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In 1, it will be shown that one can regard properetinas an independent variable in Hamilton’s action
integral when one employs the expression that is givéh@) as a Lagrangian function. In Il, proper time
will be introduced into the Dirac equation and a methadrftegrating that equation that is based upon
proper time will be developed. The Cauchy problem wiltreated with the help of that method. Part Il
contains a further generalization (and simplificatioh)he application of the Wentzel-Brillouin method to
the Dirac equation that Pauli gave. In lll, the mixed drssthat are considered in the theory of the
positron will be expressed by the fundamental solusotution élémentaijeand the Riemann function of
the Dirac equation.

|. Classical mechanics.

1. Let L° be the usual Lagrangian function from which the reltic equations of
motion for a charged mass point in an external fiedddarived. It is known thdt® has
the form:

L°:—m(,2«/1—,32—E(X’Ax+y’Ay+z'Az)+eCD, 1)
with
B2z S (2 ry? 2 ®)

in which the prime denotes temporal derivativdonk introduces the proper time:

r =[,1- Bt 3)
then the action integral:
s= [, Ldt, (4)

whose variation will yield the equations of moti@an be written in the form:

_rodt
S—IOLE . (5)

() Presented on 14 March 1937 at the meeting of the AcadeSujarfces of the USSR.
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However, since the upper integration linsitdepends upon the form of the path, its
variation must also be considered. As a result, propert cannot be considered to be
an independent (i.e., unvaried) variable in a variationsicjpde with the Lagrangian
functionL® dt/ dr.

2. However, once can introduce another Lagrangian fumgtizen one sets:
2L 2. e, . ) : .
L=3m(X+ Y+ 2= Ef -3 mé-——(xprypr zpe o, (6)

in which the dots signify derivatives with respect to adependent variable. (The
quantity 7 will later prove to be identical to proper time.)
The variation of the integral:

S:LLdr (7)
for a fixed integration limitg yields the “equations of motion™:

d oL aL_

———-——=0, etc,,
dr 0x o0x

(8)

SincelL does not depend uparexplicitly, those equations possess the integral:
X+ + Z - ¢t = const. 9)
If one requires that the constant has the valcfe —
X+ P+ P-Ft=-¢ (10)
then one will get an equation, according to which, the peddent variabler will
coincide with proper time. Equations (8) then reducedaittual relativistic equations of

motion.
If one considers the relation (10) then one will have:

dt
L=L"—, 11
e (11)

with the previous meaning (1) bf. The action integral (7) is then numerically equal the
usual expression (4).
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3. With the Lagrangian function (6), one easily conggudamilton’s equations of
motion, as well as the Hamilton-Jacobi partial défgral equation. The latter has the

form:
0S 1 e, Y 1(08S _
E+%|:(gradS+EAj F(ﬁ e:Dj+ m 6:] =0. (12)

In the theory in question, the quantitiesy, z t play the role of coordinates and the
quantity 7 plays the role of time in classical, non-relaticismechanics. We can then
employ known formulas from classical mechanics.

If one expresses the action integral (7) in teofrthe variables, y, z t; X°, y°, 2, t%
then one will get a function:

S=S(x vy, zt X2y, 2% D), (13)

in which 7 can be considered to be one of the independemblas. The partial
derivativedS / dt is constant, as a result of the equations of motitf one sets that
constant equal to zero:

1
o

(14)

QJ|QJ
ERE%)

then one will get the condition (10) for the propere.
The impulse variables that are conjugate to terginates’x, y, z t, as well as their
initial values, will be expressed in terms of tlat@l derivatives o6 as follows:

0S _0S _0S _0S

=2 == ==, =-H=22, 15
Px 0x Py oy P 0z B ot (15)
0 aS 0 aS 0 65 0 0 65
=——, == =——, =-H' =-— 16
px axo py ayo pz azo pt a t 0 ( )

If equation (14) is solved for and the value of substituted in the expression (13) ®r
then one will get the usual action function:

S=S"(x,y,zt;X°,\°, 2, 1°. (17)
One will then obviously have:

0
ai:§+6_Sﬂ: ﬁ, (18)
OX O0x 0rodx OX
as a result of (14).
However, the elimination afis quite inconvenient in practice. Hence, thection S

(which containg) can be expressed in an elementary way in, ég.ptoblem of the
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motion of an electron in constant electric and magrietids, while no closed expression
will exist for S.

II. Proper timein the Dirac equation.

4. The Dirac wave equation for the electron in an edestgnetic field can be
written:

{(aEIP)+mca'4—%}¢/: 0. (D)
Here, a denotes a vector with the Dirac matriags a, as as components is the
operator:
=—ih grad +> A )
o
for the quantities of motion, aridis the operator:
_n 0
T=ih— +ed 3
ot

for the kinetic energy of the electron.
One can represent a solutigrof the Dirac equation in the form:

= {(a[lP)+mca4—%}W, (4)
in which W satisfies the second-order differential equation:
{P2+m2c Do) - Es)} (5)

which can also be written in the form:
h? AW = 0. (6)

The operaton will be defined by the following equation:

¢
1090 2
+{ hc(d A+——j+—(A -0+ ? }\P

+{(gh) -i (a )} W. (7)

AW =-0OvY —?(A [grad¥ Ja—wj
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The solution of equation (5) can be put into the forna afefinite integral over an
auxiliary variabler:

w:jCFdr. (8)

The equation fol will be satisfied in the event th&t is subject to the differential
equation:
2
N AF=in 9F (9)
2m ar’

and in the event that the integration limits (@ thtegration path in the compleplane)
is chosen such that the condition:

—dr=F|c= 10
J.CGT |C ( )

is fulfilled.

The variabler plays the role of proper time, which would emeirgen the following.
Equation (9) can then be considered to bebingc equation with proper time.

We set:

F=e®Mf, w= jCeiS’“dr, (11)

in which Sis the classical action function, which satisties differential equation (1.12).
In order to get the equation fhrwe remark that:

AF =e®"A'f, ih OF = gisrn ( in o 95 fj (12)
or or or

in which A" emerges fron\ when one replaced with A + Egrad S and ® with
e

- }% As a result of the differential equation f&rthe terms in the expression (9)

e
that do not contain any factor bfcancel out, and one will get an equationfftat can
be written in the form:

2mﬂ+{|:|5+ (dlvA +ga_¢j} f+ S (o) +(a@@) f=ihOf. (13)
dr C c ot C

In this, df / dt denotes the “complete differential quotient” widspect to proper time;
i.e., the quantity:

dr ﬂ xﬂ+ yﬂ+ zﬁ+ tﬂ (14)
dr  ar  ox dy 0z Ot

in which one understands, y, z, t to mean the classical expressions:
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%= —(§+ eA&j f=- mlcz(as ecbj. (15)

0X ¢

5. There is some advantage to treating equation i) the Brillouin-Wentzel
method. One can also find an exact solution t® élguation in that way in some cases,
such as, e.g., the case of constant electric amphetia fields. The constaht appears
only on the right-hand side of the equation. IEamere to neglect the right-hand side
then one would get an equation, namely:

2mﬂ+{|:|8+ (d A+Ea£j} f+— {(aB§)+(aKE)} f=0 (16)
dr c co

whose solution is equivalent to the solution ofyatem of ordinary (and not partial)
differential equations.

One can drop the term witdlSfrom equation (16). Leb denote the absolute value
of the fourth-order determinant that is construdtedh the second derivatives 8fwith
respect tox, y, z t, and with respect ta®, y°, Z, ©° (or with respect to corresponding
integration constants):

9°S
Det| —— 17
P 6x6y (17)
The quantityp satisfies the “continuity equation”:
0 0
Lo )+—(py)+—(p z)+—(pt) 0, (18)

in which x, y, z, t have the previous meanings (15). It follows frams that the
quantity\/; will satisfy the equation:

2mdd£ {DS+C(d A+E‘2i:j}ﬁ:o. (19)

T C
If one then sets:

f=pf° (20)

thenf © (in the approximation considered) will satisfy tigferential equation:

2m‘fji0+ Eli (o) + (@)} 0= 0. (21)

In the case of a constant field, one can assunté fréepends upon only but not upon
X, Y, z t. (21) will then give a system of ordinary diffatel equations with constant
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coefficients. Sincep also depends uponin this case, one will havElf = 0, and the
approximation equation (16) will coincide with the exact eiquatl3). One will get an
exact solution in that way with the help of the meltlsonsidered, and its exact form will
be given below (nad).

In the general case of an arbitrary field, one mustg®d as followsx, y, z t are
expressed in terms afwith the help of equation (1.16) for the classical patid then
substituted in¢ and $. The coefficients in the system of equations (21) thén be

functions ofralone. p;, py, p;, p’ are then replaced with their expressions in (1.16) in

the solution to the resulting system of ordinary dédfeaial equations with variable
coefficients. The result will yield the desired sauatiof the system of partial differential
equations.

When we replac& with S in our formulas [equation (1.17)] and consideto be
independent of, we will find a generalization dPauli’s result ¢), which was the first
application of the Brillouin-Wentzel method to the &irequation. However, the Pauli
formulas are quite complicated, since he based his igegistn upon the first-order
Dirac equation, and not the second one.

Let us make the following remark: If we calculate theegral (11) by the saddle-
point method then we will have to take the valu&at the point wher@S/ dt = 0 under
the integral sign; however, that is the usual actiortfon S (which does not contain
proper timer).

6. The form for the solution of the Dirac equation thatobtained (a definite integral
over proper timer) is especially suited to the investigation of the Caucloblpm
(initial-value problem fory).

Let ¢ be a function that satisfies the first-order Diraguation, along with the
condition:

w=y° for t=t° (22)

In order to determinegy, it will suffice to find a solutior to the second-order Dirac
equatiomM\W = 0 that satisfies the initial conditions:

oV _ ic :
W=0, —=-—¢°=¥° fort=t" 23
ot hw (23)

The function¥ can be put into the form of an integral:

w=[QWdv, (24)

in which one sets:
dv=dxX dy’ dZ. (25)

() W. Pauli, Helvetica Physica Acta (1932), 179.
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W° is a given function of’, y°, 2, andQ is a function ok, y, z t and ofC, y°, 2, t °.
We set:
E=c? -t -x-X’-(y-Y)’- (-2 (26)

and define an auxiliary functiop (&) whose derivative/ (&) = d(¢) is the Dirac delta
function by the equations:

y(¢)=1 for ¢>0,
y(é)=3 for &=0, (27)
y(é&)=0 for &<0.

The quantityQ in the integral (24) is a true function of the form:

Q=R y(d +RI(J, (28)
in whichR andR’ are continuous functions; henéris the so-calledRiemann function.

If one substitutes the expression (28)@m (24) then® will become a sum of two
integrals:

W= qu'JOy(f) dv+j RWO5(&) dv. (29)
The first one is a volume integral over the voluvhef the ball:
-t --r%*=0

of radiusr” = |t — t° | with its center at’ =r. The second one is a surface integral over
the surface:
-t - -r%=0;

i.e., over the outer surfa&of that ball. If one eliminates the discontinudumsproper,
resp.) functiong/(&) ando(¢), resp., from (29) then one will, in fact, get:

— )0 1 )0
w_ijw dV+FJ'SF§JLP d<. (30)

Since the radius of the ball tends to zero &s- t°, one will obviously hav&’ = 0 fort
=1° Furthermore, the time derivative of the volumegral will also vanish for=t °.
However, the surface integral will be equal to:

% [ ROW? ds= 271" (R9), = 271 (t - t9) (R79°), (31)

for smallt —t° > 0. Therefore, one will have:
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("’_L"j = 2RIV, (32)
ot t=t°+0

in which R}’ denotes the value & forr =r° t =t° The initial condition (23) will be

fulfilled when we demand that:
ROD =1/ 2rc, (33)

independently of the coordinates and time.
However, the functiod? must also satisfy the second-order Dirac equation. The
functionQ must therefore satisfy that equation, as well. Wstrthen have:

AQ=A Ry(§+R3(9) =0. (34)

If one observes the equations:
Op(é)=-495(3), (35)
04(8)=0 (36)

then performing the differentiation in (34) willefd terms that contain the factgré&f), o
(8, &’ (é). If one denotes the operator that is defined by:

MF:(x—>9)a +(y— yo)—+(z—£)—+(t—t)—
+;]—ec{(x—f)Aw<y—>P>Ay+(z—£)Az—c(t—t°)¢}F (37)

by M, to abbreviate, then (34) can be written:

ARYO+R(O) *
=AR) y() +{A\R +4 M+ 1R (& +4 MR) o (d. (38)

That expression will vanish when we require that:

AR=0, (39)
(M+1)R=-1AR, (40)
MR = 0. (41)

For that to be true, it will suffice that equati@®) is fulfilled on the light-coné = 0.
A solution of equation (41) is easy to give. iiecsets:

(rt)
x= j (Adx+ Ady+ Adz @ d (42)

(1%
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in which the integral is taken along a line that conndmsppints (°, t °) and ¢, t), then
one will have:
(r—r® rady+t—t) = -rA—-c(t-t%o. (43)

Therefore, the function:

R=_1 gn (44)
2mc

will satisfy the differential equatioMR = 0. The condition (33) will obviously be
satisfied by (44).

Formulas (39) and (40) yield equations for theedatnation ofR with that value of
R. These equations will simplify by means of thesaiz:

R=_L 'Ry (45)
2mc

This substitution has the effect that one repladlcepotential®\, ® with:

A’ = A —grady, =0+ }6_)( (46)
c ot
If A and® satisfy the equations:
OA =0, Od=0, divA +£%it): 0 (47)
c

then they will also be satisfied By, ®'. Furthermore, one has the relation:

r-r%A —c@t-t%) o =0, (48)
which will follow from (43).
The new potentials will be determined by the fialliquely. If one lets a double
overbar denote the mean that is taken betweendiméspt?, t ©) and ¢, t) according to
the formula:

T :2j:f(r°+(r—r°)u,t°+(t—t°)u)udu (49)

then one will have:

A= =1[(r-r°)xH —ic(t-t) ¢, & =-1(r-r°)E. (50)

10

After the substitutions (45) — i.e., after the atuction of new potentials — equations (39)

and (40) will assume the following form:

NR =0, (51)
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L+ 1R =-21A'1 :—E{mzcz ¢

gl e oo
LM € o )} L (otH)-i (@B, (52)

in whichL denotes the operator that is defined by:
0 of
Lf:(r—r)Egradf+(t—t°)E. (53)

(One can also denote it By’ since it emerges froM by introducing new potentials.)
Not only does equation (52) yield the value lof{1) R for £ = 0, but it also allows

one to calculate the value Bf for £ = 0. Namely, if one considers a functiofx, y, z t)

to be a function of the quotient £ X) : (y = y) : z — 2) : ¢ (t — ©) and the quantity and

assumes that one also hégfgz 0 forx - 0 then one can determine the valuelot(1)

f for £ = 0 from the value df for { = 0, and conversely.
We consider the equation:

(L+pf=g(. 1), (54)

in whichp is a positive whole number. One solution of that eqoas:
F(r, )= [ g0+ ~r)u,t+ (t-t% u) v du. (55)

However, the only solution of the homogeneous egndL + p) f = O that is regular in
the neighborhood af =r° t =t % isf = 0. Therefore, for a positiye the functiorf will

be determined uniquely by equations (54) and (3bdne setsp equal to the right-hand
side of (52) in (54) then one will get the valuetlid Riemann function on the light-cone
by an application of formula (55).

7. It emerges from the classical investigationsHedamard (*) on the Cauchy
problem that the Riemann function of a differenéigliation of hyperbolic type is closely
related to the fundamental solutisolution élémentaideof that equation. The function
1 /r can serve as an example of a fundamental solfdrathe Laplace equation and:

1
J -2 =(x— ) 2= (y- Y2~ (z P2

can serve as example of the fundamental solutiothéequation:

() J. Hadamard, Le probléeme de Cauchy et les équations aux dérivées partiéfiéairés
hyperboliquesParis, Hermann, 1932.
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62u+62u_i62u:
x> ay> c’at’

The fundamental solution of an equation of hyperbolic p@esesses a singularity on the
characteristic cone that depends upon the form of thetiequaln the case of an odd
number of independent variables, the fundamental solwitbrbe determined uniquely
by the form of the equation. In the case of an evanbeu, there will exist infinitely
many fundamental solutions. Those solutions will passetogarithmic singularity, in
which the coefficient of the logarithm will be precisdlye Riemann function. A
fundamental solution can also be constructed for equabbnsarabolic type. One
obtains them from a fundamental solution in the edipti hyperbolic case by passing to
the limit. The function:

1

Jy

gives an elementary example of the fundamental salatiche parabolic equatiadfu /
0x* =au / dy.

With those prefatory remarks, we now go on to the Dagquation. The Riemann
function of the second-order Dirac equation can be repted in the form of an integral
over the proper time:

u= e—x2/4y

R=[Fdr, (56)
in which F represents the fundamental solution of the Dirac emuatith proper time:

2
N Ar=in & (57)
2m or

The independent variables in this equation arefitleequantitiesx, y, z, t, 7. Only one
fundamental solution will exist since their numizeodd.

We would like to determine the character of thedamental solution in the vicinity
of the essential singular point= 0. To that end, we employ our previous Ansatz:

F=e®"f (58)

and develofs, as well ad, in powers ofr. The functionS satisfies the Hamilton-Jacobi
equation (1.12) with proper time. If one substtsithe development:

S—l

S= =L ++ST+S T+ .. (59)
4
then one will get:
2
(gradS.4)? - C—lz(%j =2mS;. (60)

We can then set:
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Si=im[(r-r* - t-t)]=-im¢& (61)
With this value ofS;, the equation fof reads:

(r —r% ChradS, + (t—to)%—?z - ‘—z[(r —r% DA —c (t—t% @], (62)

That equation agrees with equation (43) youp to the factor e/ c on the right. We
then have:
(r1)

50:_‘_2)(:_9 | (Amr-cod. (63)
(rt%
The equation fof finally reads:
L+1)S = {m cz+—(A’2 CD’Z)} (64)
2m

with the meaning fot. in (53). One gets the solution to this equatiathwhe help of
formula (55). The further coefficients in the digement (59) are determined uniquely
from equations of the form:

(L+P)S=6 P=23, .., (65)

in which ¢, is known once the foregoing approximations aregivin that way, we will
get:

_ rn@‘T éT 1 12 12
S__Z_r —)(—— mcr - CZJO(A —0'?) du+ ... (66)

This formula will yield the exact value f&in the field-free case.
Equation (16) can also be solved f@nalogously. One gets:

f= Tc{l——j [i(g0H) +(a@)]du+-- } (67)

We must now investigate how the integration patthéintegral:
R=[e®"fdr (68)
must be chosen in order for it to yield the Riemamrction. The integral (68) obviously

satisfies the Dirac equation. In order for it mncide with the Riemann function, the
condition (40) or (52) must still be satisfied drwetlight-coneé = 0. We would like to



Fock — Proper time in classical and quantum mechanics. 14

show that that will be the case when one choosesadl sircle around the poirt= 0 in
the complexr-plane to be the integration path. One then obs¢hatshe action function
Sno longer has a pole fdr= 0, such that the poirt= 0 is not an essential singularity of
the integrand. The integral can then be evaluated gitmpffinding the residue at the
pole forr=0.

In the neighborhood af= 0, the integrand is equal to (fé= 0):

F- e_‘i‘%)( _imc €T
2h  2hm¢

.[l(A'Z—d)’z)du—iJl(i(aEﬁ)ﬂaKE))du+--}. (69)
0 2m 0

Hence, from (45), we will have:
R=—e" R, (70)

with:
nt ¢
K

R'= 272C NC l{

= +%(A'2 —d>2)+?ec(aB§)—i (aEE))}dU- (70)

Equation (52) will be satisfied when we set thestantC equal to:

__ mm
C= a7he (71)

The integral (68) is actually the Riemann functmath that value ofC.

For a suitable choice of the integration path, oae also obtain the fundamental
solution of the second-order Dirac equation fro8)(6

That fundamental solutiod of the equatio\U = 0 has the form:

1 R” R
U 2i{Rln|5|+5} U, (72)
in which R andR" have the previous meaningR fs the Riemann functiorR is the
expression (44).] The functidsh  in (72) is regular in the neighborhood £ 0. It is
merely subject to the condition that the total esgion (72) must satisfy the equatidd

= 0. That condition obviously does not sufficeegtablishJ * uniquely. Therefore, there
are also different fundamental solutions that diffem each other by the values of their
regular parts, and which can be derived from thegial (68) by a corresponding choice
of the integration path. The multi-valuednesshef fundamental solution corresponds to
the fact that the number of independent varialiethé Dirac equation without proper
time is odd.

8. As an example of this, we consider the motionroékectron in a constant electric
and magnetic field and calculate the Riemann fondir that case. In order to simplify
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the calculations, we restrict ourselves to the adsearallel fields whose direction we
choose to be theaxis.
If one sets the potentials equal to:

then the classical equations of motion that corresgorttie Lagrangian function (1.6)

can be solved easily. If one forms the expressioriHe action integral (1.7) then one
will find:

S:So—imczr+ﬂz[( - D)% t E’)ﬂcoth—+£E[( x D3H+( vy )‘Hcotﬂ, (74)
2 4c 2mc
in which& denotes the quantity:
E H
S=-"y=- S+ D-0-T(€y-¥2), (74)

which is independent af
If one considers equation (13) fbothen one will easily see that this equation can be

fulfilled by function f that independent of only, such that one will havé&lf = O.
However, equation (13) will then reduce to (16), the lateérwhich was already
transformed into (21). In our case, the determigaiatequal to:

_ const.
P= , eHr el ’ (75)
sin’ —— sinlf ——
2mc 2mc
and the solution of (21) reads:
0= exp[—iazHr——eazEr} (76)
2mc 2mc

If one determines the constant factof ioy way of (71) then one will get the following

expression fof :
- ﬂT [éeHj( eEJD - f . 7
8hc \ 2mc/\ 2m sin€7 sinh

2mc 2mc

With that value of, the integral:
R:jeis’“fdr, (68)

which is taken around a small circle surroundirg O, will yield the Riemann function
of the problem in question.
In the special case where no field is present vaheet:
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m _1 mé 1
f=- 0=, S=-—--mdcr, 78
8°hc 12 2r 2 r (78)
and as a result:
m o -memer gp m mc =
- — e 2hr 2h = _ J _ , 79
8772th 2 4mh, & l[ h 5) (79)

while the quantityR" has the constant value 1 /&2 In the absence of a field, the
functionQ of the general theory is then equal to:

___m mc 1
Q= mmJg%(hJ?)wa+2 3(&). (80)

(@

[11. Application tothetheory of positrons.

The foundations of the theory of positrons in ftwen that it was given bfirac (%)
point to the consideration of the “mixed densitgt the distribution of electrons in states
of negative and positive energy.

Dirac considered mixed densities of two types, @lgnir; andRr, for which one will
have:

(Lt JIRr% % ) = D .00 - Y we tLWeEt° %), ()

occ unocc

(rt, JIR 1% t% 0% = 2 ., O+ 2w tdWeE <) ()

occ unocc

In these formulasy (r, t, {) refers to the wave function of an electron thepehds upon
the coordinatesr, time t, and the spin quantities (component numbefs) The
summations will be made over an index (viz., thenbear of states) that we have
suppressed. The first sum is taken over all oetlipiates, while the second one is taken
over all unoccupied ones.

Dirac calculated the expressions (1) and (2) gctlisummation for the field-free
case and examined their singularities on the lagimte. He then constructed analogous
expressions for the case of an arbitrary field determined their singularities from the
requirement that the aforementioned expressiond satsfy the wave equation and
should go over to the previously-calculated expoessfor a vanishing field.

We would now like to show that the quantities &byl (2) are precisely the ones that
appear in the theory of the Cauchy problem for hyplec differential equations.

We first consider the expression (2). The quami, as a matrix in the variables
and¢®, can be written:

(r tIRe 1% t%) =Re (1, 1). (3)

() P.A.M.Dirac, Proc. Camb. Phil. So80 (1934), 150.



Fock — Proper time in classical and quantum mechanics. 17

This expression, when considered to be a function afidt, satisfies the Dirac wave
equation:

{(a [P) + mca, —%} R-=0 (4)

and fort =t % it will reduce to the kernel of the identity opena
Re=d( —r° fort =t°. (5)

However, the functiolRe will be determined uniquely by (4) and (5). Oherefore does
not need to calculate it by direct summation gtth# functionR- can also be determined
by solving the Cauchy problem, moreover.

The functionQ [equation (11.26)] that we examined in Part IlisB¢s the second-
order Dirac equation and the initial conditions:

Q=0, %_?:J(r—ro) fort=t° (6)

However, it will follow from this that the expressi:

Re =- i£{(a P) + mea, +I} Q @)
h C

with
Q=Ry(§ +R (9, (8)

satisfies equations (4) and (5).

The Dirac functiorRe is then expressed in terms of the Riemann fun®ion

As far as the other Dirac functidt is concerned, it can be expressed in terms of the
fundamental solutiob) in the same way th&- is expressed in terms @ We have:

Rlz—i—c{(aElP)+mca4+I}U, (9)
h c
with:

U:%{RIM&HR?T +U” (10)

One can refer to the expression (9) as the fundthealution to the first-order Dirac
equation.

A unique determination of the functid® is possible only with the help of initial
conditions that must express certain physical apsons. For example, one can demand
that all negative states of the electron shoulddmipied fort = t° and all positive ones

should be free. As one can see in the originahtieih (1) of the functionR,, that
function must go to the kernel (taken to be negatof the operator for the sign of the
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kinetic energy fort = t°. When one solves the Dirac equation with those Initia

conditions, one will get the values of the mixed derRitfor allt > t°.

In conclusion, let us briefly touch upon the physical m&g of the mixed density.
Which terms in the expression considered have any physecske? Dirac, as well as
Heisenberg (), proposed fixing the singularities B, subtracting them from the total
expression forR;, and interpreting the singularity-free remainder as thesipaly
observable density. However, that process can h&ellyegarded as correct, since it
contains considerable arbitrariness. We believe that thel correspondence principle
can yield a definite criterion for resolving that questidior the problem in question, the
demands of the correspondence principle can perhaps bestaadeas follows: The only
terms that can have any physical meaning are the osesethain finite everywhere &s
- 0, and therefore on the light-code= 0, as well (i.e., uniformly if). The remaining
terms are to be dropped as physically meaningless. Titexiaar was confirmed by the
investigations of vacuum polarization that were carriedbyuvarious authors’ The
supplementary terms in the Lagrangian function of fbetemagnetic field that these
authors calculated, in fact, defined simply a seriesnaneasing powers ofi. That
situation also gives one a hint of the applicabilityhef method of Brillouin-Wentzel that
we considered in Part Il to the problem considered.

Physical Institute, Leningrad University
Lebedev Physical Institute of the
Academy of Science of the USSR, Moscow

() W. Heisenberg, Zeit. Phys90 (1934), 209.
() Cf., V. Weisskopf, “Uber die Elektrodynamik des Vacuums auf Grund der Quarserith des
Elektrons,” Copenhagen, 1936.



