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 The Lagrange equations of motion: 

 

(1)  
i i

d K K

dt q q

 
−

 
 = Qi  (i = 1, 2, …, n) 

 

define the n coordinates q1, q2, …, qn of a mechanical system with n degrees of freedom as 

functions of time t. The Qi in them are the covariant force components, which are given functions 

of the qi. K, namely, the kinetic energy, is a homogeneous quadratic function of the contravariant 

velocity components 
iq : 

(2)   iq  = idq

dt
 

 

with coefficients that depend upon only the qi . 

 For many investigations, it is desirable to eliminate time t from eq. (1) and derive differential 

equations by which the qi are coupled to each other directly. If we symbolize the motion of the 

system by a representative point in n-dimensional space with the coordinates q1, …, qn then the 

solutions of the differential equations thus-obtained will be the equations of the trajectories of the 

representative point. We would also like to call them the trajectories of our system, in a general 

sense. If we would like to give the representation a covariant form then it would be best to regard 

the qi as functions of an arbitrary parameter u. We could then treat time on an equal footing with 

the coordinates and look for differential equations that would allow us to determine the q1, …, qn, 

and t as functions of u. The solutions of those equations would then determine, on the one hand, 

the q1, …, qn as functions of u – viz., the trajectories of the system – and on the other hand, t as a 

function of u, namely, the temporal course of motion along the trajectories. The differential 

equations would take an especially simple and intuitive form if we were to introduce the kinetic 
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energy K, and then seek to derive a system of simultaneous differential equations for the n + 1 

quantities q1, …, qn, K as functions of the parameter u from eq. (1). 

 We denote the derivatives with respect to the parameter u with a prime and those with respect 

to t by a dot, so: 

(3)  
iq  = idq

du
, t  = 

dt

du
, u  = 

du

dt
, etc. 

 

Moreover, let k be what K will become when one replaces the iq  with the iq , so: 

 

(4)  iq  = iq u , 
iq  = 

iq t , k = 2K t . 

 

Furthermore, let Ki be the covariant impulse components, and analogously: 

 

(5)  ki = 
i

k

q




, so  ki = it K . 

 

The Lagrange expressions that relative to the independent variable t shall be denoted by i, and 

the ones that relative to u shall be denoted by i , so: 

 

(6)  i (K)  
i

i

d K K

dt q q

 
−

 
,  i (k)  

i

i

d k k

dt q q

 
−

 
. 

 

In order to eliminate t from eq. (1), we start from the relation k  = t K  that follows from (4), 

which reads: 

(7)  K dt  = 
1

0

u

u

K t dt  = 
1

0

u

u

k du  

 

in integrated form. The integral in that is extended between two fixed values. If we form the first 

variation of that integral, but while varying only the qi, but not the t (so we will get only the 

geometric form of the trajectory, but not the temporal course of motion), and we introduce 

variations 
iq  that vanish at the integration limits, then it will follow from eq. (7) in the known 

way that: 

(8)  ( )
1

0
1

u n
i

i

iu

K q t du
=

  = ( )
1

0
1

u n
i

i

iu

k q du 
=

 , 

 

and due to the arbitrariness in the 
iq  : 

 

(9)   ( )it K   = ( )i k  (i = 1, 2, …, n). 
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It will follow from eq. (6) that: 

 

(10) ( )i K  = ( )
2

1 1

2 4
i i

dK
K K

dtK K
 −  . 

 

Eq. (1) implies the energy equation: 

 

(11) 
dK

dt
 = 

1

n
h

h

h

Q q
=

  

 

in a known way. With the help of eq. (1), i (Ki) = Qi , eqs. (9), (4), (5), (11), it will follow from 

(10) that: 

(12)  
( )i k

k


 = 

1

1

2 2

n
hi

i h

h

k
Q Q q

K k =

 
− 

 
   (i = 1, 2, …, n). 

If we set: 

(13) 
( )i k

k


 = Gi ,   

12

n
hi

i h

h

k
Q Q q

k =

−   = Pi  

 

then the Pi will be functions of the qi and their first derivatives with respect to u, while the Gi are 

functions of the same quantities and the second derivatives. Therefore, one can also replace the 

equations of motion (1) with eq. (12) and the equation that follows immediately from (11): 

 

(14) 
dK

du
 = 

1

n
h

h

h

Q q
=

 . 

Eq. (14) and 

 

(15) Gi = 
1

2
iP

K
   (i = 1, 2, …, n) 

 

then define a system of n + 1 simultaneous differential equations for the n + 1 quantities q1, …, qn, 

K as functions of u. The identities: 

 

(16) 
1

n
i

i

i

P q
=

  = 0 , 
1

n
h

h

h

G q
=

  = 0 

 

then exist between the left-hand side of (15) and the right-hand side, due to eq. (13), so only n – 1 

of the equations in (15) will be mutually independent, in general. However, yet another differential 

equation enters into them as the definition of the parameter u, whose addition will first make the 

coordinates of the trajectory into single-valued functions of u. The simplest covariant assumption 

for that equation would be k = 1. 
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 The Gi can also be given a form that will illuminate the second series of identities (16) 

immediately. We make the Ansatz for k that: 

 

(17) k = 1
2

,

l m

lm

l m

a q q  , 

 

in which the alm are functions of qi. It is then known that: 

 

(18) i (k)  
1 , 1

n n
l l m

il

l l m

l m
a q q q

i= =

 
  +  

 
  , 

in which the 
l m

i

 
 
 

 are the Christoffel symbols of the first kind that are constructed from the alm . 

 If we form the equation for ( )i k  that is analogous to (10) then that will yield: 

 

(19) Gi  
( )i k

k


  

1

1

2 2

n
hi

i h

h

k
q

k k
 

=

 
− 

 
  , 

 

in which the i mean the expressions (18). The identities (16) for the Gi follow immediately from 

eq. (19). 

 The geometric meaning of eqs. (14), (15) will become immediately clear when one forms them 

for the simplest case of the motion of a material point in the plane and rectangular coordinates. 

Here, one has: 

 

q1 = x ,  q2 = y ,  Q1 = X , Q2 = Y , K = 2 21
2

( )m x y+  = 21
2
mv . 

 

When one sets 2 2x y +  = 1 in eq. (14), so one chooses the arc-length to be the parameter u = s, 

one will then have: 

dv
mv

ds
 = 

dv
m

dt
 = 

dx dy
X Y

ds ds
+ , 

 

which are then the equations of motion for the tangential components of the force. Due to the facts 

that 1 = m x , 2 = m y , k1 = m x , k2 = m y , as well as eqs. (19) and (18), one will have: 

 

G1 = x , G2 = y , P1 = ( )X x X x Y y  − + , P2 = ( )Y y X x Y y  − +  

 

in eq. (15). Due to the identities (16), the two equations (150 are reducible to one. After a suitable 

combination of them, it will read: 

x y y x   −  = 
1

( )
2

X y Y x
K

 −  , 
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or after introducing the radius of curvature r : 

 

− 
2m v

r
 = 

dy dx
X Y

ds ds
− . 

 

However, that is the equation of motion for the normal component of the force. 

 Accordingly, we can also generally regard eqs. (14), (15) in such a way that they correspond 

to the decomposition of force into a tangential and a normal component (1). The first of identities 

(16) indeed says that the vector Pi is perpendicular to the tangent to the trajectory in the space of 

the representative point. The vector Gi is then the curvature vector of that curve. 

 Differential equations that determine only the geometric form of the trajectory can be derived 

from eqs. (14), (15) by eliminating K. If one would like to perform that elimination symmetrically 

then one will initially conclude from (15) that: 

(20) K = 11
2

1

n
i

i

i

n
i

i

i

P G

G G

=

=




. 

 

The iG  in that are the contravariant components of the vector Gi (
2). It will then follow from eq. 

(14) that: 

(21) 

i

i

i

i

i

i

P G
d

du G G

 
 
 
 
 




 = 2 h

h

h

Q q . 

 

That is then combined with the relations that follow from (15): 

 

(22) 1

1

P

G
 = 2

2

P

G
 = … = n

n

P

G
. 

 

The eqs. (21), (22) define a system of n differential equations for the direct determination of the 
iq  as functions of u. In that way, eq. (22) will include the qi, 

iq , 
iq , and eq. (21) will also include 

the third derivatives 
iq . 

 The derived form of the differential equations for the trajectories (14), (15) [(21), (22), resp.] 

allows one to read off many properties of those curves, and due to the geometric analogy with the 

simple case of the motion of a point in the plane, one can also make them intuitively enlightening. 

 
 (1) A similar equation can also be found in J. E. Wright, Invariants of differential forms, Cambridge, 1908. 

 (2) Moreover, the contravariant components of an arbitrary vector can enter in place of the G in eqs. (20), (21).  
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That is how one can understand the properties of real trajectories that Painlevé (3) proved with 

almost no calculation. 

 From a mathematical standpoint, one must prove that the possibility of the covariant 

elimination of time is based, above all, on the homogeneity of K in the iq , which especially 

emerges from eq. (7). All of the considerations can also be implemented when one starts from eq. 

(1) but assumes that the function K in it is homogeneous of degree m in the iq , which would mean 

that it does not need to be entire and rational. 

 What will then enter in place of (4) and (5) will be: 

 

(23) k = mK t ,  ki = 1m

iK t − . 

 

In place of (7), one will then have: 

 

(24) m K dt  = m k du . 

 

From (9), one will have ( )m
it K  = ( )m

i k  . Eq. (10) will become: 

 

(25) ( )m
i K  = 

( 1) / 2 (2 1) /

1 1 1
( )i im m m m

m dK
K K

m K m K dt− −

−
 −  . 

Since the relation: 

 

(26) ( 1)
dK

m
dt

−  = h

h

h

Q q  

 

enters in place of (11), it will follow from (25) that: 

 

(27)  
( )m

l

m

k

k


 = 

1 hi
i h

h

k
Q Q q

m K mk

 
− 

 
  , 

 

which is precisely analogous to eq. (12). 

 
(Received on 9 April 1924) 
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