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This treatise will study parallelism in spaces of pesitonstant curvature, which is
an important element in the metric geometry of the sptwt were defined for the first
time by Clifford ¢). We thus introduce new line coordinates (viz., sgathmeters) that
are given several geometric interpretations, and for whind can find a simple
algorithm that permits one to treat them in a clearrapd fashion without the necessity
of carrying out extremely long and tedious calculations.

One can then give a proof of the principle of dualitghaut appealing to the
consideration of the absolute that first defines tlgdeabetween two skew lines, etc. The
application of this principle to the theory of curvesiles suggesting the introduction of a
new element into it — namely, “Clifford torsion” —Nyprove a theorem of Prof. Bianchi
(®) in a new and complete way; a modification of theriet formula for a spatial curve
will, in my esteemed opinion, lead one to comparisottls flat space and new theorems.
The application of the theory of parallels to the staflgongruences will give directly
the necessary and sufficient conditions for theeddtial quadratic form that defines a
congruence to be compatible, it will give immediatetyrigerion for recognizing whether
a congruence %V, as soon as one is given the fundamental formufasjtavill finally
permit one to establish some new results for the deokd congruence.

If one applies these theorems to the theory of sesfdben one will obtain new
geometric interpretations for the absolute curvature Badyéodetic torsion that can be
traced back to the theory of surfaces in curved spaces landstudy of those
representatives for the Euclidian sphere in itselfnfbich corresponding parts have equal
areas. One can therefore generalize some well-kifmwnulas in Euclidian space for the
theory of surfaces and triply-orthogonal systemshwhe aid of which one can study
among other things those congruences for which any deformation of the lirstiface,
which the rays of the congruence are assumed to beahlatinked with, is always
arranged inteo! Clifford rulings, and finally discover some curious festor the angle
that is formed between linear elements that correspontthe surface and its planar
image.

The application of these results to the theory\o$urfaces will lead, among other
things, to the study of noteworthy pairs of sphericainelats, a study that can also be
interpreted in the Euclidian metric, and then it is giwbe geometrical significance
(albeit not a simple one) of the Lie transformationthe pseudo-spherical surface, which
then solves the problem of determining those latticeshenEuclidian sphere that will
divide it into equivalent, infinitesimal parallelograms,a new way.

The study of the Riemannian images of parallel linesdsor to a new characteristic
property of the (isocyclic) Demartres surface, (@ property that can meanwhile be
interpreted with only the Euclidian metric, which leadstnew property of the isocyclic
surface and the isothermal ruling (viz., the locus of tonads of a curve with constant
torsion) () in spaces with constant curvature.

[N

Cf., e.g., KLEIN,Nicht-Euclidische Geometrie

BIANCHI, Ann. di Matem(1896), 103. We shall denote this paper by A.
DEMARTRES,Annales de I'Ecole Normale Superieudg1887).
BIANCHI. (A).
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MAIN FORMULAS

8 1. We suppose that certain special motions exist in ellgp@ce, for which, the
distance between the initial and final position of driteary point is constant, and which
will be given the name dfcrolls In Euclidian space (where one finds the geodetically-
representative images of curved space), these motionscavikspond to the biaxial
homographies whose axes are the two generators of tleeraad series as the absolute,
and which will therefore make the generators of the oth&d series scroll on it.
Moreover, conforming to the existence of two ruled sanes quadric, the scrolls of a
space curve will divide into two entirely distinct syss: the right-handed scrolls and the
left-handed ones.

Clifford defined parallelism of lines in a curved space byamseof these special
motions, and we will now give some fundamental propsrof parallel lines that are
easily deducible from each other and which can each sarvke definition of parallel
lines. With Clifford, we therefore say that two ormadines argarallel when either:

a) The initial and final positions combine into the poinfsa system that is rigid
relative to a scroll,

or
£ They support the same skew generators of the absolute,
or
)) They are themselves the initial and final positioha line that has been subjected
to a scroll.

The existence of two types of scrolls proves the emest of two types of parallel
lines: viz., right-handed and left-handed parallels. Hawnevbserve that if we are given
just one scroll then we can deduce right-handed paraklsgell as left-handed ones, and
that secondly that they will serve to generate pddailes as ina) or ).

We state the defining formulas for a scroll, in whiale, suppose, as we always will
from now on, that the curvature of the ambient spaceqisal to + 1, denote the
Weierstrass coordinates of the initial and final posgi@f the same point by) and
(x), and letA, B, C, D and @, B, y, J denote eight constants that are subject to the

relations:
A +B+C*+D*=a’+ B2+ y*+0°=1.

For the scrolls of the first kind, we will havi:(

() BIANCHI (A).
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% = Ax - Bx - Cx~— Dy,
X, = Bx + Ax— Dx+ Cx,
X, = Cx + Dx, + Ax— By,
X, = DX —Cx+ B+ Ay

(1)

and for scrolls of the second kind:

X =aX =% =yX%=0X,
X% =BXTaX%tO%-YX,
X3 T YR = 0%t a %+ B X,
X, =0X + Y%= BX+ax,

(2)

8 2. Along with the Weierstrass coordinates of a point amdane, a (geodetic) line
is defined by giving the coordinates)(of any one of its points and the coordinai@sdf
the plane normal to that line a)( hence, in a manner that it is very convenient foneso
studies, although it is far from symmetric. The fundamleabjective of the present
treatise is the introduction of a new coordinate sydtieat, we hope, will appear to be
very appropriate to the nature of elliptic space inpigliaations.

Therefore, let a line be defined in the Welierstrasg, \aad let k) and &) be two

4
conjugate points (at a distance mf 2), such thatz xé& = 0. The scrolls that take the
i=1
point (k) to the point &) will have a right-hand and left-hand, and if we denbie
constants that relate to the oneAyB, C, D and the constants that relate to the other by

a, B, y; o then we will meanwhile have:

A=a=0,
because
2xXé=0,

B2+C*+D?’=fF +y+5=1.

and therefore:

We assume that thB, C, D, S ) 0 (which are calculated immediately) are the
coordinates of a line in elliptic space, and we give ttlemame os$croll parameterdor
the same line. As one sees immediately, they wilhdependent of the pair of conjugate
points &), (&) that is chosen on the line.

Meanwhile, observe that a line is distinguished whee @ given the scroll
parameters (and one will prove this effectively by dalkoon); in fact, two scrolls of
different kinds are defined that leave the line fixed amich, in turn, define the four
generators of the absolute that supports it, and will Buffice to distinguish the line, in
turn, from its polar line; this indeterminacy, which césoae useful when one studies, in
turn, two polar figures, is increased even further whenammsiders the signs.
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For the effective calculation of the six scroll paedens, one observes that for us (1)
becomes:

§ =—Bx, — Cx - Dx,
$ = Bx+Cx - Dx,
&, =—Bx, + Cx + Dx,
54: Bxs_CXz+ D)i'

3)

If one solves these, while recalling thax® =Y, & = 1,¥ x £= 0, then one will get:

B:fz)(i— X2§(1+§(4X3_ Xis
(4) C:§(2X4_§(4X2+§(3X1_ Xgr
D :53)(2 _52X3+§(4X1_ XLS(I
which is related precisely to:
(5) D?+B*+C?=1.
Analogously, one has:
é:_ﬁxz_yxs_éxi
52 = IBX1+5X4_VX3’
$3 =YX OX+ X,
54 = 5X3+VX2_IBX1’

(3)

from which, one will get:
B=EX 6%t X% 61Xy
4) V= 60% =Xt 6% =& X,
0 =&,% ~ ¢ X E,%= ¢ 5%,

with:
(5) Brty +oi=1.

If one takes (4) and (4to be the formulas that define tBeC, D, S, y; othen (3) and
(3) will give the coordinatesé() of the plane normal to our line at the poixj),(if one
denotes that point byj.

It is easy then to recognize just what distinguishesstroll parameters of two polar
lines. For example, take the line that is normal eoplane (0, 1, 0, 0) at the point (1, O,
0, 0), and the polar line that is normal to the plan®,0, 1) at the point (O, O, 1, 0).

For the one of them, one will have:

B=1,C=D=0, L=1, y=0=0,
and for the other:

B =1, cC=D=0 p=-1, y=0=0.
Therefore:
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If one changes the signs of one of the two sets of scroll parametelimeftthen one
will obtain the polar line.

We will often see that the polar line plays the sawole in elliptic space that the
opposite direction does in flat space.

The simultaneous change of sign in all six scrollapseters does not alter the
corresponding line, because that would be equivalent to ititgafg into (- x), or (&)
into (- &), or exchanging the pointg), (&). (Cf., the final observations).

8 3. However, calculating wittB, C, D, £, y; o would be exhausting, so we shall
introduce a simple algorithm that will then permit usreat these new line coordinates
with the maximum confidence and facility, and to passftbem to the usual formulas
in Weierstrass coordinates. Therefore, observe tietan write:

AN
R I IR
©) R ANER
X X% 1% X
X ANEAA
X X% [ X %
and analogously:
PEERANLES
X0 1% %
©) LA ANER
X X 1% X
PR ANEEA)
X X% [ X %

Let (ts, to, t3, tg) and €, dz, ds, ds) then be two quadruples of variables, so wettgt, [
[td]s, [td]4 denote three expressions that are formed fromhineld in precisely the same
way thatB, C, D are formed fromdi, &, &, &) and &, X, X, X4); analogously, leftd]’,,

[td]5, [td],, denote the expressions that are formed fropra(d €¢) just ass, y o are

formed from &) and &).

If we recall the development of the product of twatnoas with two rows into the
sum of the products of their corresponding minors, aedlévelopment of a determinant
of fourth order into the sum of products of the secondromaieors that are taken from
the matrix that is formed from first of two rows ftite complementary minors then we
will easily obtain the following fundamental identity:
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tl t2 t3 t4
t ot ot t e e e g dddd
) [l fef} =)0 & o Ew 2 +
Iz{ } dl d2 d3 d4 fl f2 f3 f4 el % % g
f, f, f, f,

If we let ¢ d e ) denote the determinant of the right-hand side thés identity can
be written:

(8) Sitd[efl,} =2 teX. df-> de+tde).

If we would like to find the value of ¢l e § as a function oF t?, X %, ..., > td, X te,
..., 2. de ... then it will suffice that we take its squareg will then get a determinant in
which the terms are all of the prescribed formwéfthen extract the square root then we
will have the value oft(d e ), up to sign. We deduce from this that:

. Ift=e,d=f,>t?=Xd*=1,>td=0 then we will have:

> {[dlfefl} =1,

which could have been foreseen if one recallecud)(3).

Il. Ifthet, d, e, andf form four completely distinct quadruples and® =Y d? = ¥, €?
=Y f?=1, while:
Ytd=Xte=xtf=Xde=>df=>ef=0
then one will have:

D {[dlfefl} =1,

and, without getting preoccupied with the signtreg moment, it is enough to observe
that it will change when two of the four quadrupdee exchanged.

. If & =t, butd, #fi andX> ed=2 ef=> df = 0, while:
=2 =2 f2=1
> {ltdl[efl;} = 0.

then one will have:

The ambiguity in sign that appears in Il of theases, and which must always appear
from the way by which we calculated the determin(amt e ) as long ast(d e § is not
zero, should not be the cause of any confusiontlaaidis because if one exchanges the
symbols {d]; with the symbolqtd]; then one will get an identity that differs from) (8y

only the sign oft(d e ), as a simple calculation will reveal. Now, wtreseve always
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consider the two types of parallelism and symbols samebusly, it will suffice to
perform the calculations with just one type of symba.g., the unprimed symbols. We
then get, in fact, terms with indeterminate sign. Kwav, it will be quite pointless to
determine this sign, because we must use one sign faltgtiam in one sense and the
opposite sign when we consider parallelism in the ctbase.

We have already seen how, by means of (6) ahd ¢fe can calculate the scroll
parameters of a line that is defined by means of justofwbits points ) and &) at a
distance ofrr/ 2. We would now like to show how, given the scrollgpaeters of a line,
one can get back to the usual determination of that lifle. that end, look for the
coordinate of the point where the line whose scroll patam aré, C, D, £, y; d meets,
e.g., the plang; = 0. If we sex; = 0 in (3) and (3 and compare the values &f &, &
that this produces then we will get:

X2 X3 :x4=B+p:C+y:D+o
Since, ifx; = 0 one must have; + X + x; = 1, one finally gets:

_ B+S _ C+y
X2 - ’ )Qg - )
J2(1+ BB+ Cy+ D) J2(1+ BB+ Cy+ D)

(9) X1 =0,

_ D+J
Xq = .
J2(1+ B+ Cy+ DJ)

It is then easy to calculate the correspondgigbly means of (3) or (B

84. We now propose to study the geometric signifieamicthe scroll parameters of a
line. The fundamental property of them is thatythge “invariant under parallelism,” as
is expressed by the following theorem:

If two lines have three equat or equal, in the opposite sense — parameters with
respect to the same triad then they will be palalleone sense or the other, depending
upon whether the triad in question is the firstloe second kind, respectively.

Indeed, in such a case there will exist a scigltimt scrolls both of the above in the
same way. This theorem, which emerges immediat®gn our considerations, is
fundamental for us. For that reason, it will netyrong for us to establish it in a direct
way, as a check of the calculations, and becauseillvihen get other formulas that will
be very useful in what follows.

Let a line be the intersection of two planas @y, as, as) and ps, by, bs, bs), which,
for simplicity, are assumed to be orthogonal. @bsolute is defined by:

K+ %+ X =0
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SO a system of its generators can be imagined to beeddiy:

() { (X1+iX2)+/](X3+iX4):O'

(6 —ix,) =A(x, ~ix;) =0,

where A varies from generator to generator. Any point that lgedio two planesa(),
(by) will satisfy:

B 2ax=0 2 bx=0

so that in order to find that generator of the ser@<gHat carries our line, it is sufficient
to eliminate thex) from the @) and the (); from that, we get:

8 8 & g
b bbb
10 Aid
—AiA 1 -

:O,

namely:
A% {[(ay bz — by ag) + (a1 bs — bz as)] + i [(bs & — a4 by) + (b2 @ — a2 bs)]
+ 21 (aubs —bsag + by — bray)
+ {(aubs —bsag + bray — byay) — i(aubs — bsag + byay — bia)} = 0.

In order for the line of intersection of the plan@s and (k') to carry the same pair

of generators, i.e., both parallels (in the senseighggtermined by the ruled serieg)(of
our line, one immediately deduces that one must have:

(agbs —brag + aghs — boay) : (asbs —bras + by @z — axbs) : (@b, — bway + aybs — ashy)
= (ab-Ha+ah-bg: (ab-Hd+Ba- ab: (ab-Ha+ab- ah).

One proceeds analogously with the other series of generaf the absolute; the
preceding formula not only proves out theorem, but givesxaression for the scrolling
parameters of a line as functions of the coordinatés® perpendicular planes that pass
through the line.

We must often find the trace upon a plan®f the parallel to a line that is drawn
through its poleA, and call it theClifford imageof the line relative to that plane. Sfand
Z; are the coordinates of the two traces then we \aieh from (3) and (3 and when
one takes the poi# to be the point (1, 0, 0, 0):

(10) { §=0, S=B[ % $= G[{ ] S Bl{Ix

Z,=0,2,=B8=[X, L=y=[¢}Y, Z=0=[¢ K,

By means of this equivalence, and lettigglenote the distance between the two
pointsS, Z that is defined by cog =2 S Z, (9) will become:
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@) X x=3%% i34

I
o

ZCOSQ
2
which will give this, by means of (3) or'§3
1 1 S
e e L D Ry 1
2cot- 173 ™4 2cot- ! 74 72
2 2
1 |S S
&= .
ZCOtg Z, 4

One immediately verifies that:

The two Clifford images of the two lines that amdap to a plane and the traces on
that plane of those lines are harmonically sepadatéOne of these traces will bisect a
segment that ends at the image.

8 5. It will again be opportune for us to note that gtrolling parameters of a line,
when also multiplied by an arbitrary factor, waitsfy:

B2+C2+D*—B%—)?—5%=0,

Therefore, we must always imagine that six quiestithat are ruled by this relation
will be the homogeneous coordinates of a line, imc one can fix, up to sign, a
proportionality factor (in just one way) in suchmanner that they will become the six
scrolling parameters of line. The form®&fC, D, 5, y; dgives the following theorem:

The scrolling parameters (invariants under para#iel) of a line are nothing but the
Klein coordinates (appropriate sums and differenckeghe Plicker coordinates) of that
line when one takes the fundamental tetrahedrohet@ tetrahedron that is autopolar
with respect to the absolute.

8 6. A first noteworthy application of this coordinaiethe definition of the angle
between two arbitrary lines (which has, so far, be¢n the case for coplanar lines). We
define the angle between two lines to be the angi¢hat is defined by:

cos¢p =BB’'+ CC’'+ DD/,

so the angl& will generally be distinct from the preceding omdnich can be defined by:
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cos¢ =66+ '+ A0,

in which formula, we intend thaB( C, D, £, y; ) should be the parameters of one line
and 8, C’ D’ 3, y, 0"), the homologous parameters of the other one. Thisitale
emerges spontaneously from the following theorem:

The angle between a pair of coplanar lines and the angle between the pamltels t
through an arbitrary point A will be equal, as long as the two parallelsdaagvn in the
same direction.

In fact, there will then exist a scrolling (which wide right-handed or left-handed,
according to the sense of the parallelism) that catfieeeommon point of the first pair of
lines to the poinA and the first pair of lines to the pair of paralleltigh the poinA.

The theorem can also be proved analytically: If tivemilines are the lineg,($), (X,

1) then the anglg between then will be defined by cgs > & 77; the anglep’ between
the parallel lines that are drawn through the point (D, 0) is given by:

cosg’= D [x & [x 7l

or

cosg’= D [x&! X!

according to the direction of the parallelism. Téentity (8) proves that one has aps
= cos¢ in both cases.
One then sees that the angléhat is defined by:

(12) cosp =BB + CC+ DD,
{ cosg = BB +yy +do

is nothing but (10) for thangles that are formed by the two pairs of parallels that are
drawn through the pointl, 0, 0, O)of the two lines, when they are given in one direction
or the other, and from the preceding theorem, one sees that as a rakelfadt that this
parallel is drawn through the poirfi, O, 0, 0),one must draw that parallel through an
arbitrary point in space without altering the determination of its angle.

If the two lines are the lineg, (&) and §, /7)) then we will have the following formulas
for the angle between the two lines:

cosd =2 [x i [x Al or cosp =2, [XSL[ A,

depending upon whether the angle is measured using one deparltelism or the
other; i.e., from the identity, one will have:

cosg = cos@ co&ﬁ]— coéAy coi}i X v,
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in which @ : .;/(/\7 a/xA/] mean the distances between the poitand the pointy),

the point §) and the point/), etc. Without dwelling upon the geometric significante o
(x £y n), one observes that:

The determinanix ¢y ) is zero, and the angle between the two lines admits only one
determination if and only if the two lines are complement&@f., the final observation).

This theorem admits a noteworthy corollary, when igpplied to infinitely-close
coplanar lines:

If we construct the Clifford images relative to an arbitrary planéhefgenerators of
a ruling then the two lines thus-obtained will correspond in such a Voay t
corresponding arc lengths will be equal if and only if the ruling is develepabl

If one recalls (Bianchi A) that a ruling has zero ctuvaonly if it is a Clifford ruling
then we will see that this theorem is a countergoitthe other one that:

A ruling will have zero curvature only if one of its Clifford imagesuces to a point.
We immediately recognize a new meaning for the Klein dioates:They measure
the angles that are formed between a line, in one direction or the atiethe edges of

the reference tetrahedron, or, as one can say, an orthogonal triad of lines.

Thus, the scrolling parameters are nothing but the pregectiordinates of a line, and
one can then define a linear complex with an equation:

IA+mB+nC=pa+qf+ry,

wherel, m, n, p, g, r are constants, we see from (12) that this linear cexrgdimits the
following metric definition in an elliptic space:

The lines of a linear complex are those, and only those, lines f@h\rghqg IS
co

constant, wherg and ¢ are the angles that any of them forms with a fixed line.

With the preceding notation, that line will be thee whose parameters are:

I m n p
) ) ) ,etc.|.
JZ+m2+n? 12+ m2+ n? 12+ mP+ n? 12 m+ n?
In curved space, one will then have the theorem:

A linear complex always admits a line such that the helicoidal motion ardugad i
referred to the same complex.
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One will easily see that the locus of points such tiatangle between parallels that
are drawn through any of them to a fixed and constantdimeClifford ruling, and one
will then be able to generate the Clifford ruling by nearf the helicoidal motions
around a line. Prof. Bianchi gave a way of generatinghtimethe paper that was cited
above that was identical to this, in principle. Howewenen viewed in this different
form, it can be interpreted projectively thus:

The projectivity that leaves a quadric fixed, along with two of itatpdh, B carries
an arbitrary point of space to the points of a quadric that has the generhtorgyh A, B
in common with the preceding.

Remark. It is not possible, | believe, to define paralleliamthe plane that one
would be led to define as a result of the parallelism oftgainder the law of duality;
you can, however, define the parallelism of elemergs(gesult of the points and planes
belong to them).We say that the elemefi, a) that is defined by the point A and the
plane ais parallel to the elemer(B, ) when there exists a scrolling that takes A to B
andatoS.

The planeSis generated by the line that is drawn throBghat is parallel to the line
of a that passes through

The distance from to B is equal to the angle betweerandS.

The normal tax atAis parallel to the normal {8 atB.

The more interesting thing in all of this the existence of dual figures that
correspond with parallelism of the corresponding elemants the subsequent proof of
the principle of duality withouany consideration of the absolute.

However, for the sake of brevity, | will prove the&istence by starting with the
absolute. Take a figur§ and consider the polar figu® that an arbitrary scrolling
carries inZ. The figuresS X will be precisely two dual figures that correspond in the
aforementioned way.

Clifford parallelism and the theory of curves.

8 7. Prof. Bianchilpc. cit) proved the following formulas, which are generalizations
of the Frenet formulas for a curve in a flat space:

6 ddom

d_x—g- %:ﬂ—)(' %:
T do 1’

$
do do p do Yo
whereqg;, 1 /p, 1/ rrepresent the arc length, the first curvature, angé¢bend curvature
of the generic pointx() of a curve, respectively, and wher&),((/7), (), denote the
direction cosines of the tangent, principal normall &mormal, respectively, of the
curve at the pointx().
In the calculations that follow, as with everythimgtine rest of this treatise, we will
perform the calculations with just one triad of scnglliparameters, while starting with
what we saw in 8 3. Draw the parallel through the pdinO, 0, 0) to the tangents that
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meet the polar plane; the arc length of the indicatfithe tangents that is thus obtained
is given by:

ds =X {d[x, 4i}* = D [dx &2 +D [ dx dZ+2> ] dxd[ x d; .

Substitute the values faix, dé that were given above by Prof. Bianchi’'s formulas in
this formula, and develop it, while recalling the iden(8yin 8 3. One will get:

2
2-49

2

0

d

which is also valid for the parallelism in the othersserbecause (8 3) the missing terms
will have double signs. That can be explained by obsethgigconsecutive tangents are
complementary, and recalling the theorem of § 6. Thezef

The ratio of anarbitrary one of the angles that formed between two consecuti
tangents to the arc between the points of contaetjual to the curvature of the curve of
corresponding points.

On the contrary, we now consider a generic line thabrmal to the pointx( of the
curve and let its direction cosines bg €os ¢ + ¢ sin ¢), where¢ is constant. The
Clifford image of the ruling that is formed from thesget have an arc leng#ithat is

defined by:ds :Z{o[ncos¢+isin¢,x]2}, i.e., when one differentiates and recalls
Prof. Bianchi's formula:
2
|

ds* = dazZl:Sirm{[g ,x}' + [Zf]i}+cos¢{[75] {_%_

_ co§¢+(_1+1j2 4
Pt \r~ '

In this, by the identity that was cited above arnth consideration of § 3, the double
sign corresponds to the double sense of parallelism

2
For ¢ = 77/ 2, one hasls = (lilj dd®; we will put:
r

~ N

+1, =— -1,

N
N

1. 1
T T

in which we have, however, denoted both of the éxpressions by 17, and we will
call 1 /T and 1 /T"the twoClifford torsionsof a curve at a point. We will then have:
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The ratio of the angle between two consecutive binormals, measusethersense,
to the arc length between their feet is equal to the correspondiffgr@liorsion. One
then has a theorem of Prof. Biancloic( cit) — in a slightly different form- that results
from this on a direct manner:

The necessary and sufficient condition for the binormals to a plane corbe t
parallel in direction is that the corresponding Clifford torsion be zero.

In order for the line that emanates from the poxjtdf a curve and has direction
cosinesd & +b 77 + ¢ §) with a® + b®> + ¢ = 1 (wherea, b, ¢ are constants) to generate a
Clifford ruling by varying the poink;, the arc length of one of its Clifford images must
be equal to zero; i.e.:

Y{adx&+bd 1+ cfl X1} =0,

and with the usual procedures:

... [E+Ej +b2(i2+i2j
p T p T

where 1 /T denotes the corresponding Clifford torsion. Theve is then a helix, but one
that adds the new interpretation of the condigoT = const., which says that there must
be aconstant ratio of the first curvature to the Cliidicorsion.

If we then express the idea that our ruling has zarvature then we will find that:

b=0: (EJ,E_CJ(EJ,_CJ,CJ _o
p T p T

which does not coincide withaf for real elements. One then deduces the existehc
singular, imaginary rulings that are generated litee Clifford ruling of a line that is
united invariably with the principal trihedron of aurve that does not have zero
curvature, although one of its Clifford indicatrees zero; their generators will therefore
be tangent to the absolute.

We add that, as a resudll] of the curves for whicjp/ 7= const.are ones for which
there exists a line that is united invariably witle principal trihedron will generate a
developable.

Indeed, it is enough to express (8 6) the idettheaClifford images of the ruling that
is generated by this line will correspond, with alify of arc length, in order to find that,
with the preceding notation:

0, ie.,

-

=const.; b=0,

2 2
e ,a
r o p

8 8. These preliminary considerations immediately gsjgn idea that will serve to
establish a very remarkable new form, in my opinmfithe formula of Prof. Bianchi that
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was cited above. In order to arrive at this formulaf.FBBianchi examined thdirection
cosinesof the tangent, principal normal, and binormal. Wetuim, will examine its
scrolling parameterswhich are denoted by:

(a.Bya,B,y), (Endé&é& n, ), Auv,A,uv).

However, one sees that:

@y Ay T E e ],
0',3+,3/7+VZ :a'f"*'ﬁ'/]"*'VZ':& +/7ﬂ+ZV:...:O’
do?

r2 dr'*+ 4B+ o/

da?+dpB*+dy*=
(13)

dA?+du?+ w2 = dazT—lz,

d)l'2+d,u'2+d|/'2=T—1,2 do?’ Adx+u B+v y=A" @'+---=0.

By using a procedure that is identical to the one thligvied for the Frenet formula
in flat space, this formula will suffice to give follawg formulas:

da _¢. d¢__a A d_¢
(14) doo o Gop 1 O T
do ¢ df_ _a A ' _ <&
do p do p T do T

and analogous ones 6y y; B, v, n, ¢, etc. However, there would be a sign ambiguity in
the right-hand side of (14) that would stem from thct that only 1 p, 1 / T appear in
(13), and we extract the square root, so we woeldrizertain whether to take b,/1 /T
or-1/p -1/T. However, formula (14) is easily verified by s$iag with Prof.
Bianchi’'s formula. As for:

it is sufficient to recall the effective values adr parameters, and the proof will follow
immediately. Now, observe that, e.g.:

» £ -

Recall that:
E=m¥e—MXa+N3Xa— MaXs .
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One deduces from Prof. Bianchi's formulas, recalliref th= [x {]; and thatA = [x
ﬂl, that:

a iy (M &—méi+néa—na ).

do p T

Now, m & — e &+ s & — na &1s nothing but a scrolling parameter of the line that
is polar to the binormal, and therefore, by a theoreah was proved already (8 2), is
equal to +4, according to the sense of parallelisp;i§ then provedj. One proves the
other formula (14) in an analogous way.

One can deduce other results from (14), which individuatigroaches the Frenet
formulas for flat space, that are worthy of notenyopinion.

As for the integration of each of the two groups (If4fpomulas, which reduces to a
Ricatti equation, one gets:

The effective construction of a curve for which ¢hevature and torsion are known
as functions of the arc length reduces to the natiggn of two Ricatti equations.

Thus, if the two curves correspond point-by-point witrapi@lism in one direction of
the principal triehdron and for whiclw,(T, 0) and (o1, T1, i) are the first curvature, the
corresponding Clifford torsion, and the arc length, reapgorresponding points, then
one will have:

(as Prof. Bianchi observed for flat space) this tlwreefpermits one taeduce the
construction of a curve for which one is given imdic equations to a curve for which
one haso= constor T = const.

The analogy between (14) and the Frenet formulas inatedg gives some theorems
for which the proof repeats, step-by-step, what one pravasd analogues in flat space.
Therefore, e.g.:

If two curves have parallel principal normals atreasponding points then the angle
between their corresponding tangents will be camstand the curvature of one of them
will be a linear function of that of the other on@ his can then be of service in the study
of the Bertrand curve in curved space.)

One can thus deduce the things that are done in all ofi¢beytof helices, etc., in a
different way. What seems important to me to obsetbat often the calculations are
performed more simply in curved space than they aratisflace. If we, e.g., would like
to find the evolute of a curve then it will suffice thae look for those times when the
ruling that is generated by a normal to the curve wiitbction cosines cos ¢ + A; sin

() Here, we have used, (1 V) in order to denote both of the triadk f, V), (A", i/, v’), since that will
certainly not cause any confusion; one must just reraendi to confuse théwith the & .
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@) (where ¢ is a function ofg) generates a developable — i.e., when the two Clifford
images of the ruling correspond with equality of arc lengthdow, one has:

ds = S [décosg +dA sing - £ sinp dp+ A cop dp X7

If we start with the usual observations of 8§ 3, using (I#) @ecalling that 1 T
admits two determinations then we will see that i$iced to annul the terms with double
signs in the preceding expression in order to find the desicedlition, and by

calculation, we will then getp = jd—a.
r

A more noteworthy result, for which, we will see soapplications in what follows,
is given by the following proposition:

Any curve C in elliptic space will correspond to two curvgsTC in flat space that
correspond to C (and therefore also to each other) point-by-point, with eqoéléyc
length and first curvature, while the torsioas corresponding points will differ by a
constant. Conversely, two curve's C' in flat space that correspond point-by-point with
equality of arc length and first curvature, and whose torsions differ bynstantt 2 at
corresponding points will give, without quadrature, a curve C in ellippiace that has
curvature+ 1 that will correspond, point-by-point, with equality of arc length and first
curvatures and that will have Clifford torsions at a point that are thadnssof C and
C" at corresponding points.

From (14), the first part of this theorem is obvious; pvove the second part. If we
let (a, B, V), (& n, 9, (A, i, V) denote the direction cosines of the tangent, principal
normal, and binormal at a point 6f and let ¢, B’ v'), (¢, n’ {’), (A, ', v") denote
the cosines of the correspond line @, lets, 1 / p denote the arc length and curvature
of C' andC" (at corresponding points), and let T &nd 1 /T’ denote the corresponding
torsions then we will have:

da ¢ da a A aA &
—_ =2 —=---_ — =2 etc.

@ ds p ds p T ds T
d_alzi, d_al_—i—A_; ﬂ:i,etcl

s p ds p T s T

for the Frenet formulas in flat space.

Sincea?+ B2+ y*=a’?+ %+ y?=¢E%+n?+ %= ... =1, we can imagine that
the @ B y;a,.B,v) (&n {; & n, ), and @, i, v; A, w1, v') are the scrolling
parameters of three lines of the space curve. eSime hasla? + dB3? + dy? = da’? +
dg’? + dy’?, from (a), the lines &, B, y; a’, 3, y’) will describe (§ 6) a developable —
I.e., one that envelops of cur@- and since, fromd):

Aa+upB+rvy=Aa+up+vy=Ada+udf+vdy=A'da’+'dg’+v'dy'=0,
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the line @, , v; A7, 1, v’) is precisely the binormal to that curve at a geneoiat, and
since, from @):

satnpB+iy=5'a'+n'f+{y={A+nut{v=§A+n' B+ 7y =0,

the line & n, {; &, n’, {’) is precisely the principal normal to the cu@eat its generic
point.

These last arguments could also be made if one knewtlsomabout the torsions of
C' andC"; however, in such a case, one could say, at mostf tias the arc length of

then one will havedo = ds If we, in turn, suppose tha_%—?l, = const., and if, for

!

greater simplicity, we suppose th_%tt—?lz + 2 then we will see immediately thar =

ds In fact, we will see that in a space with curvattrg, the arc length will be defined
by:

do= i%{(/I dé+pdp+vdd)-(A' &'+ o' +v' &)}

The fact that the constant differenc_;l_le—?l, IS £ 2 is no loss of generality. If

1 1 . N
?—?were a constant that is distinct from £ 2 then one Wbale, as one easily infers,

a curveC in an elliptic space with a curvature that is differleam + 1. (The rest of the
time, one can always go from such a pair of curvespairaof curves for which one has
i1 1. * 2 by a similitude).
T T

We prove that ifC corresponds t€’, C”with equality of arc length then whea)(is
compared to (14), that will prove our theorem completely

A corollary that will be of great utility is the fowing one:

Any pair of curves in flat space that have constant, but distinct,otrsand
correspond with equality of arc length and first curvature will corresporal curve with
constant torsion in curved space, and vice versa.

Moreover, the theorem that one can find all of theves in flat space that have
constant torsion by quadrature will appear in a new lightnfthe theorem that we just
proved, one deduces that:

The problem of finding the curves of constant torsion in flat space, and tiradiog
all of the plane curves in elliptic space are equivalent. Therefinee the solution of
one of them is immediate, the other one will be solved completely.
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We finally observe the generalization to space cutivaswas recently obtained by
Prof. Razzaboni for the transformatior$ ¢f the curves with constant torsion can be
interpreted for these theorems on the Euclidian matria transformation of those pairs
of curves with constant, but distinct, torsions thatespond with equality of arc length
and first curvature.

On scrolled surfaces.

89. By way of example, we would like to state a very sertheorem about scrolling
surfaces — i.e., the ones that can be generated bytiauous scrolling of a curve, and
which (Bianchi A) thus admit a second similar generation:

The necessary and sufficient condition for a surface to be scrolled alengpust.
and v= constis that the tangents to the = const.along v= const.be parallel and
therefore merely the tangents te=\const.along a u= const. Therefore, one can set£
G = 1in the quadratic form that defines the surface and makedésg, so one must
have D' = sin o; conversely, if EE G = 1,F? + D’? = 1then the surface will be scrolled
along the u and v.

The linear element of the Clifford image of the rulthgt is defined by the tangent to
av = const. along a = const. is given (we denote the partial differentrath respect to

v by d) by: )
ds = Z{d{x%%}

ox 1 ox 1 0°x 1 gy OX
=dv T X — | 4| x, - 2
2 {av Eaul { Eauavl 2 /g2 du

The expression in the right-hand side must be.zero

Developing this, while noting the identity, anccaing the formula that gives the
second derivative of{) as a function of the first derivative and theedtion cosines of
the normal, and noting that:

() BIANCHI, Giornale di Battaglia 1884.
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axl XN %KX X % % %
%, 0%,
w7 By % 0%
0%, ox, | =D’ ou ou =+D’JEG-F?,
av av 1 ...... 4
) ) ov ov
0% 07, & e &
udv Audv ' N

one finally obtains, with the usual meaning for the douigle: s

(F 6E_Ean2

ov Ju
D'+JEG-F?)* + =0;
( ) AE(EG- F?)

12

12
Analogously, one will find thal{ 2} = 0. One can thus malke= G = 1, and then

D'? =1 —F 2 The first of these three formulas proves that shrface results from
scrolling; the last one proves the second paruotieeorem.

On ray congr uences.

8 10. The congruence of lines in curved space wasestuoly Fibbi in one of his
papers that was published Amnali della Scuola Normale Superioréomo VII, 1895.
Without going into the particular cases, we willd¢ those consequences that one can
infer from the consideration of plane figures the¢ generated by drawing the parallel to
the rays of a congruence through the point (1, 0) @hat meets the polar plane. Lej (
denote the generic point of the surface that issehoto be the initial one of the
congruence, and le§} be the plane through it that is normal to theegponding rays.
Fibbi sets:

2
j)lg ;()2% j; ‘;‘% =E df + 2F du dv+ G dV/,
2
dX:( dX§ d?é =E’d? + 2F’du dv+ G’ dV,
1 2 3 4

> dx dé =edd + (f+f’) du dv+g dv.
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We will have for the linear element of the planaag® above:

ds’ =3 [d(x, %= D [dx &7 +D [ x dd]Z+2 [ dxé[ x df,
=Y d - Y+ E x dd? + 2 (x, dx, & dd).

Let (x, dx, & d&) denote the usual determinant, whose rows»xatrex{, X3, Xa), (dx,
.2, (&, ...), @&, ...); the double sign is due to the usual reason. Whedx,(&, dé) =
0, the angle between two consecutive generators will aste one determination.
Therefore (8 6),X dx, ¢ dé) = 0 is,as Fibbi recognized directly, the equation of the
developable of the congruencé&he part of the preceding formula that has constigmt
is, with Fibbi's notations:

(a) E+E’)d#+2 F +F’) dudv+ (G+G’) dVv-

The part that has the variable sign is, without #utoir of = 2, equal to:
EdU +2F dudw Gd¥ edir2( # ') dudv gd

\/ eduf +2(f+ f)dudw gdv E d2 F dudv 'G avr/

_(Ef-Fe di+(Eg- R f- §— Gp dudv( Fg OfF dv

) JEG- F?

:(E’f’—F’e)dLF+(Eg+ F( f- - Gp dudv( Fg 'Gf dv

(b)

(@) and (B) are two quadratic forms that are completely inelegent of the surface
that is chosen to be the initial one.

88 11. Theorem: The only equations that must be satisfied by thadda) and (B
in order for the Fibbi form (which is already lintkdoy simple algebraic equationisat
Fibbi himself had noticedip correspond, in reality, to a congruence, are tmes that
say that their sums and differences must be foritis eurvature+ 1. (Recall the
numerical factor that multiple8)

This theorem, which permits onedeneralize the equations of Gauss and Codazzi to
the congruencare deduced by recalling that for one lin@nd therefore, also the?
straight lines of a congrueneeone can give the planar images arbitrarily; théitthen
define the congruence.

The determination the points of a plane in cursedce (and the Euclidian sphere) for
which one is given the linear element reduces &itiegration of a Riccati equation.
Therefore:
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Given the form &), (5 of a congruence or a Fibbi form that satisfies the preceding
conditions, the integration of two Ricatti equations will suffice to rdete the
congruence effectively.

The traces on the representative plane of the linélseofongruence are obtained (8
4) by halving the segments that connect correspondingspafithe two plane images; if,
as usual, one letsrq, Y, Y3, O) and &1, Z», Z3, O) denote the corresponding points of
these images and legsdenote the distance between them then the linear efevhéhe
plane that is referred to that trace will be:

v+z [ _ dy+dz, v+ 7S,
d 4 || = ros, d
z{ (VZ(“ cosp )H 2 Zco% 4 coég ’

One will note this immediately when, in additiom linear elements of the planar
images, one knowg and the derivatives of with respect tou, v, U, vV, where one
imagines they, v) to be the coordinates that defing),(the (/, V') to be the ones that
define @), and all four of them are imagined in that distiderivation. Indeed:

dcosgp oY dcosgp aY
— T =NZ7Z—; —X =) Z—, etc.
ou Z ou ou’' Z ou'

22.dYdz=d? DY Z- D (Y d?Z + Z d?V).

This last equation reduces immediately once onelleethe formula that givedz,
d?Y in terms ofY, Z, and their first differentials.

If might be interesting to observe that when tbagruence iV, it will suffice to
know the linear element of the plane that is ref@to that trace (when thie= const.y =
const. are the developables). Indeed, with a g&odepresentation of the face on
Euclidian space, the representative plane willegpond to the plane at infinity. Such a
linear element will become the linear element @& Euclidian sphere, referred to the
spherical images of the developables. Using thatiom of Prof. Bianchil{ezioni etc.,
Chap. 10, 88 149, 150), one must have:

D.: D] =D;: D;, i.e., set p=¢€,

07 07 {12}& {12}& {11{1} { 2}{ 1}1_
0 P S e R U e - =0,
ouov [ljou (1l]jov [1)[2 1| 2

while Guichard’s equation, when subtracted fromglrexeding, becomes:
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o el

The latter gives a result in form= M(u, v) + j #(u) du +j V) dv, whereM is
known, and¢ and ¢ are to be determined. If one substitutes this in theedneg
equation then one will ge(v) as a function o#(u); by differentiating that with respect
to (u), one will get an equation fa#(u) that takes the form:

Ap?+Bg+C+D¢’=0, with A, B, Cknown.

When this equation is repeatedly differentiated widpeet tov, that will give the
means to determing, and thereforerand the congruence. Without entering into a
detailed discussion, we further observe that if we supff@dé = O then the preceding
equations will become:

9*r __9*logVEG oror  dlogJE o7  dlogyGor _

duov ouov ou ov av  au ou odov

By altering the parameters m = const.,v = const., one can arrange that
1/+/EG satisfies both of them; if one then sets:

r=-logEG +I¢(u) du+f¢z(v) dv

then one will have:

¢w:¢6Iog\/5+walog\/E+6(IogJE,Iog«/6):0

ov ou o(uv)

and sinceg = ¢= 0 is a solutionE will be a function ofG. This is a theorem of
Weingarten for the W surfacéHowever, here we observe that if the equation:

1 alog\/6+ 1 0 logJE
¢(u) Ou YN ov

is soluble then one will get the othétcongruence from the same linear element; e.g.,
for E=1,G = sirf u.

8§ 12. We return to curved space and resolve the questicknowing whether a
congruence 8V when one is given the fundamental formsr what amounts to the same
thing — the linear elements of its Clifford image planeshus, it will suffice that we
recall that a line is defined by its scrolling paeters, which, as we know, are nothing
but the projective coordinates of the line. NowafbBbux,Lecons t. 3, page 345), the
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coordinates of a line that describesVecongruence are solutions of the same second-
order partial differential equation, such that &, (G, y, a1, (i, )i) are the scrolling
parameters of a generic line of the congruence then asehave:

a ByaB »n
oa o,
o T
oa A
0=| d°%a %y,
S T 3
Oa ... %%
ouov duav
0’a 0%y,
7 T S

We now observe that® + 8% + y* = 1 and thatla? + dB? + dy? is known, so it is
the linear element of one of the planar imagesaufragruence.

One can therefore conceive of B, y as the coordinates of a variable point on a
Euclidian sphere, for which one knows the linear elerasra function ofi, v; one can
therefore express the second derivatives of dheB, y as functions of their first
derivatives, thea, G, y themselves, and the coefficients of that linear etemand
analogously fora’, £, y'. Substitute these values for the second derivativés, @, y,

a’, B, y), develop their determinant, and form the sum of thelyts that are obtained
by multiplying the third-order minors that belong to thetnwathat is formed from the
first three columns with the complementary minollswe denote the linear elements of
the two planar images &yd'f + 2f du dv+ g dv? ande’ dif + 2f/du dv+ g’ dv?, and set

A=, eg- f?, A = €d— f? (which are supposed to be non-zero) then we will easily

find the values of the third-order determinants above.
One will have, e.g.:

a By a By
11
9a |:z=n 9a == et
ou ov 1
9a O’a
ov ou?

Let A denote the determinant:
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e
e

1 2

12| (12 ¢
i) {2
22| |22
HIHE
and let ¢ A) denote the determinant that one obtains by switchingifres in the last
column; analogously, s&&”’and ¢ A’) equal to the corresponding determinants for the
second linear element. One then sees immediatdlyhbaondition for our congruence
to beW is obtained by makinthe expression that is obtained by adding to A the sum of
the terms in(— A), multiplied by the complementary minors of the corresponding terms in
A’, and the expression that one deduces from that by exchanging € fiaddef, g and
g~
We would now like to present another application wf principles to the theory of
congruences, and precisely to the concept of the “dersitg’congruence at a point. In
order to define that density at a potFibbi proceeded in the following manner:

On the plang throughP that is normal to the corresponding ray of our congreieihc
refers to an infinitesimal rotatiodw aroundP, and on the line of the congruence that
emanates from the poif of dg it refers to the poinD that is conjugate with respect to
the absolute of the poir€. The line that connects the poiatto that pointD will
determine an infinitesimal aredd«w’ on a sphere of infinitesimal radiusand center at
P. The ratiodew' / dwis what Fibbi called the “density” of the congruencéhat pointP.
Along with the “density” that is defined in the Fibbi waye witroduce a new element
that we call the “Clifford density” of a congruence, whis perhaps better adapted to the
intrinsic nature of elliptic space, and will, in any evetatke us to one of the most
important theorems of this present treatise. Throughpamyt A of elliptic space, draw
the parallel — a la Clifford — to the line of the congreethat emanates from the points of
da it will determine an infinitesimal elemedtv” in the polar pland,; the ratiodw”/ dw
(which will naturally have two determinations) will meas the “Clifford density” (right-
handed or left-handed) of the congruence at the point fah@srithmetic mean of these
two densities will measure what we call e#iesolute Clifford densitgf the congruence at
the pointP. We proceed with the effective calculation, obsathegt with no loss of
generality, we can suppose that the p&ins the point (1, 0, 0, 0), and that the plane
throughP that is normal to the ray of the congruence thatgsagsoughP is the plane
(0, 0, 0, 1). We take two poinks, P”ondwthat are infinitely close t®, and consider
the planessr, 77 through P, P” that are normal to the corresponding rays of the
congruence. If we recall the relations that link the dmates of a point and those of a

plane, and the condition for a point to belong to agldahen we will see that, up to
higher-order infinitesimals, one can set:

P’ = (1,dx, dx, 0),
P” = (1, &, O, 0),
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o= (O,dfz, dgz3, 1),
m = (0,06, d&, 1),

whered, Jd are differential symbols.
If we point the parallel in the first direction then wél get, from the usual formulas,
that the Clifford images of the raysifP’, P”will have the coordinates:

(1, 0,0, 0),
(-1 -dx dé +dx dé, —dx +d& , —dxs —dé, 0),
(-1 - & + Ko O&, — Ko + O, — Oz — O, 0),

respectively, when one takes the point (0, 0, 0, 1) to bedi@ through which the
parallel is drawn. Up to negligible infinitesimalsegsle three images will then have the
coordinates:

(-1, 0,0, 0),
(= 1,-dx + dx, — dx —dx, 0),
(= 1,— K + s, — g — K, 0),

and the aredw” of the triangle they span will be given by:

-1 0 0
36dw’? = -1 —dx, + dé,— dx— &, 0
-1 -0x, +0&, - 0%, — &, 0

i.e., by:
dg, dx
O, Ox,

dx dx
OX; OX,

+ dé, dx +
o, OX,

&, &,
&, %,

6da)”:J_rH

} .

It is easy to verify thagwith a suitable choice of sign)

dx, d
6dw = 5 0%
OX; O0X,
and
dé&, d
6dw = ¢ d¢, .
o, &,
Therefore, calculate the sum:
‘dfs dy | | d&, dx
O, OX, &, OX, '
Setting:
d§ = 65, du+—2 94 dv, = 65, ou+—- 94 oV, etc.,
ou ov ou ov
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one sees immediately that this sum is equal to:

(& — & Y (a_xzﬁf’_xsﬁa_ﬁf’_xaﬁj
ov ou Oovou Oduodv OduodvV

and recall that everything will remain unaltered upon ghman the sense of the
parallelism, unless this sum is considered to have tkeedl sign, as one proves by a
simple calculation. Now (as is known for the c#dtion of the coordinates &', P”, 77,
77”), we have:

dxg =dxs =dé =dés = 0;

therefore, with Fibbi’'s notation, which one also tsgaone sees that the preceding sum
can be written:
+(f-f") (dudv—-2audy),

where, from what was said, the double sign correspondthdéodouble sense of
parallelism. One thus has:

(@) 6dw’=6dw+ 6dw = (f—1") (dudv —ov du.
When one is givedq since:
2
EG-F?= (x,g,%,a—xj
ou ov

(where, as usual, the symbols in parentheses denstBarder determinant (§ 3)), and
sincedx; = dx, =dx =dx, = 0, the formula that was noted above will become:

%) 6dw= . EG- F? (dudv—ai adv).

(@) and () give the following theorem:

One of the two Clifford densities of a congruenteagoint will differ from the
corresponding Fibbi density by the curvature of éinebient space plus:

1

JEG-F'
up to a numerical factor.

The absolute density of a congruence at a poirgggal to the curvature of the
ambient space, augmented by the Fibbi densityaatathint.

+ (f —f)

The necessary and sufficient condition for the @lifford densities to be equal is
that f = f/ i.e., that the congruence be norn&hich is a theorem that will soon be recast
in a more opportune form).
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One finds the generalization to an arbitrary congruentiee fact that two curvatures
are defined for a surface, and we can say that:

The relative curvature and the absolute curvature of a surface point P are
nothing but the Fibbi density and absolute density, resp., of the correspondmglnor
congruence at the point P. This last density is then equal to thedegkity and the left
density of that congruence at the point P.

On the theory of surfaces.

8 14. In the preceding paragraphs we have already obtaowé theorems about
surfaces that we will now prove in a direct mannerauit appealing to the general
formulas that were just found on the theory of congresnc

With the usual notation, let:

Edf+2Fdudv+Gd¥, DdF+2D’dudv+D”dV

be the two fundamental forms of a surface (Bianchi&t)(x) and ) be the coordinates
of a generic point and its corresponding tangent plave will have:

ds’? =2 (dlx, &)= 22 (fdx &)° + 2 ([x, &)’ + 2.2 [dx &; [x, o]

for the linear element of the Clifford image of theresponding normal congruence.
Develop this with the usual identity that relates to meiteants with two equal rows;
one will have:

dx dx dx dx
dSIZZZZdXZ‘FdeZiZ & $ S 4y
X % X X

dg, d¢, de; di,

where it is easy to verify that the double sign is duéheé double sense of parallelism.
Now, (Bianchi,loc. cit), one has:

0§ _ FD’—GD%+ FD-ED dx
ou EG-F?> du EG-F 9V’

9, _ FD"-GDox A FD'-ED' 0%
ov EG-F?> gu EG-P odv

Using this formula and recalling that:
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% .. 9%
ou ou
0X, ox, | _
-~ oy —EG-P,
X e X,
& e £,

one obtains that:
%L 9%
ou Jou
X, e X, ., ED-ED'
& e ¢ ‘\/ﬁ’
ou Jou
% L 9%
ou ou
X, e X, :+|:D'_ED"
& e & ‘\/ﬁ'
ov ov

Analogously:

0% 0x,
X, e X, __FD"—GD'
P &1 " Jec-k
ov ov
0% 0x,
X, e X, __FD'—GD
& e &1 "JEc-F
ou ou

where the upper (lower) signs must be taken consistelitiye develop the value dif’?
with the formula that we just obtained then we wirikfly have:

ds’? =e dif + 2f du dv+ g dV/,
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where, with the usual notation for surfaces:

e=E+E+2 FTD7ED
JEG-F?
f—F4+ps GD-ED
JEG-F?
=G+ 3 FD =G

JEG-F*

Once again, one must use the upper (lower) signs congistend the sign ambiguity
is due to the double sense of parallelism. Furthermote,that:

The part of d§? that has a constant sign and the part that has rab#e sign can
serve as the individual forms for a system of paraurfaces.

The part with constant sign is obviously teem of squares of the corresponding
linear elements on the two polar surfacess for the part with a variable sign, it is easily
verified that, also in elliptic spacthe geodetic torsion of a curve at a poin(i&., the

torsion of the geodesic that is tangenfpts given by?l+% (whereT is the torsions

is the arc lengthg is the angle between the normal to the surface angriheipal
normal of that curve)yhich is zero for the line of curvature and is aggeen by:

(FD-ED') du’ +(GD- ED) dudw( GD- FD) v
JEG- F?(Ed#+2 Fdudw G ) '

One then has that the geodetic torsion of an elemiethe curve is equat minus a
numerical factor— to the variable part of the squares of the Cliffdinear elements of
the surface (i.e., to the difference between theuss of two image arcs), divided by the
square of the length of that element.

Now, letu, v be lines of curvature of the surface; recalling the Codaguations, one
gets, this case:

- el
r2

f=JEG (cotw; — cotw) = + VEG (%—ij ,

1 r2
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g= 2 :G[1+i2j,
sin”w, I,

wherery, r, are the curvature rays of the surface.

These formulas are sufficiently important for hattit would not be wrong for us to
derive them in a different way that will have th#vantage of showing how much the
concept of the scrolling parameters of a line caomfto the intrinsic nature of elliptic
space.

8§ 15. Form theu = const. and the = const. of an orthogonal system and ¥ {4,
Z1), (X2, Y2, Z2), (X3, Y3, Z3) be the scrolling parameters (in a certain dioggtiof the
tangent tov = const., the tangent to= const., and the normal to the surface, respts at
generic pointX). It is easy to write the effective expressiontlee surface, and if one
takes the derivative with respect tp v, while recalling the relations between the
parameters of the polar line and the formula thhatggsecond derivative &f and the first
derivative ofé, &, &, & , then one will obtain the following set of forrasl

[ 1 oE D 1 0G D
dX = | ——=—— X +— X, |dut| —=— 2 X +| — /G o,
"7 2JEGov 2 JE 3} {2\/EGGU % [\/_E jx\;}

1 oE D’ 1 4G D'
A% =| —=— X +| 3 VE | X, |dut| ——=——22 x+— x| d
e | 2JEG dv 1{\/6“/_} 3} u{ 2JEG du X‘+\/_GX‘*} \

dXs = (i E —%j xz—% xl} du+K$\/_G—%;EJ x—% 4 d,

with the usual consideration regarding the sigmesg formulas are perfectly analogous
to the corresponding ones in Euclidian space thatdeduces by replaciigy’ with D"+

JEG.

The effective determination of a surface that \@githe fundamental forms reduces
to the integration of a system of two total différ@ equations that are each reducible to
a Ricatti equation.

Thus, in curved space, as in Euclidian spacewdlhbave:
D di# +2D"du dv+ D"dv* = - Y (VEX,du+/ G X dy dX.
Therefore, in order for a parameter lihe; + ¢ X, + v X3 (A, 4, v constants) through

the point &) to generate a developable when one moves alamrg @onst. the spherical
images of the generating line must becomes eqealifiD’= F = 0 then
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oE
Al ub+v—9L_ |= o,

2JG

and by moving along = const. instead one will then have that:

oG

" au _
AD" +v =0.
H 2V E

One can solve another question with the aid of the gimageset of formulas:
Determine the congruence in which rays that are draggedy abynan arbitrary
deformation of an initial surface, to which one imagittest they are invariably linked,
always defineso! Clifford rulings — or, what amounts to the same thing congruence
for which one of the Clifford images is degenerate héfu, v are the lines normal to the
rays that are traced out on the initial surfacand those of their orthogonal trajectories,
respectively, then the scrolling parameters of a genayiofrthe congruence will be:

X =cosg X1 + sing Xs, Y=cosg Y, +sing Ys, Z=coSs¢ Z; +sing Zs,

whereg is a function ofy, v. The linear element of the Clifford image that isanid in
the sense in which one calculatesXh&, Z is given by:

ol e o

now, it is easy to calculate, precisely with theaddormulas in this paragraph, that:

B[] <0 (20] 12 [ 2O g O

X dp . D'FJEG) (cosp oNG
Z(Ej (av JE j (f ou '"¢ﬁj’

ou v \JE oau JE ov

_(cos¢6\/E . D’$\/E_Gj( co® 0/ G j

TG o M Es |\ VE ™G

aX ax (D j(D'N_ a¢j
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In order for the corresponding Clifford image to be deggreone must have:

=5 |25 =55 -

i.e., one must have that (the square of):

(g %j cosp oG _ ;5 D"
JE ou)| JE ou JG
NEERES a¢ cos¢aJ_E+ sing D$\/E_Gj
- JE JG ov JEG

is zero.
If one develops this, recalling thafis the curvature of the initial surface, then:

DD" D'++EG DFVEG_
JEG  JE JG = VEGK

and one will have:

0¢ D" , cosp af co¢a¢af cop 3¢ OvE
au\/E E J_au du \/Eavav

09 D'3VEG , cosp IVE D+VEG_ cogp g v G_ _
v G J_ v JE JE du du singk VEG = 0.

One multiplies this by and replace®, D “with their values that one deduces from
the penultimate formula; the result must be idedifyfczero inD, D”. Therefore, one will
have, in the first place:

-sing —

+sing —

cosp VG _
JE du

For ¢ = 71/ 2, one recognizes immediately théat= 0, and one has thermals to a
surface of zero curvatureFor cosg # 0, one must have th& is a function of only;
since the coefficient dd“ must also be zero, one will hag'g@ / du = 0. Analogously, one
finally obtains:

dlogcosp _ alog\/E
ov ov

COS¢6\/E6¢ co®p ovE sig 0¢ | _
N S'”¢Kﬁ”_‘{¢—e o \E;avJ_
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If ¢ is constant (which we can always assume to be deeo)one can s&i=G =1
and obtainthe line that is inclined with a constant angle to a surfaceith zero
curvature and normal to the common poinktof the geodetic of a system ¢of parallel
geodesics) that pass through that point.

If ¢is not constant then one will s¢t=v, E = co$ ¢ = cog v, and the last equation
will become successively:

sinvecosy . 0 nv )
_— j + 2 sinv cosv = 0,

Si
V_ PE—
JG av[ JG
From this:

2sirfv
JG = =SV
cosd+C

whereC is a constant.

One then obtains a surface of rotation (or deftiona for the initial surface that
becomes, in the limit, precisely one of the Weibgasurfaces that present themselves in
the direct study for Euclidian space.

After this study, observe that now it is suffidi¢o set:

D’=0

in the set of formulas in this paragraph and te tdle sumz dXZ in order to obtain the

linear element of 8 14 once more, as desired.

Moreover, one must observe that the terrdundvthat has the double sighwhich
can seem surprising on first glance when one iedilé analogous situations for
Euclidian and hyperbolic spacess, in turn, something that is predictable “a prgr
because u= const.,v = const.are precisely the developables of the congruendes o
normals to the surfaces 11).

8§ 16. We now pose the following question:

Given the two planar images of a congrueficebijective correspondence)pw do
we know whether the congruence is normal?

Meanwhile, the analysis that one makes wenconst. v = cont. define the lines of
curvature of a surface shows that necessary condition is that the images must
correspond with equality of the area¥Ve now prove that, conversely:the images are
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such that two corresponding parts are equivalent then congruence will eithrarival
or dual to a normal congruendehis last property is not contrary to the generalityhe
result, since dual congruences have the same Cliffiorges). (Cf., 8 13). In fact, if the
u = const. and thg = const. are the developables of our congruencestfieslines that
correspond with equality of arc length on the Clifforcagas and prove to be real) then
the part of the linear element of the Clifford imagiest has variable sign will reduce to
at most the term idu dy and if the two images correspond in the manner tleegsismed
then the term indu dv” will be zero, or in the part with constant sign, be one in
which the sign is variable. In this last case, thegosence will have an indeterminate
developable — i.e., one that is formed from the lin@$ #ne normal to a plane; in the
other casefr + F'=0. Now, let:

d€ = A dU + 2B du dv+ C dV, D di + 2D’ du dv+ D”dV

be the fundamental forms of one of the focal shigalde focal) of the focal pointX, X,

X3, X4) Of the congruence, and l&t= __X be the direction cosines of the ray through

du
X; . One will haveeE =F =0, and in order to havle+ F’= 0, one must have:

I ()
RTIN i R MRS DT
Now:
(Zea) =R (Zea) = (Zea)zes) =

so one will therefore have:
1 aA aA 1 6_2x 0°X _
42 u av A“IF W v

Recalling thatD” = 0, one will have, given thaX{, X, Xs;, X4) are the direction
cosines of the normal to the surface, that:

2 11 1
07X JRHOX IR OX _ ax+ DX,
ou l/ou [2]0v

where the Christoffel symbols are referred to trent

A dif + 2B du dv+ C d\%.
One gets:
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2 2
_XaX:E 116_A+ 1 a_C+AB’
ou®ouov 2|1]ov |2]du
so one finally has (sino& # 0):
_a_Aa_A+2A2 1 a_A+ 1 a_C =0,
ou ov 1)o0ov |2]]|0u
AC-B*#£0, AZ0,
12| |1
=0.
i

11
If {2} = 0 then ther = const. will be geodetic and the congruence will benadirif

and since:

one will have:

12 12
{2} = 0 then one will hav{ 1} = 0 for the dual surface, and the dual congruence will

be normal.

It is therefore enough to see that, as is permittediniks of equal length under such
a correspondence of a Euclidian sphere with itselreak (in which case, one certainly
hasA # 0, as one supposes); in fact, if the two linear elermaetseferred to the common
real orthogonal system then it will assume the foEdu? + G dy, E' di? + G dy, and the
lines in question will be given by:

(E-E)di+(G- G) d¥ =0.

Since E G=E' G, the differencesE-E, G-G cannot have the same sign, and

one will have thatE, G ,E', G' are positive; therefore, these lines will certairgyrbal.
(This proof of the reality of these lines was cordiattynmunicated to me by Prof.
Bianchi.)

8 17. We have given the general conditions that the Fibion fmust satisfy in order
for it to correspond to a real congruence. Thereforeould not be inopportune to verify
them for the congruence of normals to a surface,ast,levhen one chooses= const.
andv = const. to be the lines of curvature. In fact, weress the ideas that the complex
of terms appear in the expression for the curvature of:

e df + 2f du dv+ g dV,
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and contain f’ linearly, and its derivative is zero; whatever mhappen in our case,

because under an exchange of signf,ofhe element will again remain a spherical
element. We get:

1_1 J510g E(1+12j 1_11510g E[1+12j
o )l _0|r 1, ry
ouj, 1 ov ovj 1, 1 au

rlr2 rlr2
a=lie)
+ Zai u 1 2 — 0
v \/E—G(l+1j
rr,

The third term in this sum is:_

1 1 0%log \/5(1—1j
nor, azlogE+2 nr,
1

1+ ouov oudv
rlr2

1_1 i azlog{x/g(l—lﬂ
Lol alogE+2 o .
vy 1 ou au

nr,

Combining the terms that contaih and the ones that contas, the preceding
equality then becomes:

_1 1.1 dlog \/6(1—1j
, I, dlogE o|r, n r
=<2 = " |+2
ov v 1 au

-~

(o3}

[
=
+

=
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If we replacealgg E : 0logG
vV

3 with the values that are given by the Codazzi formula
u

then we will obtain an identity inl- : 1
rl r2

The terms that were removed thus prove to be zeran soder to see that the
curvature of the element is + 1, it is sufficient é& $hat:

4 Jo| 1 a{G(HrllZH

_zJE—G[Hlj ou x/E—G[1+1j ou

BUP

Y Jes 1+1j ov
rlr2

If we replacei(ij, i[i with the values that they get from the Codazzi
oulr, ) ovir,

equations then the preceding equation will becdreezauss equation:

po Lo 1 Jof10V6) af 1aJE
nr, EG|oulJE ou ) aviJG av [

Here, we have two equations, instead of three, (o Codazzi and one Gauss), due
to the fact that it is implicit thatt + f”= 0, which expresses the idea that corresponding
parts of the two images are equivalent.

8§ 18. The angle that two corresponding elements (to poiar surfacespA’, BB’
form between themselves is measured immediatelynwdree thinks (8 2) that the
directionBB” that is conjugate tBB’at B is precisely the line that is dual &\, and is
therefore parallel t?AA’ in the two senses. Therefore, the anglesAfwith BB are
equal or supplementary those oBB’with BB”.

If AA’is tangent to a line of curvature for A then it will be normal to” BBboth
sensegand will therefore meddB’). We would now like to study what happens for the
angle ¢ between the corresponding elements on a surfadeoanthe planar image
(constructed in a certain sense). Take the lipesto be the lines of curvature, and
measureg in the same sense by which the planar image wastrewted. For the
singularity of the result, one performs the caltals in two ways, one of which will be
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given in the rational form cog, while the other in the form sid. Let (Y1, Y2, Y3, 0) be
the image point of the poink]) of the surface relative to the plaxge= 0, and letX;) be
the direction cosines of the parallel through {0 the element that emanates froxn (

with the direction cosin{?j; if we denote the corresponding arc length of thearlan
S

image bydsthen:

dy, Y [dx X
cosg =250 - L4y v [y,
dy, ¥ [dx %
1 do? 0 YldxAdé 3
CO§¢:W 0 1 Z[dX,X]C[Q(,)i )

Dldx ¥ dé& % D] dx k[0 1x ds

and, recalling the usual identity:

cosp=1- (Z(dx, X) (&, »J . (Z[dx, AL X CE]J . (ded{} |
dsdo dods dsdo
which makes:
sing == Zdng,
dsdo

We now avail ourselves of the notations and foamuh the set of 8 15 in order to

find a rational form for co®.
The third formula of this set gives:

dXs _ D )du ey oDy )y
do '(NEXZ \/Exljda{waxl JG XQJ do

The scrolling parameters of the line that emanttas the point (, v) of the surface
to the point ¢ + du, v + dv) are:

du dv
JE— X +J/G—= X_.
ds ' dsX2

One has, with the one notations:
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dX, X, VEduX++ GdvX

cosg= —+— dY, ¥, Vv EduY+y Gdvy
dsdo

dz, z, VEduZ++/ Gdvz

One splits the right-hand side into two determinamd replacesiXs, dYs, dZs with
their values; one gets:

X, X; X

1 D" 2 3 1
cosgp=—<+Edu ./, Edu—— d Y
ZZ Z3 Zl
D Xl X2 X3
+x/5d{—EdU¢x/_Gd\a Y Y X
Zl ZZ Z3

One of these two determinants is equal to + 1, whiletiner one is equal to — 1, so:

cosg =+ 5 1(jg(Edu24_r\/E—G(1 —1j du dw Gd%/j.

s 0oL
From the formulas that give cag, sin ¢ (which are immediately seen to be

equivalent), one has:

The asymptotes are characterized by the fact tlatdangent at a point is parallel to
the tangent at the corresponding point on the inagese.

The lines of curvatures are characterized by thet fthat they result from the
displacement of equal angles in two planar images.

One will then have that cags= 1 for the asymptotes, so one sees that thisepips
quite different from the analogue for Euclidian spa

8 19. Note that:

Therefore:

The ratio of the areas of two corresponding inBeimal elements in the planar
image and the surface (around the correspondingitgoR, A, resp) is equal to the
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curvature of the quadratic form that the linear element of the surfaeadowed with at
the point A; i.e., to the absolute curvature of the surface.

As a result, the relative curvature is given by theratithe infinitesimal elements of
two dual surfaces.

As one sees, we have a fact that is analogous tortéethat is presented for the
torsion of the curve; that, combined with the facts tiware enumerated in these
paragraphs, will give rise to the observation thafptioperty of the parallels in Euclidian
space seems, in many cases, to split into two classe®f which has the property that it
is preserved in hyperbolic space, and the other, the pyopet it is it preserved in
elliptic space. One then observes:

The angle between the image lines of the lines of curvature is giveteb
complement of (wy —W,), depending on the sense of the parallelism.

We again explicitly point out a result that was merg@erlsewhere:

The planar image is degenerate for the surfaces with zero curvatndefor them
alone. One could predict the first part of this theobgmmoting that the asymptotes of
such a surface have torsion * 1.

Thus, since the mean of the squares of the torsiotie afsymptotes & is equal to
the curvature relative to the surfaceAathe mean of the squares of the Clifford torsions
is equal to the absolute curvature.

The orthogonal systems of the surface that are exbén the planar image are given
by:
Edu Gdv

du+\/—C{1 1} d\t\/—c{l 1} =0;

1 r2

sin® w, SIFIZW

i.e., by:

+J_(1 1J(Edlf G d¥) + EGduz{v 1 1 j:o.

Lo, sin*w, S|r12w2

One hasv; + w, = 0 for the minimal surface, so:

For the surfaces with minimal area, the asymptébes an orthogonal system on the
surface such that they are preserved in the plamages.

8 20. Now, following the advice of Prof. Bianchi, weadhapply the preceding result
to theW surface.
Let:
ds =E df + G dV
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be the linear element of such a surface, winewn are the lines of curvature; since the
Codazzi formulas are identical for our space and ellgp@ce, the Weingarten formula
will also apply here. If we thus set:

E =

1
I &*(p)
with

1 1 ,
— =48, —=ap-Be,
r2 rl

then we will get the linear element of the plamaage:

L+&°(5) — g= OB -LIB).
14 g°(B)

e=

i.e.:

f = const.for a W surface, and “e” is a function of “g”the determination of th&/
surface is thus reduced to the search for all $melar elements of the elliptic plane or
Euclidian sphere.

Conversely, if one satisfies this condition thame acan write down the preceding
formulas, and then, by Weingarten's observatioa,Gbdazzi equations will be satisfied,
and by a previous calculation, the Gauss equatittevsatisfied.

However, we would like to examine this result mprecisely, and if we observe the
remarkable fact that of the two conditiorfs=“const.” and é is a function ofy,” one of
them is a consequence of the other one when osadglknows that:

e dif + 2f du dv+ g dv
is the linear element of one of the images of dasar when referred to the lines of
curvature. In fact, since, v are the image lines of the lines of curvature,dpkerical
element:

e dif + 2f du dv+ g dv
must continue to have curvature + 1 when one clatigesign of. Recalling that is
constant, and subtracting one of the equationsexpartess the idea that the curvature of
the form:

e dif + 2f du dv+ g dv

is equal to + 1 from the other one, one will gettiagf = 1, for simplicity):

o 1 sl of 1 ae)_
oul eJeg-10v) 0v( g eg-1ldu
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a(a/eg—l)@_a(g/ eg—l)ﬁe -0

ou ov ov Jdu

S0
d(eg) de_0( ega_e: 0
ou v 9dv du
namely:
de 99
Ju ou 0.
de 99
ov ov

Therefore, our theorem can be stated in the folloviang:

The search for the W surfaces in elliptic space reduces to thehstarthe linear
elements of the Euclidian sphere for which f is constant and the grevamains equal
to + 1when one alters the sign of f

This explains the origin of the condition in Weingaisetheorems in Euclidian space
that“e is a function of g.”
Moreover, we see that:

A necessary and sufficient condition for a surface to be W is thia¢ itan make:

JEG (i—ij = const# 0.

nr

If f is a non-zero constant and e, g are functions of u or v that do not chahge v
when one switches “u” with = u” or “v’ with * — v” then the linear element will
correspond to the planar image of a W surface.

In fact, if one switches with —u (or v with — V) ande andg do not change in value
then that will show that changes only in sign, and one thus finds oneself in tleepce
of two forms with curvature + 1 that differ by only thenstant sign of.

We must now resolve a question that was already pasedher occasions, namely,
that of constructing a surface for which one is givenglanar images by quadrature; in
fact, the process is different from the one that fatlews in Euclidian space, but also
much simpler.

Let (Y1, Y2, Y3, 0) and 1, Z, Z3, 0) be two corresponding points of the two planar
images in the plane, = 0. If one chooses the plaxe= 0 to be the initial surface of the
corresponding normal congruence then one will have (So#)afgeneric ray of that
congruence:
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Y+ 4 ___%tZ ___%*t4

X1 = ————, g —2—2 =—2_=__ x4=0,

J20+3Yz)' J20+3Yz)' e J20+3Yz)'
fo WYL o NZoNE o %2-YZ, o [H3VZ
' J20+3Yz) ’ J20+3Yz)' ’ J20+3Yz)' * 2

In order for this congruence to be normal, one can set

dw=-2, & dx,

diy+2) d¥+ 2) d ¥+ 3
\ Y, 4
W:I Zl Zz Z3

2(1+Y.v2) ’

and for the generic poink)of one of theo® corresponding surfaces, one will then have:

Xi =X cosw + & sinw,

where an arbitrary additive constant enters wto

We would now like to interpret this fact in a BEidein metric. Take a point{ in
elliptic space, and set=x; / X4, Y = X2 [ X4, Z = X3 | X4, Where thex, y, z form a tri-
rectangular trinedron. A point for whioh = O will represent a point of the plane at
infinity, and the values ok;, X, X3 will give the corresponding direction cosines.
Observe that the metric on the plane at infinittes to the conig® + y* +Z = 0, so it
will coincide with the analogue of the plare= 0 in curved space, which is referred to
the conicx?+ X2+ x2 = 0. Thus, the pair of elemergsdd + 2 f du dv+ g dV of the

planex, = 0 corresponds to the same pair of linear elesnfemtthe sphere in flat space,
if, for the moment, we make a poiAtin the planex, = 0 correspond to that point of the
sphere that determines the direction that corredpomA under the projectivity above.
The absolute is then changed into the imaginargrgph

X +y¥+Z+1=0,
so we finally have:

Given a pair of spherical elements €dw2 f du dv+ g dv? with f constant, the lines
that are parallel to the ray that is determinedthg midpoint of one of the arcs that are
terminated by a pair of corresponding points A,add pass through a point B that is
placed upon the diameter that is normal to that and at a distance dan¢ / 2 (where
@ is the distance between the points A,ffom the center of the sphere (wherés the
distance between the points A) #ill generate a W congruence in which focal pkne
are anti-polar with respect to that sphere.
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8§ 21. Returning to curved space, we will give some simple @kesnof these
theorems that will also lead to interesting consequgence
The problem of determining the developables in elliptic spa@quivalent to that of
determining those of our spherical elements for wigigh) = 5, namely,f =g = 1; i.e.,
the elements di + 2du dv+dv2. Setu’=u, v’=u+v. This element will become the
other one:
(e—1)du? +dv?

namely, the one that relates to the surface canalsl) in flat space that, as one will
deduce from the Weingarten formulas, or those of Coddmie constane or g,
provided that one chooses the parameter of the correggointe of curvature suitably.
What is known of the rest is that all developableslhiptic space are known.

Another, much more interesting, case is the one fochwwv, —w, = const., since the
evolutes of such a surface will be complementary psepdergal surfaces. Since the
angle of the spherical images of the lines of curvataust (8 19) be constant, the
problem of determining such surfaces is identical withpitublem of determining the
spherical elements of the form:

e’ + 2da dB+df
that have constam, i.e., one of the form:
e da? + 2 cosoda dB + €7 dfF,

whereois constant [complement of ¥{ —w.)].
adp
ds’

. . S d
The geodetic torsion of an element of such a surfapeofortional to ; one

observes, moreover, that our result can be stated:

In order to find all systems of lines that divides the sphere dftaequivalent
infinitesimal parallelograms, it is sufficient to find the Cliffonshages of the more
general pseudo-spherical, normal congruence in curved space.

By comparing the results that were obtained fosehgpherical linear elements with
the ones that were obtained by Prof. Bianchi in higlartin t. XVIIl of Annali di
matematicg1890), one will obtain some consequences that seenaly to me.

Prof. Bianchi proved that any spherical element:

() ds = H2du? + H2dV?

with

(’6) tangi iaHZ :Cotgi iﬂ
20v( H, dv 20ul H, ov )’

where g is constant, is the linear element of the sphericabe of a Euclidian, pseudo-
spherical congruence that is referred to the lines tha¢smond to the asymptotes of the
focal sheet, and that if one sets:



Fubini — Clifford parallelism in elliptic spaces. 46

r:j tangiaHldw cotziaH2 dv
2 H, ov 2 H, du

then one can set:

e’ ( Hlsin% du+ H, cos% d\a = siv &r

n
e‘r( Hlsin% du- H, cos% d\a = siv @
namely:
H,du=cosZ " dr+ & B),
(9 2

szv:sin% € dr- & B),

so the element] can also be written:
) ds’ = e %" ddo? + 2 cosoda dB + €7 dB?,

where a = const.,5 = const. are the orthogonal trajectories of trengt images of the
developables of the congruence, and conversely, any eléghean be put into the form

(@) when ) is true. Moreover, if 8 2ware the angles between the asymptotes of the
two focal sheets of the pseudo-spherical congruence ahewehe will have that:

_cos@P+w) _ cos@P-w)
(Z) Hl - o ) H2 - O ’
COS— Sin—
2 2
where:
) 90-4) _ 1an? cos @+ ), 90+ _ _ ot cos @- o).
ou 2 ov 2

We now have to make the observation that whertdledficient ofdu dvis constant,
and the coefficient ofil? is a function of the coefficient af\?, the linear element will
remain spherical when one changes the sign of

One then poses the following question:

What geometric relation exists between the two W congruences ¢éhdermined
by the method of Prof. Bianchi by starting with the elengrarn(d the element:

(€) e da? — 2 cosoda dB + €7 dB?

that can be deduced by changing the sigoosfo?
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The elementq’) is deduced from&g) by changingo into 77— o. Thus, the element
(@) that is deduced frone() in the same way thaty is deduced fromg) will be:

(a) d€ =E du? + G dv?,

and this will give rise to the relations:

\/Edu:sin%(e’r dr+ é @),

(97)
JG dv =cos% € dr- & B),
() \/E:cos@ﬂul) JG _ cosf -w)
sin— co&a
2 2
where the angleé8;, a satisfy:
: 06+ _ 1000 ooy QG-@_ O
(n") v an > cos @ — w), o0 co > cos @ + ).

When ") is compared tod), that will say thau”is a function of only andv’is a
function of onlyv; if one compares the values of:

e 'da+e’dp

that are obtained frond), ("), and recalls thatc}, (") then one will get:

cotZ cos@, +w, du = tar co+w du
C 2 2
tan% cos@ —w pv = co% co#{—-w Qv

Use the given values o#) in the right-hand sides ofy(), and therefore replace

tan% cos @+ o and cot% cos @ - o with the values that they get from)(

26+ @) _3(0+4) dv

X oV v dv’
06 -w) _0(6-w du
ou’ ou du’

It is therefore natural to set:



Fubini — Clifford parallelism in elliptic spaces. 48

Gu,v)=68(u,v); a(u,v’)=w(uvV)
which gives:

(A) u=utart <, v'=vecot <,
2 2
for the (@), so:

el(U',\/):e(u,v):g(uCotZ% ,\'/tarf%j ’
(1)
(U, V) =a(u, V)=a)( UCOIZ% ,\’/taﬁ%j

As for the rest of them, one verifies immediatélgt these values @& and w will
satisfy (7”), and therefore, by Prof. Bianchi’'s theorem and fr@f),(one will get the
spherical elementa(’) that one deduces frorg’() in the same way asg)(is deduced from
(a).

(1) gives precisely the following theorem:

The Clifford images of a pseudo-spherical, normal congruence in curved space,
referred to the developables, admit linear elements that are thar lelements of the
spherical images of two pseudo-spherical congruences in plane spéaeedeto the
orthogonal trajectories of the developables (which therefore correspondhen
congruence); the focal sheets of one of the two congruences are Liotmahsff the
focal sheets of the other one, and the Lie transformation by which ores jes®s one to
the other is determined immediately once one is given one of ticemgauences.

The geometry of elliptic space then gives a geometterpretation of an arbitrary
Lie transformation that is applied to a pseudo-sphesizgdhce when it is imagined to be
the focal sheet of a suitable pseudo-spherical congruekicgeover, the most general
Backlund transformation for flat space is thus olg@difrom the only complementary
transformation in elliptic space, while the Lie tramgfation comes about by the fact of
the double sense of parallelism. Moreover, in a monecblanguage, we see a doubling
of the Backlund transformation into a complementargnsformation and a Lie
transformation.

We also note that for a pseudo-spherical congruencatirsghce, one will have a
spherical linear element:

e 2 dif + 2 cosodu dv+ e” dV.

The only solution to a Riccati equation will suffice determine the associated
element:
e 2 dif - 2 cosodu dv+ €7 dV,

and therefore the most general pseudo-spherical, nomngrwence in curved space.
Thus:
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Given a pseudo-spherical congruence in flat space, with the singlaosobit a
Ricatti equation, one gets two complementary pseudo-spherical sumaceved space
and another pseudo-spherical congruence in flat space.

Conversely, suppose that we are given a suidoeelliptic space for whichw, —w;
= const. — i.e., a pseudo-spherical, normal congruencel that we know the bisecting
lines of the planar images of the developables. Wetkelh have an orthogonal system
of lines such that the double system of its isogonaldi@jes, under a certain angle,
divides the sphere into equivalent infinitesimal palageams. By quadrature, one will
obtain (Bianchi,loc. cit, 8 33) a cyclic orthogonal system on the sphere suahthe
axes of its circles form a Ribacour congruence witts@go-spherical generator; one
then deduces a pseudo-spherical generator and oneimfintely small deformations,
and therefore a pseudo-spherical congruence.

Therefore, given a normal, pseudo-spherical congruence in curved speee a
surface in curved space — for which one has:

W; —W, = const.,

one will deduce two pseudo-spherical congruences in Euclidian space, anrinere
tetrad of pseudo-spherical surfaces in that space, as long as one knovwsettimbilines
of the planar images of the developables.

8§ 22. The fourth formula in § 15 ultimately gives anothenseguence.
Let:

ds’ = Hidp! + Hidp+ Hidp]

be the linear element of curved space, referred tplg-trthogonal system, and leXy
X2, X3), (Y1, Yo, Y3), (Z1, Z2, Z3) denote the scrolling parameters of the normalg;te
const.,» = const.,0; = const,., respectively. We immediately get for finer formulas
above:

OX __ L 0Hyy 1 0H,

oo Hop ' Hoop

0X, _ 1 oH, .
=——LX xH X, (i#kzl).

dp H, 0p,

oX, _ 1 oH,

—k== "X FH

on M op, T

In these formulasyhich are deduced immediately from the relations that couple H
H», H3, the double sign is attributed to the double sense oliglea, and in order to fix
that, one will then recall that one takes the uppdower sign according to whethark
) is an even or odd permutation (odd or even), respdgtiv
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2
j , etc., so one will have:

It then results thaH? = {z X %X"
P,

Two triply-orthogonal systems that correspond point-by-point with paralletisone
sense of the fundamental trihedron will be equal to each other.

On the Riemannian representation of parallel lines
and on isocyclic surfaces.

8 23. The formulas that give the transformation from rRa@n coordinates to
Weierstrass coordinates are the following ones:

im(Cry+z) X o = y _ z
1+ +y?+2) lexP+y+ 7

X1 =

T s 14’ +y'+ 7
A generic plane is represented by the sphere of Eaclghace:
X +Y +Z +ayx+ay+agz=1,
in which, a;, a, ag are arbitrary constants, and all of these spheresséutein a great

circle of the sphere:
X +y+7=1.

A system of generators of the sphete y* + Z +1 = 0 is given by:

x+|—2+)l(y—iz):O,

[
+iz—=A(x—-—=) =0.
y ( 2)
If one is given two spheres:

¥ Ry e Zedx ay bz

{ X+y+Z+gx gy gz,
then in order to find which pairs of generators of the spkier y* + Z +1 = 0 support
the circle @) (viz., the image of a line in curved space), one sulstrde y* + Z +1 = 0

from (), and then eliminates y, z from the equations thus obtained, as well as fram (
One will arrive at:
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for the determination of.
From this, one deduces that:

In order for the circlgf) and the circle:
R+yP+ 7+ ax+dyr 421 =0,
R+ E Xy ) =
to meet in the same pair of generators of:

X +y+7Z+1=0,

one must have:

—:I.bl bs
bs, .

Therefore (8 4):

In the conformal representation of curved space, parallel lines areesepted by
circles that intersect in the same pair of skew generators ofnthge sphere of the
absolute.

8§ 23. From that, and a theorem of Prof. Bianchi that wited above, one deduces
that:

The surface that is generated by a circle that moves — with bowtileformation —
and always intersects the same pair of skew generators of a sphegg x Z + 1 = 0
will admit the family of these circles as its family ofti@rmal curves.

This theorem can be generalized; indeed, one has:

All of the circular surfaces in a flat space that admit the fawiilgircular generators
as their family of isothermal curves can be obtained in the confoepag¢sentation on a
flat space of the spaces with constant curvature as images of thermat lines of the
latter space — i.e(Bianchi A) as images of the rulings generated by the binormals to a
curve of constant torsion.
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Having proved this theorem, one then has immediatelya(isec under conformal
representations of a non-Euclidian space in a flat spaessircles go to circles and the
families of isothermal curves go to isothermal cuntbaj: All of the circular surfaces in
an arbitrary space of constant curvature that admit circles as fasibif isothermal
curves are deduced, with conformal representations, from the ruled éddinormals to
a curve with constant torsion in a space that has constant curvature, mareover

In a beautiful article of Demartred (it is proved that the poir® of intersection of
the line that is common to the planes of two conseeutrcles and the line that joins the
intersection points of one of the these circles tnedprojection of the other circle onto
the plane of the first one is a fixed point in spatéen, take a moving trihedron, whose
origin is the center of any generic one of theselesrand whosa&-axis passes through
the pointP, in such a way that the coordinates of the pBiate @, 0, 0). Demartres also
proved that iR is the radius of the circle then binomi#l— R? is a constant, so all of the
rest of the Demartres discussion can be avoidedawtry simple consideration: Indeed,

consider the spher€ with centerP and radius,/ R° —a®. Since the equation of the
corresponding circle with respect to the moving trinedson

X+ =R, z=0,

one verifies immediately that this circle meets ophese at diametrically-opposite
points. Now, if we represent a space of constant turean a flat space in a conformal
manner in such a way that the sphemepresents the absolute then the circles in question
will correspond to lines in curved space, and our circuligfase will have a ruling for its
image in curve space, for which the lines forms an isotakfamily; this is what we
would like to prove. With Demartres, we call such stefasocyclic surfaces; we will
then have:

The problem of constructing the isocyclic surfasespaces of constant curvature
(or, in particular, in flat space) coincides withe problem of determining all of the
curves with constant torsion in a space of constamvature.

It then remains for us to resolve two questiddee of them is to find the effective
formulas that permit one to pass from one problem ¢odtmer. The other one is to
interpret this theorem when it is applied to flat spaadth just the Euclidian metric;
naturally, that is the more interesting question oftti

Therefore, let the isocyclic surfagan flat space be defined by the form:

d$ =E (v +dv¥), D dif +2D’du dv+D”dV,

and letu = const. be the constituent circles of the usuahemhal family. The absolute
curvature 1 o, of theu = const. will then be a function of only the torsion of thel =
const. will always be zero, and if one letsdenote the angle between the principal
normal tou = const. and the normal to the surface at generi¢ gwn one will have:

() Annales de I'Ecole Normale SupérieutelV, 1887, page 14%t seq
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cosg _ D" sinc__ 1 oJE
E’ O, JE ou’

oy
which, from what we said, gives the derivative witbpect tov:

" 000 o[ 1 0E
E dv ov|JE ou )’
1 oJEdo _ 4 (D"

2) —_———— ==,
JE du dov ov\ E

with which, the assumed property gives:

D"? + L\/E 2
0 ou

ov D?

N

3)

:0, R— 1
E

VE

(3]

\

while, for the Codazzi and Gauss equations, one has

2 2
@ DD”"-D2=- E 0 IogE+a Iogng |
2{ du ov
(5) ob_oaD _EalogED__lalogED,, =0,
ov. ou 2 o0v 2 0v
() ob" oD _EalogED__la IogED,, 0.

u Jdu 2 0Ju 2 0u

The surfac&' that is imagined in curved space will have thedinelement:
E
de? = = (dU + dvA),

whereA/ is determined by observing that tine const are geodetic, so:

dlogA _ dlogE

0 ou ou

The second fundamental formXfis, as one calculates immediately:



Fubini — Clifford parallelism in elliptic spaces. 54

D1 du’ + 2 D] du dv+ D] dv =

__A(Ddu’+2Ddudw D d¥)+2 B xX% y¥ zK du &)
= yE ,

If one setXx + Yy + Zz equal to the value that it gets frof 1. — D’ W and recalls
that one can assume that 2o is constant then one can deduce [recalling (1)(&nd
that:

D1 du? + 2 D] du dv+ D] dv = b'-D

du? —% dudv.

Theu = const. then reduce to asymptotes — i.e., t® lipeecisely. In order to find
without quadrature, one uses the Codazzi and Glaussuilas; one will getd / D’ =
const., and the Codazzi and Gauss formulas willgedo:

o( D) _
@ E(_@j‘o’
D"-D
dlog———
('6) a— VE:O,
v

= const.

0 [D’ j (D' jlazbg(%j

JE) |\NVE oV

From (2), (3), (5), the first two of these equaticaare consequences of each other. If
one could therefore prove one of the two direcilipng with the third one, then one
could prove our theoremand in a new way

(a) gives, from (3):

0’ _
ouov

Therefore:Consider a quadrangle in an isocyclic surface at 8pace that is defined
by two circles and two orthogonal trajectories the system of circles. Calculate the
values ofo (angle between the normal to the surface at atpaith the plane of the
circle that passes through that point) of the feartices of the quadrangle; the sum of
the values that the aforementioned angle take dw@atopposite vertices is equal to the
sum of the values that they take on at the othenentices.

() BIANCHI (Lezionj Chap, V, page 114).
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However, a result that is far more noteworthy caddsiiced fromd), (0).
It shows us that the binomial differential:

(D”-D)du=2D"dv
admits1/+/E as an integrating factor, namely, that:

bD’-D du—Z% dvdu— 2dv

Didu+2D; dv=

admits A/JE as an integrating factor (which one sees onceisrmgven the linear
element of the isothermal ruling). Therefore:

One finds the asymptotes of the corresponding esotal ruling on any isocyclic
surface with only quadratures.

The asymptotes to any ruled locus of binormala tmrve of constant torsion are
determined by quadrature.

This last theorem has an elegant geometric expiiamaOne knows that the
asymptotes on any ruling are determined by mearsRiCcati equation; it is therefore
sufficient to know one asymptote, since the otmer will be determined by quadrature.

If we compare the construction that was given laydoux (t. lll, Chap. XIV) of the
conformal Euclidian image of a surface in curvedcsp with the construction that
Demartres gave for the isocyclic surface then oilke oltain the following theorem,
which permits one to construct exactly onand therefore alt of the asymptotes to an
isothermal ruling with just a quadrature:

A characteristic property of the ruling that is ohefd by the binormals to a curve with
constant torsion is that the developable that iSredel by the planes that are tangent to
the ruling and the absolute will have an asymptdtihe ruling as its edge of regression.

The last problem to be solved is that of intefipgethe results that were just obtained
for the isocyclic surface in flat space in the Ediah metric. If one recalls the theorem
of 8 8, which | arrived at precisely in order tsob/e this question, then one will have
immediately:

The problem of finding the isocyclic surfaces mt 8pace is equivalent to that of
finding those pairs of curves with constant, bustidct, torsion in that space that
correspond point-by-point with equality of arc Iémg and first curvature. The
Razzaboni transformation for them will give a trfmmmation of the isocyclic surfaces.
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Varied and supplementary obser vations.

In addition to the questions and examples that weadd in the present treatise,
other problems can be posed. For example, that of givengygical forms for the linear
elements of the Clifford images of particular congruen@eg., pseudo-spherical, etc.).
All of the questions that result in elliptic space amech simpler to treat than the
corresponding ones in flat space, due to the property taatproved above that the
Clifford images determine a congruence. We have theredoived only the most
important cases of knowing the normal congruences\@abngruences — i.e., their
images — but with processes that are indirect and gresteslicity; we have, however,
always assumed that the Clifford images were non-deggne If one of them can
degenerate then in order for the congruence to be normall ibe necessary that the
other one degenerates, as well, and one will haveoimgrgence of normals to a surface
of zero curvature, as we already know. However,camesay more:

The congruence will be W if and only if just one of the Clifford imegghsces to a
curve C, or C is a line, or the lines of the other corresponding in@aglee points of C
are geodetically parallel.

If both of the two Clifford images are degenerate then the congrueeaisd is
normal to a surface with zero curvature.

This last theorem gives a negharacteristic projective property of the normal
congruences to a surface with zero curvature, while isat faas proved that having
degenerate images is a property that distinguishes thegeueones only for normal
congruences.

These theorems are proved immediatelya, I3, yin 8 12 are functions of onlyu”
then the equivalence of § 12 becomes:

da, 0B, 0y

a LB vy ov o0v o0v
da 9B dy || d%a, 0°B, 9%, -0
ou Ou Ou||dudvowvo W \ '

o°a 0°B %y || 0%a, 0°B, 0%,
ou* au® au’l| a2 9V oV

If the first of these two determinants is zero tlmens, ywill be coupled by a linear
relation, and the curv€ will be a line; if the second one is zero then coensrecognizes
from the procedures in 8 12 that the const. prove to be geodetically parallel.

Finally, if a, £, yare functions of only — i.e., both of the Clifford images reduce to a
line — then it is quite clear that the correspondinggoaence will béw, since the second
of the two preceding determinants will be annulled; indekd, dongruence will be
properly normal, as one sees from an argument thaaisgous to the ones in 8§ 16, and
as one can also convince oneself geometrically.
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Something else to note in the present treatise is, perbi@e definition of the angle
between two skew lines; | therefore believe thag mat pointless to give them another
equivalent definition that is independent of any concepiaadllelism.

Let a, b be two lines and, without diminishing the generality,ddte the line that
connects the point (1, 0, 0, 0) with the point (0, O, O, a)d let the common
perpendiculars ta andb be the lineBthat goes from the point (1, 0, O, 0) to the point (O,
1, 0, 0) and the ling’that goes from (0, O, O, 1) to the point (O, O, 1, Ohe Tineb
removes segments of lengthf from the liness, yby starting with the points (1, 0, 0, 0)
and (0, 0, 0, 1), respectively; the libevill be the line that connects the point (g3ssin
@, 0, 0) to the point (0, 0, sincosf). It is then easy to construct the scrolling pararsete
of a, b, and if one letsv denote the angle between these two lines then ohdavié, as
one sees immediately, ces= cos ¢ + f) according to the sense in which the angle is
measured. Therefore:

The cosine of the angle between the two skew lines is equal tzsthe of the sum or
difference between their minimum and maximum distances, according sertbe in
which it is measured.

It then follows immediately from the theorem thadsacited many times above that
the angle between two lines will admit just one deteation when and only when the
two lines are coplanar.

We would expressly like to note that in all of thisatise the question of the
orientation of a line was always left untouched, aneretfore that of the precise
determination of the angle between two skew lines;eatgr degree of precision was
always useless for us, and could be easily establistareépner.

| must also add that | had already completed the préssattse when Prof. Bianchi
informed to me that StudyJeber Nicht-Euclidische und Linen-Geometreifswald,
1900, pages 73-79) has treated Clifford parallelism. In thagesp&tudy, starting from
the purely geometric viewpoint, stated and then gave senyesimple corollaries to the
following two theorems:

The totality of polar pairs of lines in curved space can be refeae¢léd totality of all
pairs of lines that are formed from a line of a fixed star and a lirenother fixed star in
flat space. The rotations of one or the other of these starsamitspond to scrolling in
one or the other direction in flat space.

The totality of oriented lines in elliptic space can be imagined tdijgetively
referred to the pairs of points of a Euclidian sphere, in such a hatythe motions of
one or the other of the images correspond to scrolling in one senseaihére

The application of our principles to hyperbolic spaegl¢eto complicated formulas in
imaginary numbers. The direct study of Lobatschewsksliedism would not be quite
SO symmetric, since in hyperbolic space the two sensesdicg to which one can draw
parallel lines are not distinct from each other, ag #re in elliptic space.




