
“Introduzione all meccanica relativistica dei continui con struttura scalare,” Rend. Sem. Mat. Univ. Padova 
68 (1982), 31-47. 

 
 

Introduction to the relativistic mechanics of continua  
with scalar structure 

 
 

G. Ferrarese (*) 
 

Translated by D. H. Delphenich 
 

________ 
 
 

Introduction 
 
 Apart from the fact that it realizes the natural context for the description of 
mechanical and electromagnetic phenomena, even in the purely-mechanical domain, 
special relativity constitutes a significant step in the process of conceptual unification that 
represents the highest aspiration of scientific thought.  In the dynamics of particles with 
scalar structure, that process begins with the double unification of mass with (kinetic) 
energy and mechanical with thermal action (cf., e.g., [1], Chap. IX.2).  That can be 
extended to continuum mechanics in a natural way that will emerge from this brief 
introduction, which starts from the classical situation and proceeds along a route that 
makes the adjustments that are indispensible for the relativistic theory.  What will result 
is a profoundly modified picture, not only in the relativistic corrections to the traditional 
physical ingredients (mechanical stress, power of the internal force, internal energy, etc.), 
but also for the difference in its structural invariance.  Nonetheless, the classical approach 
is more illuminating, especially in regard to the First Law of Thermodynamics (no. 6), 
which will essentially constitute the correction of order c−2 (c is the speed of light in 
vacuo) to the principle of the conservation of mass (cf., Pham Mau Quan [2], no. 22). 
 For the sake of brevity, we shall examine, from the general viewpoint, only the case 
of non-polar continua, which are ordinarily characterized by the condition that the proper 
mechanical stress tensor should be symmetric. (The elimination of that hypothesis cannot 
be separated from the introduction of stress-moments and mass-moments; cf., G. Grioli 
[3], and from the geometrico-kinematical viewpoint, by the extension of the scalar 
structure by means of directors: cf., [4], Chap. III.)  In that case, the thermal flux is not 
independent of the velocity, and is combined into a “thermal inertia” that naturally 
accompanies the “inertia of pure matter,” which is what one has for fluids (cf., A. 
Lichnerowicz [5], Chap. IV, and Pham Mau Quan [2]). 
 
 
 
                                                
 (*) Author’s address: Istituto Matematico “G. Castelnuovo,” Città Universitaria, 00185 Roma.  
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1.  General equations of classical continuum mechanics 
 

 Let us briefly give an outline of the general equations of classical continuum 
mechanics in the context of Galilean reference frames (1).  Let: S be the Galilean frame, 
which is referred to arbitrarily fixed internal coordinates of Cartesian type.  Briefly, that 
means that T ≡ {0, c1, c2, c3} is the reference triad.  Let C be the present configuration (in 
S) of the continuous system, let xi (i = 1, 2, 3) be the coordinates of the generic point P ∈ 
C, let n dσ be an arbitrary oriented surface element at P, and let φφφφn dσ be the relative 
mechanical stress. 
 Above all, the principle of conservation of mass (in S), when translated into the 
Eulerian picture, gives rise to the continuity equation: 
 
(1)      ∂t µ + ∂i (µ vi) = 0, 
 
in which µ (x, t) is the mass density and v (x, t) is the velocity.  In addition, the main 
equation of mechanics, when adapted to the generic part of the domain C, will ultimately 
give rise to three local conditions by a limited path.  They are: 
 
 I) Cauchy’s theorem, which specifies the dependency of the stress on n : 
 
(2)     φφφφn = ni φφφφ    i ⇒  φφφφ    i = ( )

in n=φφφφ c . 

 
 II) The first indefinite equation: 
 
(3)      µ ɺv  = µ F − ∂i φφφφ    i, 
 
in which F is the specific volume force, and ()•  is the substantial derivative: 
 
(4)      ()•  ≡ ∂t () + ∂i () v

i . 
 
 III) The second indefinite equation, or the reciprocity relation for the stresses: 
 
(5)      φφφφn ⋅⋅⋅⋅ n′ = φφφφn′ ⋅⋅⋅⋅ n, ∀ n, n′ . 
 
 Finally, the energy theorem essentially translates (cf., [6], Chap. II.3) into the: 
 
 IV)  First Law of Thermodynamics: 
 

(6)      εɺ  = q – 
1

µ
w (i), 

 

                                                
 (1) The passage to an arbitrary basis for reference is realized by adding the specific force of convection 
and that of Coriolis to the force of inertia in the equation of motion. 
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in which ε is the specific internal energy (i.e., per unit mass), q is the specific thermal 
power (2), and w(i) is the specific power due to the contact force: 
 
(7)      w(i) = X ik kik , 
 
in which kik is the rate of deformation tensor: 
 
(8)      kik ≡ 1

2 (∂i vk + ∂i vk) . 

 
 In the context of finite deformations, the Lagrangian viewpoint takes priority over the 
Eulerian one, and at its forefront, both classically and relativistically, there is an 
expression for the power dissipated or produced by the internal stresses, which is useful 
for the purpose of specifying the internal variables; however, we shall not address that 
here.  We shall confine ourselves to the observation that in the classical domain: 
 
 a) There are various dynamical ingredients that are, in fact, separate: for instance, 
mass and internal energy, along with external volume forces and thermal action (through 
the power term q). 
 
 b) The equations are invariant in both form and substance with respect to the choice 
of Galilean reference frame; i.e., they obey the Galilean principle of relativity in its 
strong sense. 
 
 How does one modify this picture in the relativistic situation? 
 
 

2.  Relativistic extension. 
 

 Consider the viewpoint of special relativity (3), and take Minkowski space-time M4 
with the signature − + + +.  Suppose that M4 is oriented and also endowed with one of the 
two light semi-cones, which shall be called C+ ; i.e., it is endowed with only Cartesian 

bases { cα} (α = 0, 1, 2, 3) that obey : 
 
(9)    cα ⋅⋅⋅⋅ cβ = mαβ (m00 = − 1, m0i = 0, mik = δik), 
 
and have temporal axes that belong to C

+. 

 In intrinsic terms, that is equivalent to considering only the class in M4 of ∞3 Galilean 
reference frames { S} that are equi-oriented in both time and space. 
 In what follows, one can also take c0 = γγγγ (γγγγ    ⋅⋅⋅⋅ γγγγ = − 1) in order to underscore the fact 
that c0 plays a different role from the spatial vectors ci with respect to the Galilean 

                                                
 (2) It is generally comprised of two terms, one of which relates to radiation and the other of which 
relates to conduction: q = r – 1 / µ div q, in which q is the thermal conduction vector (cf., e.g., [7], pp. 
295). 
 (3) The passage to general relativity (i.e., to a curved space-time V4) is automatic by way of the rule of 
transcription. 
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reference frame S that is associated with the Cartesian basis {cα}.  That is to say that S 
characterized by the unit vector c0 ∈ C+.  By contrast, the unit vectors ci are defined in the 

oriented 3-plane Σ+ that is normal to γγγγ, up to an arbitrary spatial rotation. 
 In the relativistic situation, one also needs to distinguish the absolute formulation 
(which is invariant under space-time translations and rotations: viz., Lorentz 
transformations) from the one that is relative to an arbitrary Galilean reference frame 
(which is invariant under only time translations, and spatial translations and rotations).  
The latter, which is more significant from the physical standpoint, is invariant in form 
with respect to the choice of Galilean reference from (viz., the principle of relativity), but 
not in substance, in the sense that one must appeal to relative magnitudes, for which one 
must specify the way that they vary under a change of Galilean reference frame. 

 

C 
+ 

T 

Σ+ 
E 

γγγγ    

V 

 
 Let us start by considering the absolute viewpoint: The continuum is represented by a 
congruence of ∞3 time-like, oriented lines that fill up a world-tube T ⊆ M4 [one and only 

one line of the congruence passes through each point E ∈ T (4)]  Let V (E) be the local 4-

velocity of the continuum, and let A (E) be the vector that is its derivative with respect to 
proper time for the particles (viz., the 4-acceleration).  Along with the 4-vectors V and A 
(one of which is time-like and normalized to – c2, while the other one is space-like), two 
fundamental scalars are defined in T that are both positive: namely, D0 (E) and µ0 (E), 

which have the meanings of proper number density of the particles and the proper density 
of proper mass.  From the relative viewpoint, those scalars come from an arbitrary 
Galilean reference frame γγγγ (5).  Indeed, along with the relationship: 
 

(10)   V = η (v + c γγγγ) = inv.,  η ≡ 2 21/ 1 /v c− , 

 

                                                
 (4) The regularity that is assumed for the motion excludes any type of jump or laceration.  
 (5) The passage to a more general reference frame for the fluid presents no difficulties (cf., [8])  
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that will give rise to the local invariance relations (with respect to the choice of reference 
frame, and in which D is the Jacobian of the xi with respect to the Lagrangian 

coordinates): 
(11)   η D = inv. = D0 ; µ / η2 = inv. = µ0 , 

 
which specify the significance of the scalars D0 and µ0 in relation to the proper reference 

frame. 
 As far as the relative stresses φφφφn (n ∈ S) are concerned, they will be replaced with the 
4-stresses TN , with N ∈M4 , given that the latter must have meaning in any Galilean 
reference system, and therefore in any spatial section Σ for E ∈ T.  Naturally, one 

assumes that the TN satisfy the following properties, which are analogous to the classical 
ones (2) and (3): 
 
(12)   TN = Nα T α, TN ⋅ N′ = TN′′′′ ⋅ N  , ∀ N, N′ . 
 
 We shall now address the problem of how to relativistically extend the Cauchy 
equation, which we must naturally postulate.  The most natural extension is further 
suggested by the classical equations (1) − (3) if one interprets them as the temporal and 
spatial components, respectively, of the same 4-vector equation.  More precisely, by 
virtue of (1) and (4), one will have: 
 

µ ɺv  ≡ ( )µ µ−i ɺv v = ∂t (µ v) + ∂i (µ v) vi + µ v ∂i v
i = ∂t (µ v) + ∂i (µ vi v), 

 
and the system (1) – (3) can be written in the form: 
 

∂t µ + ∂i (µ iv ) = 0, ∂t (µ v) + ∂i (µ iv v) + ∂i φφφφ i = µ F . 
 

Hence, if one takes (10)1 and (11)2 into account then that will be equivalent (at least, in Σ 
⊕ Θ) to the equation: 
 

0( )Vα
α µ∂ V + ∂i φφφφ i = µ0 f   (f ≡ η 2 F) ; 

 
and therefore the most natural relativistic extension is: 
 
(13)    0( )Vα α

α µ∂ +V T = µ0 f . 
 
 

3.  Proper mechanical stresses and proper thermal energy (of conduction). 
 

 One can give a more expressive form to (13) by splitting each of the 4-stresses T α for 
all α = 0, 1, 2, 3 into two parts that are parallel and normal to the 4-velocity V (proper 
mechanical stresses and thermal conduction stresses, resp.): 
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(14)     Tα = ϕϕϕϕα + Qα V, 
 
with  
 
(15)     ϕϕϕϕα ⋅⋅⋅⋅ V = 0 . 
 
Naturally, when one is dealing with an ordinary (i.e., non-polar) continuum, one will 
assume that the proper mechanical stresses ϕϕϕϕN will also satisfy the axioms (12): 
 
(16)   ϕϕϕϕN = Nα ϕϕϕϕα, ϕϕϕϕN ⋅⋅⋅⋅ N′ = ϕϕϕϕN′ ⋅⋅⋅⋅ N, ∀ N, N′ ; 
 
(15) will then become: 
 
(17)     ϕϕϕϕV ≡ Vα ϕϕϕϕα = 0 . 
 
Having said that, if one scalar multiplies (14) by V and takes (15) into account then one 
will have, in turn: 

− c2 Qα = Tα ⋅⋅⋅⋅ V = TV ⋅⋅⋅⋅ cα = ϕϕϕϕV ⋅⋅⋅⋅ cα + Vβ  Q
β Vα ;  

i.e., as in (17): 

(18)     0,2

1
,cQ V

c
α αε=  

 
in which ε 0, c is the proper thermal energy (of conduction): 
 

(19)     0, .cε = − ⋅Q V  

 
Naturally, one also introduces the proper density of thermal conduction: 
 
(20)     µ 0, c ≡ ε 0, c / c

2 ; 
 
(18) will then become, more simply: 
 
(18′)     Qα = µ 0, c V

α . 
 
By definition, with the intervention of the proper mechanical stresses for the ones in (14), 
the relativistic Cauchy equation (13) will assume the following form: 
 

(21)    0 0( ) ,Vα α
α µ µ∂ + =ɶ ϕϕϕϕV f  

 
in which 0µɶ  is defined by: 

 
(22)     0µɶ  ≡ µ 0 + µ 0, c , 
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and is the total proper density, which is the sum of the density of pure matter and thermal 
conduction. 
 One sees explicitly that the property of the thermal conduction 4-vector Q that it is 
parallel to the 4-velocity V is a direct consequence of the hypothesis that the proper 
mechanical stresses are symmetric that was referred to in (16).  One is dealing with a 
characteristic property of ordinary (i.e., non-polar) continua.  (18) will not persist for the 
continua that are characterized by asymmetric stresses (i.e., the ones that lead to an 
enlargement of the model from both the geometric and the dynamical viewpoints), and 
from the energetic viewpoint, the situation is presumably analogous to the one in the 
electromagnetic context. 
 In any case, in Eulerian terms, which introduce the components Vα of the 4-velocity, 
as well as the stress characteristics Xαβ, which have the decomposition: 
 
(23)     ϕϕϕϕα = Xαβ cβ , 
 
(21) will assume the typical aspect of equations of conservation with sources; indeed, 
they will have the type: 
 
(21′)    ∂α T αβ = µ0 f 

β  (β = 0, 1, 2, 3), 
 
in which: 
 
(24)     T αβ ≡ 0 V Vα βµɶ + Xαβ, 

 
as well as: 
 
(25)    Vα Vα = − c2, Xαβ = Xβα, Xαβ Vβ = 0 . 
 
Naturally, the symmetric tensor field T αβ, with basis T, embodies the material schema of 

the continuum, and is subject to only the condition that it must admit a time-like 
eigenvector (V) and a corresponding negative eigenvalue (0µɶ  > 0).  That says that 

knowing T αβ is equivalent to knowing 0µɶ , V α, and X αβ, when the last two are consistent 

with (25). 
 
 

4.  Relative formulation. 
 

 The vector equation (21), or its scalar equivalent (21′), is completely satisfactory 
from the absolute viewpoint, given its invariant character with respect to the choice of 
Cartesian coordinates xα (α = 0, 1, 2, 3). 
 Nonetheless, it physical content in relation to an arbitrary Galilean reference frame S 
is not immediately evident.  In order to specify that fundamental aspect of the equation, 
one must: 
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 i) Fix the temporal direction γγγγ that characterizes the reference frame and locally 
decompose all of the tensorial magnitudes that are in play along γγγγ and the space Σ that is 
normal to it  (viz., the natural decomposition). 
 
 ii ) Correctly define (6) the relative magnitudes. 
 
 iii ) Obtain the law of variance of all relative magnitudes under an arbitrary change of 
reference frame. 
 
 As far as mechanical stresses ϕϕϕϕ    α are concerned (ϕϕϕϕV ≡ Vα ϕϕϕϕ    α = 0), one will have, 
above all: 

(26)     0 1 i
iv

c
=ϕ ϕϕ ϕϕ ϕϕ ϕ  

 
if one takes the decomposition (10) into account; that amounts to expressing ϕϕϕϕ    0 in terms 
of the three vectors ϕϕϕϕ    i.  On the other hand, the natural decomposition of ϕϕϕϕ    i : ϕϕϕϕ    i = φ φ φ φ i − 
ϕϕϕϕ    i ⋅⋅⋅⋅ γγγγγγγγ, with: 
 
(27)    φ φ φ φ i ≡ X ik ck ∈ Σ  (i = 1, 2, 3), 
 
in which ϕϕϕϕ    i ⋅⋅⋅⋅ V = 0 ⇔ ϕϕϕϕ    i ⋅⋅⋅⋅ v + c ϕ ϕ ϕ ϕ    i ⋅⋅⋅⋅ γγγγ = 0, is no different from: 
 

(28)     
1

.i i i

c
= + ⋅ϕ φ φ γϕ φ φ γϕ φ φ γϕ φ φ γv  

 
Meanwhile: The mechanical stresses ϕϕϕϕ    α are well-defined functions of the relative 
stresses φ φ φ φ i (in addition to v and γγγγ). 
 If one now projects (21) onto Σ and γγγγ then one can proceed with the decomposition of 

0( )Vα
α µ∂ ɶ V .  If one takes (10) into account and sets: 

 
(29)     µɶ  = 2

0µ ηɶ  

 
then one will have, in turn: 
 

 0( )Vα
α µ∂ ɶ V  = 

1
[ ( )] [ ( )]i

i tv c c c
c

µ µ∂ + + ∂ +ɶ ɶγ γγ γγ γγ γv v  = 

 
= ( ) ( ) [ ( ) ]i i

i t i tv v cµ µ µ µ∂ + ∂ + ∂ + ∂ɶ ɶ ɶ ɶ γγγγv v . 

 
If one specifies the spatial derivatives and uses (4), as well as the kinematical identity 
(cf., e.g., [1], pp. 514): 

                                                
 (6) Mathematically, as well as physically.  
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(30)     ∂i v
i ≡ div v = 

1
ɺD

D
, 

 
then the previous equation will imply the decomposition: 
 

0( )Vα
α µ∂ ɶ V = 

1
[( ) ( ) ]cµ µ+i iɺɶ ɶvD D
D

γγγγ  . 

 
Analogously, one has, as in (28) and (26): 
 

∂α ϕϕϕϕ    α = ∂i φ φ φ φ i +1

c
∂i (φ φ φ φ i ⋅ v) γγγγ +

2

1

c
∂t (vi φ φ φ φ i) +

2

1

c
∂t (vi φ φ φ φ i ⋅ v) γγγγ    , 

 
because if one introduces the relative volume force: 
 
(31)    µ F ≡ µ0 fΣ = µ0 (f + f ⋅ γ γγ γγ γγ γ) 
 
then (21) will give rise to the quantity of motion theorem: 
 

(32)   tot 2

1 1
( ) ( )i i

i i ivc
µ µ µ= ≡ − ∂ − ∂i
ɶ φ φφ φφ φφ φv F FD

D
 

 
and the energy theorem: 
 

21
( )cµ i
ɶD

D
 = − µ0 c f ⋅⋅⋅⋅ γγγγ − ∂i (φφφφ    i ⋅⋅⋅⋅ v) − 

2

1
( )i

i iv
c

∂ ⋅φφφφ v , 

respectively. 
 Unlike (32), this latter equation cannot be presented in a more expressive form; 
nonetheless, it can be easily transformed by taking (10) into account: − c γγγγ = v – V / η,  
and developing the spatial derivatives.  More precisely, if one introduces the following 
specific relative magnitudes: 
 

(33)  

2

0

( )
2

( )

/ ( )

1
( ) ( )i i

i i i

c internal energy

q thermal power

w v power dueto the internal stresses
c

µε µ
µ µ η


 ≡


≡ − ⋅

 ≡ ⋅ ∂ + ∂


ɶ

φφφφ

f V

v v

 

 
then one will get the energy theorem in the typical form: 
 

(34)    21
( )cµ i
ɶD

D
 = Ftot ⋅⋅⋅⋅ v + q –

1

µ
w (i) . 
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5.  Laws of variance of the fundamental relative magnitudes. 
 

 The general equations (32) and (34) satisfy the relativity principle, insofar as they are 
invariant in form with respect to the choice of Galilean reference system S ; nonetheless, 
they are not invariant in substance (and cannot be otherwise in the relativistic context), 
given the relative character of the quantities in play. 
 In any case, all of the relative quantities that were introduced (in particular, ε, q, and 
w(i)) have a real physical content; i.e., they do not vanish (like the forces that appear in 
relative motion), in the sense that they cannot disappear with a simple change of 
reference frame.  More precisely, if one affixes the index 0 to the proper magnitudes then 
the following local invariance properties (both in form and substance) will be true: 
 

(35)    

2
0 0 0

3
0

( ) ( )
0

/ inv. ,

inv. ,

inv. ,i i

c

q q

w wα
α

ε µ µ ε
η
η

= = =
= − ⋅ = =

= ⋅∂ = =

ɶ

ϕϕϕϕ
f V

V

 

 
so if one takes the general law (cf., [1], pp. 570): 
 
(36)     η′ / η = σ / α 
 
into account, with: 
 

(37)    α ≡ 2 21 /u c− , σ ≡ 1 – u ⋅⋅⋅⋅ v / c2, 
 
then that will imply the laws of variance for q and w (i) under the passage from S to S′ : 
 

(38)    ( ) ( ) 2/ , ( / ) .i iw w q qα σ α σ′ ′= =  

 
Naturally, in the classical situation (c → ∞ ), (38) will reduce to other kinds of invariant 
relations. 
 However, as far as the volume forces that were referred to in (31) are concerned, the 
relevant law of transformation is inferred directly in the case of a point with internal 
scalar structure, except for the subsequent adaptation to the presence of the density µ = 
µ0η2.  However, one has (cf., [1], pp. 571): 
 

(39)    2 2[ ( ) / ] / ,q cα α σ′ = + ⋅ −F F F w u  

 
with the intervention of the thermal potential q that was referred to in (33)2 and the vector 
w: 

(40)     w ≡ 
1

1 α+
u – v . 
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 Finally, all that remains to be done is to find the law of variance of the (relative) 
mechanical stresses φφφφ    i ≡ Xik ck , or φφφφn = ni φφφφ    i.  In order to this, one must: 
 
 i) Start with the proper mechanical stresses ϕϕϕϕα : 
 
(41)     ϕ ϕ ϕ ϕ α ≡ Xαβ cβ 
 
or the associated tensor Xαβ. 
 
 ii ) Take into account the Lorentz transformation (in x1-standard coordinates): 
 
(42)  x′ 0 = (x0 – β x1) / α, x′ 1 = (x1 – β x0) / α, x′ 2,3 = x2,3, β ≡ u / c2 ; 
 
 iii ) Specify the components X′ ik = i kA A Xαβ

α β′ ′ , with: 

 

iAα′  ≡ 

/ 1/ 0 0

0 0 1 0

0 0 0 1

β α α−
 . 

 
Ultimately, one has the direct relationships: 
 

11 2 00 10 11 2

12 12 02

13 13 03

22 22 23 23 33 33

( 2 ) / ,

( ) / ,

( ) / ,

, , ,

X X X X

X X X

X X X

X X X X X X

β β α
β α
β α

′ = − +
 ′ = −
 ′ = −
 ′ ′ ′= = =

 

 
and therefore, if one takes into account that the Xαβ are expressed in terms of only X i by 
means of (26) and (28): 
 

X 0k = 
1

c
vi X ik , X 00 = 

2

1

c
vi vk X ik 

 
then one will get the vectors φφφφ′ i ≡≡≡≡ X′ ik ck as functions of the vectors φφφφ i : 
 

(43)   
2 2

1 1
.i i i k k

k ku w
c c

δ
α α

  ′ = + + ⋅  
  

φ φ φφ φ φφ φ φφ φ φ w u  

 
 
 
 
 
 



Ferrarese – The relativistic mechanics of continua with scalar structure 12 

6.  The energy theorem and the First Law of Thermodynamics. 
 

 The general equation (34) confirms the interpretation of the first law of 
thermodynamics as the principle that substitutes for the energy theorem (cf., [6], Chap. 
II.3).  One eliminates the mechanical power µ Ftot ⋅ v in (34) by using the relativistic 
Cauchy equation (32).  More precisely, if one scalar multiplies by v, while taking into 
account that v2 ≡ c2 (1 – 1 / η2), then one will get, in turn: 
 

µ Ftot ⋅ v = 2 21 1
( ) ( )

2
v vµ µ+i i

ɶ ɶD
D

 = 2 2 2
2 3

1 1 1
( ) ( )c c cµ µ µ η

η η
− +i i

ɺɶ ɶ ɶD D
D D

 . 

 
Meanwhile, (34) will become: 
 

2 2
2 3

1 1
( )c cµ µ η

η η
−i ɺɶ ɶD

D
= µ q – w (i) , 

 
or, by virtue of (35)2,3 and (11)1 : 
 

2
2 2

0

( )c c
η µ µ η−i ɺɶ ɶD
D

= µ q0 − 2 ( )
0
iwη  . 

 
When one considers (29), this, in turn, will not differ from 2

0 0 0( ) /cµ ηiɶ D D  = µ0 q0 − 
( )
0
iw , and meanwhile, in conformity with (35)1 , it will translate into the First Law of 

Thermodynamics: 

(44)    ( )
0 0 0 0 0 0 0( ) / / .iq wη µ ε µ µ= −i
D D  

 
 One is obviously dealing with the energy theorem (34), as it would look in the (local) 
moving Galilean reference that is incipient to the generic element of the continuum.  
From that viewpoint, if: 
 
(45)     η ()i  ≡ d / dτ = V α ∂α  
 
 then the kinematical identity: 
 

(30′)     0

0

1 d

dτ
D

D
 = ∂α V α 

 
will allow one to transform (44) into the “continuity equation” for the proper internal 
energy: 
 
(44′)    ∂α ( µ0 ε V α) = µ0 q0 − ( )

0
iw ; 
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i.e., it will result directly from (21) upon scalar multiplication by V. 
 
 

7.  Continua with no internal material structure. 
 

 (44) can ultimately be transformed by taking into account the fact that, as in (22), µ0 ε 
≡ 2

0 cµɶ combines the proper energy of pure matter with the proper thermal energy: 

 
(46)     µ0 ε = µ0 c

2 + ε0,c . 
 
 More precisely, it can be written in the form: 
 

(47)   0 0
0 0

( )
η µ

µ
i

D
D

 = ( )
0 0 0 0,2

0 0 0

1 1
( )i

cq w
c

η ε
µ µ

 
− − 

 

i
D

D
, 

or also from (44′): 
 

(47′)   ∂α (µ0 V α) = 
2

1

c
[µ0 q0 − ( )

0
iw  − ∂α (µ0 V α)] ; 

 
that amount to specifying the total sources for just the material energy. 
 In any case, in the context of non-polar continua, (32) and (47) agree with the 
dynamical equations of a particle with variable proper mass (cf., [1], pp. 570).  
Meanwhile, they constitute the general equations of relativistic mechanics of (non-polar) 
continua with internal material structure.  One has four scalar equations in ten 
unknowns: viz., µ, v i, and X ik = X ki (i, k = 1, 2, 3), if, as is natural, one intends to assign 
the laws of all the sources: viz., F, q, and ε0,c ; the latter will be true directly or indirectly 
[through the thermal conduction vector that was referred to in (14), as in (19)] by means 
of the heat “equation.” 
 Along with the equalities, it is enough (at least in the mechanical schema) to add six 
constitutive equations. 
 (47) − (47′) make it quite clear that there is less of a connection to thermodynamics in 
the classical situation, and one has the usual equation for the conservation of mass.  That 
has the result that the first law of thermodynamics must be postulated a priori. 
 However, in the relativistic situation, special importance is placed upon the continua 
with no material structure, which are characterized by the internal constraint: 
 
(48)   µ0 D0 = const.,  ∀ elements of the continuum. 

 
For those continua, (47) translates into the following limitation on the sources: 
 

(49)    0 0,
0 0

( )c

η ε
µ

i
D

D
 = q0 − ( )

0
0

1 iw
µ

 ; 
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that limitation more properly corresponds to the classical content of the first law of 
thermodynamics (6). 
 (49), which is understood to be true for all transformations of the system, opens the 
door to reversible continua, in both the absolute and relative senses of the term; however, 
that would go beyond the scope of this brief introduction. 
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