was distinct fromdhe that was represented by phé,
and that distinction, which appeared a bit too early ineljgosition, can lead one to
believe that certain results demand that specializasibthough that is not true.

B. FORCES. — They are divided into three categories:

a) Imposed forces— These are the forces whose existence and magnitude are
independent of the will of the experimenter (for examda a gas, the mutual
interactions between the molecules and the forcesaht).

These must be exerted upon the coordingltess well as on the coordinatgé (for
example, by introducing a cylinder and piston that compseasgas into the physical
system that is being treated). One can further subdiki&la into forces that are internal
to the system and external forces at a distancedistatction is unimportant.

The only restrictive hypothesis that we will make ugda €énsemble of forces is that
it must depend upon a potentMqg, ). We have thus constituted the first group of
forces in paragraph 1.

b) Control forces— These are forces that depend upon the experimentewlach
serve to vary the constraints as desired. By definitibay are attached to only the
coordinatesy”. We suppose nothing about their dependency upon a potantiabne
knows that, at least macroscopically, they have revo-mtation for the most of the time.
We denote their virtual work b, oy ” ; they are a subset of the second group of forces
in paragraph 1. They are external forces of the icrakind.

c) Forces “of heat.”— These are forces that likewise depend upon the expgeme
but which, by definition, and contrary to the foregoiagt upon only the coordinates$ q
Their name says much about the phenomenon to whickatkdinked.

Along with the control forces, they define the secgralip of forces in paragraph 1,
and we can affect them with symbols that belong to thegoay F; and figure in the



Fer — Some remarks on Boltzmann’s thermodynamic systaechadiabatic invariants. 5

equation of analytical mechanics in that same paragrdpiat notation is nonetheless
useless, since the objective of the theory is to firdrhaximum number of results that
are independent of the individual structures of thesmefand arise only from the global
transfer of energy that they cause.

We can now define the internal energy and the quantibeat. By definition, the
internal energy of a Boltzmann system is the sum:

E=T+V
of its total kinetic energyl and the potentia¥ of theimposed forces.The quantity of

heatdQ that is absorbed by the system during a real transfanmat defined by the
inequality:

dE= A dy” + dQ (6)

whereA, are the control forces. It emerges from that dadiniand equation (3) thalQ
will mechanically equal the work that is done by the dsrof heat that we have named
individually.

Before passing on to the following definition, we musiken a remark about the
control forces that will be very important for our fuduromprehension of the notion of
reversibility. Since the coordinatgsare rapidly-varying, it is clear that, in general, the
potentialV, and consequently, the foreedV / 09 that is derived from it, are themselves
rapidly-varying. One can think, by a symmetry that is gyie@dopted, that since the
coordinatesy” are slowly-varying, the forced,, that they are attached to must be
themselves slowly-varyingThat is not true, and as a general rule, the control forces A
vary just as rapidly as the microscopic coordinatddat is immediately obvious in the
example of a pendulum, in which the control force ésrmaction of the fixed point to the
pendulum, and it is clear that it varies with the fregpyeof the latter. In the general
case, one confirms that things are again the same asagragahc) above, after one
establishes equation (7).

There can be no doubt that in certain cases the \@sexgisters only the slowly-
varying control forces (the pressure of the piston @gag for example); however, that
will then be true because the observer is confinedrmean effect of the forces that act
upon a large number of coordinaped or its temporal mean, moreover.

C. LAW OF DYNAMICAL EVOLUTION. — This is the esseali distinction upon
which all of the theory rests. We suppose that thézBalnn system can have two sorts
of real motions.

a) Pure mechanical motions, which are further called adiab@tiwith no exchange
of heat).

By definition, these are motions that are ruled bgadsed forces and control forces,
while excluding the forces of heat, which are assumedaetaero. These motions thus
obey the equations (2) of analytical mechanics, whiclonlg need to transcribe here
with a specialization:
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EG_L_G_LZO i =1ton.
dtlad ) ad
(7)
d( oL oL
a[wj_a)(—p :Ap pP= n+ 1toN.

L is defined as it was in paragraphL1= T — (q, x). From equation (3) in paragraph 1,
one will then have:
dE=A,dy” (8)

for a real motion, which, from definition (6), impliése vanishing of the exchange of
heat.

A motion of this kind corresponds to two kinds of energehienomena:

- Either astatethat is characterized by the constancy of the canstcaordinates
X, and in which one abstracts from the motio'of

- Or anadiabatic transformationwhere they ” evolve the same way, but in such a
manner as to respect condition (8), or furthernaie= 0.

One can remark, in passing, that instead of considgriagd ¥ ” to be unknown for
given A, in equations (7), one can takes thend theA, to be unknown when one is
given the functiongy /(t): The first equation of (7) then provides the motiortheq'
while the second one gives the values ofApgin that way, one can calculate the control
forces that must be exerted in order to obtain a de®m®lution of the constraint
coordinates.

b) Thermodynamic, non-adiabatic, motiors.These are the motions in which the
three kinds of forces that were defined above enter pdy simultaneously; i.e., the
forces of heat, as well.

Equations (7) are no longer valid for these motions.order for them to be valid
again, one must make the forces of heat enter into-hgd side of their first line of
forces. One refrains from writing that new represgona for the reason that was given
in paragraph B¢) above. However, there is no need for that notatiasrder to confirm
that the equations of analytical mechanics will be dgffé from the preceding case under
a non-adiabatic transformation, since only the usuaefoiof rational mechanics will
figure in the preceding case.

Furthermore, equation (8) is not valid; it must beaepd with the definition (6), in
whichdQ globally subsumes part of the right-hand side oktngality (3).

Now, return for an instant to the variability of theecesA,. The second of equations
(7) shows clearly that the velocity of variation dietmicroscopic coordinatey is
recovered ifA, by the intermediary df and its derivatives, as we saw above.

Finally, we can answer one of the questions thatpeaed in the introduction: viz.,
the intervention of the adiabatic hypothesis in the Igumechanical proof of the
adiabatic invariance. For better clarity, reasomliie special case of the pendulum, for
which one can refer, for example, to the proof that grasn by Sommerfeld4]. That
proof begins by calculating the work that is done by thetren of the fixed point to the
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elongation of the suspension filament (upon supposingthigakelongation is infinitely
slow, but the slowness is not in effect for the momenh order to obtain the desired
relation T / v = const.), it is then sufficient to write that therk that is done by the
reaction is equal to the variation of the energyhefoscillating mass. However, in that
equality (which is nothing but the equality (8) above), onplicitly supposes that the
sliding of the filament that permits the elongatiopasformed with no liberation of heat.

That fact is general; in all of the purely mechanicabfg®f the adiabatic invariance
of a phenomenon, there is a moment when one writes dm equality between work
and energy that does not arise from the hypothesesvéia made about the model, but
which supposes that, in addition, one has some informatigohysical origin at one’s
disposal about the nullity of the exchange of heate (also sometimes makes the
hypothesis that equations (7) continue to be valid undewrahation of the coordinates
X ”, which amounts to the same thing, from what we just.saw)

3. Reversible transformations. — The termreversible transformationof a
Boltzmann system refers tora@al motion in the system for which one arranges that the
application of the control forces should be such that:

- The velocitiesiy ?/ dt are infinitely small.

— They are constant, or even better, the accelessity ” / dt* are infinitely small.

- Thed' evolve with no other conditions than the ones thairaposed by the laws of
the system.

These conditions are perfectly clear from the matteal viewpoint, so the
expression “infinitely small” means as small as isassary in order for one to say that it
is valid. However, the physical significance of thag#ness is less obvious, and we can
grasp it only from the proof that follows.

The expression for the quantity of heat takes a péaticexpression under a
reversible transformation.

Let such a transformation start at a poipt t; and stop at a pointj,, t, . The

variation of internal energy BE, the absorbed heat@ and from the definition (6), one
has:

Q=AE- '[:2 Ap dy” .
Now, they ” are constant, and consequently:
t . t . —
L A dy” = ijtl A, dt = x°(t,-t)A,.

ﬂp is the temporal mean of A’. In addition, one hadt,-t,)x* = Ax”, and

consequently:

Q=AE-ANY”. (10)

This equation deserves several remarks.
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In the first place, it seems trivial, and in factwitl be trivial if ﬂp IS a mean that is

obtained by integrating over the coordinategs Equation (10) will then be valid even
for an irreversible motion, but the meaﬁg will depend essentially upon the path that

was traversed by thg”. The temporal meanT\p avoids that indeterminacy, but at the

expense of the reversibility condition; i.e., upon impgsirparticular path to the” that
is linear and infinitely slow. Rp must be considered to be a limit that is attained by “a

continuous sequence of equilibrium states.” One confibelsw that it is the particular
form thus-chosen for the mean that permits one to gle/8oltzmann formula.

We shall see what the constancy of the velggifysignifies physically. For that, one
can write down the first equality (9), and it suffices the y* to vary weakly, while the
A, vary considerably. If, to fix ideas, one considers aatdry motion of they' then that
will signify that the fluctuation of thg'” must have a frequency that is much less than the
frequency of vibration of they; one recovers the physical hypothesis of phase
incoherence from a purely mechanical proof. In othedaicone can say that the infinite
smallness of the’y” / dt that one supposed at the beginning of this paragraph does not
need to be realized mathematically; it suffices thgt/ x¥” should be small in
comparison to the frequencies of vibration ofdhe

Finally, let us make a remark about terminology. Gnaften in the habit of calling a
transformation “adiabatic” when it is both adiabdiit the proper sense) and reversible
in a context that is distinct from energetics, whre term “adiabatic” signifies only
“with no exchange of heat”. Now, in the purely mechanjmadofs of “adiabatic”
invariance, it is, in reality, the reversibility thest important; as | remarked above, the
hypothesis of zero heat is introduced at a point whendoes not even speak of it, and
the entire proof revolves around the slowness of thsaton of the constraint
coordinates. As long as one remains in the domain of puwehanics, the best
terminology will then be “reversibility invariants”;olwever, in order to embrace the
general thermodynamic case, it would be preferable tzeutihe expression “Ehrenfest
invariants” exclusively, as one does quite often, moneam to which one can give the
meaning of “adiabatico-reversible” invariants.

4. Variation of the Maupertuisian action under a virtual transformation
between thermodynamic states— Consider two real, neighboring trajectories of a
Boltzmann system that are defined as follows:

— One of themT” goes from the point,, t; to the pointg,, t, while keeping the
constraint coordinateg” constant.

— The other ond; “goes from the point, +dd, t1 + &; to the pointq, + Jd,, t» + &,

while y” + gy * is likewiseconstant.

— The two motions are purely mechanical (i.e., adiabatic)

In the thermodynamic sense of the term, these twtion® thus represent states
(neither motion of thegr ” nor exchange of heat).

One can pass from the first motion to the secone by a continuousirtual
transformationdy, &, dy © with dy” = const. From equation (&},is a constant for each
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motion, anddk is a constant. Now, apply the general equation (5), speaializing it in
order to make the two kinds of coordinatgand y ” appear. One will get:

5jf 2Tdt =[pog +ma° ] + jf (GE- Ad”) di

71, is the momendT / dx”. Since thedy ” and & are constant, that equation can also
be written:

tp i 2 —
of ‘2T dt =[p oq +mdy” | +(t ~t)(OE- AX”"), (11)
and one sees the temporal meaAbéppear.

Qo+ ap, 1o+ A

O, 1

Figure 1.

5. Boltzmann’s formula and Ehrenfest invariants.— The last term in equation (11)
acquires a physical significance in the case whkeetwo real motions, which were
varied with respect to each other byidual transformation up to now, can be coupled
by areal, reversibletransformation. The figure represents what happerhe moving
body (in the extension-in-phase) follows the tregegl” from the instant; to the instant
ta ; fromta to tg, and under the impulse of supplementary forceflibws the real
transitional trajectoryy, finally, upon starting fromts, the supplementary forces
disappear, and the trajectory that is followed Wl ".

The variations that figure in the two sides of)(&fie not calculated, in general, along
the trajectories that are actually followed, butween the real trajectory and the
prolonged onel forwards,I" “ backwards. In the particular case in whiclandl “ are
closed trajectories, the variations can be takeéwden the real points of passage on the
trajectories.

If the transformatiory is reversible, andﬂp is a temporal mean then equation (10)

will show that gE — A, dy”) is the heat that is absorbed by the system uthdereal
transformationy. Hence, one will have the Boltzmann formula:

L osforat=_1

t,-t, “u t, -t

[pod+mar] +X. (12)
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As a special case of great important, we place ousalvéhe case where the total
kinetic energy has the form:

T=Tq(@ q) + Ty (x X).

Tq and T, are two quadratic forms, in which the rectangular teamesabsent. One
will arrive at that, in particular, when the coordinagiesnd y are attached to two systems
of different material points.

Ty is zero under the motionS and I with constant constraints, just like, =
0T /dx”, since thex” are zero. (12) then becomes:

1 tp _ 1
———qugm_t

» L 4

[pod] +oQ (13)

in which the kinetic energy and the spnd' refer toonly the microscopic coordinates.
Now, define an Ehrenfest (i.e., “adiabatic”) inkeat to be a quantity that is defined
along a certain class opurely mechanical motions with constant constraints
(thermodynamic states), and which remain constduetnvwone passes from one motion to
another of the same class by a reversible and atibatbansformation.
If one starts with equation (13) then the prooftbé existence of an adiabatic
invariant for periodic motions will be immediaté:suffices for one to know how to make

dQ = 0, and to consider the integ(ﬁﬂ' dt, taken over the period.

Manuscript received on 13 July 1962.
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