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 Abstract. – There exist two kinds of proof of adiabatic invariance, one of which is derived on the basis 
of mechanics, while the other is derived from thermodynamic theory and by using Boltzmann’s formulas.  
The identity of the two methods, which is obviously necessary, is not always perfectly clear, and this paper 
intends to state precisely the physical hypotheses that are at the basis of both of them, and how they are 
related to one another. 
 
 
 The recent work of L. de Broglie [1] on the unification of the principle of the 
maximum of entropy and the principle of the minimum of the action integral has directed 
my attention to the mechanical theory of thermodynamics.  In the course of the year 
1961-1962, I was then led to reflect upon Boltzmann’s formula and the theory of 
adiabatic invariants, and to attempt to present an article that I could, on the suggestion of 
L. de Broglie, submit for publication. 
 That attempt might surprise one, upon first glance.  Indeed, it is generally assumed 
that the theory is perfectly well-founded, and it is, in fact, if one considers only the 
formalism.  However, upon more careful reading, there remain several obscure points 
that I will examine in detail below, but which I will enumerate briefly here: Exactly what 
hypotheses were made regarding the constraint forces, and how does one combine them 
with the hypothesis of reversibility in order to fix the particular properties of reversible 
transformations?  Why do the purely mechanical proofs of adiabatic invariance appeal to 
a hypothesis of phase incoherence between the constraint forces and the internal motions, 
although the thermodynamic proof omits that hypothesis?  In a general manner, at what 
moment does the adiabatic hypothesis (in the proper sense of that term: zero heat 
exchange) intervene in the mechanical proof, since it is found in it implicitly, and it 
figures explicitly in the thermodynamic proof?  How are the equations of analytical 
mechanics modified in the latter in order to make exchanges of heat appear, which are 
absent, in general? 
 This paper, which recalls the major ideas of Boltzmann’s presentation [2] on 
mechanical thermodynamics and the proof of L. Brillouin [3], consists of a clarification 
of the physical hypotheses that permit one to answer these questions. 
 
 
 1.  Analytical mechanics in the case of arbitrary forces. – As a preliminary, it is 
necessary to recall or establish some formulas of analytical mechanics in the case, which 
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has generally been considered very little, in which the forces that are applied to the 
system separate into two groups that play different roles, and one of which is not required 
to depend upon a potential. 
 One considers a system with perfect, bilateral, holonomic constraints, and in order to 
avoid useless generality, ones that are independent of time.  In Lagrange coordinates qi (i 
= 1, to N), the kinetic energy T is a quadratic form in iqɺ  = dqi / dt whose coefficients 
depend upon only qk.  The applied forces are assumed to be divided into two groups: One 
of them depends upon a potential V(qi), which we assume is also independent of time; the 
other one can depend, partially depend, or not depend at all upon a potential.  Leaving 
aside its physical origin, for the moment, we content ourselves by letting Fi δqi (with the 
summation convention) denote its virtual work. 
 For the moment, we make no hypothesis on the separation of the coordinates that 
would be parallel to that of the forces: The same coordinate qi can be simultaneously 
subject to the two forces − ∂V / ∂qi or Fi .  As one knows, the Lagrange equations are 
written as: 

i i

d T T

dt q q

 ∂ ∂− ∂ ∂ ɺ
 = − 

i

V

q

∂
∂

 + Fi .   (1) 

 
 We introduce the Lagrange function L(qi, iqɺ ) by the usual relation: 
 

L = T – V. 
 

 Beyond its total kinetic energy, L is then defined by only forces the first group, and 
that will still be true even in the case where the forces of the second group depend upon a 
potential.  As we will confirm later on, the obviously arbitrary character of this definition 
resides in the physical necessity of having to define an internal energy.  Equations (1) can 
be written: 

i i

d L L

dt q q

 ∂ ∂− ∂ ∂ ɺ
 = Fi .     (2) 

 
 As usual, one further introduces the moments pi and the Hamilton function H: 
 

pi = 
i

T

q

∂
∂ ɺ

 = 
i

L

q

∂
∂ ɺ

 → iqɺ (qk, pk),  H = pi q
i – L = H(q, p). 

 
 Since T does not depend upon time explicitly, one will have: 
 

H = T + V, 
 
and we further give the sum T + V the name of “energy of the system,” and we also 
denote it by the letter E in order to conform to the usual notation. 
 Similarly, L, H, or E are defined by starting with forces of only the first group. 
 The well-known differentiation of H and the utilization of equations (2) lead to the 
modified Hamilton equation: 
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idq

dt
 = 

i

H

p

∂
∂

,  idp

dt
 = − 

i

H

q

∂
∂

+ Fi , 

 
and since H does not depend upon time explicitly, an immediate consequence of these 
equations is that: 

dH = dE = Fi dqi .     (3) 
 
 We now pass on to the action integral.  It will be: 
 

S = 
2

1

( , )
t

t
L q q dt∫ ɺ , 

 
which is an integral that is taken along a real trajectory of the system.  If Γ and Γ′ are two 
infinitely close real trajectories (Γ goes from 1

iq , t1 to 2
iq , t2 , Γ′ goes from 1 1

i iq qδ+ , t1 + 

δt1 to 2 2
i iq qδ+ , t2 + δt2 ) then the variation of the action integral between Γ and Γ′ will be 

given by the equation, which generalizes the usual form: 
 

δS = 
2

1

t

t
L dtδ ∫  = 

2

1

2

1

t
i i

i it
p q H t F q dtδ δ − − ∆  ∫ .  (4) 

 
 ∆qi is the variation in the course of motion of the coordinates qi with t constant (δ 
denotes a variation that is taken in an arbitrary manner). 

 Subtract the variation 
2

1

2
t

t
T dtδ ∫ from both sides of (4); on the left-hand side, one will 

get: 
2

1

( 2 )
t

t
L T dtδ −∫  = − 

2

1

( )
t

t
T V dtδ +∫  = − [ ] 2

1

2

1

t

t
E t E dtδ δ− ∫ . 

 
and since E = H, we arrive at: 
 

2

1

2
t

t
T dtδ ∫ = 

2

1

2

1
( )

t
i i

i it
p q E F q dtδ δ  + − ∆  ∫ .   (5) 

 
 δE is the variation of energy with constant t.  That equation generalizes the known 
variation of the Maupertius integral; however, one must note that, contrary to the usual 
custom, the system is not conservative by virtue of equation (3), and neither E, nor δE are 
constant along the unvaried trajectory Γ. 
 
 
 2.  Definition of a Boltzmann system. – It is a system in which one distinguishes two 
kinds of coordinates, three kinds of forces, and two possible modes of dynamical 
evolution. 
 
 A.  COORDINATES. – They are divided into two classes: 
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 − Coordinates that pertain to rapid motions, which we denote by the symbols qi (i = 1 
to n); their motions can be vibratory or random. 
 − Coordinates that pertain to slow motions, which we denote by the symbols χ ρ (ρ = 
n + 1 to N).  These coordinates are restricted to either remain constant in the course of 
motion of the qi or to vary, but in a very slow manner in comparison to the qi.  These are 
the constraint coordinates or the hidden coordinates. 
 There is no need to insist upon the illustrations of that classification.  We remark only 
that the coordinates qi do not appear in energetics, since they are all combined into the 
quantity of temperature, and one reasons solely with the constraint coordinates.  The 
opposite (or almost the opposite) is true in mechanical thermodynamics, where the 
coordinates χ ρ are often masked by their constancy. 
 For the moment, it is unimportant to know whether the coordinates qi, on the one 
hand, and χ ρ, on the other, refer to material points of different types: One may very well 
imagine that the same molecule possesses coordinates of both kinds.  Boltzmann, to 
whom is due the essentials of the classification that is recalled here, effectively treated 
the problem in generalized coordinates, but he likewise defined systems that were more 
specialized, in which the material points that were represented by the coordinates qi 
formed a material system that was distinct from the one that was represented by the χ ρ , 
and that distinction, which appeared a bit too early in his exposition, can lead one to 
believe that certain results demand that specialization, although that is not true. 
 
 B.  FORCES. – They are divided into three categories: 
 
 a)  Imposed forces. – These are the forces whose existence and magnitude are 
independent of the will of the experimenter (for example, for a gas, the mutual 
interactions between the molecules and the forces of weight). 
 These must be exerted upon the coordinates qi, as well as on the coordinates χ ρ (for 
example, by introducing a cylinder and piston that compresses a gas into the physical 
system that is being treated).  One can further subdivide them into forces that are internal 
to the system and external forces at a distance; that distinction is unimportant. 
 The only restrictive hypothesis that we will make upon this ensemble of forces is that 
it must depend upon a potential V(q, χ).  We have thus constituted the first group of 
forces in paragraph 1. 
 
 b) Control forces. – These are forces that depend upon the experimenter, and which 
serve to vary the constraints as desired.  By definition, they are attached to only the 
coordinates χ ρ.  We suppose nothing about their dependency upon a potential, and one 
knows that, at least macroscopically, they have non-zero rotation for the most of the time.  
We denote their virtual work by Aρ δχ ρ ; they are a subset of the second group of forces 
in paragraph 1.  They are external forces of the reaction kind. 
 
 c) Forces “of heat.” – These are forces that likewise depend upon the experimenter, 
but which, by definition, and contrary to the foregoing, act upon only the coordinates qi.  
Their name says much about the phenomenon to which they are linked. 
 Along with the control forces, they define the second group of forces in paragraph 1, 
and we can affect them with symbols that belong to the category Fi and figure in the 
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equation of analytical mechanics in that same paragraph.  That notation is nonetheless 
useless, since the objective of the theory is to find the maximum number of results that 
are independent of the individual structures of these forces and arise only from the global 
transfer of energy that they cause. 
 We can now define the internal energy and the quantity of heat.  By definition, the 
internal energy of a Boltzmann system is the sum: 
 

E = T + V 
 
of its total kinetic energy T and the potential V of the imposed forces.  The quantity of 
heat dQ that is absorbed by the system during a real transformation is defined by the 
inequality: 

,dE A d dQρ
ρ χ= +      (6) 

 
where Aρ are the control forces.  It emerges from that definition and equation (3) that dQ 
will mechanically equal the work that is done by the forces of heat that we have named 
individually. 
 Before passing on to the following definition, we must make a remark about the 
control forces that will be very important for our future comprehension of the notion of 
reversibility.  Since the coordinates qi are rapidly-varying, it is clear that, in general, the 
potential V, and consequently, the force − ∂V / ∂qi that is derived from it, are themselves 
rapidly-varying.  One can think, by a symmetry that is quickly adopted, that since the 
coordinates χ ρ are slowly-varying, the forces Aρ that they are attached to must be 
themselves slowly-varying.  That is not true, and as a general rule, the control forces Aρ 
vary just as rapidly as the microscopic coordinates.  That is immediately obvious in the 
example of a pendulum, in which the control force is the reaction of the fixed point to the 
pendulum, and it is clear that it varies with the frequency of the latter.  In the general 
case, one confirms that things are again the same as in paragraph c) above, after one 
establishes equation (7). 
 There can be no doubt that in certain cases the observer registers only the slowly-
varying control forces (the pressure of the piston on a gas, for example); however, that 
will then be true because the observer is confined to a mean effect of the forces that act 
upon a large number of coordinates χ ρ, or its temporal mean, moreover. 
 
 C. LAW OF DYNAMICAL EVOLUTION. – This is the essential distinction upon 
which all of the theory rests.  We suppose that the Boltzmann system can have two sorts 
of real motions. 
 
 a) Pure mechanical motions, which are further called adiabatic (= with no exchange 
of heat). 
 
 By definition, these are motions that are ruled by imposed forces and control forces, 
while excluding the forces of heat, which are assumed to be zero.  These motions thus 
obey the equations (2) of analytical mechanics, which we only need to transcribe here 
with a specialization: 



Fer – Some remarks on Boltzmann’s thermodynamic systems and adiabatic invariants. 6 

 
i i

d L L

dt q q

 ∂ ∂− ∂ ∂ ɺ
 = 0  i = 1 to n. 

(7) 

 
d L L

dt ρ ρχ χ
 ∂ ∂− ∂ ∂ ɺ

 = Aρ  ρ =  n + 1 to N. 

 
L is defined as it was in paragraph 1: L = T – V(q, χ).  From equation (3) in paragraph 1, 
one will then have: 

dE = Aρ dχ ρ      (8) 
 
for a real motion, which, from definition (6), implies the vanishing of the exchange of 
heat. 
 A motion of this kind corresponds to two kinds of energetic phenomena: 
 − Either a state that is characterized by the constancy of the constraint coordinates 
χ ρ, and in which one abstracts from the motion of qi. 
 − Or an adiabatic transformation, where the χ ρ evolve the same way, but in such a 
manner as to respect condition (8), or furthermore dQ = 0. 
 One can remark, in passing, that instead of considering qi and χ ρ to be unknown for 
given Aρ in equations (7), one can takes the qi and the Aρ to be unknown when one is 
given the functions χ ρ(t): The first equation of (7) then provides the motion of the qi , 
while the second one gives the values of the Aρ ; in that way, one can calculate the control 
forces that must be exerted in order to obtain a desired evolution of the constraint 
coordinates. 
 
 b) Thermodynamic, non-adiabatic, motions. – These are the motions in which the 
three kinds of forces that were defined above enter into play simultaneously; i.e., the 
forces of heat, as well. 
 
 Equations (7) are no longer valid for these motions.  In order for them to be valid 
again, one must make the forces of heat enter into right-hand side of their first line of 
forces.  One refrains from writing that new representation, for the reason that was given 
in paragraph B, c) above.  However, there is no need for that notation in order to confirm 
that the equations of analytical mechanics will be different from the preceding case under 
a non-adiabatic transformation, since only the usual forces of rational mechanics will 
figure in the preceding case. 
 Furthermore, equation (8) is not valid; it must be replaced with the definition (6), in 
which dQ globally subsumes part of the right-hand side of the equality (3). 
 Now, return for an instant to the variability of the forces Aρ .  The second of equations 
(7) shows clearly that the velocity of variation of the microscopic coordinates qi is 
recovered in Aρ by the intermediary of L and its derivatives, as we saw above. 
 Finally, we can answer one of the questions that was posed in the introduction: viz., 
the intervention of the adiabatic hypothesis in the purely mechanical proof of the 
adiabatic invariance.  For better clarity, reason with the special case of the pendulum, for 
which one can refer, for example, to the proof that was given by Sommerfeld [4].  That 
proof begins by calculating the work that is done by the reaction of the fixed point to the 
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elongation of the suspension filament (upon supposing that the elongation is infinitely 
slow, but the slowness is not in effect for the moment).  In order to obtain the desired 
relation (T / ν = const.), it is then sufficient to write that the work that is done by the 
reaction is equal to the variation of the energy of the oscillating mass.  However, in that 
equality (which is nothing but the equality (8) above), one implicitly supposes that the 
sliding of the filament that permits the elongation is performed with no liberation of heat. 
 That fact is general; in all of the purely mechanical proofs of the adiabatic invariance 
of a phenomenon, there is a moment when one writes down an equality between work 
and energy that does not arise from the hypotheses that were made about the model, but 
which supposes that, in addition, one has some information of physical origin at one’s 
disposal about the nullity of the exchange of heat (one also sometimes makes the 
hypothesis that equations (7) continue to be valid under the variation of the coordinates 
χ ρ, which amounts to the same thing, from what we just saw). 
 
 
 3.  Reversible transformations. – The term reversible transformation of a 
Boltzmann system refers to a real motion in the system for which one arranges that the 
application of the control forces should be such that: 
 − The velocities dχ ρ / dt are infinitely small. 
 − They are constant, or even better, the accelerations d2χ ρ / dt2 are infinitely small. 
 − The qi evolve with no other conditions than the ones that are imposed by the laws of 
the system. 
 These conditions are perfectly clear from the mathematical viewpoint, so the 
expression “infinitely small” means as small as is necessary in order for one to say that it 
is valid.  However, the physical significance of that smallness is less obvious, and we can 
grasp it only from the proof that follows. 
 The expression for the quantity of heat takes a particular expression under a 
reversible transformation. 
 Let such a transformation start at a point 1

iq , t1 and stop at a point 2
iq , t2 .  The 

variation of internal energy is ∆E, the absorbed heat is Q, and from the definition (6), one 
has: 

Q = ∆E − 
2

1

t

t
A d ρ

ρ χ∫ . 

 
 Now, the χ ρ are constant, and consequently: 
 

2

1

t

t
A d ρ

ρ χ∫  = 
2

1

t

t
A dtρ

ρχ ∫ɺ  = 2 1( )t t Aρ
ρχ −ɺ . 

 
 Aρ  is the temporal mean of Aρ.  In addition, one has 2 1( )t t ρχ− ɺ  = ∆χ ρ, and 

consequently: 

.Q E A ρ
ρ χ= ∆ − ∆      (10) 

 
 This equation deserves several remarks. 
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 In the first place, it seems trivial, and in fact, it will be trivial if Aρ  is a mean that is 

obtained by integrating over the coordinates χ ρ.  Equation (10) will then be valid even 
for an irreversible motion, but the mean Aρ  will depend essentially upon the path that 

was traversed by the χ ρ.  The temporal mean Aρ  avoids that indeterminacy, but at the 

expense of the reversibility condition; i.e., upon imposing a particular path to the χ ρ that 
is linear and infinitely slow.  Aρ  must be considered to be a limit that is attained by “a 

continuous sequence of equilibrium states.”  One confirms below that it is the particular 
form thus-chosen for the mean that permits one to prove the Boltzmann formula. 
 We shall see what the constancy of the velocity χ ρ signifies physically.  For that, one 
can write down the first equality (9), and it suffices for the χ ρ to vary weakly, while the 
Aρ vary considerably.  If, to fix ideas, one considers a vibratory motion of the qi then that 
will signify that the fluctuation of the χ ρ must have a frequency that is much less than the 
frequency of vibration of the qi; one recovers the physical hypothesis of phase 
incoherence from a purely mechanical proof.  In other words, one can say that the infinite 
smallness of the d2χ ρ / dt2 that one supposed at the beginning of this paragraph does not 
need to be realized mathematically; it suffices that /ρ ρχ χɺɺ ɺ  should be small in 
comparison to the frequencies of vibration of the qi. 
 Finally, let us make a remark about terminology.  One is often in the habit of calling a 
transformation “adiabatic” when it is both adiabatic (in the proper sense) and reversible 
in a context that is distinct from energetics, where the term “adiabatic” signifies only 
“with no exchange of heat”.  Now, in the purely mechanical proofs of “adiabatic” 
invariance, it is, in reality, the reversibility that is important; as I remarked above, the 
hypothesis of zero heat is introduced at a point when one does not even speak of it, and 
the entire proof revolves around the slowness of the variation of the constraint 
coordinates.  As long as one remains in the domain of pure mechanics, the best 
terminology will then be “reversibility invariants”; however, in order to embrace the 
general thermodynamic case, it would be preferable to utilize the expression “Ehrenfest 
invariants” exclusively, as one does quite often, moreover, and to which one can give the 
meaning of “adiabatico-reversible” invariants. 
 
 
 4.  Variation of the Maupertuisian action under a virtual transformation 
between thermodynamic states. – Consider two real, neighboring trajectories of a 
Boltzmann system that are defined as follows: 
 − One of them Γ goes from the point 1

iq , t1 to the point 2
iq , t2 while keeping the 

constraint coordinates χ ρ constant. 
 − The other one, Γ′ goes from the point 1 1

i iq qδ+ , t1 + δt1 to the point 2 2
i iq qδ+ , t2 + δt2 

while χ ρ + δχ ρ is likewise constant. 
 − The two motions are purely mechanical (i.e., adiabatic). 
 In the thermodynamic sense of the term, these two motions thus represent states 
(neither motion of the χ ρ nor exchange of heat). 
 One can pass from the first motion to the second one by a continuous virtual 
transformation δqi, δt, δχ ρ with δχ ρ = const.  From equation (8), E is a constant for each 
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motion, and δE is a constant.  Now, apply the general equation (5), upon specializing it in 
order to make the two kinds of coordinates qi and χ ρ appear.  One will get: 
 

2

1

2
t

t
T dtδ ∫  = 

2

1

2

1
( )

t
i

i t
p q E A dtρ ρ

ρ ρδ π δχ δ δχ + + −  ∫ . 

 
 πρ is the moment ∂T / ρχ∂ ɺ .  Since the δχ ρ and δE are constant, that equation can also 
be written: 

2

1

2
t

t
T dtδ ∫  = 

2

2 11
( )( )i

ip q t t E Aρ ρ
ρ ρδ π δχ δ δχ + + − −  ,  (11) 

 
and one sees the temporal mean of Aρ appear. 
 

 

q2, t2 

q1, t1 
Γ 

A 

B 
Γ′ 

q2 + δq2, t2 + δt2 

q1 + δq1, t1 + δt1 

Figure 1.  
 
 5.  Boltzmann’s formula and Ehrenfest invariants. – The last term in equation (11) 
acquires a physical significance in the case where the two real motions, which were 
varied with respect to each other by a virtual transformation up to now, can be coupled 
by a real, reversible transformation.  The figure represents what happens.  The moving 
body (in the extension-in-phase) follows the trajectory Γ from the instant t1 to the instant 
tA ; from tA to tB, and under the impulse of supplementary forces, it follows the real 
transitional trajectory γ; finally, upon starting from tB, the supplementary forces 
disappear, and the trajectory that is followed will be Γ′. 
 The variations that figure in the two sides of (11) are not calculated, in general, along 
the trajectories that are actually followed, but between the real trajectory and the 
prolonged one: Γ forwards, Γ′ backwards.  In the particular case in which Γ and Γ′ are 
closed trajectories, the variations can be taken between the real points of passage on the 
trajectories. 
 If the transformation γ is reversible, and Aρ  is a temporal mean then equation (10) 

will show that (δE – Aρ dχ ρ) is the heat that is absorbed by the system under the real 
transformation γ.  Hence, one will have the Boltzmann formula: 
 

2

1
2 1

1
2

t

t
T dt

t t
δ

− ∫  = 
2

1
2 1

1 i
ip q

t t
ρ

ρδ π δχ + −
 + δQ.   (12) 
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 As a special case of great important, we place ourselves in the case where the total 
kinetic energy has the form: 

T = Tq (q, qɺ ) + Tχ (χ, χɺ ). 
 
 Tq and Tχ are two quadratic forms, in which the rectangular terms are absent.  One 
will arrive at that, in particular, when the coordinates q and χ are attached to two systems 
of different material points. 
 Tχ is zero under the motions Γ and Γ′ with constant constraints, just like πρ = 

/T ρχ∂ ∂ ɺ , since the ρχɺ  are zero.  (12) then becomes: 
 

2

1

2

1
2 1 2 1

1 1
2 ,

t i
q it

T dt p q Q
t t t t

δ δ δ = + − −∫    (13) 

 
in which the kinetic energy and the sum pi δqi refer to only the microscopic coordinates. 
 Now, define an Ehrenfest (i.e., “adiabatic”) invariant to be a quantity that is defined 
along a certain class of purely mechanical motions with constant constraints 
(thermodynamic states), and which remain constant when one passes from one motion to 
another of the same class by a reversible and adiabatic transformation. 
 If one starts with equation (13) then the proof of the existence of an adiabatic 
invariant for periodic motions will be immediate: It suffices for one to know how to make 

dQ = 0, and to consider the integral T dt∫� , taken over the period. 

 
Manuscript received on 13 July 1962. 
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