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Geometrization of the Dirac theory of electrons

By V. Fock in Leningrad.
(Received on 5 July 1929.)

Translated by D. H. Delphenich

The Dirac equations are written in a general, invariarm with the help of the concept of the parallel
translation of a semi-vector. The energy tensorosstucted, and the macroscopic, as well as the
guantum-mechanical, equations of motion are presented. fofimer have the usual form viz., the
divergence of the energy tensor equals the Lorentz foecel the latter are essentially identical with those
of the geodetic line. The appearance of the four-potegitiahlong with the Ricci coefficientg , in the
formula for parallel translation gives, on the onadaa simple geometric basis for the appearance of the
expressiorp — e/ ¢ ¢ in the wave equation and, on the other hand, shows thabtlentialsp , deviating
from Einstein’s view, have an autonomous place ingbemetric universe, and must not be, perhaps,
functions of theyy .

In a paper of D. lvanenko and the authdrthe opinion was expressed that the Dirac
matrices have a purely geometric meaning. In another gapeby this author, the
notion of the parallel translation of a semi-vec{oe., a quadruple of quantities that
transform like Dirac’s/functions) was presented.

In a subsequent notice |, the author further applied this concept to the presentati
of the general-relativistic wave equation for the etattand derived the macroscopic
equations of motion in Einsteinian form.

The present paper is a summary and completion of therants that were given in
the aforementioned notices.

1. The transformation properties of the Diggdunctions were studied thoroughly by
F. Moglich (™) and J. v. Neumanr)( The transformation law takes on a particularly
simple form when one chooses the following expressfonghe first three Dirar-
matrices:

=0, > = P30, a = o, (1)

() V. Fock and D. Ivanenko, “Uber eine mégliche geometiés Deutung der relativistischen
Quantentheorie,” Zeit. f. Phys4 (1929), 798.

(") Ibidem “Géométrie quantique linéaire et déplacement paralléle,RCAcad. Sci. Pari488
(1929), 1470. This paper was presented on 20 May 1929 at thesptoysference in Kharkov.

(™) V. Fock, “Sur les équations de Dirac dans la théorieekdivité génerale,” C. R. Acad. Sci. Paris
189 (1929), 25.

(™) F. Méglich, “Zur Quantentheorie des rotierienden Etms,” Zeit. f. Phys48 (1928), 852.

(" J.v. Neumann, “Einige Bemerkungen zur Diracschen Thdeseelativistischen Drehelektrons,”

ibidem pp. 868.
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and one of the following matrices for the fourth oBe (
B=p%, O=pos, (1)
wherep, o, p3; 01, 02, 03 are the four-rowed matrices that Dirac introduced.

Then, in fact, a general Lorentz transformation cpoeds to the following
transformation of the/-functions:

wi=ay,+ By, Yi=awst By, } 2)
Wy =W+, Y, =W+ oY,
The complex quantities, S, y; J satisfy the condition:
ad-py=1, (3)

and in the case of a purely spatial rotation they g tivthe usual parameters of Cayley
and Klein.
If one letsap denote the identity matrix then the quantities:

A=Jay (i=0,1,273) (4)

define the components of a four-vector, and the quantities

x

A=Ta,y, As=gazy (4)

are invariants. This fact can be expressed in formatafollows: If one denotes the
transformation (2) b

Y =Sy, g =gs, )

whereS' refers to the adjoint matrix 8 (i.e., the transposed conjugate), then one has the
equations:

3
SasS=)Y aa, SaS=a; SasS=as, (6)
k=0

whereay are the coefficients of a general Lorentz transéiiom. Since:
Fgay=¢SasSy

the quantities (4) and (¥then transform according to the formulas:

(") See V. Fock, “Uber den Begriff der Geschwindigkeit in Béinacschen Theorie des Elektrons,”
Appendix. ibidem55 (1929), 127.



Fock — Geometrization of the Dirac theory of elecsron 3

A= aA; A=A A =hAs; 7

i.e., like a four-vector (like invariants, resp.). Sinthe quantitieg\i (i = 0, 1, 2, 3),
which are quadratic iy, define a four-vector, we would like to refer to the qiiest ¢/
with the transformation properties (2) as “semi-ve¢tors.

The explicit expressions for the quantitiggi = 0, 1, 2, 3, 4, 5) read:

A= Gyt TY,r Gt Ty,
A= Qu,+ g+ gyt Ty,
A =iyt Qg+ igy,~ gy,
A= Qy- G, §y— Ty,
A=-0W,t Gt gyt Ty,
A =gy, rigy,- gy, gy,

On the basis of these expressions, one confirmgotleaving identity between the
quantitiesA :

A+A+A+T A+ A=A (8)

2. We have considered the transformation properties efgdfunctions under a
Lorentz transformation in the space of special relgtivilf we take the standpoint of
general relativity then in order to be able to introdtlee concept of semi-vector, we
must have an orthogonal (more precisplseudo-orthogonalreference system at every
spacetime point. To that end, we introduce a net of @thhogonal congruences of
curves and, with Einstein, refer to the directionshafse congruences as “beins.” The
considerations of the previous paragraph then also remhiéhfeathe case of general
relativity if we understand; to mean the components of a vector relative to éesb

We enumerate the beins with Latin indices and therdimates with Greek ones,
which all range through the values 0, 1, 2, 3; for the suramaver the Latin indices,
the summation will be given explicitly, while for tlsaimmation over Greek indices, it

will be suppressed. We denote the parameters of theumomgg of curves by’ and the
moments by, . Since we are dealing with an indefinite metrichvitisenhart '), we
introduce the quantities = e, =e3 =-1;6 = + 1. The components of a vector relative

to the coordinate directiorAf) and relative to the beins Y are then expressed in one
way or the other as follows:

("M This term was introduced by L. Landau.

() L. EisenhartRiemannian Geometrfrinceton, 1926- Also see the splendid summary of the most
important formulas and facts in the paper of T. Levif@iviVereinfachte Herstellung der Einsteinschen
einheitlichen Feldgleichungen,” Berl. Ber. (1929), 3.

(") In the sequel, the bein and coordinate components wi#éh die denoted by one and the same
notation; therefore, in order to avoid confusion, threrfer will be provided with a prime.
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A=A A= Zk:‘%ﬁl Neo - (9)

If we denote the bein components of an infinitesimgpldicement byls then from
the formulas:

PA,=TE AN,  TF = [“ﬂ"} (10)

for the variation of the components of a vector undealfgrtranslation, one gets the
following expression for the variation of its beimgaonents:

oA =) 68/ Ads, (11)

where theyy are the rotation coefficients that Ricci introduced:
wa = (0,0 h i = ([@,h ). (12)
In this, [, denotes the covariant derivativexgf.

3. We would now like to consider the variation of thenponents of a semi-vectqr
under infinitesimal parallel displacement. For thisat@n, we make the Ansatz:

oy=3 G dsy. (13)

The C, are matrices with the elementS){, , and we understand tli&¢ to mean four
functions whosen™ one is given by the formula:

4
(C| 4”)"1 = Z(CI )mnwn .
n=1
The equation that is complex-conjugate to (13)sea

op =gy eq ds, (13)

where C" denotes the adjoint matrix. Now, the paralleplisement of a semi-vector is
already determined from that of a vector by the (&8); namely, here we must have:

0N =0@ay) =dpay+Pa oy =@ &(Ga+aC)dsy. (14)

Should this variation coincide with the one thagjigen by (11), then th€ must satisfy
the conditions:
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Cla +aG = > ea . (15)
k
Since A, =@ a,y and A = @ a,y are invariants, moreover, one must have:
oA =4Z72Q(Q+04+04Q) dsy =0, (16)
|

and likewise foro A, from which the additional equations follow:
C'a,+a,G =0; C'a,+a.G =0. 17)

One immediately convinces oneself that the gersshition of equations (15) and
(17) is given by the formula:

C= %zamakekymm'*' i, (18)
mk

where ®; are Hermitian matrices that must commute wittoéithe a; , as well asr and

as . If one remains in the realm of four-rowed neds then it follows from the
commutability with alla-matrices that such a matrix must be proportiondahe identity
matrix. By contrast, if one considers matriceshwitore than four rows)(then one does
not exclude the case in which tl are not proportional to the identity matrix. We
would like to remain in the domain of four-rowedtn@es and consider the, as real
numbers.

One should note that tl@& do not include the matricez and as , such that they

transform the first two¢+functions among themselves and the last two among
themselves.

4. Now that we have presented the concept of thallphdisplacement of a semi-
vector, we can define that of the covariant deiveaD/¢ of a semi-vectory along a

bein directionl by the formula:

D :%g—qw, (19)

Whereg—w: h” Bgﬂg denotes the derivative in the direction of tHebein. We denote
S X
the covariant derivative of a semi-vector relativéhe coordinata’ by:

Y vy, (19)

v ox?

() Such matrices can possibly arise in certain gemzetans of the Dirac equation; e.g., to the two-
body problem.
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where, to abbreviate, we have set:

= gek ho G- (20)

If one considers space to be pseudo-Euclidian, fomiwent, and setg equal to
zero then the expression (20) Bf will be equal to:

oy

Dl =Dy = S1—|CD¢/

This is, however, precisely the expression that anisebe Dirac equation when one
understands th@, to mean the quantities:

, 2 |,
o =—9, (21)
hc

where ¢/ denote the bein components of the vector potential hdrséquel, we would
like to assume this physical interpretation for thengetvic quantitiesd; . We have thus
achieved a geometric interpretation for the appearaite wector potential in the Dirac
equation, and indeed this interpretation is such that thentpdtean also be different
from zero when the gravitational terms that includedgbantitiegsq vanish.

If we now turn to the formula (13) fody then we see that it is precisely Weyl's
linear differential form that enters into it:

Y e ¢ ds =g, dx,

in agreement with the conjecture that Weyl's expressedThe appearance of Weyl's
differential form in the law of parallel translati@f a semi-vector is closely related with
the fact that was pointed out by the author &nd Weyl [oc. cit) that the addition of a
gradient to the four-potential corresponds to the midagibn of the ¢~function by a
factor with an absolute value of 1. This fact was reféto as the “principle of gauge
invariance” by Weyl.

5. The concept of covariant derivative of a semi-veatakes it possible to present
the Dirac wave equation for the electron in the genbesdry of relativity. To that end,
we consider the operator:

h
2—2 -Cy|-mcas y. (22)
k

k

*

) H. Weyl, Gruppentheorie und Quantenmechanigkl 9, pp. 88. Leipzig, 1928.
") V. Fock, “Uber die invariante Form der Wellen- und dezwBgungsgleichungen fiir einen
geladenen Massenpunkt,” Zeit. f. Ph§8.(1926), 226.

C
(
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We would like to show that it is self-adjoin).( In order to see this, we go over from
the coordinates to the beins, and introduce the matrices:

y=> ealf (23)

and the matrice§, that are defined by (20). Analogous relations for the icastrithat
were just introduced follow from equations (15):

r;yg'l'yara:_maya- (24)
This formula can be proved easily when one goes bathetalefinition (12) of the

Wi
When expressed in terms of coordinates, the opdfateads:

h
Fw=EEV{gﬁ—RMJ—mcaw- (25)

While observing (24), one easily proves the idgntit

OFy-FP)y = %ﬁ%«v@ vy), (26)

whereg denotes the absolute value of the determinaps ||. This identity expresses the
fact that the operatd¥ is self-adjoint. This fact allows one to make fbkowing Ansatz
for the Dirac equation in the general theory oétiglty:

Fy=0. (27)

If ¢ satisfies this equation then it follows from tkentity (26) that the divergence of the
current vectors:

S=gyy, (28)

which is obviously real, due to the Hermitian cluaea of they” matrices, vanishes:

[ag(fsr’)- (29)

() Here, we understand the word “self-adjoint” to havemesvhat extended meaning. Namely, we
intend that to mean that the expressipRy — (Fy)y can be written in the form of a (generally four-
dimensional) divergence.
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It is easy to prove X that the Ansatze (25) and (27) for the Dirac equatidmvisriant
(more preciselycovarian) not only in relation to the choice of coordinates, &lsb in
relation to the choice of orthogonal congruence ofesirv

To prove that, we first remark that thg can be defined uniquely, in agreement with
the previous definitions (18), (20), (21), by the equations:

r;yﬂ+yﬂra:_|]ayﬂ’

_ 27iie (30)

% Spurra _h_c¢a .

If one now introduces any net of congruences ofe&siand one denotes the quantities
that are referred to this net by an asterisk thenrtew I -solutions of the analogous

equations are:
roV +/ 7T =0/,
2riie (30)

sspurry =21y,

However, at every spacetime point, the transitiomew bein-directions has the
character of a local Lorentz transformation. Assult, the new components of the semi-
vectory” and the new matrices “ are linked with the oldy and y° by relations of the
form:

w =Sy, y’=Sy’s (31)
[cf., formulas (5) and (6)], whel®@denotes a matrix of the form:

a 00
o000
s=V 27 -0 ad—py=1
00ap
00y o
with variable elements.
However, the transformation law for the coeffit¢gn, of parallel translation reads:

r’=sr, Sl+a—§ s, (32)
f0)4

so this expression is the solution of (30 ).
One further has the relation:

() This passage (up to the end of § 5) was added by the. edito

Fk aS _l
(") One has: SpUJra—g S =0
X
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ay"
ox°?

B s _of 0y
WL -

If one letsF ¢/ denote the expression that is analogous to (25) thagetsewhen one
furnishes thgs, I, and¢in it with an asterisk then it follows from (31) arg8Bj that:

Fy=SFy. (34)
The equatiotr¢ = 0 is then equivalent 86 ¢ = 0, which was to be proved.

6. In this paragraph, we would like to represent the opeFatn another form, in
which we calculate the su@eka'kck that enters into formula (22).
k

In order to be able to represent the result in a détear, we proceed as follows. We
introduce the quantitiesys, which should vanish when two equal indices appear in the
indicesijkl, and in the case of differing indices, it should equaler — 1, according to
whether the number sequengd emerges from 0123 by an even or odd permutation,
resp. With the help of these quantities, we define Itleenvector”:

fi __ze§$ ijkl ykl (35)

jk|
with the components:

fo = _eo(y123+ Vot V31),
fl = _el(y203+ Yozt ysza’

(35)
fz = _ez(y301+ Yozt y13()’
fs = —&(Vioot Vout V 21d-
If we observe the identities:
aa,a;=ip4a,
a,a; = ?:030'1’ (]f*)
asa, =1pa,,
aa, =ipa,,

which emerge from the definition (1) of the matsiag , then we can write the sum
> ea G inthe form:

IZea'Q = IZea'[ Zeyl, p3| j *)

We denote:

== Xer, = [ 2 (Jarr) (36)
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and introduce the expression (*) into (22). We theninbta

_ h oy e h h R
Fy ;e,-aj (m % N At w} Mpsg eq; f-may. (22)
We remark that the first and second sums in thigession are individually self-adjoint
operators.

In the event that all of the congruences are nbomagruences, the “bein-vectof”
vanishes, since every Ricci symbg| with three different indices vanishes identically;
Furthermore, we can then choose the hypersurfadesavnormals give the curve
congruences to be coordinate surfaces. We thest hav

ds =) e Hdx; Jg =HoHi Ha Hs; (37)
j

Ll an g
h—Hi, hi=eH; fi=0, (37)

while all parameter$; , and h? with differing indices vanish. The expression tobe
operatorF then reads:

—Yea L[N W ey, h ol )l
" Zejaj H; {277i o, C¢j¢/+ 4Arni 0x {In H. jw} e 9

J

This formula allows one to write down the Diracuation in arbitrary curvilinear,
orthogonal coordinates immediately. One must olesen the following that if one
writes equation (38) — e.g., in the case of annaryi Euclidian space — once in Cartesian
coordinates and once more in curvilinear coordm#ten they-functions that enter into
(38) in both cases are not identical, but are adipb each other by a transformation of
the form (2) with variable coefficientg, £, y; &. One must keep this situation in mind for
the presentation of the uniqueness requirementséag-functions.

To conclude this paragraph, let it be remarkee lieat, as is known, it is not always
possible to choose all curve congruences to be alowuongruences in a general
Riemannian space. That is possible in any everthé®important special case of a static
gravitational field with central and axial symmetgs the solutions of the Einstein
equations that were found BghwarzschilandLevi-Civitahave shown.

7. We would now like to attempt to find the energgpgor. To that end, we consider
the tensor:

A, =gy [gf —rawj =g y’Dy (39)
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and calculate its divergencs.(
We write the Dirac equation, along with its complexjagate, in the form:

y"(al‘[é —Fgwj—z—ni mca,y =0, (40)
1) h
(642 —wr;jyﬂ + 2 ega,=o0. (41)
)4 h

We differentiate (40) with respect #§ and multiply on the left byZ; we multiply

equation (40*) on the right by / 0x° and add the results. If we observe the formula
that follows from (24), namely:

r;y‘7+ y”rU:—T \/71/7 (41)

then we can write the sum in the form:

y” My
J‘ o~ [w[ V= j D4 - W Se¥ =0 (42)
We further multiply (40) on the left by@ ', and (40) on the right byl s and add

them; we replacd | )” and I} y° with their expressions in (24) and (41) in the suim.
this way, we get:

[ e O (9o ) @@,y - W Y@y (T, =TT )0 =0, (49)

If we replace], y? here by:
o_0 o
Ua y ay: +I, Vp

then subtraction of (43) from (42) yields:

[ag(fA;) ro K =y Do (44)

where, to abbreviate, we have set:

()  One can also derive the result of this paragrapimirlegant way by considering an infinitesimal
coordinate transformation (cf., H. Tetrode, “Allgemegtativistische Quantentheorie des Elektrons,” Zeit.
f. Phys.50 (1928), 336.) However, we prefer to proceed in a more ef@amewvay.
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Doa = o, —ar” +r r,-r,r,. (45)
ox?  ox°

We must now calculate the matby,. We have:

Dos =DgDa~DaDys =D 660, h, B, (46)
ki

where we have set:
D|'<| = D|: D|' - D|' D|: + z%(ymm - ymkl) Dm' (47)

The operator (47) is equal to:
p 1 2rie .,
Dkl - ZEii ,aiajej ijki + hc Md 1 (48)

where ) denotes the bein-components of the Riemann tensor:

oy, OV
Vi = a—s‘k—a—£+ D€ [Yim (Vo= ol + Yo ok — Yook S, (49)

and the skew-symmetric tensht,, :

W= %—Z{(‘Z—Z{Jf Zm:em(%nkl—%nlk) Pro s (50)

represents the electromagnetic field.
We next express the matnX D, in terms ofD,, :

Y D= eea.h 0. (51)

The sumZek a, D, that appears here can be calculated with the dfep8), in which
k

one should observe the cyclic symmetry of the Rremtansor. One gets:

1 2me .,
z%akD'm :zgak(__ R+ Mklj’ (52)
k K 2 hc
where:

R,d == Zq Vi (53)

denote the bein-components of the contracted Riartemsor. If one substitutes (52) in
(51) then one gets:
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V¥ Do =)/ (ER LV j (51)
2 hc
We thus have the following expression for the diegice of the tensoh?’,:
of 1 2riie
O (amy-ro, =5~ R+, | (54)
\/_ ox 2 “hc
If we set:
D pg=wg =THUg, (55)
27

where TZ" andU 2" denote the real and imaginary parts of the comfgazorw?", then
formula (54) can be written in the form:

hc
DUWU[ Sp eM I a | 56
( P A % j (56)

or, when one separates the real and imaginary. parts

0,Tg=eS M,

(57)
0,U gﬂzz—; R,

The second of these equations is an identity thaasy to prove, if the tenstr? is

equal to:

g = %Dasa (58)

and the divergence of the vect@rvanishes from (29).

Equation (57) says that the divergence of theatefi§" is equal to the Lorentz force.
For that reason, we can interpfef" as the energy tensor. Equations (57) are then the
equations of motion for the general theory of meigt Perhaps it would be more
consistent to interpret the total complex tengdf- as the energy tensor, instead of the

real partT 25 we shall not go into the question here of whittleripretation is preferable.

It is remarkable that the electromagnetic terlglpr appears here along with the
Riemann tensdr,, in the form of a Hermitian matrix:

R -

4rie
oo he pa |
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8. In order to derive the quantum-mechanical equationsodibmthat correspond to
those of a mass point (geodetic line) from the reshlis we obtained, we proceed as
follows:

We choose a complete system of functions in the dowfaihe spatial variables,

X2, X3
(X0, X1, X2, X33 ) (€=1, 2, 3, 4), (59)

each of which satisfies the Dirac equatiorefid is normalized by the requirement that:

[I| @0, g dxdx dx=1. (60)

Due to (26) and (27), it follows from the validity of tlegquation for a special value xf
that it is valid for any value o . We define the matrix element for an operattwy the
formula:

L= [[[ @oLap,Jg dx o d. (61)

We observe that what we did in the previous paragraphsespetially equation (54),
remains unchanged when we replgcwith ¢, and@ with @ in A%- andS’, and thus,

replace them with two different solutions of the Dieuation. We now write equation
(54) in the form:

1 .
\/_OX (427 \/7}/0Dl//)_ ZplpmydDal/ln - wmyp( 2Rpa Zf]::e Mpajwn' (62)

If we multiply (62) by\/adxl dx dx and integrate over all of space then only one
term remains in the sum on the left-hand side 2f,(&nd we obtain:

%{ [I] @D, g dx dx dx)

=[] w{rapy D, +W(—%Rm ?M ﬂwnﬂ/_gd%d% d, (63)

an equation that we can also write symbolicallthe form:

(VOD ) =To,V°D, +V”(‘E R, e Mmj, (64)
2 hc
or also, if we set.
=D, (65)
277

() Cf., onthis, V. Fock, Zeit. f. Phyd9 (1928), as well aS5 (1929), 127.
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in the form:
(VOP)—FapyP+y”( eM +ERW) (66)

" A

We can now interpret the operatgrSas representatives of the classical velodi}/
d and P, as those of the covariant quantities of motiong,, dx’ / &, This
interpretation makes the transition to the clasdicaory possible. If we do this, and
consequently neglect the term on the right-hané #ict is provided withn, then we
obtain precisely the classical equations of motfon a charged mass point in a
gravitational field, and in particular — when n@®atomagnetic field is present — the
differential equation for the geodetic lines.

9. The pure covariant tensor:
Woo=0op WE" = ciy, Py (55)

IS not symmetric in its indices. Due to the megnii the operators ), andP, (viz.,
velocity and quantity of motion), the quantum-meubal quantitiesW,, correspond to
the classical quantities us U, :

Woe — 0 Ug Ug, (67)

whereu, denote the classical covariant components of abe-Velocity anda, denotes
the rest density of the matter. However, the gtyam u, U, is symmetric in its indices.

The Dirac equation (27) can be derived from aatemnal principle, which can be
formulated with the help of the energy tensor ds\is:

S|[] Jwg’~ mégaw)/ g dy dx dx dy=0. (68)

This equation provides a simple physical intergi@taof the invariantm@ a,i as the
rest density of matter.

10. We would now like to summarize the results of mwestigation.

The concept of parallel translation of a semi-geserved as the starting point for us.
With the help of this concept, the appearance ef gbtentialsg,, along with the
impulsesp, in the Dirac equation could be interpreted in aepugeometric way: The
purely formal conversion of the expressipp — e/cg, from classical mechanics to
guantum mechanics was therefore superfluous. &umibre, the aforementioned concept
allowed us an informal association of the potentidhe geometric schema of the general
theory of relativity, which can be of use for theegentation of a unified theory of
electricity and gravitation.

Moreover, the Dirac equations were present ingingeral theory of relativity, which
are invariant in regard to the choice of coordisaiad of “beins.” As a closely-related
result, this yielded an explicit representation tbé Dirac equation in curvilinear,
orthogonal coordinates. A tensor was constructbdse divergence was equal to the
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Lorentz force; this tensor was interpreted as the grnemgsor, and the equation that it
satisfied was interpreted as the macroscopic equatiomation. Furthermore, the
guantum-mechanical equations of motion for the electrahdorrespond to the classical
equations for a charged mass point or — in the absenceetdcromagnetic field — those
of a geodetic line were derived. In conclusion, the tianal principle from which the
Dirac equation can be derived was written down.

The goal that we have tried to achieve was the gemaidn of the Dirac theory of
electrons and its association with the general thebrglativity. Thus, the difficulties
that adhere to the Dirac theory — such as the appeavdmegative energy values and a
non-vanishing probability of the charge reversal of antelac- were not involved at all.
However, our considerations might perhaps contributbdasolution of these difficulties
in an indirect way, in that they show how the originalaltered Dirac theory can be
derived.

Leningrad, Physical Institute of the University, May/June 1929.

Appendix

After the completion of this paper, | learned of ayvteresting paper of H. Weyl
(). Weyl's basic mathematical idea is essentially fideh with the concept of the
parallel displacement of a semi-vector. The physmaitent of Weyl's paper is,
however, completely different from that of my owrppa

We can summarize the essential features of Weyllasvk:

1. Weyl regarded the Dirac equation as a wave equatiothéoelectron-proton
system, not for the electron.

2. Inthe additional gravitational terms, Weyl believedvoelld find a substitute for
the termmcas, which was simply deleted.

In my opinion, both of these features can scarcelyj$ified when one encounters
essential difficulties that | would like to point dugre.

The quantum-mechanical equations of motion that foftown the Dirac equation are
a complete analogue for the classical equations of médoa charged mass point (and
not, say, for a system of two bodies), as was arsadwn in my earlier paper ).

The Dirac equation, and indeed with the temma, , is suitable entirely to the
description of a force-free motion of an electroraagave in the sense of the original de
Broglie picture.

The decomposition that Weyl carried out of the curreator S into two summands
§ andS”, which were interpreted as currents of positive and hegalectricity, resp.,
cannot be justified if these summands are null vecgors only their surs= S + §7 is
a timelike vector {). The current is, however, a static-macroscopic diyaand, as

( H. Weyl, “Gravitation and the electron,” Proc. Natad. Amer15 (1929), 323.
(") V. Fock, “Uber den Begriff der Geschwindigkeit, usw.,1tZé Phys.55 (1929), 127.
(") Proof: The timelike character & follows from the identity (8) (wher§ is to be used now,

instead ofy), since it yields:
$-9-$-5=5+%. *)
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such, must have the same character as in the clag®oay, so it must necessarily be
timelike.

The Weyl equations should describe the electron-prototeraysone may then
demand that they correctly duplicate the energy leselee hydrogen atom. Due to the
omission of the terrmcay, this is, however, hardly possible, and unproved, inesent.

The gravitational terms [viz., the “bein-vectdt; in our formula (35)] that Weyl
interpreted as a substitute for mass can be made tehvasilong as a system of normal
congruences exists, and especially in the case of spheyimmanetry, as well as in the
static case of axial symmetry. However, one migpeeka high degree of symmetry for
the electron-proton system.

Finally, it remains entirely unclear how the consgtantandM - viz., the masses of
the electron and proton — should actually emerge frorgrénatational terms.

Due to these difficulties, | cannot consider Weyl's mfie to tackle the quantum-
mechanical problem of mass, as well as the two-body gmgbhs successful. By
contrast, | heartily agree with Weyl's general idea tiwh problems are closely coupled
to each other and to gravitation.

In conclusion, | would like to make some general remarkghe physical content of
the Dirac equations and the quantum-mechanical two-body pmoble

In my way of looking at things, only the electrordesscribed quantum-mechanically
by the Dirac equation, while the rest of the world (ppehalso the mass of the electron)
is described macroscopically. The proton is also caluateong the rest of the world.
The solution of the two-body problem must consist of foming a quantum-mechanical
description of the electron, the proton, the electramatig field, and mass. On the
contrary, for the macroscopic description of gravitat&omd electricity, the one-body
problem can perform a useful service.

One obtainsS'™ (S, resp.) fromS if one setsys and ¢ (¢4 and ¢, resp.) equal to zer® and S
vanish in both cases, and thus, also the left-hand sidg afich was to be proved.



