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 In my paper “Theorie der hyperkomplexen Grössen” (which will be cited as H, in 
what follows), I mainly treated the properties of DEDEKIND groups in connection with 
my investigation into the determinants of finite groups.  As MOLIEN has shown (H, § 
11, II), any group (ε) with a principal unit is homomorphic to a DEDEKIND group (D) 

whose determinant is divisible by each prime factor in the determinant of the entire 
group.  If (η) is the invariant subgroup of (ε) that consists of nothing but roots of zero – I 
call it the radical of (ε) – then one will have (ε) = (D), mod (η); i.e., (D) will be the 

group (ε), when one considers any two quantities in it to be equal when their difference is 
contained in (η). 
 If the first m of the n independent basic numbers ε1, …, εn define a group (D) and the 

last n – m define a group (η) then I will call (ε) = (D) + (η) the sum of these two 

subgroups.  If one of them (η) is an invariant subgroup of (ε) then the other one (D) will 

be a group that is homomorphic to (ε), since: 
 

ε1 x1 + … + εm xm  + εm+1 xm+1 + … + εn xn ≡ ε1 x1 + … + εn xn   (mod η). 
 

If two subgroups are invariant then the product of each quantity in (D) and each one in 

(η) will vanish, and (ε) will decompose into the two groups (D) and (η).  (H, § 9). 

 A group (η) that is contained in (ε) is called an invariant subgroup of (ε) if xy and yx 
are quantities in (η) whenever y is any quantity in (η) and x is any quantity in (ε).  If n – 
m is the order of (η) then (ε) (mod η) will be homomorphic to a subgroup (D) of (ε) of 

the given kind such that (ε) = (D) + (η). 

 In his paper “Sur les groupes bilinéaires et les systèmes de nombres complexes,” 
Ann. de Toulouse 13 (1898) (which will be cited by C in what follows), CARTAN gave a 
more precise statement to MOLIEN’s theorem, which I would like to derive in order to 
complete the presentation of the results of my first paper: 
 
 Any group with a principle unit is the sum of its radical and a DEDEKIND group 
whose determinant is divisible by every prime factor of the determinant of the entire 
group. 
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 However, whereas the invariant subgroup (η) that I have called the radical of (ε) is 
determined completely, the subgroup (D) can be chosen in an infinitude of ways, at best. 

 If a power of a number vanishes then I will call it a root of zero (pseudo-null, for 
CARTAN, no. 21, nilpotent for PEIRCE).  I will call a group that consists of nothing but 
roots of zero a root group. 
 If a group (ε) is the sum of a DEDEKIND group (D) of order m and a root group (η) 

of order n – m that is an invariant subgroup of (ε) then (η) will be the radical of (ε).  
Hence, since (ε) and (D) are homomorphic, the determinant of the group (ε) will be 

divisible by the group (D) (H, § 9).  The linear rank of the determinant of a DEDEKIND 

group (D) is equal to its order m.  As a result, the linear rank of the determinant of (ε) 

will be m  > m.  The radical ( )η of (ε) order n − m .  Therefore, m = m  and (η) = ( )η . 
 Before I go on to the proof of CARTAN theorem (§ 5), I would like to derive the 
main properties of root groups. 
 
 

§ 2. 
 

 If neither of the two determinants | S(x) and | T(x) | vanishes identically then the group 
(ε) will possess a principal unit e, and for any quantity x in (ε) one will have: 
 
(1)      e x = x e = x. 
 
 Conversely, as CARTAN showed: If ex = x for any quantity x then one will have | 
S(e) | = E, so | S(e) | = 1, and if xe = e then T(e) = E, so | T(e) | = 1.  If one then seeks to 
determine x in such a way that ex = 0 then one will get n homogeneous, linear equations 
for the coordinates x1, …, xn from the matrix S(e).  However, one would then have x = ex 
= 0, so these equations would be satisfied by only the system of values x1 = …= xn = 0, 
and as a result, its determinant | S(e) | would be non-zero.  Now, since S(e)2 = S(e2) = 
S(e), one will have S(e) = E. 
 If | S(x) | = Θ and | T(x) | = Θ′ are the two antistrophic determinants of the group ε 
then one can determine two quantities y and z whose coordinates are entire functions of 
x1, …, xn in such a way that xy = Θe and zx = Θ′e.  One will then have T(y) T(x) = T(xy) = 
Θ T(e), and therefore | T(y) | Θ′ = Θ″, and likewise | S(z) | Θ = Θ′α.  As a result, every 
prime factor of one of the two determinants Θ and Θ′ is also contained in the other one 
(H, § 3). 
 Since I have considered groups without principal units many times, I shall make only 
the following remarks about them: If the relations: 
 
(2)     a aκαβ γκδ

κ
∑ = a aκβδ γακ

κ
∑  
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exist between (n – 1)3 quantities aαβγ (α, β, γ = 1, 2, …, n − 1) then there is always a 
group ( )ε  with n – 1 linear-independent basic numbers ε1, …, εn−1, between which the 
relations: 
(3)      εβ εγ = aκβγ κ

κ
ε∑  

 
exist.  If (ε) possesses a principal unit then I showed this in H, § 2 (cf., also STUDY in 
the Enzyklopädie).   In the other cases, one sets: 
 
(4)     aα0α = aαα0 = 1  (α = 0, 1, …, n  − 1), 
 
although otherwise one will have aαβγ = 0 whenever one of the indices is 0.  Equations (2) 
are also true then for the n3 quantities aαβγ (α, β, γ = 1, 2, …, n).  If one further denotes 
the matrix (aαλβ) for a certain λ by Eλ then one will have E0 = E and: 
 
(5)      Eβ Eγ = 

n

a Eαβγ α∑ . 

 

 Moreover, if one had ∑ ck Ek = 0 then one would have ∑ cλ aαλ 0 = 0, so one would 
have cα = 0.  Therefore E1, …, En−λ would define a representation of the group ( )ε  of 
order n − 1 by matrices of degree n. 
 This group ( )ε  is an invariant subgroup of a group (ε) whose basis is ε0, ε1, …, εn−1, 
and for which, ε0 is the principal unit.  In its two antistrophic matrices S(x) and T(x), one 
has s00(x) = t00(x) = x0 , but sαβ(x) = tαβ(x) = 0 (and sα0(x) = tα0(x) = xα).  If one omits the 
first row and column and sets x0 = 0 in the (n – 1)th-degree matrices thus-obtained then 
one would obtain the two antistrophic matrices ( )S x and ( )T x of ( )ε .  Since at least one 
of its determinants vanishes identically, one of the two determinants | S(x) | or | T(x) | will 
be divisible by 2

0x . 

 Conversely, let (ε) be a group of order n with the principal unit e that contains an 
invariant subgroup ( )ε  of order n – 1.  Let ε1, …, εn−1 be a basis of ( )ε , and let ε0 be a 

quantity in (ε) that is not contained in ( )ε .  | S(x) | and | T(x) | are then divisible by x0 .  
According to whether neither of these two determinants or at least one of the two is 
divisible by 2

0x ,  ( )ε  will or will not possess a principal unit ( )e , respectively.  If e were 

contained in ( )ε  then, by the definition of an invariant subgroup, one would also have e 

ε0 = ε0 .  Therefore, one can always choose ε0 to be the principal unit e. 
 
 

§ 3. 
 

 If A and B are two matrices of degree n then the characteristic functions of AB and BA 
will be equal to each other.  If | B | is non-zero then B−1(BA)B = AB will be similar to the 
matrix BA.  Thus, if the elements of A and B are variable quantities then the equation | aE 
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− AB | = | aE – BA | will be true for all values of these variables for which | B | is non-
zero, and as a result, it will be true identically. 
 If y and z are two quantities in the group (e) then the coordinates of their product x = 
yz will be: 
(1)     xα = 

,

a y zαβγ β γ
β γ
∑ = ( )s y zαγ γ

γ
∑ . 

 
Now, if S(y) = 0, so y1, …, yn satisfy the linear equations sαγ(y) = 0, then one will have yz 
= 0 when z is an arbitrary quantity of (ε).  Thus, if (ε) possesses a principal unit then one 
will have y = 0, although one will have y2 = 0 in any case. 
 More generally, if x is a quantity in (ε) for which S(x)n = S(xn) = 0 then one will have 
xn z = 0 and xn+1 = 0.  Therefore, in order for x to be a root of zero, it is necessary and 
sufficient that the matrix S(x) (or T(x)) be a root of zero, so the characteristic roots of S(x) 
must all vanish.  If zy is a root of zero then yz will also be one.  The characteristic roots of 
the matrix S(zy) = S(z) S(y) will all be zero then, and consequently, the roots of the matrix 
S(y) S(z) = S(yz) will, as well. 
 A quantity y in a group (ε) is called a root quantity when yz is always a root of zero 
whenever z is an arbitrary quantity in (ε).  If x and z are any two quantities of (ε) then y 
(zx) = (yz) x will also be a root of zero, so x (yz) will be one, as well.  Thus, if y is a root 
quantity of (ε) then the same thing will be true for xy, yz, and xyz. 
 The characteristic roots of the matrix S(yz) then vanish, and as a result, their sum 
σ(yz), as well.  Conversely, let σ(yz) = 0 for any quantity z in (ε).  If one replaces z with 
z(yz)κ−1 then one will get σ((yz)κ) = 0.  Thus, [H, § 4, (5)] the sum of the κth powers of the 
characteristic roots of the matrix S(yz) will then vanish, and thus those roots themselves, 
and as a result yz will be a root of zero.  The coordinates y1, …, yn of the root quantities y 
will then be found by solving the homogeneous, linear equations that one obtains when 
one sets the derivatives of the bilinear form σ(yz) with respect to z1, …, zn (or the 
quadratic form σ(y2) with respect to y1, …, yn) equal to zero.  Therefore, the root 
quantities of (ε) will be reproduced by addition and multiplication by ordinary quantities.  
Moreover, yz and zy will be root quantities when y is one.  As a result, the root quantities 
of (ε) will define an invariant subgroup that I will call the radical of (ε). 
 
 I. The radical of a group (ε) is defined by all quantities y whose coordinates satisfy 
the linear equations σ(yz) = 0 (or τ(yz) = 0) for every quantity z. 
 
 One infers the fact that one also has: 
 
(2)      σ(xy) = σ(yx) 
 
for groups without principal unit [H, § 4, (9)] from § 2, (2) when one sets γ = δ and sums 
over γ [MOL, § 3, (4)]. 

 A root group can also be defined as a group that is equal to its radical.  If one calls a 
non-zero quantity x that satisfies the equation x2 = x a unit then PEIRCE has shown 
(“Linear Associative Algebra,” no. 51, American Journal of Math., v. 4) that: 
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 II. In order for a group to be a root group, it is necessary and sufficient that it 
contain no unit. 
 
 If m is the smallest exponent for which xm = 0 then one cannot have x = x2, since 
otherwise one would have xm−1 = xm = 0.  That will be the equation of the lowest degree 
for which px0 + qx + rx2 + … = 0 or px + qx2 + rx2 + … = 0 according to whether (ε) does 
or does not have a unit x0 = e, respectively.  Let y(u) = (u – a)n χ(u) and χ(a) be non-zero.  
One determines (“Über vertauschbare Matrizen,” Sitzungsberichte, 1896, § 3) an entire 
function f(u) in such a way that f(u) – 1 is divisible by (u – a)n.  If (e) possesses a 
principal unit, so one lets f(u) be divisible by χ(u), moreover, then this will not be the 
case, and if a is non-zero then one will let f(u) be divisible by u χ(u).  One will then have 
that f(u)2 – f(u) will be divisible by y(u), but not f(u) itself.  Thus, if y = f((x)) then one 
will have y2 = y and y will be non-zero.  If (ε) is not a root group then it will contain a 
unit. 
 If (ε) has a principal unit, and if: 
 

ψ(u) = (u – a)α (u – b)β (u – c)γ … 
 
then the various roots a, b, c, … of ψ(u) in the given manner might correspond to entire 
functions f(u), g(u), h(u), …  Thus, f(u) g(u) and f(u) + g(u) + h(u) + … = 1 will be 
divisible by ψ(u), and one will then have: 
 
(3)     f((x))2 = f((x)),  f((x)) g((x)) = 0 
and 
(4)     f((x)) + g((x)) + h((x)) + … = e. 
 
In this way, the principal unit e can be decomposed into just as many independent units 
as the equation y(u) = 0 has distinct roots (C, 17). 
 
 III. If the prime factors of the determinants of a group with a principal unit are all 
linear then its radical will consist of all of the roots of zero that are contained in the 
group. 
 
 If x and y are two quantities in the group (e) then: 
 

| S(ux + vy + we) | = Π (uuα + vvα + w) 
 
will be a product of prime factors.  If one sets v = 0 or u = 0 then one will recognize that 
u1, …, un are characteristic roots of S(x) and v1, …, vn are ones of S(y).  If y is a root of 
zero then one will have v1 = …= vn = 0.  If z = g((y)) then the characteristic roots of S(z) 
will all be equal to g(0).  Thus, if v is non-zero and z = u(y + ve)−1 then all of them will be 
equal to u / v.  As a result: 
 

| S(x + u(y + ve)−1) | = Π 
u

u
rα

 + 
 

,  | S(y + ve) | = vα, 
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so since: 
S(x + u(y + ve)−1) S(y + ve) = S(xy + vx + ue), 

one will have: 
| S(xy + vx + ue) | = Π (uα v + u). 

 
Since both sides of this equation are entire functions of v, it will also be true for the value 
v = 0, which has been excluded up to now.  Therefore, one will have | S(xy + ue) | = un, so 
(C, 28) xy will be a root of zero and y will be a root quantity in (ε). 
 The converse of the theorem can be deduced from the results that are contained in § 
5, so if r > 1 there then one will have 212ε  = 0, but ε12 will not belong to the radical of (ε). 

 
 

§ 4. 
 

 I.  In any root group there is a non-zero quantity x that satisfies the equation xy = yx 
= 0 whenever y is an arbitrary quantity in the group. 
 
 CARTAN (no. 31-24) gave an incisive, but somewhat roundabout, proof of this 
theorem, which I will replace here with one that is essentially simpler.  One can also 
express the theorem as: 
 
 II. Every root group contains an invariant subgroup of order 1. 
 
 The fact that both theorems are identical follows from a Lemma that was employed 
by CARTAN (C, 29), in which x and y meant two quantities of a group that does or does 
not have a principal unit: 
 
 III. If xy = ax (or yx = ax), where a is an ordinary quantity, and if y is a root of zero 
then one will have either x = 0 or a = 0. 
 
 By assumption, there is a number k such that yk = 0, so there is also a number l such 
that xyl = 0.  Let x ≠ 0, and let m be the smallest number of that sort.  Thus, m > 0 and xym 
= 0, but xym−1 (in which, one understands that for m = 1, one will have x) is non-zero.  It 
will then follow from xym = axy m−1 that a = 0.  One will arrive at the same result when 
one multiplies the equation x (y – a) = 0 on the right with ym−1 + y m−2a + … + a m−1.  The 
theorem can be generalized as: 
 
 IV. If x1, x2, …, xm are quantities of a root group, and if the product x1 x2 … xm is non-
zero then the m quantities: 
 

x1,  x1 x2 ,  x1 x2 x3 , …, x1 x2 … xm 
 
will be linearly-independent. 
 
 Then, let: 

ax1 … xl + b x1 … xl xl+1 + c x1 … xl xl+1 xl+2 + … = 0, 
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where a is the first non-zero coefficient.  One will then have that: 
 

b xl+1 + c xl+1 xl+2 + … = − y 
 
is a quantity in the root group (η), and thus a root of zero, and that: 
 

x1 … xl (a – y) = 0, 
  
so x1 … xl = 0, and therefore one will also have x1 … xm = 0. 
 
 V. The product of any n quantities in a root group of order n – 1 will vanish. 
 
 Thus, if x1 … xn were non-zero then the n quantities: 
 

x1,  x1 x2 ,  x1 x2 x3 , …, x1 x2 … xn 
 
would be linearly-independent, so the order of the group would be ≥ n. 
 From this theorem, for any root group (η) there is an invariant number m such that the 
product of any m quantities of (η) vanishes, but not the product of m − 1.  If x is a non-
vanishing product of m – 1 quantities in (η) then xy and yx will be products of m 
quantities, and therefore zero.  The repeated application of that theorem yields (C, 31): 
 
 VI. The basic numbers η1, η2, …, ηα−1 in a root group of order n − 1 can be chosen in 
such a way that the product ηα ηβ becomes a linear combination of the basic numbers 
whose index is greater than both α and β. 
 
 From Theorem V, there is, moreover, an invariant number l (< m) for a root group (η) 
that is the smallest one for which the l th power of any quantity in the group vanishes.  For 
a commutative group, one will have l = m.  Furthermore, one has the theorem: 
 
 VII.  If there are n – 1 quantities in a root group of order n – 1 whose product x1 x2 
… xn−1 is non-zero then 1

1
nx −  will also be non-zero, and the group will be the commutative 

group that is defined by all entire functions of x1 . 
 
 From Theorem IV, the n – 1 quantities: 
 

x1,  x1 x2 ,  x1 x2 x3 , …, x1 x2 … xn 
 
are the linearly-independent then, so they define a basis for the group (η).  Therefore: 
 

xκ = aκ 1 x1 + aκ 2 x1 x2 + … + aκ, n−1 x1 x2 … xn−1 (κ = 1, 2, …, n – 1). 
 

Since the product of any n quantities in the group (η) vanishes, one will get: 
 

x1 x2 … xn−1 = a11 a21 … an−1, 1
1

1
nx −  
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upon multiplying these n – 1 equations, so 1
1
nx −  will be non-zero.  Therefore, when one 

sets x1 = x: 
x, x2, …, xn−1 

 
will also define a basis for (η).  If one extends it by way of x0 = e to a group (ε) of order n 
that consists of the quantities z = z x0 + z1 x + … + zn−1 x

n−1 then its determinant | S(z) | = 
zn will take on only an elementary divisor. 
 
 

§ 5. 
 

 I shall now turn to the proof of CARTAN’s theorem.  Let (ε) be a group of order n 
with a principal unit, let (η) be its radical, and let n – m be its order.  m will then be the 
linear rank of the determinant of (ε): 
 
(1)     Θ(x) = | S(x) | = Π Φs. 
 
Any of its k prime factors can be brought into the form of a determinant: 
 
(2)     Φ(x) = | xαβ |   (α, β = 1, 2, …, r) 
 
by a suitable choice of basic numbers.  The: 
 
(3)     m = r2 + r′2 + r″ 2 + … 
elements: 
(4)     xαβ , xαβ′ , xαβ′′ , … 

 
of the k different determinants Φ, Φ′, Φ″, … of degrees r, r′, r″, …, resp., are all 
independent variables.  The determinant of the DEDEKIND group (D) that is 

homomorphic to (ε) is Π Φr, where the exponent r of Φ is equal to the degree of the 
prime factor. 
 One can choose n basic numbers of (ε) such that εm+1, …, εn define the basis for the 
radical (η), and the quantities (4) define the coordinates of ε1, …, εm .  I therefore denote 
these m basic numbers by: 
 
(5)     εαβ , αβε ′ , αβε ′′ , …, 

 
and the n – m ones by η1, …, ηn−m , such that: 
 

(6)   x = x x xαβ αβ αβ αβ αβ αβε ε ε′ ′ ′′ ′′+ +∑ ∑ ∑ + … + ∑ yr hr 

 
is an arbitrary quantity of (ε).  The characteristic determinant of S(x) is then: 
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(7)     | S(u e – x) | = Π | u eαβ – xαβ |
s. 

The relations: 
(8)    εαβ εβγ = εαγ , εαδ εβγ = 0, αδ βγε ε ′ = 0 (mod η), 

 
where β and δ are assumed to be different in the second one, exist between the basic 
numbers (5).  One must show that the basic numbers (5) mod (η) can be changed in such 
a way that these equations are true absolutely.  Let: 
 

z = a1 ε11 + … + ar εrr + 1 11ra ε+ ′  + … + r r r ra ε′ ′ ′+ ′  + …, 

or when one sets: 
 
(9)   ε11 = ε1, …,  εrr = εr, 11ε ′  = 1rε + , …, r rε ′ ′′ = r rε ′+ , … 

 

z = ∑ ελ aλ .  The: 
(10)     p = r + r′ + r″ + … 
 
coordinates aλ can be chosen in any well-defined way, except that they should all be 
different from each other.  Thus, one will have: 
 

ϕ(u) = | S(u e – z) | = (u – a1)
s…(u – ar)

s (u – ar+1)
s′ …(u – ar+r′)

s′…, 
 
and when f(u) is a complete function of u, from (8), one will have: 
 

f((z)) = ∑ ελ f(aλ)  (mod η) . 
 

 As in § 3, (3), I now determine p entire functions fλ (u) in such a way that (u – a1)
s 

f1(u) is divisible by f(u) and f1(u) – 1 is divisible by (u – a1)
s.  One will then have: 

 
(11*)   fλ ((z))

2 = fλ ((z)), fn ((z)) fλ ((z)) = 0 
and 

(12*)     ∑ fλ ((z)) = e. 
 
 Moreover, fλ ((z)) = ελ (mod η), and therefore one can change ελ (mod η) in such a 
way that one will have fλ (z) = ελ .  One will then have: 
 
(11)   2

ααε = εαα ,  εαα εββ = 0, εαα ββε ′ = 0, 

and 

(12)     ∑ ελ = e. 
 Now, from (8), one will have: 
 

εαβ = εαα εαβ εββ , αβε ′  = αα αβ ββε ε ε′ ′ ′ , … (mod η). 
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 If α = β then the equations will be valid absolutely.  If α is different from β then one 
will replace εαβ  with εαα εαβ εββ .  In that way, these basic numbers (mod η) will be 
changed in such a way that from (11) one will now have: 
 
(13)    εαα εαβ  = εαβ ,  εαβ εββ  = εαβ , 
and 
(14)    εαβ εδγ = 0,  εαβ δγε ′ = 0, 

 
when δ is different from β in the first equation. 
 I shall alter the basic numbers εαα , , ααε ′  … no further, but only the basic numbers 

εαβ , αβε ′ , …, and only in such a way that the relations that were obtained already will 

remain valid.  If η is an arbitrary quantity in (e) then I will call: 
 
(15)     εα η ελ = ηαλ 
 
a quantity of type (κ, λ).  It satisfies the equations: 
 
(16)    εκ ηκλ = ηκλ ,  ηκλ ελ = ηκλ , 
 
and when µ is different from κ, and ν is different from λ: 
 
(17)    εµ ηνλ = 0,  ηκλ εν = 0 . 
 
 If η is a quantity in the invariant subgroup (η) then ηκλ will also belong to the radical.  
One can then alter εαβ by an arbitrary root quantity ηαβ of type (α, β) without changing 
equations (13) and (14). 
 Now, if εαβ εβα = εαα , so: 
(18)     εαβ εβα = εαα = ηαα , 
 
in which ηαα is a quantity in (η), and in fact, from (13), one of type (α, α).  Therefore, 
the right-hand side will equal be to εαα (e − ηαα).  It follows from the equation: 
 

e – xl = (e – x) (x0 + x + … + xl−1) 
that: 

e = (e – x) (x0 + x + … + xl−1) 
 

when xl = 0.  Now, if l
ααη = 0 then one multiplies equation (18) on the right by: 

 
0
ααη  + ηαα + … + 1l

ααη −  . 

One then obtains: 
εαβ (εβα + ηβα) = εαα , 

where: 
ηβα = εβα (ηαα + 2

ααη  +… + 1l
ααη − ) 



Frobenius – Theory of hypercomplex numbers – II.  11 
 

is a root quantity of type (β, α).  If one then changes εβα by ηβα then one will get: 
 
(19)     εαβ εβα = εαα . 
 
However, one will also always have (C, 52): 
 
(20)     εβα εαβ = εββ . 
 
One will then have εβα εαβ = εββ  − ηββ , and that will yield εβα (εαβ + ηαβ) = εββ , as it did 
just now, so when one multiplies in the left by εαβ , one will get εαβ + ηαβ = εαβ  and 
therefore ηαβ  = 0. 
 One now chooses ε12, …, ε1v in any way (C, 67) according to the relations that were 
posed up to now, and then chooses ε21, …, εv1 in such a way that ε1α εα1 = ε11, and as a 
result one will also have εα 1 ε1α = εαα .  One will then have the equation: 
 
(21)     εαβ = εα 1 ε1β ,  
 
when α = 1 or β = 1 or α = β, so for the cases that we have already imposed upon εαβ .  
However, if α and β are different and both of them are greater than 1 then one will have 
εαβ = εα1 ε1β  + ηαβ , where ηαβ is a root quantity of type (α, β).  One can therefore change 
εαβ in such a way that the equation (21) is fulfilled.  One will then have: 
 

εαβ εβγ = εα 1(ε1β εβ 1) ε1γ = εα 1 ε11 ε1γ = εα 1 ε1γ  = εαγ . 
 

Equations (8) are now all true absolutely, and therefore, the m quantities (5) will be the 
basic numbers of a group (D). 

 From (12), one now has: 
 

η = (ε1 + … + εp) η (ε1 + … + εp) = ∑ (εκ η ελ). 
 

One can therefore compose all of the root quantities from the (n – m) p2 quantities εκ η 
ελ .  If one chooses a system from them independently then each of the basic numbers of 
the radical will belong to a certain type (κ, λ).  In the subgroup (D), εαβ will have type (α, 

β) when α and β are two of the numbers from 1 to r.  By contrast, it will contain, e.g., no 
quantity of type (1, r + 1). 
 If the n basic numbers of (ε) are chosen in the given way then from (17) all quantities 
ξκλ of type (κ, λ) would be expressed in terms of only basic numbers that have the same 
type.  The basic numbers of type (1, 1) define the basis for a group, for which ε1 = ε11 is 
the principal unit, and at the same time, the only unit.  The remaining basic numbers of 
type (1, 1) define the basis for its radical.  If a and b are two numbers 1, 2, …, r then each 
of the two equations: 

εαβ ξβλ  = ξαλ ,  εβα ξαλ  = ξβλ ,  
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would be a consequence of the other one.  One would therefore obtain (C, 57) all 
quantities of type (β, λ) when one multiplied εβα by all quantities of type (α, λ). 
 Moreover, all basic numbers of types: 
 

(1, 1), (1, r + 1), (1, r + r′ + 1), …, (r + 1, 1) (r + 1, r + r), (r + 1, r + r′ + 1), …, 
(r + r′ + 1, 1), (r + r′ + 1, r + 1), (r + r′ + 1, r + r′ + 1), … 

 
collectively define the basis for a group (ε′), where the k quantities of (D) that are 

contained in it, namely, ε1, εr+1, εr+r′+1, …, define the basis for a commutative 
DEDEKIND group (D′), while the remaining ones define the basis for a root group (η′) 

that is an invariant subgroup of (ε′).  From § 1, (η′) is then the radical of (ε′).  Since (D′) 
is a commutative group, the determinant of (ε′) will decompose into nothing but linear 
factors.  CARTAN (C, 57-60) has explained how one can derive the relations between the 
basic numbers of the group (ε) from the ones between the basic numbers of (ε′) so 
thoroughly that I would not like to go into that here. 
 
 

___________ 
 

 
 
 
 
 


