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Theory of hypercomplex numbers. |1

By G. FROBENIUS

Translated by D. H. Delphenich

In my paper “Theorie der hyperkomplexen Grdssen” (whidhle cited asH, in
what follows), | mainly treated the properties of DBOBED groups in connection with
my investigation into the determinants of finite groupss MOLIEN has shownH, 8

11, I1), any group £ with a principal unit is homomorphic to a DEDEKIND group) (

whose determinant is divisible by each prime factorh@e determinant of the entire
group. If (7) is the invariant subgroup of)(that consists of nothing bubots of zero- |

call it theradical of (¢§) — then one will haveg = (D), mod (7); i.e., (O) will be the
group €), when one considers any two quantities in it to be leghan their difference is
contained in ).

If the firstm of then independent basic numbess ..., & define a groupZp) and the
last n — mdefine a group 7f) then I will call () = (D) + () the sum of these two
subgroups. If one of themy)is an invariant subgroup of)(then the other oné) will
be a group that is homomorphic %), (since:

Xt .o t&Xn tE&m X1t . FE&EXEaX T .. T E X (modn).

If two subgroups are invariant then the product of each guant{P) and each one in
(n7) will vanish, and §) will decomposénto the two groupsZf) and (7). (H, 8 9).

A group () that is contained ing is called annvariant subgroupf (&) if xy andyx
are quantities in/f) whenevely is any quantity in /) andx is any quantity ing). 1f n —
m is the order of ) then ¢) (mod 77) will be homomorphic to a subgroup) of (&) of

the given kind such thag)= (D) + (7).

In his paper “Sur les groupes bilinéaires et les syst&mesombres complexes,”
Ann. de Toulouséd3 (1898) (which will be cited b¢ in what follows), CARTAN gave a
more precise statement to MOLIEN'’s theorem, which Lildike to derive in order to
complete the presentation of the results of my fiegier:

Any group with a principle unit is the sum of its radical and a DEDEKNBup
whose determinant is divisible by every prime factor of the metant of the entire

group.
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However, whereas the invariant subgrog that | have called theadical of (¢) is
determined completely, the subgrodp) €an be chosen in an infinitude of ways, at best.
If a power of a number vanishes then | will call itomt of zero(pseudo-null for

CARTAN, no. 21 nilpotentfor PEIRCE). | will call a group that consists ottinog but
roots of zero @oot group

If a group €) is the sum of a DEDEKIND grouf®j of orderm and a root groupsj
of ordern — mthat is an invariant subgroup of) (then ¢) will be the radical of £).
Hence, sinced) and (O) are homomorphic, the determinant of the grogpwill be

divisible by the group®) (H, 8 9). The linear rank of the determinant of a DEDEKIND
group (D) is equal to its ordem. As a result, the linear rank of the determinan{spf

will be m >m. The radical(77) of (¢§) ordern — m. Thereforem=m and @) = (77) .

Before | go on to the proof of CARTAN theorem (§ bwould like to derive the
main properties of root groups.

§2.

If neither of the two determinant§(x) and [T(x) | vanishes identically then the group
(&) will possess arincipal unit € and for any quantity in (¢§) one will have:

(1) e x=xe=x

Conversely, as CARTAN showed: ¢k = x for any quantityx then one will have |
Se) | =E, so |§je) | = 1, and iixe=e thenT(e) = E, so |T(e) | = 1. If one then seeks to
determinex in such a way thagx= 0 then one will geh homogeneous, linear equations
for the coordinates, ..., X, from the matrix§e). However, one would then haxe= ex
= 0, so these equations would be satisfied by tysystem of valueg = ...=x, = 0,
and as a result, its determinarf(¢) | would be non-zero. Now, sinGe)? = J€?) =
Se), one will haveS(e) = E.

If | Sx) | =@ and |T(x) | =©" are the two antistrophic determinants of the greup
then one can determine two quantityeandz whose coordinates aentire functions of
X1, ..., X IN Such a way thaty = ©e andzx=0'e. One will then hava@(y) T(x) = T(xy) =
O T(e), and therefore T(y) | @ = ©", and likewise §2) | © = @“. As a result, every
prime factor of one of the two determina@sand®’ is also contained in the other one
(H, 8§ 3).

Since | have considered groups without principalsumany times, | shall make only
the following remarks about them: If the relations:

(2) ZK: Qp R = Z‘, Qs R
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exist betweenn(— 1)’ quantitiesaqg, (a, B, y=1, 2, ...,n — 1) then there is always a
group (£) with n — 1 linear-independent basic numbeis..., -1, between which the
relations:

(3) 5/5 £V: z aKﬂy£K

exist. If () possesses a principal unit then | showed thlig,i8 2 (cf., also STUDY in
the Enzyklopéadie). In the other cases, one sets:

(4) Ag0a = 8ga0 = 1 @=0,1,..n-1),

although otherwise one will hawags, = 0 whenever one of the indices is 0. Equati@ns (
are also true then for thé quantitiesagg, (a, 5, y=1, 2, ...,n). If one further denotes
the matrix 6., for a certaim by E, then one will havé, = E and:

(5) Eﬁ EV: zaaﬂy En .

Moreover, if one ha@. ¢« E¢ = O then one would hav®, ¢, a0 = 0, SO one would
havec, = 0. Thereforeg,, ..., En-» would define a representation of the groldy) of
ordern — 1 by matrices of degree

This group(&) is an invariant subgroup of a grow) Wwhose basis i%, &, ..., &-1,
and for which, is the principal unit. In its two antistrophic tmeesSx) andT(x), one
hassoo(X) = too(X) = Xo , butseAX) = tadX) = 0 (andseo(X) = teo(X) = Xo). If one omits the
first row and column and sets = 0 in the (i — 1)"degree matrices thus-obtained then
one would obtain the two antistrophic matricgsx) and T (x) of (£). Since at least one
of its determinants vanishes identically, one eftlo determinantsyx) | or |T(x) | will
be divisible byx?.

Conversely, let 4 be a group of ordem with the principal unite that contains an
invariant subgroug&) of ordern — 1. Letg, ..., &-1 be a basis ofg), and letg be a
guantity in €) that is not contained i(¢). |SX) | and [T(X) | are then divisible by .
According to whether neither of these two determiszor at least one of the two is
divisible by 2, (&) will or will not possess a principal uni€) , respectively. 1&were
contained in(£) then, by the definition of an invariant subgroape would also have
& = & . Therefore, one can always choas® be the principal un.

§3.

If A andB are two matrices of degreghen the characteristic functions/AB andBA
will be equal to each other. 1B|| is non-zero theB™(BA)B = AB will be similar to the
matrix BA. Thus, if the elements é&fandB are variable quantities then the equatiak |
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— AB | = |aE — BA] will be true for all values of these variables for whi® | is non-
zero, and as a result, it will be true identically.

If y andz are two quantities in the groug) then the coordinates of their product
yzwill be:

(1) Xa= D 85 Y5 3= .S, (N 7.
By y

Now, if Sy) = 0, soyi, ..., Y» satisfy the linear equatioiss,y) = 0, then one will havgz
= 0 whenz is an arbitrary quantity o). Thus, if ¢) possesses a principal unit then one
will havey = 0, although one will haw# = 0 in any case.

More generally, ifk is a quantity in £ for whichS(x)" = Sx") = 0 then one will have
X" z= 0 andx™* = 0. Therefore, in order forto be a root of zero, it is necessary and
sufficient that the matri§(x) (or T(x)) be a root of zero, so the characteristic ro6tS(x)
must all vanish. lzyis a root of zero theyz will also be one. The characteristic roots of
the matrix§(zy) = Y2 Sy) will all be zero then, and consequently, the sawftthe matrix
y) Y2 = Sy2 will, as well.

A quantityy in a group §) is called aroot quantitywhenyzis always a root of zero
wheneverz is an arbitrary quantity ingl. If x andz are any two quantities of)(theny
(29 = (y2 x will also be a root of zero, so(y2 will be one, as well. Thus, ¥fis a root
guantity of ¢) then the same thing will be true foy, yz, andxyz

The characteristic roots of the matfy2) then vanish, and as a result, their sum
ay2), as well. Conversely, lef(y2 = 0 for any quantity in (¢). If one replaceg with
2(y2)** then one will get((y2*) = 0. Thus, H, § 4, (5)] the sum of thé" powers of the
characteristic roots of the mati&y2) will then vanish, and thus those roots themselves
and as a resujtzwill be a root of zero. The coordinatgs ..., y, of the root quantitieg
will then be found by solving the homogeneous,dmequations that one obtains when
one sets the derivatives of the bilinear foatyz with respect toz, ..., z, (or the
quadratic formo(y?) with respect toy:, ..., y») equal to zero. Therefore, the root
guantities of € will be reproduced by addition and multiplicatiby ordinary quantities.
Moreover,yz andzy will be root quantities whewnis one. As a result, the root quantities
of (¢) will define an invariant subgroup that | will téhe radical of ().

I. The radical of a grougé) is defined by all quantities y whose coordinatessBa
the linear equations(y2 = 0 (or 7(y2 = 0)for every quantity .z

One infers the fact that one also has:

(2) alxy) = a(yx)

for groups without principal unit{, 8 4, (9)] from § 2, (2) when one sgts dand sums
over y[MOL, § 3, (4)].
A root group can also be defined as a group thagjual to its radical. If one calls a

non-zero quantity that satisfies the equatiod = x a unit then PEIRCE has shown
(“Linear Associative Algebra,” no. 51, American doal of Math., v. 4) that:
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II. In order for a group to be a root group, it is necessary and sufficientithat
contain no unit.

If mis the smallest exponent for whigf = 0 then one cannot have= X%, since
otherwise one would havé™ = x™ = 0. That will be the equation of the lowest degree
for whichpxX? + gx+ r<® + ... = 0 orpx+ ¢ + rx? + ... = 0 according to whetheg)(does
or does not have a undt = e, respectively. Ley(u) = (u — 3" x(u) andx(a) be non-zero.
One determines (“Uber vertauschbare Matrizen,” Sitzungstter 1896, § 3) an entire
function f(u) in such a way that(u) — 1 is divisible by § — §". If () possesses a
principal unit, so one letu) be divisible byx(u), moreover, then this will not be the
case, and i& is non-zero then one will I1&u) be divisible byu x(u). One will then have
that f(u)® — f(u) will be divisible byy(u), but notf(u) itself. Thus, ify = f((x)) then one
will have y* =y andy will be non-zero. If § is not a root group then it will contain a
unit.

If (&) has a principal unit, and if:

Mu)=u-39°(u-H’u-9”..

then the various roots b, c, ... of ¢fu) in the given manner might correspond to entire

functionsf(u), g(u), h(u), ... Thus,f(u) g(u) andf(u) + g(u) + h(u) + ... = 1 will be
divisible by ¢ u), and one will then have:

(3) f((9)* = (), f((¥)) 9((x) =0

and

(4) f((¥)) +9((x) +h((x)) + ... =e.

In this way, the principal unéé can be decomposed into just as many independent units
as the equatioy(u) = 0 has distinct root<( 17).

. If the prime factors of the determinants of a group with a principal antall
linear then its radical will consist of all of the roots of zero that contained in the

group.
If x andy are two quantities in the groug) then:
| Sux+vy+we) | =M (uug + v, + W)
will be a product of prime factors. If one sets 0 oru = 0 then one will recognize that
Ui, ..., Uy are characteristic roots 8fx) andvs, ..., v, are ones o). Ify is a root of
zero then one will have, = ...=v, = 0. Ifz=g((y)) then the characteristic roots §&)

will all be equal tag(0). Thus, ifv is non-zero and = Wy + ve)™ then all of them will be
equal tou/v. As a result:

| S +u(y +ve™) | =N (ua+$j, |Sly +ve) | =V,
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S0 since:
S+ u(y +ve) ™) Sy +ve) = Yxy + vx + ue),
one will have:
| S(xy + vx+ue) | =M (ugz v+ u).

Since both sides of this equation are entire functadns it will also be true for the value
v =0, which has been excluded up to now. Therefore, ohdavie |[S(xy + ue) | =u", so
(C, 28)xy will be a root of zero angdwill be a root quantity ing).

The converse of the theorem can be deduced from thktsrésat are contained in §

5, so ifr > 1 there then one will havg’, = 0, bute&, will not belong to the radical oY

§4.

[. In any root group there is a non-zero quantity x that satisfies the equatmyxy
= 0whenever y is an arbitrary quantity in the group.

CARTAN (no. 31-24) gave an incisive, but somewhat roundabaaif of this
theorem, which | will replace here with one that isesgially simpler. One can also
express the theorem as:

[I. Every root group contains an invariant subgroup of ortler

The fact that both theorems are identical follovesrira Lemma that was employed
by CARTAN (C, 29), in whichx andy meant two quantities of a group that does or does
not have a principal unit:

. If xy = ax (or yx = ax), where a is an ordinary quantity, and if y is a root of zero
then one will have eitherx0or a= 0.

By assumption, there is a numbesuch that* = 0, so there is also a numbesuch
thatxy = 0. Letx# 0, and leim be the smallest number of that sort. Thms; 0 andxy”
= 0, butxy™* (in which, one understands that far= 1, one will have) is non-zero. It
will then follow fromxy™ = axy™* thata = 0. One will arrive at the same result when
one multiplies the equation(y — 8 = 0 on the right wity™™ +y™?a + ... +a™*. The
theorem can be generalized as:

IV. If X1, X2, ..., Xm @re quantities of a root group, and if the produckx... X is non-
zero then the m quantities:

X1, X1 X2, X1 X2 X3, X1 X2 ... Xm
will be linearly-independent.

Then, let:
ax ... XFbh X o X X1 FC X . X N X2 + ... =0,
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wherea is the first non-zero coefficient. One will theave that:
DX+1+CXe1 X2+ ... ==Yy
is a quantity in the root groug), and thus a root of zero, and that:
X ...X(@a=-y =0,

soX ... X = 0, and therefore one will also haxe... X, = 0.

V. The product of any n quantities in a root group of order Twill vanish.

Thus, ifx; ... X, were non-zero then threquantities:

X1, X1 X2, X1 X2 X3, vy X1 X2 s Xy

would be linearly-independent, so the order of the group wwmegdn.

From this theorem, for any root group) ¢here is an invariant numbersuch that the
product of anym quantities of §) vanishes, but not the productraf- 1. If x is a non-
vanishing product om — 1 quantities in /f) thenxy and yx will be products ofm
guantities, and therefore zero. The repeated applicatithat theorem yield<3, 31):

VI. The basic numberg,, 77, ..., Na-1 In a root group of order - 1 can be chosen in
such a way that the produgt, /75 becomes a linear combination of the basic numbers
whose index is greater than bathand S.

From Theorem V, there is, moreover, an invariantlmermh(< m) for a root groupA)
that is the smallest one for which tffepower of any quantity in the group vanishes. For
a commutative group, one will halye m. Furthermore, one has the theorem:

VII. If there are n— 1quantities in a root group of order-A 1 whose product xx,
... Xn-1 IS non-zero theng'™ will also be non-zero, and the group will be the commutative
group that is defined by all entire functions of x

From Theorem IV, thea — 1 quantities:
X1, X1 X2, X1 X2 X3, vy X1 X2 s Xy
are the linearly-independent then, so they define a fmsiBe group §). Therefore:
Xe = Qx1 X1t a2 Xy Xo + ... Ak n-1 X1 X2 ..o X1 (k=1,2,...n=-1).
Since the product of anyquantities in the groupyf vanishes, one will get:

X1 X2 ... Xp-1 = az1d21 ... An-1, 1)(1n_l
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upon multiplying theseé — 1 equations, sog™* will be non-zero. Therefore, when one
setsx; =X

will also define a basis forjj. If one extends it by way of = e to a group ) of ordern
that consists of the quantitiess zX° +z X + ... +z1 X" then its determinanty2) | =
Z" will take on only an elementary divisor.

§5.

| shall now turn to the proof of CARTAN'’s theorem.etl(¢) be a group of ordan
with a principal unit, let §) be its radical, and let — mbe its order.m will then be the
linear rank of the determinant ad){(

1) OK) =|SX) | =N ®°.
Any of itsk prime factors can be brought into the form of a deteant:
2) D(X) = |Xap]| @pB=12 ..r

by a suitable choice of basic numbers. The:

(3) m=r?+r?+r 2+

elements:

(4) Xag,  Xpr  Xapr -

of the k different determinantsb, @', ®", ... of degrees, r', 1", ..., resp., are all

independent variables. The determinant of the DEDEKINDugrdD) that is
homomorphic to £ is M @', where the exponent of ® is equal to the degree of the
prime factor.

One can choose basic numbers ofg such thatsy., ..., & define the basis for the
radical ¢7), and the quantities (4) define the coordinates; of.., &n . | therefore denote
thesem basic numbers by:

(5) EoBy  Epgr Empr oo

and then — mones by, ..., Ja-m, Such that:

6) X=X Eup * D Xog g+ 3 Ap €l oo + 2 Y1

is an arbitrary quantity ofj. The characteristic determinant3x) is then:
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(7) ISue—3]=N|uep—Xpl.
The relations:
(8) Eap Epy= Eay, Eac€py=0,  £,5€,=0  (modp),

where S and 0 are assumed to be different in the second one, exiseée the basic
numbers (5). One must show that the basic numberad8)(7) can be changed in such
a way that these equations are true absolutely. Let:

Z=ar et .. ta s ta, gt taL gt
or when one sets:

U

9) &1=8&, ..., & =6&, Elf T Epgy oy Eppr = Enpyry onn

z=2. g a;. The:
(20) p=r+r+r"+ ..

coordinatesa, can be chosen in any well-defined way, except that sheuld all be
different from each other. Thus, one will have:

pu)=|Sue-2|=U-a) . (U-a°U=-an) ..u—a)..,
and wherf(u) is a complete function af, from (8), one will have:
f(2)=2 & fa)  (modn).

As in § 3, (3), | now determing entire functiond, (u) in such a way thatu(— a)°
f1(u) is divisible byf(u) andfi(u) — 1 is divisible by § — a)°>. One will then have:

(11) L (@)2=(2), Hh(@) (@) =0
and
(12) 262 =e

Moreover.f, ((2)) = & (mod 1), and therefore one can changgmod 7)) in such a
way that one will havé (2) = & . One will then have:

(11) 850, = gaa y gaa gﬁﬁ = 0, gaa glﬂﬂ = O,
and
(12) Z ) =e

Now, from (8), one will have:

Eap = Eaa EapEpp, Eap = Eau Eap Enp (modn).



Frobenius — Theory of hypercomplex numbers — II. 10

If a = fthen the equations will be valid absolutely.alfs different fromg then one
will replace g5 With gqa€qpp3. IN that way, these basic numbers (mgdwill be
changed in such a way that from (11) one will now have:

(13) Eaaap = Eap, Eap&pp = Eap,
and
(14) EapEsy= 0, Eap €5,= 0,

whenJis different fromgZin the first equation.

| shall alter the basic numbess,, , £,, ... no further, but only the basic numbers
Eaps E,5, ---» and only in such a way that the relations thatevabtained already will

remain valid. If77 is an arbitrary quantity iref then | will call:
(15) Ea 11 E1 = Nan
a quantity of typeX, A). It satisfies the equations:

(16) Ek Nka = Nka N & = Nia

and whenu is different fromk, andv is different fromi:
(17) & v =0, Ny &=0 .

If n7is a quantity in the invariant subgroup thens, will also belong to the radical.
One can then altes,z by an arbitrary root quantity,s of type @, £) without changing
equations (13) and (14).

Now, if £y Epa = Eaa » SO:

(18) Eap EBa = Eaa = Naa

in which 7744 is a quantity in £), and in fact, from (13), one of type,(a). Therefore,
the right-hand side will equal be &, (€ — 7740). It follows from the equation:

e—-X=(E—-3C+x+..+xD
that:
e=E-Y L +x+...+xX™

whenx = 0. Now, if7. = 0 then one multiplies equation (18) on the right by:

ne +Naa+ ... +N.- .
One then obtains:

Eap (fﬁa + /7,&7) = &aa »
where:

Nga= Ea (Naa + N2y +.o + Moy)
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is a root quantity of type a). If one then changes, by 775, then one will get:
(19) Eap Ea = Eaa -

However, one will also always havg,(52):
(20) Epa Eap = €53 -

One will then have, €05 = g3 — N, and that will yieldesy (Eqp+ Nap) = £pp, as it did
just now, so when one multiplies in the left by, one will geteys + nap = &4 and
thereforerz = 0.

One now chooses, ..., &y in any way C, 67) according to the relations that were
posed up to now, and then choosgs ..., &1 in such a way thati, én = &1, and as a
result one will also have,1 &4 = &. One will then have the equation:

(21) Eap = Ea1 &1,

whena =1 orfB=1ora= f, so for the cases that we have already imposed &gan
However, ifa andS are different and both of them are greater than 4 ome will have
Eap= Em E1p + Nap, Wherer g is a root quantity of typea( ). One can therefore change
&N such a way that the equation (21) is fulfilled. @miéthen have:

Eap Epy = Ea1(E18ER1) E1y= Ea1 E11 E1y= Ea1 E1y = Eay .

Equations (8) are now all true absolutely, and therefbieen quantities (5) will be the
basic numbers of a group).
From (12), one now has:

n=(@+..+&) nE+..+&) =2 (&1 8).

One can therefore compose all of the root quantitias ftee ( — n) p* quantitiess, 77
& . If one chooses a system from them independentty éaeh of the basic numbers of

the radical will belong to a certain typg (). In the subgroupl®), £,z will have type @,

p) whena andg are two of the numbers from 11to By contrast, it will contain, e.g., no
quantity of type (1r + 1).

If the n basic numbers o) are chosen in the given way then from (17) all quastitie
¢k of type k, A) would be expressed in terms of only basic numbershthat the same
type. The basic numbers of type (1, 1) define the basi fwoup, for whiche, = & Is
the principal unit, and at the same time, the only ufilte remaining basic numbers of
type (1, 1) define the basis for its radicala Hndb are two numbers 1, 2, .r.then each
of the two equations:

Eapépr =<an Epa éar = ép
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would be a consequence of the other one. One would aherebtain C, 57) all
quantities of typef&, A) when one multiplieds, by all quantities of typed, A).
Moreover, all basic numbers of types:

1,D,@Ar+0),@Ar+r+1),...,¢+1L,)¢+1,r+rn),(r+1,r+r +1),...,
(r+r+1, 0, ¢+r+21r+1),¢c+r+1r+r +1),..

collectively define the basis for a groug)( where thek quantities of D) that are
contained in it, namely&, &+1, &+r+1, ..., define the basis for a commutative
DEDEKIND group (O0'), while the remaining ones define the basis for a romt@7)

that is an invariant subgroup &), From 8§ 1, §') is then the radical o&{). Since D')
is a commutative group, the determinant &5 (ill decompose into nothing but linear
factors. CARTAN C, 57-60) has explained how one can derive the relations betivee

basic numbers of the groug) (from the ones between the basic numbers£Qf 4o
thoroughly that | would not like to go into that here.




