Theory of hypercomplex numbers. II

By G. FROBENIUS

Translated by D. H. Delphenich

In my paper "Theorie der hyperkomplexen Grössen" (which will be cited as H, in what follows), I mainly treated the properties of DEDEKIND groups in connection with my investigation into the determinants of finite groups. As MOLIEN has shown (H, § 11, II), any group (ε) with a principal unit is homomorphic to a DEDEKIND group (D) whose determinant is divisible by each prime factor in the determinant of the entire group. If (η) is the invariant subgroup of (ε) that consists of nothing but *roots of zero* – I call it the *radical* of (ε) – then one will have (ε) = (D), mod (η); i.e., (D) will be the group (ε), when one considers any two quantities in it to be equal when their difference is contained in (η).

If the first *m* of the *n* independent basic numbers $\varepsilon_1, ..., \varepsilon_n$ define a group (\mathcal{D}) and the last n - m define a group (η) then I will call $(\varepsilon) = (\mathcal{D}) + (\eta)$ the sum of these two subgroups. If one of them (η) is an invariant subgroup of (ε) then the other one (\mathcal{D}) will be a group that is homomorphic to (ε) , since:

$$\mathcal{E}_1 x_1 + \ldots + \mathcal{E}_m x_m + \mathcal{E}_{m+1} x_{m+1} + \ldots + \mathcal{E}_n x_n \equiv \mathcal{E}_1 x_1 + \ldots + \mathcal{E}_n x_n \pmod{\eta}.$$

If two subgroups are invariant then the product of each quantity in (\mathcal{D}) and each one in (η) will vanish, and (ε) will *decompose* into the two groups (\mathcal{D}) and (η) . $(H, \S 9)$.

A group (η) that is contained in (ε) is called an *invariant subgroup* of (ε) if xy and yx are quantities in (η) whenever y is any quantity in (η) and x is any quantity in (ε) . If n - m is the order of (η) then $(\varepsilon) \pmod{\eta}$ will be homomorphic to a subgroup (\mathcal{D}) of (ε) of the given kind such that $(\varepsilon) = (\mathcal{D}) + (\eta)$.

In his paper "Sur les groupes bilinéaires et les systèmes de nombres complexes," Ann. de Toulouse **13** (1898) (which will be cited by C in what follows), CARTAN gave a more precise statement to MOLIEN's theorem, which I would like to derive in order to complete the presentation of the results of my first paper:

Any group with a principle unit is the sum of its radical and a DEDEKIND group whose determinant is divisible by every prime factor of the determinant of the entire group. However, whereas the invariant subgroup (η) that I have called the *radical* of (ε) is determined completely, the subgroup (\mathcal{D}) can be chosen in an infinitude of ways, at best.

If a power of a number vanishes then I will call it a *root of zero* (*pseudo-null*, for CARTAN, no. 21, *nilpotent* for PEIRCE). I will call a group that consists of nothing but roots of zero a *root group*.

If a group (ε) is the sum of a DEDEKIND group (\mathcal{D}) of order m and a root group (η) of order n - m that is an invariant subgroup of (ε) then (η) will be the radical of (ε). Hence, since (ε) and (\mathcal{D}) are homomorphic, the determinant of the group (ε) will be divisible by the group (\mathcal{D}) (H, § 9). The linear rank of the determinant of a DEDEKIND group (\mathcal{D}) is equal to its order m. As a result, the linear rank of the determinant of (ε) will be $\overline{m} > m$. The radical ($\overline{\eta}$) of (ε) order $n - \overline{m}$. Therefore, $m = \overline{m}$ and (η) = ($\overline{\eta}$).

Before I go on to the proof of CARTAN theorem (§ 5), I would like to derive the main properties of root groups.

§ 2.

If neither of the two determinants | S(x) and | T(x) | vanishes identically then the group (ε) will possess a *principal unit e*, and for any quantity x in (ε) one will have:

e x = x e = x.

Conversely, as CARTAN showed: If ex = x for any quantity x then one will have |S(e)| = E, so |S(e)| = 1, and if xe = e then T(e) = E, so |T(e)| = 1. If one then seeks to determine x in such a way that ex = 0 then one will get n homogeneous, linear equations for the coordinates x_1, \ldots, x_n from the matrix S(e). However, one would then have x = ex = 0, so these equations would be satisfied by only the system of values $x_1 = \ldots = x_n = 0$, and as a result, its determinant |S(e)| would be non-zero. Now, since $S(e)^2 = S(e^2) = S(e)$, one will have S(e) = E.

If $|S(x)| = \Theta$ and $|T(x)| = \Theta'$ are the two antistrophic determinants of the group ε then one can determine two quantities y and z whose coordinates are *entire* functions of $x_1, ..., x_n$ in such a way that $xy = \Theta e$ and $zx = \Theta' e$. One will then have $T(y) T(x) = T(xy) = \Theta T(e)$, and therefore $|T(y)| \Theta' = \Theta''$, and likewise $|S(z)| \Theta = \Theta'^{\alpha}$. As a result, every prime factor of one of the two determinants Θ and Θ' is also contained in the other one $(H, \S 3)$.

Since I have considered groups without principal units many times, I shall make only the following remarks about them: If the relations:

(2)
$$\sum_{\kappa} a_{\kappa\alpha\beta} a_{\gamma\kappa\delta} = \sum_{\kappa} a_{\kappa\beta\delta} a_{\gamma\alpha\kappa}$$

exist between $(n - 1)^3$ quantities $a_{\alpha\beta\gamma}$ (α , β , $\gamma = 1, 2, ..., n - 1$) then there is always a group ($\overline{\varepsilon}$) with n - 1 linear-independent basic numbers $\varepsilon_1, ..., \varepsilon_{n-1}$, between which the relations:

(3)
$$\varepsilon_{\beta} \varepsilon_{\gamma} = \sum_{\kappa} a_{\kappa\beta\gamma} \varepsilon_{\kappa}$$

exist. If (ε) possesses a principal unit then I showed this in *H*, § 2 (cf., also STUDY in the Enzyklopädie). In the other cases, one sets:

(4)
$$a_{\alpha 0 \alpha} = a_{\alpha \alpha 0} = 1$$
 $(\alpha = 0, 1, ..., n - 1),$

although otherwise one will have $a_{\alpha\beta\gamma} = 0$ whenever one of the indices is 0. Equations (2) are also true then for the n^3 quantities $a_{\alpha\beta\gamma}(\alpha, \beta, \gamma = 1, 2, ..., n)$. If one further denotes the matrix $(a_{\alpha\lambda\beta})$ for a certain λ by E_{λ} then one will have $E_0 = E$ and:

(5)
$$E_{\beta}E_{\gamma} = \sum_{n} a_{\alpha\beta\gamma} E_{\alpha} .$$

Moreover, if one had $\sum c_k E_k = 0$ then one would have $\sum c_\lambda a_{\alpha\lambda 0} = 0$, so one would have $c_\alpha = 0$. Therefore $E_1, \ldots, E_{n-\lambda}$ would define a representation of the group $(\overline{\varepsilon})$ of order n-1 by matrices of degree n.

This group $(\overline{\varepsilon})$ is an invariant subgroup of a group (ε) whose basis is $\varepsilon_0, \varepsilon_1, ..., \varepsilon_{n-1}$, and for which, ε_0 is the principal unit. In its two antistrophic matrices S(x) and T(x), one has $s_{00}(x) = t_{00}(x) = x_0$, but $s_{\alpha\beta}(x) = t_{\alpha\beta}(x) = 0$ (and $s_{\alpha0}(x) = t_{\alpha0}(x) = x_{\alpha}$). If one omits the first row and column and sets $x_0 = 0$ in the $(n - 1)^{\text{th}}$ -degree matrices thus-obtained then one would obtain the two antistrophic matrices $\overline{S}(x)$ and $\overline{T}(x)$ of $(\overline{\varepsilon})$. Since at least one of its determinants vanishes identically, one of the two determinants |S(x)| or |T(x)| will be divisible by x_0^2 .

Conversely, let (ε) be a group of order *n* with the principal unit *e* that contains an invariant subgroup $(\overline{\varepsilon})$ of order n - 1. Let $\varepsilon_1, \ldots, \varepsilon_{n-1}$ be a basis of $(\overline{\varepsilon})$, and let ε_0 be a quantity in (ε) that is not contained in $(\overline{\varepsilon})$. |S(x)| and |T(x)| are then divisible by x_0 . According to whether neither of these two determinants or at least one of the two is divisible by x_0^2 , $(\overline{\varepsilon})$ will or will not possess a principal unit $(\overline{\varepsilon})$, respectively. If *e* were contained in $(\overline{\varepsilon})$ then, by the definition of an invariant subgroup, one would also have $e \varepsilon_0 = \varepsilon_0$. Therefore, one can always choose ε_0 to be the principal unit *e*.

§ 3.

If *A* and *B* are two matrices of degree *n* then the characteristic functions of *AB* and *BA* will be equal to each other. If |B| is non-zero then $B^{-1}(BA)B = AB$ will be similar to the matrix *BA*. Thus, if the elements of *A* and *B* are variable quantities then the equation |aE|

 $-AB \mid = \mid aE - BA \mid$ will be true for all values of these variables for which $\mid B \mid$ is non-zero, and as a result, it will be true identically.

If y and z are two quantities in the group (e) then the coordinates of their product x = yz will be:

(1)
$$x_{\alpha} = \sum_{\beta,\gamma} a_{\alpha\beta\gamma} y_{\beta} z_{\gamma} = \sum_{\gamma} s_{\alpha\gamma}(y) z_{\gamma}.$$

Now, if S(y) = 0, so $y_1, ..., y_n$ satisfy the linear equations $s_{\alpha\gamma}(y) = 0$, then one will have yz = 0 when z is an arbitrary quantity of (ε). Thus, if (ε) possesses a principal unit then one will have y = 0, although one will have $y^2 = 0$ in any case.

More generally, if x is a quantity in (\mathcal{E}) for which $S(x)^n = S(x^n) = 0$ then one will have $x^n z = 0$ and $x^{n+1} = 0$. Therefore, in order for x to be a root of zero, it is necessary and sufficient that the matrix S(x) (or T(x)) be a root of zero, so the characteristic roots of S(x) must all vanish. If zy is a root of zero then yz will also be one. The characteristic roots of the matrix S(zy) = S(z) S(y) will all be zero then, and consequently, the roots of the matrix S(y) S(z) = S(yz) will, as well.

A quantity y in a group (ε) is called a *root quantity* when yz is always a root of zero whenever z is an arbitrary quantity in (ε). If x and z are any two quantities of (ε) then y (zx) = (yz) x will also be a root of zero, so x (yz) will be one, as well. Thus, if y is a root quantity of (ε) then the same thing will be true for xy, yz, and xyz.

The characteristic roots of the matrix S(yz) then vanish, and as a result, their sum $\sigma(yz)$, as well. Conversely, let $\sigma(yz) = 0$ for any quantity z in (ε). If one replaces z with $z(yz)^{\kappa-1}$ then one will get $\sigma((yz)^{\kappa}) = 0$. Thus, [H, § 4, (5)] the sum of the κ^{th} powers of the characteristic roots of the matrix S(yz) will then vanish, and thus those roots themselves, and as a result yz will be a root of zero. The coordinates y_1, \ldots, y_n of the root quantities y will then be found by solving the homogeneous, linear equations that one obtains when one sets the derivatives of the bilinear form $\sigma(yz)$ with respect to z_1, \ldots, z_n (or the quadratic form $\sigma(y^2)$ with respect to y_1, \ldots, y_n) equal to zero. Therefore, the root quantities of (ε) will be root quantities when y is one. As a result, the root quantities of (ε) will define an invariant subgroup that I will call the *radical* of (ε).

I. The radical of a group (ε) is defined by all quantities y whose coordinates satisfy the linear equations $\sigma(yz) = 0$ (or $\tau(yz) = 0$) for every quantity z.

One infers the fact that one also has:

(2)
$$\sigma(xy) = \sigma(yx)$$

for groups without principal unit [*H*, § 4, (9)] from § 2, (2) when one sets $\gamma = \delta$ and sums over γ [MOL, § 3, (4)].

A root group can also be defined as a group that is equal to its radical. If one calls a non-zero quantity x that satisfies the equation $x^2 = x$ a *unit* then PEIRCE has shown ("Linear Associative Algebra," no. 51, American Journal of Math., v. 4) that:

II. In order for a group to be a root group, it is necessary and sufficient that it contain no unit.

If *m* is the smallest exponent for which $x^m = 0$ then one cannot have $x = x^2$, since otherwise one would have $x^{m-1} = x^m = 0$. That will be the equation of the lowest degree for which $px^0 + qx + rx^2 + ... = 0$ or $px + qx^2 + rx^2 + ... = 0$ according to whether (ε) does or does not have a unit $x^0 = e$, respectively. Let $y(u) = (u - a)^n \chi(u)$ and $\chi(a)$ be non-zero. One determines ("Über vertauschbare Matrizen," Sitzungsberichte, 1896, § 3) an entire function f(u) in such a way that f(u) - 1 is divisible by $(u - a)^n$. If (e) possesses a principal unit, so one lets f(u) be divisible by $\chi(u)$, moreover, then this will not be the case, and if *a* is non-zero then one will let f(u) be divisible by $u \chi(u)$. One will then have that $f(u)^2 - f(u)$ will be divisible by y(u), but not f(u) itself. Thus, if y = f((x)) then one will have $y^2 = y$ and y will be non-zero. If (ε) is not a root group then it will contain a unit.

If (\mathcal{E}) has a principal unit, and if:

$$\Psi(u) = (u-a)^{\alpha} (u-b)^{\beta} (u-c)^{\gamma} \dots$$

then the various roots a, b, c, ... of $\psi(u)$ in the given manner might correspond to entire functions f(u), g(u), h(u), ... Thus, f(u) g(u) and f(u) + g(u) + h(u) + ... = 1 will be divisible by $\psi(u)$, and one will then have:

(3)
$$f((x))^2 = f((x)), \qquad f((x)) g((x)) = 0$$

and

(4)
$$f((x)) + g((x)) + h((x)) + \dots = e.$$

In this way, the principal unit e can be decomposed into just as many independent units as the equation y(u) = 0 has distinct roots (C, 17).

III. If the prime factors of the determinants of a group with a principal unit are all linear then its radical will consist of all of the roots of zero that are contained in the group.

If *x* and *y* are two quantities in the group (*e*) then:

$$|S(ux + vy + we)| = \Pi (uu_{\alpha} + vv_{\alpha} + w)$$

will be a product of prime factors. If one sets v = 0 or u = 0 then one will recognize that $u_1, ..., u_n$ are characteristic roots of S(x) and $v_1, ..., v_n$ are ones of S(y). If y is a root of zero then one will have $v_1 = ... = v_n = 0$. If z = g((y)) then the characteristic roots of S(z) will all be equal to g(0). Thus, if v is non-zero and $z = u(y + ve)^{-1}$ then all of them will be equal to u / v. As a result:

$$|S(x+u(y+ve)^{-1})| = \Pi\left(u_{\alpha}+\frac{u}{r}\right), \qquad |S(y+ve)| = v^{\alpha},$$

so since:

$$S(x + u(y + ve)^{-1}) S(y + ve) = S(xy + vx + ue),$$

one will have:

$$|S(xy + vx + ue)| = \Pi (u_{\alpha}v + u).$$

Since both sides of this equation are entire functions of v, it will also be true for the value v = 0, which has been excluded up to now. Therefore, one will have $|S(xy + ue)| = u^n$, so (C, 28) xy will be a root of zero and y will be a root quantity in (ε) .

The converse of the theorem can be deduced from the results that are contained in § 5, so if r > 1 there then one will have $\varepsilon_{12}^2 = 0$, but ε_{12} will not belong to the radical of (ε).

§ 4.

I. In any root group there is a non-zero quantity x that satisfies the equation xy = yx = 0 whenever y is an arbitrary quantity in the group.

CARTAN (no. 31-24) gave an incisive, but somewhat roundabout, proof of this theorem, which I will replace here with one that is essentially simpler. One can also express the theorem as:

II. Every root group contains an invariant subgroup of order 1.

The fact that both theorems are identical follows from a Lemma that was employed by CARTAN (C, 29), in which x and y meant two quantities of a group that does or does not have a principal unit:

III. If xy = ax (or yx = ax), where a is an ordinary quantity, and if y is a root of zero then one will have either x = 0 or a = 0.

By assumption, there is a number k such that $y^k = 0$, so there is also a number l such that $xy^l = 0$. Let $x \neq 0$, and let m be the smallest number of that sort. Thus, m > 0 and $xy^m = 0$, but xy^{m-1} (in which, one understands that for m = 1, one will have x) is non-zero. It will then follow from $xy^m = axy^{m-1}$ that a = 0. One will arrive at the same result when one multiplies the equation x(y - a) = 0 on the right with $y^{m-1} + y^{m-2}a + ... + a^{m-1}$. The theorem can be generalized as:

IV. If $x_1, x_2, ..., x_m$ are quantities of a root group, and if the product $x_1 x_2 ... x_m$ is non-zero then the m quantities:

 $x_1, x_1 x_2, x_1 x_2 x_3, \dots, x_1 x_2 \dots x_m$

will be linearly-independent.

Then, let:

$$ax_1 \dots x_l + b x_1 \dots x_l x_{l+1} + c x_1 \dots x_l x_{l+1} x_{l+2} + \dots = 0,$$

where *a* is the first non-zero coefficient. One will then have that:

$$b x_{l+1} + c x_{l+1} x_{l+2} + \ldots = -y$$

is a quantity in the root group (η) , and thus a root of zero, and that:

$$x_1 \ldots x_l (a - y) = 0,$$

so $x_1 \dots x_l = 0$, and therefore one will also have $x_1 \dots x_m = 0$.

V. The product of any n quantities in a root group of order n - 1 will vanish.

Thus, if $x_1 \dots x_n$ were non-zero then the *n* quantities:

 $x_1, x_1 x_2, x_1 x_2 x_3, \dots, x_1 x_2 \dots x_n$

would be linearly-independent, so the order of the group would be $\geq n$.

From this theorem, for any root group (η) there is an invariant number *m* such that the product of any *m* quantities of (η) vanishes, but not the product of m - 1. If *x* is a non-vanishing product of m - 1 quantities in (η) then *xy* and *yx* will be products of *m* quantities, and therefore zero. The repeated application of that theorem yields (C, 31):

VI. The basic numbers η_1 , η_2 , ..., $\eta_{\alpha-1}$ in a root group of order n-1 can be chosen in such a way that the product $\eta_{\alpha} \eta_{\beta}$ becomes a linear combination of the basic numbers whose index is greater than both α and β .

From Theorem V, there is, moreover, an invariant number l (< m) for a root group (η) that is the smallest one for which the l^{th} power of any quantity in the group vanishes. For a commutative group, one will have l = m. Furthermore, one has the theorem:

VII. If there are n - 1 quantities in a root group of order n - 1 whose product $x_1 x_2 \dots x_{n-1}$ is non-zero then x_1^{n-1} will also be non-zero, and the group will be the commutative group that is defined by all entire functions of x_1 .

From Theorem IV, the n - 1 quantities:

 $x_1, x_1 x_2, x_1 x_2 x_3, \dots, x_1 x_2 \dots x_n$

are the linearly-independent then, so they define a basis for the group (η). Therefore:

 $x_{\kappa} = a_{\kappa 1} x_1 + a_{\kappa 2} x_1 x_2 + \ldots + a_{\kappa, n-1} x_1 x_2 \ldots x_{n-1} \qquad (\kappa = 1, 2, \ldots, n-1).$

Since the product of any *n* quantities in the group (η) vanishes, one will get:

$$x_1 x_2 \dots x_{n-1} = a_{11} a_{21} \dots a_{n-1, 1} x_1^{n-1}$$

8

upon multiplying these n - 1 equations, so x_1^{n-1} will be non-zero. Therefore, when one sets $x_1 = x$:

$$x, x^2, \ldots, x^{n-1}$$

will also define a basis for (η) . If one extends it by way of $x^0 = e$ to a group (ε) of order *n* that consists of the quantities $z = z x^0 + z_1 x + ... + z_{n-1} x^{n-1}$ then its determinant $|S(z)| = z^n$ will take on only an elementary divisor.

§ 5.

I shall now turn to the proof of CARTAN's theorem. Let (ε) be a group of order *n* with a principal unit, let (η) be its radical, and let n - m be its order. *m* will then be the linear rank of the determinant of (ε):

(1)
$$\Theta(x) = |S(x)| = \prod \Phi^s.$$

Any of its *k* prime factors can be brought into the form of a determinant:

(2)
$$\Phi(x) = |x_{\alpha\beta}| \qquad (\alpha, \beta = 1, 2, ..., r)$$

by a suitable choice of basic numbers. The:

(3)
$$m = r^{2} + r'^{2} + r''^{2} + \dots$$

elements:
(4)
$$x_{\alpha\beta}, \quad x'_{\alpha\beta}, \quad x''_{\alpha\beta}, \dots$$

of the *k* different determinants Φ , Φ' , Φ'' , ... of degrees *r*, *r'*, *r''*, ..., resp., are all independent variables. The determinant of the DEDEKIND group (\mathcal{D}) that is homomorphic to (ε) is $\Pi \Phi^r$, where the exponent *r* of Φ is equal to the degree of the prime factor.

One can choose *n* basic numbers of (\mathcal{E}) such that $\mathcal{E}_{m+1}, \ldots, \mathcal{E}_n$ define the basis for the radical (η) , and the quantities (4) define the coordinates of $\mathcal{E}_1, \ldots, \mathcal{E}_m$. I therefore denote these *m* basic numbers by:

(5)
$$\mathcal{E}_{\alpha\beta}, \quad \mathcal{E}'_{\alpha\beta}, \quad \mathcal{E}''_{\alpha\beta}, \ldots,$$

and the n - m ones by $\eta_1, \ldots, \eta_{n-m}$, such that:

(6)
$$x = \sum x_{\alpha\beta} \varepsilon_{\alpha\beta} + \sum x'_{\alpha\beta} \varepsilon'_{\alpha\beta} + \sum x''_{\alpha\beta} \varepsilon''_{\alpha\beta} + \dots + \sum y_r h_r$$

is an arbitrary quantity of (ε). The characteristic determinant of S(x) is then:

(7)
$$|S(u e - x)| = \Pi |u e_{\alpha\beta} - x_{\alpha\beta}|^{s}$$
.
The relations:
(8) $\varepsilon_{\alpha\beta} \varepsilon_{\beta\gamma} = \varepsilon_{\alpha\gamma}, \quad \varepsilon_{\alpha\delta} \varepsilon_{\beta\gamma} = 0, \quad \varepsilon_{\alpha\delta} \varepsilon'_{\beta\gamma} = 0 \pmod{\eta},$

where β and δ are assumed to be different in the second one, exist between the basic numbers (5). One must show that the basic numbers (5) mod (η) can be changed in such a way that these equations are true absolutely. Let:

$$z = a_1 \, \mathcal{E}_{11} + \ldots + a_r \, \mathcal{E}_{rr} + a_{r+1} \, \mathcal{E}'_{11} + \ldots + a_{r+r'} \, \mathcal{E}'_{r'r'} + \ldots,$$

or when one sets:

(9)
$$\mathcal{E}_{11} = \mathcal{E}_1, \ldots, \quad \mathcal{E}_{rr} = \mathcal{E}_r, \qquad \mathcal{E}'_{11} = \mathcal{E}_{r+1}, \ldots, \quad \mathcal{E}'_{r'r'} = \mathcal{E}_{r+r'}, \ldots$$

$$z = \sum \varepsilon_{\lambda} a_{\lambda}.$$
 The:
(10) $p = r + r' + r'' + ...$

coordinates a_{λ} can be chosen in any well-defined way, except that they should all be different from each other. Thus, one will have:

$$\varphi(u) = |S(u e - z)| = (u - a_1)^s \dots (u - a_r)^s (u - a_{r+1})^{s'} \dots (u - a_{r+r'})^{s'} \dots$$

and when f(u) is a complete function of u, from (8), one will have:

$$f((z)) = \sum \varepsilon_{\lambda} f(a_{\lambda}) \pmod{\eta}$$
.

As in § 3, (3), I now determine p entire functions $f_{\lambda}(u)$ in such a way that $(u - a_1)^s$ $f_1(u)$ is divisible by f(u) and $f_1(u) - 1$ is divisible by $(u - a_1)^s$. One will then have:

(11^{*})
$$f_{\lambda}((z))^2 = f_{\lambda}((z)), \quad f_n((z)) f_{\lambda}((z)) = 0$$

and

(12^{*})
$$\sum f_{\lambda}((z)) = e.$$

Moreover, $f_{\lambda}((z)) = \varepsilon_{\lambda} \pmod{\eta}$, and therefore one can change $\varepsilon_{\lambda} \pmod{\eta}$ in such a way that one will have $f_{\lambda}(z) = \varepsilon_{\lambda}$. One will then have:

(11)
$$\varepsilon_{\alpha\alpha}^2 = \varepsilon_{\alpha\alpha}, \qquad \varepsilon_{\alpha\alpha} \varepsilon_{\beta\beta} = 0, \quad \varepsilon_{\alpha\alpha} \varepsilon_{\beta\beta}' = 0,$$

(12) $\sum \mathcal{E}_{\lambda} = e.$

Now, from (8), one will have:

$$\varepsilon_{\alpha\beta} = \varepsilon_{\alpha\alpha} \varepsilon_{\alpha\beta} \varepsilon_{\beta\beta}, \qquad \varepsilon'_{\alpha\beta} = \varepsilon'_{\alpha\alpha} \varepsilon'_{\alpha\beta} \varepsilon'_{\beta\beta}, \qquad \dots \qquad (\text{mod } \eta).$$

If $\alpha = \beta$ then the equations will be valid absolutely. If α is different from β then one will replace $\varepsilon_{\alpha\beta}$ with $\varepsilon_{\alpha\alpha}\varepsilon_{\alpha\beta}\varepsilon_{\beta\beta}$. In that way, these basic numbers (mod η) will be changed in such a way that from (11) one will now have:

(13)
$$\varepsilon_{\alpha\alpha}\varepsilon_{\alpha\beta} = \varepsilon_{\alpha\beta}, \qquad \varepsilon_{\alpha\beta}\varepsilon_{\beta\beta} = \varepsilon_{\alpha\beta},$$

(14)
$$\varepsilon_{\alpha\beta} \varepsilon_{\delta\gamma} = 0, \qquad \varepsilon_{\alpha\beta} \varepsilon'_{\delta\gamma} = 0,$$

when δ is different from β in the first equation.

I shall alter the basic numbers $\varepsilon_{\alpha\alpha}$, $\varepsilon'_{\alpha\alpha}$... no further, but only the basic numbers $\varepsilon_{\alpha\beta}$, $\varepsilon'_{\alpha\beta}$, ..., and only in such a way that the relations that were obtained already will remain valid. If η is an arbitrary quantity in (e) then I will call:

(15)
$$\varepsilon_{\alpha} \eta \varepsilon_{\lambda} = \eta_{\alpha\lambda}$$

a quantity of type (κ ; λ). It satisfies the equations:

(16)
$$\mathcal{E}_{\kappa} \eta_{\kappa\lambda} = \eta_{\kappa\lambda}, \qquad \eta_{\kappa\lambda} \mathcal{E}_{\lambda} = \eta_{\kappa\lambda},$$

and when μ is different from κ ; and ν is different from λ :

(17)
$$\varepsilon_{\mu} \eta_{\nu\lambda} = 0, \qquad \eta_{\kappa\lambda} \varepsilon_{\nu} = 0.$$

If η is a quantity in the invariant subgroup (η) then $\eta_{\kappa\lambda}$ will also belong to the radical. One can then alter $\varepsilon_{\alpha\beta}$ by an arbitrary root quantity $\eta_{\alpha\beta}$ of type (α , β) without changing equations (13) and (14).

Now, if
$$\varepsilon_{\alpha\beta} \varepsilon_{\beta\alpha} = \varepsilon_{\alpha\alpha}$$
, so:
(18) $\varepsilon_{\alpha\beta} \varepsilon_{\beta\alpha} = \varepsilon_{\alpha\alpha} = \eta_{\alpha\alpha}$,

in which $\eta_{\alpha\alpha}$ is a quantity in (η) , and in fact, from (13), one of type (α, α) . Therefore, the right-hand side will equal be to $\varepsilon_{\alpha\alpha} (e - \eta_{\alpha\alpha})$. It follows from the equation:

that:

$$e - x^{l} = (e - x) (x^{0} + x + \dots + x^{l-1})$$

 $e = (e - x) (x^{0} + x + \dots + x^{l-1})$

when $x^{l} = 0$. Now, if $\eta_{\alpha\alpha}^{l} = 0$ then one multiplies equation (18) on the right by:

$$\eta^0_{lphalpha} + \eta_{lphalpha} + \ldots + \eta^{l-1}_{lphalpha} \; .$$

One then obtains:

$$\varepsilon_{\alpha\beta}\left(\varepsilon_{\beta\alpha}+\eta_{\beta\alpha}\right)=\varepsilon_{\alpha\alpha},$$

where:

$$\eta_{\beta\alpha} = \varepsilon_{\beta\alpha} (\eta_{\alpha\alpha} + \eta_{\alpha\alpha}^2 + ... + \eta_{\alpha\alpha}^{l-1})$$

is a root quantity of type (β , α). If one then changes $\varepsilon_{\beta\alpha}$ by $\eta_{\beta\alpha}$ then one will get:

(19)
$$\mathcal{E}_{\alpha\beta} \, \mathcal{E}_{\beta\alpha} = \mathcal{E}_{\alpha\alpha} \, .$$

However, one will also always have (C, 52):

(20)
$$\mathcal{E}_{\beta\alpha} \, \mathcal{E}_{\alpha\beta} = \mathcal{E}_{\beta\beta}$$

One will then have $\varepsilon_{\beta\alpha} \varepsilon_{\alpha\beta} = \varepsilon_{\beta\beta} - \eta_{\beta\beta}$, and that will yield $\varepsilon_{\beta\alpha} (\varepsilon_{\alpha\beta} + \eta_{\alpha\beta}) = \varepsilon_{\beta\beta}$, as it did just now, so when one multiplies in the left by $\varepsilon_{\alpha\beta}$, one will get $\varepsilon_{\alpha\beta} + \eta_{\alpha\beta} = \varepsilon_{\alpha\beta}$ and therefore $\eta_{\alpha\beta} = 0$.

One now chooses ε_{12} , ..., $\varepsilon_{1\nu}$ in any way (*C*, 67) according to the relations that were posed up to now, and then chooses ε_{21} , ..., $\varepsilon_{\nu 1}$ in such a way that $\varepsilon_{1\alpha} \varepsilon_{\alpha 1} = \varepsilon_{11}$, and as a result one will also have $\varepsilon_{\alpha 1} \varepsilon_{1\alpha} = \varepsilon_{\alpha \alpha}$. One will then have the equation:

(21)
$$\mathcal{E}_{\alpha\beta} = \mathcal{E}_{\alpha \, 1} \, \mathcal{E}_{1\beta},$$

when $\alpha = 1$ or $\beta = 1$ or $\alpha = \beta$, so for the cases that we have already imposed upon $\varepsilon_{\alpha\beta}$. However, if α and β are different and both of them are greater than 1 then one will have $\varepsilon_{\alpha\beta} = \varepsilon_{\alpha1} \varepsilon_{1\beta} + \eta_{\alpha\beta}$, where $\eta_{\alpha\beta}$ is a root quantity of type (α , β). One can therefore change $\varepsilon_{\alpha\beta}$ in such a way that the equation (21) is fulfilled. One will then have:

$$\mathcal{E}_{\alpha\beta} \mathcal{E}_{\beta\gamma} = \mathcal{E}_{\alpha 1} (\mathcal{E}_{1\beta} \mathcal{E}_{\beta 1}) \mathcal{E}_{1\gamma} = \mathcal{E}_{\alpha 1} \mathcal{E}_{11} \mathcal{E}_{1\gamma} = \mathcal{E}_{\alpha 1} \mathcal{E}_{1\gamma} = \mathcal{E}_{\alpha \gamma}.$$

Equations (8) are now all true absolutely, and therefore, the *m* quantities (5) will be the basic numbers of a group (\mathcal{D}) .

From (12), one now has:

$$\eta = (\varepsilon_1 + \ldots + \varepsilon_p) \ \eta \ (\varepsilon_1 + \ldots + \varepsilon_p) = \sum \ (\varepsilon_\kappa \ \eta \ \varepsilon_\lambda).$$

One can therefore compose all of the root quantities from the $(n - m) p^2$ quantities $\varepsilon_{\kappa} \eta \varepsilon_{\lambda}$. If one chooses a system from them independently then each of the basic numbers of the radical will belong to a certain type (κ, λ) . In the subgroup (\mathcal{D}) , $\varepsilon_{\alpha\beta}$ will have type (α, β) when α and β are two of the numbers from 1 to r. By contrast, it will contain, e.g., no quantity of type (1, r + 1).

If the *n* basic numbers of (ε) are chosen in the given way then from (17) all quantities $\xi_{\kappa\lambda}$ of type (κ , λ) would be expressed in terms of only basic numbers that have the same type. The basic numbers of type (1, 1) define the basis for a group, for which $\varepsilon_1 = \varepsilon_{11}$ is the principal unit, and at the same time, the only unit. The remaining basic numbers of type (1, 1) define the basis for its radical. If *a* and *b* are two numbers 1, 2, ..., *r* then each of the two equations:

$$arepsilon_{lphaeta}\,\xi_{eta\lambda}\,=\,\xi_{lpha\lambda}\,,\qquad\qquad arepsilon_{etalpha}\,\xi_{lpha\lambda}\,=\,\xi_{eta\lambda}\,,$$

would be a consequence of the other one. One would therefore obtain (C, 57) all quantities of type (β, λ) when one multiplied $\varepsilon_{\beta\alpha}$ by all quantities of type (α, λ) .

Moreover, all basic numbers of types:

$$(1, 1), (1, r+1), (1, r+r'+1), \dots, (r+1, 1) (r+1, r+r), (r+1, r+r'+1), \dots, (r+r'+1, 1), (r+r'+1, r+1), (r+r'+1, r+r'+1), \dots$$

collectively define the basis for a group (\mathcal{E}') , where the k quantities of (\mathcal{D}) that are contained in it, namely, \mathcal{E}_1 , \mathcal{E}_{r+1} , $\mathcal{E}_{r+r'+1}$, ..., define the basis for a commutative DEDEKIND group (\mathcal{D}') , while the remaining ones define the basis for a root group (η') that is an invariant subgroup of (\mathcal{E}') . From § 1, (η') is then the radical of (\mathcal{E}') . Since (\mathcal{D}') is a commutative group, the determinant of (\mathcal{E}') will decompose into nothing but linear factors. CARTAN (C, 57-60) has explained how one can derive the relations between the basic numbers of the group (\mathcal{E}) from the ones between the basic numbers of (\mathcal{E}') so thoroughly that I would not like to go into that here.