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The electrodynamics of rotating electrons.

By J. Frenkel %) in Leningrad.
(Received on 2 May 1926)

Translated by D. H. Delphenich

The Uhlenbeck-Goudsmit conception of the rotating elacwvitl be employed, following Thomas, for the
presentation of the equations of motion in a given mlewgnetic field by means of special relativity. The
electron will thus be treated simply as a point whosgnetic properties are coupled with a well-defined
six-vector (“moment tensor”). In this way, one arrigéghe explanation that Thomas already gave for the
origin of the anomalous Zeeman effect in a more thdroagd rigorous way. In conclusion, the
electromagnetic field that is generated by a “rotatiglgttron will be determined, and this will suggest the
possibility that the structure of the atomic nucleusnuced mainly by the magnetostatic interaction
between electrons and protons.

§ 1. Introduction. Uhlenbeck and Goudsnijt have recently applied, to great effect,
the concept of rotating quantized electrons that waadrproposed by H. A. Compton
to the problem of the multiplet structure of the spsderm in the domain of optics and

Rontgen rays. They started from the fact that icoardinate systen$’, in which a
electron that circles a nucleus is at rest, an additimagnetic field strength arises:

& == ¢ )
C

In this,» means the translational velocity of the electrdatiee to the coordinate system
Sthat is fixed in the nucleus, ar&lis the electric field strength that prevails relatige

this system and is generated by the nucleus.
If one now ascribes a proper magnetic momento the electron then the magnetic

field strength (1) must correspond to an additional miageeergy:
| o
U=-m ﬁ':m[gé] (1a)

Uhlenbeck and Goudsmit have now shown that the structutbeobptical and
Rontgen multiplet terms are explained immediately whwes ascribes the valugs3, 2,
etc., to the azimuthal quantum numbik, {n agreement with the Landé normalization,

) International Education Board Fellow for 1926.
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and adds the resulting “relativistic correction) for thermal energy to the mean value of
the extra magnetic energy (1a) under the assumptiomithatjuals one-half the Bohr

magneton and that the ratio of the magnetic monmed the corresponding mechanical

impulse moment has the same valg% (e < 0 is the charge of the electram is its
mass,c is the velocity of light) as it does for the odbitmotion. In other words, the
impulse moment of the “proper rotation” must therefalso be set equal to one-half the
ordinary elementary Bohr valug2 7z

The concept of rotating electrons makes it furthessible to give a complete
explanation for the anomalous Zeeman effect (inctyhe.g., the noteworthiyaschen-
Back effect of the hydrogen lines is made understandable) wtheratomic hull” of the
previous Sommerfeld-Landé schema is replaced \wéhptoper rotation of the electron.

: , . 1h ,
However, one must, while preserving the prewodse/azfz—nfor the impulse moment of

the electron, ascribe a magnetic moment that isetweis largen = 2m', so it equals a

complete Bohr magneton. The ratio of the two madmsenviz., the magnetic and the
mechanical ones — must then equal:

K= —, (2)
cm

by assumption, in contradiction to the previousuag#ion that necessarily arises for the
explanation of the multiplet structure.

§ 2. The Thomas theory. Thomas') sought to give a resolution of the contradiction
on the grounds of the following relativistic argumtie

One considers the electron at two successive ptiatt andt” =1t + dt. Let the
corresponding “rest systems” that result fr&by a Lorentz transformation without
rotation beS” andS”. It may now be easily shown th&t can be obtained fror8”
directly by an infinitesimal Lorentz transformatidimat corresponds to an infinitesimal
relative velocitydo = v dt (v = acceleration), and likewise an infinitesimalatan of the

coordinate axes that is given (approximately) ®yvéctor:
dro = — 6] dit 3)
2¢? '

Now, according to Thomas, the temporal changehe itnpulse moment of the
electronm / k must be determined by the usual differential eiquat

Y Nature, April 10, 1926, pp. 514. The manuscript of thiepavas cordially made available to me by
Dr. W. Pauli at the end of February, and this gavetaamy own paper.
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d(m)_ ,
a(;}— [m $], (4a)
where:
i(ﬂj - i(ﬂj_[d_mﬂ} (4b)
dt\ « dt\ « dt «

means the rate of change of the vecatof « relative to a coordinate system that goes

from S’ to S”in a timedt by means of a translational acceleratiborand a rotational
velocity dro / dt.

If one replace with the value (2) and observe that (in the first approﬂim)at%b

= € then, from (1), one has:

dom | _  1||o _1 ,
Sl alie ] =g

and it results from (4a) and (4b) that:

dim) _1 ,
E(?j —E[mﬁ]- ()

In this way, we obtain an equation in the usual formad@¢n we introduce the apparent
moment:

in place of the actual magnetic momentand then replace the ra#owith:

k=X
2

Thus, (5) becomes:

d(m Vo

E(?j =[m' 9], (5a)
in agreement with (4).

We then see that from the standpoint of the usual yhéertemporal change in
the impulse moment of the electron corresponds toatiootl force whose momefit=
[m" $'] equals one-half the actual rotational momgrt[m $']. Correspondingly, for
the consideration of the change in energy that is irtldigethis rotational work, one

must compute with an “apparent” magnetic enddgy —% (mH)=—-m'"H").
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Let it be remarked that the result above relatesaa#se in which no true magnetic
field is present; i.e., when the magnetic field strengthishes in the “nuclear coordinate
system’S. If this field strengtl$y is non-zero then one must replace equation (5) with the

following general equation:

dim) _1 ,
E(?j —E[mﬁ]+[m 9l (%)

or:

%{%} = [ ]+ 2 [’ 9.

The total magnetic energy is therefore expressed bythe s

U :—%(m @) = (m ). (6a)

The following objection can be raised against the Thaangsment.

First, one is dealing with the impulse moment and tlamatic moment of the
electron as invariant quantities, which is certainly inect; since three-dimensional
vectors must transform in a certain way under a Largansformation.

Second, this theory relates exclusively to the “rotationotion” of the electrons. It
should then follow that the complete magnetic momewt, one-half of it, is also
appropriate to the translational motion in the cds@ s 0, from the usual expression for

the driving force i grad) $'. There is no proof that in the absence of an externa

magnetic field the precession velocity of the “electases” and that of the path plane are
equal such that the resulting impulse moment would remanstant in quantity and
direction.

In the sequel, we would like exhibit the precise equatidmsotion for the “rotating”
electron by a consequently four-dimensional representdiim the sense of special
relativity, just like Thomas) of the usual three-dimenai equations. Thus, one obtains
a complete resolution of the contradiction that veaggested in 8 1 between the
explanation for the multiplet structure and the Zeeeféartt.

In particular, it yields that the Thomas equationd&jermines, not the actual, but the
mean, secular variation of the magnetic moment;it.& ,only correct when one replaces
d/dt m and$)’ with the corresponding mean valdgs

8 3. The moment tensor. We will ignore any sort of considerations regarding th
structure of the electron from the outset and sim@ttit as a point whose properties are
characterized by certain scalar, vector, and tensor itjaant

We especially regard its magnetic properties in suchyathat the given of the three-
dimensional vector of the magnetic momentis fundamentally insufficient for its

Y From a written communication of Pauli that | reeei in connection with my paper, Thomas has
developed the same theory as the one presented belovernidaeply of myself. [Rem. by the editor]
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complete characterization, since a three-dimensiomabrenust only be considered to be
the spatial part (i.e., projection) of a four-dimensibvector (viz., gour-vector) or an
anti-symmetric tensor (viz., @x-vector).

As is known, the magnetic field strength represents the spatial part of the

electromagnetic field tensdf,s = — Fpe (a, = 1, 2, 3, 4), whose temporal part
determines the electric field strengtraccording to the schema:

F23 F3l I:12 I:14 I:24 F34 (l)
H, H, H, —iE, —iE, —IE,)

Correspondingly, we would like to define the magnetianant of the electrom as the
spatial part of an anti-symmetric tengop = — 1z by means of the schema:
/'123 lu31 lulZ /’114 /’124 lu34
. . N (1
m m, m; +ip, +Ip, +Ip,

where p1, p2, ps are the spatial components of a three-dimensionetiovg that is

analogous to the electric moment of a dipdle
We would like to determine this vector from the coinditthat it should vanishy(

= 0) in the coordinate syste8iin which the electron is instantaneously at resthdn
follows, in an arbitrary coordinate systegrelative to which the electron has the

translational velocity, from the known transformation formulas for the quas (I1)
and (1), that:
b
p=[2n] "
c

One can also derive this result independently of thedtarsnabove in the following way
?): Letx, be the coordinates of the electron and the time phiekti byic (ict = x;) relative
to the systen& We construct the four-dimensional vectay;x, (the summation sign

for equal index pairs will always omitted in what follows)m L,z and X, = dx, / dt,
wheredr = dt v1-Vv* /c* means the proper time of the electron. The compoiétbgs
vector 4, ;X; vanish in the “rest systen®’, so one hasq = X, = %, = 0, and from our

assumption, iy, = W,, = M, = 0. However, it follows from this that for any othe
coordinate syster§, the equations:
HopXs =0 (7a)

) This analogy will be clarified later on.
% From a remark by W. Pauli.
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are fulfilled, which express the vanishing of the vectavvab If one substitutes the
corresponding three-dimensional expressionggrand x, then for alla = 1, 2, 3 one

gets the spatial components of the vector:

el

while for a = 4:

) i
U Xy = — —————{(0p).
e \/1—v2/cz( )

The vanishing of the second expression follows idiately from the vanishing of the
first one — i.e., equation (7). As is known, onayndefine the following two invariant
scalar quantities by means of the tensor componepts — .

M’ —p° = 4 flap Hap
and
(m p) =i(Les tha + 1 Lha + [h2 [U34).

Thus, due to (7) (i.e., singé = 0), one has:

(mp)=m'p' =0
and

mz—pzzmz—[%m} =2 8)

The last equation determines the independenceeoimtignetic moment of the electron
from its translational velocity. One can describe it in the form:

u

N

wherevy means the component wthat is perpendicular t@; m’= yis the magnitude of
the magnetic moment in the “rest system.”

m=

8 4. The temporal variation of the moment tensor. We now introduce the four-
dimensional quantities that correspond to the miageaergy —f $) = - m, H,, and

the magnetic rotational moment [§]; i.e., the vector or anti-symmetric tensor witte t

componentsn, Hz — mgH, . The four-dimensional “extension” of the enefggction
is obviously the scalar:
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U==3UspFap=—(m 9H) - &). 9)

The corresponding “extension” for the rotational momentgiven, as one easily
recognizes, by the anti-symmetric four-dimensional te(isar the six-vector):

fap = tap Fpy— gy Fay (10)
with the spatial part:
(f2s, a1, f12) = [m 9] + [p €] (10a)
and the temporal part:
= i(f14, f24, f30) == [m H] = [p €]. (10b)

We define thempulse moment of the electron to be the spatial part of the tensor:

1
K'u”ﬂ
with k=e/cmy .
The simplest four-dimensional “extension” of the difetial equation (4) for the

temporal variation of/,s would then read:

H ;ﬂ =fup; (11)
l.e.:
B = m sl + [ € (11a)
and '
L =psl-imel (11b)

where the dot means differentiation with respect to prope.

Equations (11a) and (11b) can be simultaneously satighigdrothe case where the
vectorsm andv are @ priori) independent of each other. However, the relation (7),mus
in fact, exist between them, which means that equati@ha), (11b) are incompatible.
Now, it is easy to modify the general equation (11) irhsuevay that the condition (7a)
is fulfilled. To that end, we introduce an initiallydieterminate four-dimensional vector
a, and define the invariant scalar:

- ﬂaﬂaaxﬂ == %ﬂa/](aax/] _aﬂxa) ' (12)
which vanishes, from (7a). We add this scalar toetigegy function U; i.e., replace the
former with:

U/:_ %ﬂaﬂ(Faﬂ+aaXﬂ_aﬂXa) :_%:uaﬂFa"/J' (lza)

We correspondingly replace the tenkgiwith:
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fos = HapFg, —HpFay (12Db)
fos=Tas+ & (Xely, = Rsblay ) (12¢)

and the “equation of motion” (11) with:

ﬂaﬂ - f;ﬂ, (13)
K
or, when written out in full:
l[laﬂ _ . .
= UapFap— HapFap+ a,(X, Mg, = Reldy,) - (13a)

We now determine the vectay in such a way that this equation is in harmony with the
relation (7a). Moreover, it indeed follows from (13a&)th consideration for (7a) and the
identity relation:

% % =-C
that:
/:laﬂ . 1 o . L. . 2
K Xg =~ ;'uﬂﬂxﬂ = HayFgXp — 1y XX = Hap (Fﬂyxﬂ +a.c ),
or

X 4E x,+a.c’| =0
Hay K BB " Gy -

One thus infers that:

_ 1 S
ay—K—CZ(Kmeﬂ -X,)- (14

Independently of this expression &y, one gets from (13a), with consideration of (7a):
1.
;ﬂaﬂﬂaﬂ = MapHayFpy = HaptpyFay = 2UaptayFp, = 0

(due to the anti-symmetric charactefgf); i.e.:

d ,

_ :O,
dr= %

or

142, =mf —p? = /7 = const. (15)

This formula shows that the magnetic moment of teeteon (as assessed in a “rest
system”) can, in fact, be quantized. If its magnituéeeanot constant then one could not
speak of it being quantized.
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As is known, the equations of motion of a non-magred&ctron read:

or, with € - K
m,C
X, = KF;X,. (15a)

If one neglects the force that arises from the magmabment in comparison to the
. e _ . ,
Lorentz force e[QE{EﬁD, which corresponds to the four-vecterF, ;x;, one will
C C

have, from (15) and (15a):
a,= 0. (15b)

In this approximation — i.e., upon neglecting the pertusbato the translational motion
of the electron that is implied by the magnetic forceone can thus determine its
“rotational motion” — i.e., the temporal variationtbe vectorm — by way of the simple

equations (11) or (11a).
If one substitutep = Em} in (11), using (7), then one has:

Mo m o]+ Hfm}e] (16)
K C

We now consider the case in which the electron mavesnd the nucleus in a weak
external magnetic field. In a still larger degree of approximation (viz., by eeghg
the terms that are quadratic irt)l/one can then set:

¢~ %%. (16a)

With that, the second term on the right-hand side of §&6imes the form:

2]

We would now like to compute the mean value of this esgio@ for the unperturbed

motion.
One has (for the unperturbed motion!):

S o) g1
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One further has the identity:

o} 2 [ o

From this, it follows that:
do 1 do
[om]— | ==| m|—v ||,
dx 2 dx
or, from (16a) and (1):

c 2c 2

The secular variation of the vectaris then determined in the approximation above from
the equation:

1dm 1 por

——— = [m 9] + 3[mH]. (17)

K dt

This is the corrected Thomas equation (6).

8 5. Derivation of the equations of motion from Hamilton’s prirciple. We will
now carry out a more rigorous derivation of thefed#ntial equation (13) for the
“rotational motion” of the electron on the basisHdmilton’s principle. With that, we
will, at the same time, obtain the precise diff¢ia@requation for the translational motion.

We thus set, as usual:

sl Ldr=o, (18)

with the supplementary conditions:
X2 =-c (18a)
Hap Xz = 0. (18b)

We then write the Lagrangian function in the form:
L=Sg,% +TO+3y,F 19
- E¢axa Eluaﬂ ap’ ( )

whereT" means théinetic energy of the rotational motion.

We consider this energy, in the context of thealitree-dimensional mechanics, as
a function of the “angular velocity,” which we witharacterize by the anti-symmetric
tensorans = — ayp. We then set, by definition:
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or = Hes
2%

05 - (19a)

In order to determine the variation gfs, we next observe the corresponding operation
in ordinary mechanics. The work done by the magreerque m $] for a virtual

infinitesimal rotationdw is equal to the inner produckf [m $]). On the other hand, it
must be equal to the increase in magnetic energy--m $) = (dm, $). One then has
(Am, 9) = (v, [m H]) or (dm, H) = ([dv, m] H), and as a result:

dn = [dv, m].

The corresponding four-dimensional variational falamust be derived in the same way
that formula (10) is derived from the three-dimensi expression for the rotational
moment fn $]. If one then introduces the four-dimensionali-ggtnmetric “rotation

tensor’ X5, whose spatial part is equal to the vecior then one has:

Qap= Kday Upy = &dpy Hay - (13b)

It is self-explanatory that the quantiti@Q.s (like the Av) do not represent exact

differentials — i.e., there is no “angle coordiriafk,; that corresponds to the coordinates
Xz (SO one has an anholonomic system). Neverthel&ssy with the relations:

X, = — 0%, , (20)

one must obviously also have the corresponding aatation relations fordQ .z and
dQos = wyp d7; ie.:

d
Othp= — XK, 20a
a»bﬂ dr ap ( )

By means of the formulas above and the relations:

0 ¢ .
OPa = 2, 0X,, P, = . Xy
0x, 0x,
oF oF
d: — ap 5X ’ - ap X |
w ox, @ ox,

we get:
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d (K, 1 OF,
dr ( ﬂm j 2t 6ﬂ5 5 F (&"V’U/”V &ﬂyluay)’

dr 2 X,
or since:
0 0
¢a _ ¢ﬂ - Fﬂay
0x, 0x,
one has:

1

ﬂaﬂ /J”ﬂ
+§(_ P + UosFp, = Hy, ayjmaﬂ”L [ $,0x, Kmaﬂj'

Likewise, from (18a) and (18b), with the addition of thadetermined Lagrange
multipliersA anda, (a=1, 2, 3, 4):

AX, 0%, =—0 ()Ix )+ ()Ix ox,) =
and

. d d 1 . .
aad(luaﬂxﬂ) = E (aa:uaﬂaxﬂ) - 5Xa a (:uﬂaaﬂ) +§&aﬂay(xa:uﬂy - Xﬂ:uay) =0

With the usual assumption that the variati@rg, X253 vanish at the boundaries of
the integral (18), it then follows from (18), (18a), and (18by adding the above
expressions and setting the coefficientgyqfand X2 .5 equal to zero) that:

e 1 0F,
d_(AX +:uﬂaaﬂ) _E aﬂxﬂ Zluaﬂ 6X (21)

and

1. ) .
P Hop = HayFpy = HayFpy +ay (Xmupy - Xﬂ:uay) :

The latter equation agrees with (13a); the former otfeeigeneralization of the usual
equation of motion (15a) for a non-magnetic electron.
We correspondingly set:
A=mp+ A (21a)

where A’ means an additional term that is independent of the rtiagnement of the
electron. After performing the differentiation on tleé-hand side of (21), we get, from
(15):

aFﬂy
AX +AX +:u,8aaa+ﬂﬂaaa Krrbcaa-l- :ua/j’ a
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From this, it follows by multiplication by, , due to the relations? = - ¢?, x,%, =
anda,x, = 0, that:

. . . 1 6Fﬂ . 1 dFﬂ
 CA fggRyXy = S Hp = Xy = Sy
or.
., d(1 1. ) .
- CZA = E(EﬂﬂyFﬂyj_—zﬂaﬂ(FHﬂ +aaXﬂ _aﬂxa).

From (12a), (12b), and (13), we have:

1 o . . — 1 . | A K 1 ! !
E:uaﬂ(Faﬂ + aaxﬂ _aﬂxa) - E:uaﬂFaﬂ_ E(:uayFﬂy _:uﬂyFay)Faﬂ

N | X

('uaﬂ Fy’ﬁ Ft;y ~ Hga Fy:? FI%) = KHyp Ft;y F['?y =0,

due to the anti-symmetric character of the tepggr. As a consequence, one has:

, 1
A'=- Z—CZﬂHﬂFHﬂ. (Zlb)

The increase in the massy is then equal to theslativistic magnetic energy of the
electrons (relative to the nucleus and other gegithat generate the fiek,s), divided
by the square of the velocity of light.

One can interpret the expressjag a, in (21) as thex-component of the additional
impulse that originates in the absolute energyefdlectron; i.e., the kinetic energy of its
rotation.

By substituting (21a) in (21), this yields, dug(15):

d .. 1 OF
%+ g, =c*mp kag + St axﬂy' (22)

One can use this equation only for the approxirdatermination of, . Moreover,
when one neglects the left-hand side of (22) (sifem, « = e c), one indeed has:

1 oF,,
= — : 22a
d =T SecHer ox,, (222)

8 6. The translational motion of the “rotating” electron in an atom From
equation (21), it follows that:
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x Lo+ ay-x s +pay =y | x Sy O
2 e ) TR g e T ) = 5 Ho “ox, ox, )
or
d ) .
E{A(Xaxﬂ - Xﬂxa) +ay(xaﬂyﬂ - Xﬂ:uyg)}
1 ang ang ) )
- E:upa Xa axﬂ _Xﬂ GXH _ay(xa:uﬂy _Xﬂ:uay)' (23)

This equation can be regarded as the generalizafighe “law of areas”; i.e., the
usual formula for the rate of change of the ordimarpulse moment of the translational

motion m{r%} This impulse moment will then be replaced by émi-symmetric
T

tensor:
laﬁ =1 (Xaxﬂ - Xaxa) + ay(xa/'[;ﬁ - X/]:uyg) ) (233.)

whose spatial part agrees withp[rt] in the first approximation. Let it be further
remarked that the second term on the right-harel aid23) is equal and opposite to the
corresponding additional term in formula (13a) tbe rate of change of the impulse
moment of the rotational motion. If one sets:

ﬂaﬂ o
—|a,8

then, from (13a) and (23), the sum of both mombat®mes:

d . ou ou
ar (iap+1ap) = tayFpy— gy Fay+ X, E —X E , (23Db)

whereU means theelative energy:
U=-3 tayFp .

We now consider the case in which the electronesowm a radially-symmetric
electric field€ = ¢Ar) v in the absence of an (external) magnetic field.this case, one

hasU=-(p &) =—¢/Ap t), and as aresult, fa b=1, 2, 3:

ouU ou _ _
XﬂE_XaE_ UXa Pp—XsPa) = EaPp—EpPa .

The resulting angular momentum, which correspoondhé spatial part of the tensor on
the right-hand side of (23b), will then be equaténo (p E|] + [E p]) = 0).
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It follows from this that the resulting impulse morhexi the electron in the case
considered must remain constant in magnitude and direction.

As we already saw above [equation (15)], the magnitudtheftensori,z, and
consequently, alsig, is constant in time. In the first approximation (vizy neglecting
the terms that are quadratic ire)lbne can, as a result, regard the magnitude of the
impulse moment of the rotational motior M as constant in time. If one denotes the

K

impulse moment of the translational motion (i.eg Hpatial part of the tensbtyg) by §

then it follows, due to the conditiant+ § = const., that the magnitude ®falso remains
constant, and that both vectarand § precess around their resultants with the same
angular velocity. This result is very essentialdoomic mechanics, since otherwise one
could not quantize the impulse moment of an atom.

If one replaces the impulse momentand § with the corresponding magnetic

momentsm = ki and9Jt = %S then one sees that the sun+ 9t = %(i +35) + %i

does not represent a constant vector. Indeed, the magmfuthes vector remains
constant, but its direction must precess around the ataxis with the aforementioned
angular velocity!). The angular velocity may not be simply determinkdyever,

formula (17) shows that its mean value agrees withothenary Larmor velocity of the

electron path in an external magnetic figo.

8§ 7. The electromagnetic field of a “rotating” electron. If one considers the
electron as a point charge and ignores its magnetid then one can represent its
electromagnetic field by the formula:

(dx;, j
k (dx k dr'
= 2 = dr’ 24
4= 5ids “ad e )
for the components of the four-potential. The integnats thus taken along a closed
curve in the complex“plane. [’is the proper time of the electrd®,= Y, (X —x,)% is

its four-dimensional distance from the “origix; ; k = 2¢] ?).
If this curve encloses only one pole of the integrand, ehgnthe pole that
corresponds to the real roots of the equafenc(t —t’) = 0:

[R=3 06 -%)],

then one gets the well-known Liénard-Wiechert foamior the retarded potential of a
moving point charge by finding the residue:

) Such that no secular variationrof+ 90t appears.
3 Cf., my paper “Zur elektrodynamik punktférmiger Elektrofi&ZS. f. Phys32, 518, 1925.
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g 1
dr' d(S?)
dr' Jeo.r

C

Pa= (24a)

We would now like to determine the additional &lecfield in a completely
analogous way that is induced by the “rotationth& electron; i.e., its magnetic moment.

The corresponding part of the four-potentfal must obviously be representable in
terms of the moment tensqr,; and the four-vectorx, - x,) by means of a complex

integration of the same type as (24).
Furthermore, sincel, must be a linear vector function gf,,, we come to the

following Ansatz:
_Q ¢ , ,
Ya =Pt (X =%) F(S)dr', (25)

whereQ is a proportionality coefficient anfdS) means an initially unknown function of
S For the determination of this function, we sibgt (25) into the differential equation:

4 62[//
; e
This yields:
0 of
—f(x, =X ., =y f+u (X, —X,)—,
6Xy ( B ﬂ):uaﬂ :uaﬂ :uaﬂ( B ﬂ) axy
0? of 0% f

f (Xﬂ Xﬂ):uaﬂ = Zluaﬂ a + :uaﬂ (X )

o X, o

and furthermore:

of _dfx =X 9% _df (% =X)° df S -(x,-%)°
x ds S ' ¢ df S dS S? !

and it follows that:

0%y Q d*f 5df|
= —dr’ =0;
Z_: ox? o D%~ ﬂ){dsz SdS} !

d°f 5 _
dsS* SdS

One will then havé = 1 /S, and from (25):
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Ya= o ¢ odr. (25a)
As one easily sees, the supplementary condition:

509, _
2o =0

a=1 a

is fulfilled due to the fact that the integratioatp is closed.
For the determination of the coefficier@ we consider the simplest case of an
electron at rest with a momemt (p' = 0) that is constant in magnitude and directiém.

this case, when one replaces the integration pitlthtite imaginary axis), one gets:

Q , ’ t'=t+ico dtr
Ya =+ —— o (X5 = X;5) ,
277] B\"B B t':{[_ioo[Rz_Cz(t _t)2]2
—_ Q / ! v d(X:]._X4)
== —— (X5 =X ;
Zﬂcﬂaﬂ( B ﬂ)_'[o[R2+(X;_X4)2]2

_ Q:u;ﬂ(xﬂ - X};)

Y = 4cR?

If one thinks of the vectdR as pointing from the electron to the origi, = X, — X,) and
observes thap;, ¢,, g3 mean the components of the vector poteftidhen one has:

4c R

andg,=1¢=0.
The formula above fo?l agrees with the usual expression for the vectoential of
an elementary current with the momentvhen one sets:

Q=-4c. (25b)
In the general case of an arbitrarily moving et@tt one can calculate the integral

(25a) by finding the residues. We therefore asstinatwe are dealing with the retarded
potential; i.e., the residue relative to the redép

Ro—c(t—t;) =0.

Y loc. cit., pp. 523.
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If one introduces the ordinary (complex) titrf@s the independent variable, in place
of the proper timea’ (wheredr’ = dt'v1-v'?/c?), then this yields:

S'=[R-c*(t-t)]°=[R+c(t-t))°[R—c (t-t)]

and it follows that ag - t;:

R—c(t-t) = {%[R—c(t—t')]}(t'—t[)) = c(l—%j t' -t,),

S = [R+ct-1))? (1—%) ' —t)%,

where vV, means the projection of the velocity of the eleotmn theRo-direction at the
time pointt’ = t;.
From (25a), we then get:
1 F (t ,
wa: Q 2 Cﬁ Ia(l)Zdt
Cz(l—\,’Rj 2m Y (t'-ty)
c

M5 (X5 =X W=V [c?

[R+c(t -t)]?

with the abbreviation:

Fa(t') =

Since the functiof¥(t') remains non-zero fdf = t;, it is known that one has:

1 ’Fa(t’)z dt,:{ g, Fa(t,)}
2m ¥ (' -tp) dt vt

It then results from (25b) that:

o= 4 {d u;ﬂ(xﬂ—x;;)xll—\/zlcz}
a~— 2 T _ 112 :
c(l—V'Rj dt [R+c(t—t)] -
C

!

dx
By performing the differentiation, this yields, dte the conditiony;ﬂd—: =0, by

means of the relation(t' -t,) =Ry :
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1 X, =X, d Vo) (X5 =X i,
wa: jz{ ﬂRz ﬂ@ﬂfm +(1—?Rj B Ré; 14 , (26)

where the index “0” is omitted, and we have set:

Moy = HopN1=V2 2, (26a)
to abbreviate.

In the case of an electron at rest with time-vagycomponents of the moment tensor
Haop, SiNcelp =i ps= 0, (26) reduces to:

o L% [m
cR? R® (27)
$=0.

Let it be remarked that, from (15), the magnitufiéhe magnetic moment:| must then

remain constant). Formula (27) above can be applied to the césencelectron that
does not move to rapidly as the “zeroth-order axpration.” We would not like to go
into the calculation of the electric and magnetaddf strengths, which follows with no

difficulty from the usual formulag = - %%—Q:— gradg, $H = rotl.

In conclusion, we would now like to prove the @lling fact:
If the electrons are ascribed a magnetic momeitt thi¢ magnitude of a Bohr magneton
then for distances < I8 cm. their magnetic interaction, which is knowrbeinversely
proportional to the fourth power of distance, skoautweigh their electric (Coulomb)
repulsion. This magnetic interaction can alreadkenknown the value of the screening
constant for the inner electrons for heavy atoimsthe atomic nucleus, however, it must
be a million times larger than the electrostaticés. If one ascribes an impulse moment
of the same magnitude as the electron’s to theopsptand correspondingly a magnetic
moment that is 2000 times smaller, then their magneteraction with each other and
with the electrons should also strongly outweigh #iectrostatic interaction. It thus
seems justified to assert that the structure o&tbenic nucleus is practically independent
of the electric charges of the electrons and ptand must be primarily induced by its
magnetostatic interactions (in conjunction with tgual quantum conditions). This
gives that, e.g., an electron and a proton attartie of 5x 10> cm can remain in static

) If the moment tensor were not subject to the candi/, X, = 0 then the following two terms
would enter into the expression aboveior

and would be, moreover:

_(®’p) , (hR)
¢_ CR2 + Rs .
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equilibrium. However, this equilibrium would be unstabliatiee to the orientation of
the magnetic axes of the two particles. If one #sstimes that the electron orbits around
the nucleus then this would yield, in addition to the adirfirst-quantized path with a
radius 0.55x 10° cm, a second first-quantized path of radiux 20™* cm that is
required by the magnetic attraction, where the eleattraction would seem to be a weak
perturbing force. The quantities above work quite well fa measurements of the
simplest nucleus. However, one may not conceal thekoation here that the electron
mass, due to its large velocity, increases to perhapsusdand times the ordinary value,
which will be, in part, compensated by the decreaseannthtual potential energy. |
hope to treat this question more thoroughly in a later aomication.

In conclusion, | would like to express my deepest thaikDr. W. Pauli for
providing the impetus for this paper and many worthwhile doatgns. | must further
warmly thank Prof. P. Langevin and my friend G. Krutkaw $ome suggestions (and
also the latter for reviewing the manuscript).

Hamburg-Nizza, April 1926.




