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Introduction

Apart from the fact that it realizes the natural teah for the description of
mechanical and electromagnetic phenomena, even in théy-pugehanical domain,
special relativity constitutes a significant step inphecess of conceptual unification that
represents the highest aspiration of scientific thaughtthe dynamics of particles with
scalar structure, that process begins with the doublecatiifn of masswith (kinetic)
energy and mechanicalwith thermal action(cf., e.g., L], Chap. IX.2). That can be
extended to continuum mechanics in a natural way thdtemkerge from this brief
introduction, which starts from the classical situatend proceeds along a route that
makes the adjustments that are indispensible foretla¢ivistic theory. What will result
is a profoundly modified picture, not only in the relatiscorrections to the traditional
physical ingredients (mechanical stress, power of tleenat force, internal energy, etc.),
but also for the difference in its structural invarianbinetheless, the classical approach
is more illuminating, especially in regard to the Firsirof Thermodynamics (n®),
which will essentially constitute the correction oflerc™ (c is the speed of lighin
vacug to the principle of the conservation of mass ham Mau Quarg], no. 22).

For the sake of brevity, we shall examine, from theegal viewpoint, only the case
of non-polar continuawhich are ordinarily characterized by the conditiort tha proper
mechanical stress tensor should be symmetric. (Thénaliion of that hypothesis cannot
be separated from the introduction of stress-momemtsvass-moments; cf., G. Grioli
[3], and from the geometrico-kinematical viewpoint, by tbxtension of the scalar
structure by means of directors: c#],[Chap. IIl.) In that case, the thermal flux is not
independent of the velocity, and is combined into a “thenmartia” that naturally
accompanies the “inertia of pure matter,” which is wbaé has for fluids (cf., A.
Lichnerowicz p], Chap. IV, and Pham Mau Qua2)]
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1. General equations of classical continuum mechanics
Let us briefly give an outline of thgeneral equationsf classical continuum

mechanics in the context of Galilean reference fafje Let: Sbe the Galilean frame,
which is referred to arbitrarily fixed internal coordiestof Cartesian type. Briefly, that
means thal = {0, ¢, ¢, c3} is thereferencetriad. LetC be thepresent configuratiofin

9 of the continuous system, kt(i = 1, 2, 3) be the coordinates of the generic p@int
C, letn do be an arbitrary oriented surface elemenPaénd letg, do be therelative
mechanical stress.

Above all, the principle of conservation of mass §n when translated into the
Eulerian picture gives rise to theontinuity equation:

(1) O p+0 (V) =0
in which g (x, t) is themass densitgndv (x, t) is thevelocity. In addition, the main
equation of mechanics, when adapted to the generic pémt abmainC, will ultimately
give rise to three local conditions by a limited paliiney are:
[) Cauchy’s theoremwhich specifies the dependency of the stress on
2) g=ng =  0'=(@)-
[I) Thefirst indefinite equation:
(3) UV = UF =0 @,
in whichF is thespecific volume forcgnd ()" is thesubstantial derivative:
(4) 0" =0 0+a (V.
[I1) The second indefinite equatipor the reciprocity relation for the stresses:
(%) @ h'= g [, On,n’.
Finally, the energy theorem essentially translatés[6], Chap. 11.3) into the:

IV) First Law of Thermodynamics:

© ¢ =q-—w,
U

() The passage to an arbitrary basis for referenmlized by adding the specific force of convection
and that of Coriolis to the force of inertia in the egurabf motion.
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in which ¢ is the specific internal energyi.e., per unit massy is thespecific thermal
power (%), andw(’ is thespecific power due to the contact force:

(7) wi = X ® kg
in which kg is therate of deformatioriensor:
(8) ik = (0 Vi + 0i W) .

In the context of finite deformations, the Lagrangi@wpoint takes priority over the
Eulerian one, and at its forefront, both classically aelativistically, there is an
expression for the power dissipated or produced by the aitstmresses, which is useful
for the purpose of specifying the internal variables; howewe shall not address that
here. We shall confine ourselves to the observatmininithe classical domain:

a) There arevarious dynamical ingredienthat are, in fact, separatdor instance,
mass and internal energy, along with external voléonees and thermal action (through
the power terng).

b) The equations are invariant in both form and substamitie respect to the choice
of Galilean reference frame; i.e., they obey thdilés principle of relativity in its
strong sense.

How does one modify this picture in the relativisittation?

2. Relativistic extension.

Consider the viewpoint of special relativit}),(and take Minkowski space-tinid,
with the signature- + + +. Suppose th#l, is oriented and also endowed with one of the
two light semi-cones, which shall be calléd; i.e., it is endowed with onlZartesian

baseqc.} (a=0, 1, 2, 3Yhat obey.
9) CalEg=myz (Moo =-1,Mo = 0, Mk = ),

and have temporal axes that belong’to

In intrinsic terms, that is equivalent to considgrimly the class i, of «® Galilean
reference framegS that are equi-oriented in both time and space.

In what follows, one can also take=1y (y Oy = — 1) in order to underscore the fact
that ¢ plays a different role from the spatial vectarswith respect to the Galilean

() It is generally comprised of two terms, one of whietates toradiation and the other of which
relates toconduction:q =r — 1 /x div g, in which g is thethermal conduction vectdcf., e.g., 1, pp-
295).

() The passage to general relativity (i.e., to a cusgate-timeV,) is automatic by way of the rule of
transcription.
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reference framé& that is associated with the Cartesian basi$.{ That is to say tha§
characterized by the unit vectgy( C'. By contrast, the unit vectocsare defined in the

oriented 3-plan&” that is normal tgy, up to an arbitrary spatial rotation.

In the relativistic situation, one also needs toimistish theabsolute formulation
(which is invariant under space-time translations and iooat viz., Lorentz
transformationsfrom the one that is relative to an arbitrary Galilean reference &am
(which is invariant under only time translations, and igp&tanslations and rotations).
The latter, which is more significant from the physistndpoint, ignvariant in form
with respect to the choice of Galilean reference f(eim, theprinciple of relativity, but
not in substancen the sense that one must appeaktative magnitudesfor which one
must specify the way that they vary under a changeatle@n reference frame.

N E
>
\// ‘/
Let us start by considering thésolute viewpointThe continuum is represented by a
congruence of® time-like, oriented linethat fill up a world-tubeZ O M, [one and only

one line of the congruence passes through eachpair ()] LetV (E) be the local 4-

velocity of the continuum, and Iét (E) be the vector that is its derivative with respect t
proper time for the particles (viz., the 4-acceleratiodlong with the 4-vector¥ andA
(one of which is time-like and normalized ta% while the other one is space-like), two
fundamental scalarare defined in7 that are both positivenamely, Dy (E) and 146 (E),
which have the meanings pfoper number densityf the particles and th@oper density
of proper mass. From the relative viewpoint, those scalars comenfran arbitrary
Galilean reference frame(°). Indeed, along with the relationship:

(10) V=n(V+cy)=inv., n=1/1-v* Ic?,

(") The regularity that is assumed for the motion excludesygreyof jump or laceration.
() The passage to a more general reference frameefflutt presents no difficulties (cf])
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that will give rise to théocal invariance relationgwith respect to the choice of reference
frame, and in whichD is the Jacobian of the& with respect to the Lagrangian
coordinates):

(11) nD=inv.=Dy;  ulrF=inv. =,

which specify the significance of the scal@sand/p in relation to the proper reference

frame.
As far as theelative stressegy (n [0 S are concernedthey will be replaced with the
4-stressedy , with N [OM4 , given that the latter must have meaning in any Galilean

reference system, and therefore in any spatial seétidor E [0 7. Naturally, one

assumes that they satisfy the following properties, which are analogouthéoclassical
ones (2) and (3):

(12) Tn=N,T% TyIN’=TnIN, ON,N’.

We shall now address th@oblem of how to relativistically extenithe Cauchy
equation, which we must naturally postulate. The mostrakextension is further
suggested by the classical equations—(1{3) if one interprets them as the temporal and

spatial components, respectively, of the same 4-vesfjoation. More precisely, by
virtue of (1) and (4), one will have:

UV = (UV) = V=0 (V) +0; (V) V + v iV =0 (V) + 0 (uV V),
and the system (1) — (3) can be written in the form:
O pu+0 (uV)=0, O (uV)+0 (UV'V)+0 @ =uF .

Hence, if one takes (10and (11) into account then that will be equivalent (at leask, in
[J ©) to the equation:

0, (U VV) +0; @ = tiof t=n°F);
and therefore the most naturalativistic extensions:

(13) 0, (L VNV +T) = tof .

3. Proper mechanical stresses and proper thermal energy (of conduction).

One can give a more expressive form to (13) by spligach of the 4-stress&s” for
all =0, 1, 2, 3 into two parts that gparallel andnormal to the 4-velocityv (proper
mechanical stressesdthermal conduction stressagsp.):
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(14) T9=¢"+Q"V,
with
(15) "V =0.

Naturally, when one is dealing with an ordinary (i.e.,-potar) continuumone will
assume that the proper mechanical streggewill also satisfy the axiomd.2):

(16) ¢N:Na¢a, ¢N N’'= ¢N'|:N, ON,N’;
(15) will then become:
(17) pu=Vag"=0.

Having said that, if one scalar multiplies (14)\yand takes (15) into account then one
will have, in turn:

-QU=TIV =Ty = gy 7+ V; Q° V7,
i.e., asin (17):

a 1 a
(18) Q :?‘E‘OVCV y

in which £, ¢ is theproper thermal energ{of conduction):

(19) &, =—QN.

Naturally, one also introduces theoper density of thermal conduction:
(20) Hoc=EoclC;

(18) will then become, more simply:

(18) Q7= o, V.

By definition, with the intervention of the propaechanical stresses for the ones in (14),
the relativistic Cauchy equation (13) will assurne following form:

(21) 0, (VY +47) = i1,

in which f, is defined by:

(22) fo = Mo+ Mo,
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and is thdotal proper densitywhich is the sum of the density of pure matter anchiaér
conduction.

One sees explicitly thahe property of the thermal conduction 4-vedfthat it is
parallel to the 4-velocityV is a direct consequence of the hypothesis that the proper
mechanical stresses are symmethat was referred to in (16). One is dealing véth
characteristic property of ordinargi.e., non-polarrontinua (18) will not persist for the
continua that are characterized Bgymmetricstresses (i.e., the ones that lead to an
enlargement of the model from both the geometric andiyin@mical viewpoints), and
from the energetic viewpoint, the situation is presumaiglogous to the one in the
electromagnetic context.

In any casein Eulerian termswhich introduce the component§ of the 4-velocity,
as well as thetress characteristics®® which have the decomposition:

(23) ¢7=X%cp,

(21) will assume the typical aspect eduations of conservation with sourcesgeed,
they will have the type:

(21) 0, T%=ypf” (8=0,1, 2, 3),
in which:

(24) T%= g VoVvP+XP

as well as:

(25) VIV, =-c? XP=xF  XPVz=0.

Naturally, thesymmetric tensor field %, with basisZ, embodies the material scherof

the continuum, and is subject to only the condition thatnust admit a time-like
eigenvector Y) and a corresponding negative eigenvalgg ¢ 0). That says that

knowing T % is equivalent to knowingz,, V¢, andX %, when the last two are consistent
with (25).

4. Reative formulation.

The vector equation (21), or its scalar equivalent)(d4 completely satisfactory
from the absolute viewpoint, given its invariant charaetéh respect to the choice of
Cartesian coordinated (a =0, 1, 2, 3).

Nonetheless, it physical content in relation tcadmtrary Galilean reference franse
is not immediately evident. In order to specify thatdamental aspect of the equation,
one must:
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i) Fix the temporal directioy that characterizes the reference frame and locally
decompose all of the tensorial magnitudes that are inghtangy and the spack that is
normal to it (viz., thenatural decomposition

i) Correctly define?) the relative magnitudes.

iii) Obtain the law of variance of all relative magn@adinder an arbitrary change of
reference frame.

As far as mechanical stress¢$ are concernedg(, = V, ¢ “ = 0), one will have,
above all:

(26) ¢ =ug

if one takes the decomposition (10) into account; thatuemts to expressin¢° in terms
of the three vectorg'. On the other hand, the natural decompositiog of ¢' = @' -

@' Oy, with:
(27) p=X*cq Oz (i=1,223),

inwhichg' W=0< ¢'¥+c¢' y=0, is no different from:

(28) # =9+ 90y

Meanwhile: The mechanical stresseg” are well-defined functions of the relative
stressegp' (in addition tov andy).

If one now projects (21) ont® andy then one can proceed with the decomposition of
d,(f#4,V°V). If one takes (10) into account and sets:

(29) it = i,n?
then one will have, in turn:

0,(BVV) = ai[ﬂvi(v+cy)1+%at[ﬂo(v+q/)] =

= 9, (V) +0, (&v) +[0, (V) + 3.l cy .

If one specifies the spatial derivatives and uses (4)vedlsas the kinematical identity
(cf., e.q., 1], pp. 514):

() Mathematically, as well as physically.
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aiviEdivv:iD,
D

then the previous equation will imply the decomposition:

0, (B,VV) = %[(ﬂDV)'HﬂD)'CV] .

Analogously, one has, as in (28) and (26):

a i 1 i 1 i, 1 i
0a9"=0i @ +Ea‘ (@ Ev)v+§6t (v ¢)+§6t Vig DMy,

because if one introduces ttadative volume force:

(31)

UF = pofs = (f+f0yy)

then (21) will give rise to thquantity of motiortheorem:

(32)

1, . ) 1 ;
E(IUDV) ::uFtotEIUF _ai¢_?ai (V| ¢)

and the energy theorem:

respectively.

S(EDS) == poct =0, (9 B) ~ 50, (4 9 ).

Unlike (32), this latter equation cannot be presented inoee rexpressive form;
nonetheless, it can be easily transformed by takingitt®)account-cy=v -V / n,
and developing the spatial derivatives. More precisélgne introduces the following
specific relative magnitudes:

(33)

UE = J1C° (internal energy
HA=E-u, TV /np (thermal powey

w =g [qaiv+c—12v, d.v) (power dueto the internal stres3

then one will get thenergy theorenn the typical form:

(34)

L@pey =Fum+q-—Swo.
D U
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5. Lawsof variance of the fundamental relative magnitudes.

The general equation82) and (34) satisfy the relativity principleinsofar as they are
invariant in form with respect to the choice of Galilereference syste®; nonetheless,
they are not invariant in substance (and cannot bewateein the relativistic context),
given the relative character of the quantities irypla

_In any caseall of the relative quantities that were introducga particular,s, g, and
w") have a real physical conterite., they do not vanish (like the forces that apjear
relative motion), in the sense that they cannot disappeéid a simple change of
reference frame. More precisely, if one affixesititex 0 to the proper magnitudes then
the followinglocal invariance propertie¢both in form and substance) will be true:

e=C 1yl u,=inv.= &,
(35) n*q=-f IV =inv.=q,,
nw =g,V =inv.=w,

so if one takes the general law (ci], [pp. 570):
(36) nln=ola

into account, with:

(37) a=.41-uv?/c?, o=1-ull/c

then that will imply the laws of variance fqrandw® under the passage frddto S’:

(38) w9 =walo, d=dqalo).

Naturally, in the classical situation & o ), (38) will reduce to other kinds of invariant
relations.

However, as far as thelume forceshat were referred to in (31) are concerned, the
relevant law of transformation is inferred directty the case of a point with internal
scalar structure, except for the subsequent adaptat the presence of the density=
Lor’. However, one has (cf1][ pp. 571):

(39) F'=[aF +(F W-q) u/ ] al o

with the intervention of the thermal potentgthat was referred to in (33and the vector
W

(40) w= iu—v
1+a
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Finally, all that remains to be done is to find thes of variance of thdrelative)
'. In order to this, one must:

mechanical stresseg = X* ¢, org =n; ¢'.
i) Start with the proper mechanical stresgés
(41) 9 =XV cg
or the associated tenssf’.
i) Take into account the Lorentz transformationx{iistandard coordinates):
(42) x0=0C=-xY1a, xt==B8X)1a x*=x*% pB=ulc?;
iii ) Specify the componen¥™ = A, A¥ X%, with:
-Bla lla 0 O

A=l 0 0 10
o 0 01

Ultimately, one has the direct relationships:

Xrllz(ﬁ2x00_2ﬁxl0+ Xl])/a2’
x112:(x12_ﬁxo2)/a,
xrl3:(x13_ﬁxo§/a,

x122: x22 X123: X23 )(133: x33

and therefore, if one takes into account thattffeare expressed in terms of oty by
means of (26) and (28):

XOkZEViXik, x°°:i2vivkx‘k
Cc Cc

then one will gethe vectorgy’' = X"* ¢ as functions of the vectoys :

TN R 1
(43) ¢ _(5;( +acz u ij(ﬁ +002 ) E]rvuj.
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6. The energy theorem and the First Law of Thermodynamics.

The general equation (34) confirms the interpretation tlug first law of
thermodynamics as the principle that substitutes for the energyetnéof., [6], Chap.
[1.3). One eliminates the mechanical poweF: (v in (34) by using the relativistic
Cauchy equation (32). More precisely, if one scalar ipligs by v, while taking into
account that? = ¢ (1 — 1 /17%), then one will get, in turn:

1 1 1
Fiot v = = (D) V> += 1 (V?)' = =(ac*D) - [1C*°D) +—=[ic
H Frot D(ND) 2#( ) D(,U ) D ) pe ,U n
Meanwhile, (34) will become:

1’ D) ~—= ey =pq-w®,

\\,|H

or, by virtue of (35)zand (11 :

2
T (acDy - fc= p oo - nwf .
DO
When one considers (29), this, in turn, will noffeti from (i, c*D,)'n/D, = th Qo -

wy’, and meanwhile, in conformity with (35) it will translate into theFirst Law of
Thermodynamics:

(44) 1N (HoDoe) | e Dy = Ay =Wo / 14,

One is obviously dealing with the energy theor&d) (as it would look in the (local)
moving Galilean reference that is incipient to tieneric element of the continuum.
From that viewpoint, if:

(45) n( =d/dr=V9o,
then the kinematical identity:

1dD
D dr

(30) va

will allow one to transform (44) into the “contityiequation” for the proper internal
energy:

(44) 0a( to €V ) = o Qo —W, ;
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i.e., it will result directly from (21) upon scalar taplication by V.

7. Continuawith nointernal material structure.

(44) can ultimately be transformed by taking into actolm fact that, as in (22)p &
= [1,c*combines the proper energy of pure matter with the proper thermal energy:

(46) Lo €= [y C* + & .

More precisely, it can be written in the form:

n .1 1 n .
47 D) ==|q-——wW -————(D,¢ ,
(47) ﬂopo(ﬂo o) Z| % " :uoDo( )
or also from (49:
1 i
(47) 0a (1o V ) = ot~ W =04 (Lo VI ;

that amount to specifying thietal sources for just the material energy.

In any case, in the context of non-polar contin(82) and (47) agree with the
dynamical equations of a particle with variable ggo mass (cf, 1], pp. 570).
Meanwhile, they constitute tlgeeneral equations of relativistic mechanicqmdn-polar)
continua with internal material structure. One hasfour scalar equations in ten
unknownsviz., &, v', andX * = X" (i, k = 1, 2, 3), if, as is natural, one intendsssign
the laws of all the sourcesiz., F, g, and&, ; the latter will be true directly or indirectly
[through the thermal conduction vector that wasmref to in (14), as in (19)] by means
of the heat “equation.”

Along with the equalities, it is enough (at leesthe mechanical schema) to add six
constitutive equations.

(47)- (47) make it quite clear thakere is less of a connection to thermodynamics in
the classical situatiorand one has the usual equation for the conservatiorass. That
has the result that the first law of thermodynammtsst be postulateal priori.

However, in the relativistic situation, specialpiontance is placed upon thentinua
with no material structurewhich are characterized by timernal constraint:

(48) Mo Do = const., [ elements of the continuum.

For those continua, (47) translates into the follgAimitation on the sources:

n . _ 1 .
(49) —— (D, &) =0~ —W, ;
/'IODO 0o /'10 °
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that limitation more properly corresponds to the ctadscontent of the first law of
thermodynamics (6).

(49), which is understood to be true for all transfoiomest of the system, opens the
door to reversible continua, in both the absolute antivelaenses of the term; however,
that would go beyond the scope of this brief introduction.
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