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 This treatise will study parallelism in spaces of positive constant curvature, which is 
an important element in the metric geometry of the spaces that were defined for the first 
time by Clifford (1).  We thus introduce new line coordinates (viz., scroll parameters) that 
are given several geometric interpretations, and for which one can find a simple 
algorithm that permits one to treat them in a clear and rapid fashion without the necessity 
of carrying out extremely long and tedious calculations. 
 One can then give a proof of the principle of duality without appealing to the 
consideration of the absolute that first defines the angle between two skew lines, etc.  The 
application of this principle to the theory of curves, while suggesting the introduction of a 
new element into it – namely, “Clifford torsion” – will prove a theorem of Prof. Bianchi 
(2) in a new and complete way; a modification of the Frenet formula for a spatial curve 
will, in my esteemed opinion, lead one to comparisons with flat space and new theorems.  
The application of the theory of parallels to the study of congruences will give directly 
the necessary and sufficient conditions for the differential quadratic form that defines a 
congruence to be compatible, it will give immediately a criterion for recognizing whether 
a congruence is W, as soon as one is given the fundamental formulas, and it will finally 
permit one to establish some new results for the density of a congruence. 
 If one applies these theorems to the theory of surfaces then one will obtain new 
geometric interpretations for the absolute curvature and the geodetic torsion that can be 
traced back to the theory of surfaces in curved spaces and the study of those 
representatives for the Euclidian sphere in itself for which corresponding parts have equal 
areas.  One can therefore generalize some well-known formulas in Euclidian space for the 
theory of surfaces and triply-orthogonal systems, with the aid of which one can study − 
among other things − those congruences for which any deformation of the initial surface, 
which the rays of the congruence are assumed to be invariably linked with, is always 
arranged into ∞1 Clifford rulings, and finally discover some curious results for the angle 
that is formed between linear elements that correspond to the surface and its planar 
image. 
 The application of these results to the theory of W surfaces will lead, among other 
things, to the study of noteworthy pairs of spherical elements, a study that can also be 
interpreted in the Euclidian metric, and then it is given the geometrical significance 
(albeit not a simple one) of the Lie transformation for the pseudo-spherical surface, which 
then solves the problem of determining those lattices on the Euclidian sphere that will 
divide it into equivalent, infinitesimal parallelograms, in a new way. 
 The study of the Riemannian images of parallel lines is a door to a new characteristic 
property of the (isocyclic) Demartres surface (3), a property that can meanwhile be 
interpreted with only the Euclidian metric, which leads to a new property of the isocyclic 
surface and the isothermal ruling (viz., the locus of binormals of a curve with constant 
torsion) (4) in spaces with constant curvature. 

                                                
 (1) Cf., e.g., KLEIN, Nicht-Euclidische Geometrie.  
 (2) BIANCHI, Ann. di Matem. (1896), 103.  We shall denote this paper by A.  
 (3) DEMARTRES, Annales de l’École Normale Superieure, 4 (1887).  
 (4) BIANCHI. (A).  
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MAIN FORMULAS 
____ 

 
 
 

 § 1.  We suppose that certain special motions exist in elliptic space, for which, the 
distance between the initial and final position of an arbitrary point is constant, and which 
will be given the name of scrolls.  In Euclidian space (where one finds the geodetically-
representative images of curved space), these motions will correspond to the biaxial 
homographies whose axes are the two generators of the same ruled series as the absolute, 
and which will therefore make the generators of the other ruled series scroll on it.  
Moreover, conforming to the existence of two ruled series in a quadric, the scrolls of a 
space curve will divide into two entirely distinct systems: the right-handed scrolls and the 
left-handed ones. 
 Clifford defined parallelism of lines in a curved space by means of these special 
motions, and we will now give some fundamental properties of parallel lines that are 
easily deducible from each other and which can each serve as the definition of parallel 
lines.  With Clifford, we therefore say that two or more lines are parallel when either: 
 
 α) The initial and final positions combine into the points of a system that is rigid 
relative to a scroll, 
 
or 
 β) They support the same skew generators of the absolute, 
or 
 γ) They are themselves the initial and final positions of a line that has been subjected 
to a scroll. 
 
 The existence of two types of scrolls proves the existence of two types of parallel 
lines: viz., right-handed and left-handed parallels.  However, observe that if we are given 
just one scroll then we can deduce right-handed parallels, as well as left-handed ones, and 
that secondly that they will serve to generate parallel lines as in α) or γ). 
 We state the defining formulas for a scroll, in which, we suppose, as we always will 
from now on, that the curvature of the ambient space is equal to + 1, denote the 
Weierstrass coordinates of the initial and final positions of the same point by (xi) and 
( )ix′ , and let A, B, C, D and (α, β, γ, δ) denote eight constants that are subject to the 

relations: 
A2 + B2 + C2 + D2 = α 2 + β 2 + γ 2 + δ 2 = 1. 

 
 For the scrolls of the first kind, we will have (1): 
 

                                                
 (1) BIANCHI (A).  
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(1)     

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

,

,

,

,

x Ax Bx Cx Dx

x Bx Ax Dx Cx

x Cx Dx Ax Bx

x Dx Cx Bx Ax

′ = − − −
 ′ = + − +
 ′ = + + −
 ′ = − + +

 

 
and for scrolls of the second kind: 
 

(2)     

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

,

,

,

.

x x x x x

x x x x x

x x x x x

x x x x x

α β γ δ
β α δ γ
γ δ α β
δ γ β α

′ = − − −
 ′ = + + −
 ′ = − + +
 ′ = + − +

 

 
 
 § 2.  Along with the Weierstrass coordinates of a point and a plane, a (geodetic) line 
is defined by giving the coordinates (xi) of any one of its points and the coordinates (ξi) of 
the plane normal to that line at (xi); hence, in a manner that it is very convenient for some 
studies, although it is far from symmetric.  The fundamental objective of the present 
treatise is the introduction of a new coordinate system that, we hope, will appear to be 
very appropriate to the nature of elliptic space in its applications. 
 Therefore, let a line be defined in the Weierstrass way, and let (xi) and (ξi) be two 

conjugate points (at a distance of π / 2), such that 
4

1
i i

i

xξ
=
∑ = 0.  The scrolls that take the 

point (xi) to the point (ξi) will have a right-hand and left-hand, and if we denote the 
constants that relate to the one by A, B, C, D and the constants that relate to the other by 
α, β, γ, δ, then we will meanwhile have: 
 

A = α = 0, 
because 

∑ x ξ = 0, 
and therefore: 

B2 + C2 + D2 = β2 + γ2 + δ2 = 1. 
 
 We assume that the B, C, D, β, γ, δ (which are calculated immediately) are the 
coordinates of a line in elliptic space, and we give them the name of scroll parameters for 
the same line.  As one sees immediately, they will be independent of the pair of conjugate 
points (xi), (ξi) that is chosen on the line. 
 Meanwhile, observe that a line is distinguished when one is given the scroll 
parameters (and one will prove this effectively by calculation); in fact, two scrolls of 
different kinds are defined that leave the line fixed and which, in turn, define the four 
generators of the absolute that supports it, and will thus suffice to distinguish the line, in 
turn, from its polar line; this indeterminacy, which can also be useful when one studies, in 
turn, two polar figures, is increased even further when one considers the signs. 
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 For the effective calculation of the six scroll parameters, one observes that for us (1) 
becomes: 

(3)     

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

,

,

,

.

Bx Cx Dx

Bx Cx Dx

Bx Cx Dx

Bx Cx Dx

ξ
ξ
ξ
ξ

= − − −
 = + −
 = − + +
 = − +

 

 
 If one solves these, while recalling that ∑ x2 = ∑ ξ2 = 1, ∑ x ξ = 0, then one will get: 
 

(4)     
2 1 2 1 4 3 4 3

2 4 4 2 3 1 3 1

3 2 2 3 4 1 4 1

,

,

,

B x x x x

C x x x x

D x x x x

ξ ξ ξ ξ
ξ ξ ξ ξ
ξ ξ ξ ξ

= − + −
 = − + −
 = − + −

 

which is related precisely to: 
(5)      D2 + B2 + C2 = 1. 
 Analogously, one has: 

(3′)     

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

,

,

,

,

x x x

x x x

x x x

x x x

ξ β γ δ
ξ β δ γ
ξ γ δ β
ξ δ γ β

= − − −
 = + −
 = − − +
 = + −

 

from which, one will get: 

(4′)     
2 4 4 3 2 1 1 2

4 2 2 4 3 1 1 3

4 1 1 4 2 3 3 2

,

,

,

x x x x

x x x x

x x x x

β ξ ξ ξ ξ
γ ξ ξ ξ ξ
δ ξ ξ ξ ξ

= − + −
 = − + −
 = − + −

 

with: 
(5′)      β 2 + γ 2 + δ 2 = 1. 
 
 If one takes (4) and (4′) to be the formulas that define the B, C, D, β, γ, δ then (3) and 
(3′) will give the coordinates (ξi) of the plane normal to our line at the point (xi), if one 
denotes that point by (xi). 
 It is easy then to recognize just what distinguishes the scroll parameters of two polar 
lines.  For example, take the line that is normal to the plane (0, 1, 0, 0) at the point (1, 0, 
0, 0), and the polar line that is normal to the plane (0, 0, 0, 1) at the point (0, 0, 1, 0). 
 For the one of them, one will have: 
 

B = 1, C = D = 0, β = 1, γ = δ = 0, 
and for the other: 
 

B′ = 1,   C′ = D′ = 0, β′ = − 1, γ′ = δ′ = 0. 
 Therefore: 
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 If one changes the signs of one of the two sets of scroll parameters of a line then one 
will obtain the polar line. 
 
 We will often see that the polar line plays the same role in elliptic space that the 
opposite direction does in flat space. 
 The simultaneous change of sign in all six scroll parameters does not alter the 
corresponding line, because that would be equivalent to changing (xi) into (− xi), or (ξi) 
into (− ξi), or exchanging the points (xi), (ξi).  (Cf., the final observations). 
 
 
 § 3.  However, calculating with B, C, D, β, γ, δ would be exhausting, so we shall 
introduce a simple algorithm that will then permit us to treat these new line coordinates 
with the maximum confidence and facility, and to pass from them to the usual formulas 
in Weierstrass coordinates.  Therefore, observe that one can write: 
 

(6)     

4 32 1

4 32 1

3 12 4

3 12 4

3 2 4 1

3 2 4 1

,

,

,

B
x xx x

C
x xx x

D
x x x x

ξ ξξ ξ

ξ ξξ ξ

ξ ξ ξ ξ


= +


 = +


 = +


 

and analogously: 

(6′)     

4 32 1

4 32 1

3 12 4

3 12 4

3 2 4 1

3 2 4 1

,

,

.

x xx x

x xx x

x x x x

ξ ξξ ξ
β

ξ ξξ ξ
γ

ξ ξ ξ ξ
δ


= −


 = −


 = −


 

 
 Let (t1, t2, t3, t4) and (d1, d2, d3, d4) then be two quadruples of variables, so we let [td]2, 
[td]3, [td]4 denote three expressions that are formed from the t and d in precisely the same 
way that B, C, D are formed from (ξ1, ξ2, ξ3, ξ4) and (x1, x2, x3, x4); analogously, let 2[ ]td ′ , 

3[ ]td ′ , 4[ ]td ′  denote the expressions that are formed from (ti) and (di) just as β, γ, δ are 

formed from (ξi) and (xi). 
 If we recall the development of the product of two matrices with two rows into the 
sum of the products of their corresponding minors, and the development of a determinant 
of fourth order into the sum of products of the second-order minors that are taken from 
the matrix that is formed from first of two rows for the complementary minors then we 
will easily obtain the following fundamental identity: 
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(7)   { }[ ] [ ]i i
i

td ef∑  = 

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4

t t t t

t t t t e e e e d d d d

d d d d f f f f e e e e

f f f f

⋅ + . 

 
 If we let (t d e f) denote the determinant of the right-hand side then this identity can 
be written: 

(8)   { }[ ] [ ]i i
i

td ef∑  = ∑ t e ∑ d f − ∑ d e + (t d e f). 

 
 If we would like to find the value of (t d e f) as a function of ∑ t2, ∑ d2, …, ∑ td, ∑ te, 
…, ∑ de, … then it will suffice that we take its square; we will then get a determinant in 
which the terms are all of the prescribed form.  If we then extract the square root then we 
will have the value of (t d e f), up to sign.  We deduce from this that: 
 
 I. If ti = ei , di = fi , ∑ t2 = ∑ d2 = 1, ∑ t d = 0 then we will have: 
 

{ }[ ] [ ]i i
i

td ef∑  = 1, 

 
which could have been foreseen if one recalled (5) and (5′). 
 
 II. If the t, d, e, and f form four completely distinct quadruples and ∑ t2 = ∑ d2 = ∑ e2 
= ∑ f 2 = 1, while: 

∑ td = ∑ te = ∑ tf = ∑ de = ∑ df = ∑ ef = 0 
then one will have: 

{ }[ ] [ ]i i
i

td ef∑  = ± 1, 

 
and, without getting preoccupied with the sign, at the moment, it is enough to observe 
that it will change when two of the four quadruples are exchanged. 
 
 III.  If ei = ti , but di ≠ fi and ∑ ed = ∑ ef = ∑ df = 0, while: 
 

∑ e2 = ∑ d2 =∑ f 2 = 1 
then one will have: 

{ }[ ] [ ]i i
i

td ef∑  = 0. 

 
 The ambiguity in sign that appears in II of these cases, and which must always appear 
from the way by which we calculated the determinant (t d e f) as long as (t d e f) is not 
zero, should not be the cause of any confusion, and that is because if one exchanges the 
symbols [td] i with the symbols [ ] itd ′  then one will get an identity that differs from (8) by 
only the sign of (t d e f), as a simple calculation will reveal.  Now, whereas we always 
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consider the two types of parallelism and symbols simultaneously, it will suffice to 
perform the calculations with just one type of symbol – e.g., the unprimed symbols.  We 
then get, in fact, terms with indeterminate sign.  However, it will be quite pointless to 
determine this sign, because we must use one sign for parallelism in one sense and the 
opposite sign when we consider parallelism in the other sense. 
 We have already seen how, by means of (6) and (6′), one can calculate the scroll 
parameters of a line that is defined by means of just two of it its points (xi) and (ξi) at a 
distance of π / 2.  We would now like to show how, given the scroll parameters of a line, 
one can get back to the usual determination of that line.  To that end, look for the 
coordinate of the point where the line whose scroll parameters are B, C, D, β, γ, δ meets, 
e.g., the plane x1 = 0.  If we set x1 = 0 in (3) and (3′) and compare the values of ξ2, ξ3, ξ4 
that this produces then we will get: 
 

x2 : x3 : x4 = B + β : C + γ : D + δ. 
 

 Since, if x1 = 0 one must have 2 2 2
2 3 4x x x+ +  = 1, one finally gets: 

 

(9)  x1 = 0,  x2 = 
2(1 )

B

B C D

β
β γ δ

+
+ + +

,  x3 = 
2(1 )

C

B C D

γ
β γ δ

+
+ + +

, 

 

x4 = 
2(1 )

D

B C D

δ
β γ δ

+
+ + +

. 

 
 It is then easy to calculate the corresponding (ξi) by means of (3) or (3′). 
 
 
 § 4.  We now propose to study the geometric significance of the scroll parameters of a 
line.  The fundamental property of them is that they are “invariant under parallelism,” as 
is expressed by the following theorem: 
 
 If two lines have three equal − or equal, in the opposite sense – parameters with 
respect to the same triad then they will be parallel, in one sense or the other, depending 
upon whether the triad in question is the first or the second kind, respectively. 
 
 Indeed, in such a case there will exist a scrolling that scrolls both of the above in the 
same way.  This theorem, which emerges immediately from our considerations, is 
fundamental for us.  For that reason, it will not be wrong for us to establish it in a direct 
way, as a check of the calculations, and because we will then get other formulas that will 
be very useful in what follows. 
 Let a line be the intersection of two planes (a1, a2, a3, a4) and (b1, b2, b3, b4), which, 
for simplicity, are assumed to be orthogonal.  The absolute is defined by: 
 

2 2 2 2
1 2 3 4x x x x+ + +  = 0 
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so a system of its generators can be imagined to be defined by: 
 

(α)     1 2 3 4

3 4 1 2

( ) ( ) 0,

( ) ( ) 0,

x ix x ix

x ix x ix

λ
λ

+ + + =
 − − − =

 

 
where λ varies from generator to generator.  Any point that belongs to two planes (ai), 
(bi) will satisfy: 

(β)     ∑ ai xi = 0, ∑ bi xi = 0, 
 
so that in order to find that generator of the series (α) that carries our line, it is sufficient 
to eliminate the (xi) from the (α) and the (β); from that, we get: 
 

1 2 3 4

1 2 3 4

1

1

a a a a

b b b b

i i

i i

λ λ
λ λ− −

 = 0, 

namely: 
λ2 {[( a1 b3 – b1 a3) + (a1 b4 – b2 a4)] + i [(b4 a1 – a4 b1) + (b2 a3 – a2 b3)] 

+ 2 iλ (a4b3 – b4a3 + b2a1 − b1a2) 
+ {(a4b3 – b4a3 + b2a1 − b1a2) − i(a4b3 – b4a3 + b2a1 − b1a2)} = 0. 

 
 In order for the line of intersection of the planes ( )ia′  and ( )ib′  to carry the same pair 

of generators, i.e., both parallels (in the sense that is determined by the ruled series (a)) of 
our line, one immediately deduces that one must have: 
 

(a1b3 – b1a3 + a2b4 − b2a4) :  (a1b4 – b1a4 + b2 a3 − a2b3) : (a1b2 – b1a2 + a4b3 − a3b4) 
= 1 3 1 3 2 4 2 4( )a b b a a b b a′ ′ ′ ′ ′ ′ ′ ′− + − : 1 4 1 4 2 3 2 3( )a b b a b a a b′ ′ ′ ′ ′ ′ ′ ′− + − : 1 2 1 2 4 3 3 4( )a b b a a b a b′ ′ ′ ′ ′ ′ ′ ′− + − . 

 
 One proceeds analogously with the other series of generators of the absolute; the 
preceding formula not only proves out theorem, but gives an expression for the scrolling 
parameters of a line as functions of the coordinates of two perpendicular planes that pass 
through the line. 
 We must often find the trace upon a plane α of the parallel to a line that is drawn 
through its pole A, and call it the Clifford image of the line relative to that plane.  If Si and 
Zi are the coordinates of the two traces then we will have, from (3) and (3′), and when 
one takes the point A to be the point (1, 0, 0, 0): 
 

(10)  1 2 2 3 3 4 4

1 2 2 3 3 4 4

0, [ ] , [ ] , [ ] ,

0, [ ] , [ ] , [ ] .

S S B x S C x S D x

Z Z x Z x Z x

ξ ξ ξ
β ξ γ ξ δ ξ

= = = = = = =
 ′ ′ ′= = = = = = =

 

 
 By means of this equivalence, and letting ϕ denote the distance between the two 
points S, Z that is defined by cos ϕ = ∑ Si Zi , (9) will become: 
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(9′)    x1 = 0,  xi = 
2cos

2

i iS Z
ϕ

+
 [i = 2, 3, 4], 

 
which will give this, by means of (3) or (3′): 
 

(11) ξ1 = − cot 
2

ϕ
,  ξ2 = 3 4

3 4

1

2cot
2

S S

Z Zϕ  , ξ3 = 4 2

4 2

1

2cot
2

S S

Z Zϕ  , 

 

ξ4 = 2 3

2 3

1

2cot
2

S S

Z Zϕ  . 

 
 One immediately verifies that: 
 
 The two Clifford images of the two lines that are polar to a plane and the traces on 
that plane of those lines are harmonically separated.  One of these traces will bisect a 
segment that ends at the image. 
 
 
 § 5.  It will again be opportune for us to note that the scrolling parameters of a line, 
when also multiplied by an arbitrary factor, will satisfy: 
 

B2 + C2 + D2 – β 2 – γ 2 – δ 2 = 0. 
 
 Therefore, we must always imagine that six quantities that are ruled by this relation 
will be the homogeneous coordinates of a line, in which one can fix, up to sign, a 
proportionality factor (in just one way) in such a manner that they will become the six 
scrolling parameters of line.  The form of B, C, D, β, γ, δ gives the following theorem: 
 
 The scrolling parameters (invariants under parallelism) of a line are nothing but the 
Klein coordinates (appropriate sums and differences of the Plücker coordinates) of that 
line when one takes the fundamental tetrahedron to be a tetrahedron that is autopolar 
with respect to the absolute. 
 
 
 § 6.  A first noteworthy application of this coordinate is the definition of the angle 
between two arbitrary lines (which has, so far, not been the case for coplanar lines).  We 
define the angle ϕ between two lines to be the angle ϕ that is defined by: 
 

cos ϕ = BB′ + CC′ + DD′, 
 

so the angle ϕ will generally be distinct from the preceding one, which can be defined by: 
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cos ϕ  = ββ′ + γγ′ + δδ′, 
 

in which formula, we intend that (B, C, D, β, γ, δ) should be the parameters of one line 
and (B′, C′, D′, β′, γ′, δ′ ), the homologous parameters of the other one.  This definition 
emerges spontaneously from the following theorem: 
 
 The angle between a pair of coplanar lines and the angle between the parallels to it 
through an arbitrary point A will be equal, as long as the two parallels are drawn in the 
same direction. 
 
 In fact, there will then exist a scrolling (which will be right-handed or left-handed, 
according to the sense of the parallelism) that carries the common point of the first pair of 
lines to the point A and the first pair of lines to the pair of parallels through the point A. 
 The theorem can also be proved analytically: If the given lines are the lines (x, ξ), (x, 
η) then the angle ϕ between then will be defined by cos ϕ = ∑ ξ η; the angle ϕ′  between 
the parallel lines that are drawn through the point (1, 0, 0, 0) is given by: 
 

cos ϕ′ = ∑ [x ξ] i [x η] i 
or 

cos ϕ′ = ∑ [ ] [ ]i ix xξ η′ ′  
 
according to the direction of the parallelism.  The identity (8) proves that one has cos ϕ′  
= cos ϕ in both cases. 
 One then sees that the angle ϕ that is defined by: 
 

(12)    
cos ,

cos

BB CC DDϕ
ϕ ββ γγ δδ

′ ′ ′= + +
 ′ ′ ′= + +

 

 
is nothing but (10) for the angles that are formed by the two pairs of parallels that are 
drawn through the point (1, 0, 0, 0) of the two lines, when they are given in one direction 
or the other, and from the preceding theorem, one sees that as a result of the fact that this 
parallel is drawn through the point (1, 0, 0, 0), one must draw that parallel through an 
arbitrary point in space without altering the determination of its angle. 
 If the two lines are the lines (x, ξ) and (y, η) then we will have the following formulas 
for the angle between the two lines: 
 

cos ϕ = ∑ [x ξ] i [x η] i  or cos ϕ = ∑ [ ] [ ]i ix xξ η′ ′ , 
 

depending upon whether the angle is measured using one sense of parallelism or the 
other; i.e., from the identity, one will have: 
 

cos ϕ  = � � � �cos cos cos cos ( )xy y x x yξη ξ η ξ η− ± , 
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in which �xy , �ξη , �yξ ,�xη  mean the distances between the point (xi) and the point (yi), 

the point (ξi) and the point (ηi), etc.  Without dwelling upon the geometric significance of 
(x ξ y η), one observes that: 
 
 The determinant (x ξ y η) is zero, and the angle between the two lines admits only one 
determination if and only if the two lines are complementary.  (Cf., the final observation). 
 
 This theorem admits a noteworthy corollary, when it is applied to infinitely-close 
coplanar lines: 
 
 If we construct the Clifford images relative to an arbitrary plane of the generators of 
a ruling then the two lines thus-obtained will correspond in such a way that 
corresponding arc lengths will be equal if and only if the ruling is developable. 
 
 If one recalls (Bianchi A) that a ruling has zero curvature only if it is a Clifford ruling 
then we will see that this theorem is a counterpoint to the other one that: 
 
 A ruling will have zero curvature only if one of its Clifford images reduces to a point. 
 
 We immediately recognize a new meaning for the Klein coordinates: They measure 
the angles that are formed between a line, in one direction or the other, and the edges of 
the reference tetrahedron, or, as one can say, an orthogonal triad of lines. 
 
 Thus, the scrolling parameters are nothing but the projective coordinates of a line, and 
one can then define a linear complex with an equation: 
 

l A + m B + n C = p α + q β + r γ, 
 
where l, m, n, p, q, r are constants, we see from (12) that this linear complex admits the 
following metric definition in an elliptic space: 
 

 The lines of a linear complex are those, and only those, lines for which 
cos

cos

ϕ
ψ

 is 

constant, where ϕ and ψ are the angles that any of them forms with a fixed line. 
 
 
 With the preceding notation, that line will be the one whose parameters are: 
 

2 2 2 2 2 2 2 2 2 2 2 2
, , , ,etc.

l m n p

l m n l m n l m n l m n

 
 

+ + + + + + + + 
. 

 
 In curved space, one will then have the theorem: 
 
 A linear complex always admits a line such that the helicoidal motion around it is 
referred to the same complex. 
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 One will easily see that the locus of points such that the angle between parallels that 
are drawn through any of them to a fixed and constant line is a Clifford ruling, and one 
will then be able to generate the Clifford ruling by means of the helicoidal motions 
around a line.  Prof. Bianchi gave a way of generating them in the paper that was cited 
above that was identical to this, in principle.  However, when viewed in this different 
form, it can be interpreted projectively thus: 
 
 The projectivity that leaves a quadric fixed, along with two of its points A, B carries 
an arbitrary point of space to the points of a quadric that has the generators through A, B 
in common with the preceding. 
 
 Remark.  It is not possible, I believe, to define parallelism in the plane that one 
would be led to define as a result of the parallelism of points under the law of duality; 
you can, however, define the parallelism of elements (as a result of the points and planes 
belong to them).  We say that the element (A, α) that is defined by the point A and the 
plane α is parallel to the element (B, β) when there exists a scrolling that takes A to B 
and α to β. 
 The plane β is generated by the line that is drawn through B that is parallel to the line 
of α that passes through A. 
 The distance from A to B is equal to the angle between α and β. 
 The normal to α at A is parallel to the normal to β at B. 
 The more interesting thing in all of this is the existence of dual figures that 
correspond with parallelism of the corresponding elements and the subsequent proof of 
the principle of duality without any consideration of the absolute. 
 However, for the sake of brevity, I will prove their existence by starting with the 
absolute.  Take a figure S, and consider the polar figure S′ that an arbitrary scrolling 
carries in Σ.  The figures S, Σ will be precisely two dual figures that correspond in the 
aforementioned way. 
 
 

Clifford parallelism and the theory of curves. 
 

 § 7.  Prof. Bianchi (loc. cit.) proved the following formulas, which are generalizations 
of the Frenet formulas for a curve in a flat space: 
 

idx

dσ
 = ξi, id

d

ξ
σ

 = iη
ρ

 − xi, id

d

η
σ

 = − i iξ ζ
ρ τ

− , id

d

ζ
σ

 = iη
τ

, 

 
where σ, 1 / ρ, 1 / τ represent the arc length, the first curvature, and the second curvature 
of the generic point (xi) of a curve, respectively, and where (ξi), (ηi), (ζi), denote the 
direction cosines of the tangent, principal normal, and binormal, respectively, of the 
curve at the point (xi). 
 In the calculations that follow, as with everything in the rest of this treatise, we will 
perform the calculations with just one triad of scrolling parameters, while starting with 
what we saw in § 3.  Draw the parallel through the point (1, 0, 0, 0) to the tangents that 
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meet the polar plane; the arc length of the indicatrix of the tangents that is thus obtained 
is given by: 
 

ds2 = ∑ {d[x, ξ] i}
2 = 2 2[ , ] [ , ] 2 [ , ] [ , ]i i i idx dx d dx x dξ ξ ξ ξ+ +∑ ∑ ∑ . 

 
 Substitute the values for dx, dξ that were given above by Prof. Bianchi’s formulas in 
this formula, and develop it, while recalling the identity (8) in § 3.  One will get: 
 

ds2 = 
2

2

dσ
ρ

, 

 
which is also valid for the parallelism in the other sense, because (§ 3) the missing terms 
will have double signs.  That can be explained by observing that consecutive tangents are 
complementary, and recalling the theorem of § 6.  Therefore: 
 
 The ratio of an arbitrary one of the angles that formed between two consecutive 
tangents to the arc between the points of contact is equal to the curvature of the curve of 
corresponding points. 
 
 On the contrary, we now consider a generic line that is normal to the point (xi) of the 
curve and let its direction cosines be (ηi cos ϕ + ζi sin ϕ), where ϕ is constant.  The 
Clifford image of the ruling that is formed from these lines have an arc length s that is 
defined by: ds2 = 2{ [ cos sin , ] }id xη ϕ ζ ϕ+∑ , i.e., when one differentiates and recalls 

Prof. Bianchi’s formula: 
 

ds2 = 

2

2 sin , [ ] cos [ ] ,i i
i

d x x
η ξ ζσ ϕ ζ ξ ϕ η ξ
τ ρ τ

       + + + − −             
∑  

= 
22

2

cos 1
1

ϕ
ρ τ

   + ±  
   

 dσ2. 

 
 In this, by the identity that was cited above and with consideration of § 3, the double 
sign corresponds to the double sense of parallelism. 

 For ϕ = π / 2, one has ds2 = 
2

1
1

τ
 ± 
 

 dσ2 ; we will put: 

 
1

T
 = 

1

τ
 + 1, 

1

T′
 = 

1

τ
 − 1, 

 
in which we have, however, denoted both of the two expressions by 1 / T, and we will 
call 1 / T and 1 / T′ the two Clifford torsions of a curve at a point. We will then have: 
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 The ratio of the angle between two consecutive binormals, measured in some sense, 
to the arc length between their feet is equal to the corresponding Clifford torsion.  One 
then has a theorem of Prof. Bianchi (loc. cit.) − in a slightly different form − that results 
from this on a direct manner: 
 
 The necessary and sufficient condition for the binormals to a plane curve to be 
parallel in direction is that the corresponding Clifford torsion be zero. 
 
 In order for the line that emanates from the point (xi) of a curve and has direction 
cosines (a ξi + b ηi + c ζi) with a2 + b2 + c2 = 1 (where a, b, c are constants) to generate a 
Clifford ruling by varying the point xi, the arc length of one of its Clifford images must 
be equal to zero; i.e.: 

{ }2
[ , ] [ , ] [ , ]a d x bd x c d xξ η ζ+ +∑  = 0, 

 
and with the usual procedures: 
 

(α) ….. 
2

2
2 2

1 1a c
b

T Tρ ρ
   + + +   
   

 = 0, i.e., 
T

ρ
 = const.; b = 0, 

 
where 1 / T denotes the corresponding Clifford torsion.  The curve is then a helix, but one 
that adds the new interpretation of the condition ρ / T = const., which says that there must 
be a constant ratio of the first curvature to the Clifford torsion. 
 If we then express the idea that our ruling has zero curvature then we will find that: 
 

b = 0; 
a c a c

c c
ρ τ ρ τ

  + − + +  
  

 = 0, 

 
which does not coincide with (α) for real elements.  One then deduces the existence of 
singular, imaginary rulings that are generated like the Clifford ruling of a line that is 
united invariably with the principal trihedron of a curve that does not have zero 
curvature, although one of its Clifford indicatrices is zero; their generators will therefore 
be tangent to the absolute. 
 We add that, as a result, all of the curves for which ρ / τ = const. are ones for which 
there exists a line that is united invariably with the principal trihedron will generate a 
developable. 
 Indeed, it is enough to express (§ 6) the idea that the Clifford images of the ruling that 
is generated by this line will correspond, with equality of arc length, in order to find that, 
with the preceding notation: 

2 2b c ac

τ ρ
+ +  = 0. 

 
 
 § 8.  These preliminary considerations immediately suggest an idea that will serve to 
establish a very remarkable new form, in my opinion, of the formula of Prof. Bianchi that 
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was cited above.  In order to arrive at this formula, Prof. Bianchi examined the direction 
cosines of the tangent, principal normal, and binormal.  We, in turn, will examine its 
scrolling parameters, which are denoted by: 
 

(α, β, γ; α′, β′, γ′ ); (ξ, η, ζ; ξ′, η′, ζ′ ); (λ, µ, ν; λ′, µ′, ν′ ). 
 

 However, one sees that: 
 

(13) 

2 2 2 2 2 2 2 2 2

2
2 2 2 2 2 2

2

2 2 2 2
2

2 2 2 2
2

1,

0,

,

1
,

1
; 0.

d
d d d d d d

d d d d
T

d d d d d d d d
T

α β γ α β γ ξ η ζ
αβ βη γζ α ξ β η γ ζ ξλ ηµ ζν

σα β γ α β γ
ρ

λ µ ν σ

λ µ ν σ λ α µ β ν γ λ α

′ ′ ′ + + = + + = + + = =
 ′ ′ ′ ′ ′ ′+ + = + + = + + = =


′ ′ ′+ + = = + +

 + + =

 ′ ′ ′ ′ ′+ + = + + = + = ′

⋯

⋯

⋯

 

 
 By using a procedure that is identical to the one that followed for the Frenet formula 
in flat space, this formula will suffice to give following formulas: 
 

(14)   

; ; ,

; ; ,

d d d

d d T d T

d d d

d d T d T

α ξ ξ α λ λ ξ
σ ρ σ ρ σ
α ξ ξ α λ λ ξ
σ ρ σ ρ σ

 = = − − =
 ′ ′ ′ ′ ′ ′ ′ = = − − =
 ′

 

 
and analogous ones for β, γ, β′, γ′, η, ζ, etc.  However, there would be a sign ambiguity in 
the right-hand side of (14) that would stem from the fact that only 1 / ρ, 1 / T appear in 
(13), and we extract the square root, so we would be uncertain whether to take 1 / ρ, 1 / T 
or −1 / ρ, −1 / T.  However, formula (14) is easily verified by starting with Prof. 
Bianchi’s formula.  As for: 

d

d

α
σ

 = 
ξ
ρ

; 
d

d

α
σ

′
 = 

ξ
ρ
′
, 

 
it is sufficient to recall the effective values of our parameters, and the proof will follow 
immediately.  Now, observe that, e.g.: 
 

(γ)      
d

d

ξ
σ

 = −
T

α λ
ρ

− . 

 Recall that: 
ξ = η1 x2 − η2 x1 + η3 x4 − η4 x3 . 
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 One deduces from Prof. Bianchi’s formulas, recalling that α = [x ξ]1 and that λ = [x 
ζ]1 , that: 

d

d

ξ
σ

 = −
T

α λ
ρ

−  + (η1 ξ2 – η2 ξ1 + η3 ξ4 – η4 ξ3). 

 
 Now, η1 ξ2 – η2 ξ1 + η3 ξ4 – η4 ξ3 is nothing but a scrolling parameter of the line that 
is polar to the binormal, and therefore, by a theorem that was proved already (§ 2), is 
equal to ± λ, according to the sense of parallelism; (γ) is then proved (1).  One proves the 
other formula (14) in an analogous way. 
 One can deduce other results from (14), which individually approaches the Frenet 
formulas for flat space, that are worthy of note, in my opinion. 
 As for the integration of each of the two groups (14) of formulas, which reduces to a 
Ricatti equation, one gets: 
 
 The effective construction of a curve for which the curvature and torsion are known 
as functions of the arc length reduces to the integration of two Ricatti equations. 
 
 Thus, if the two curves correspond point-by-point with parallelism in one direction of 
the principal triehdron and for which (ρ, T, σ) and (ρ1, T1, σ1) are the first curvature, the 
corresponding Clifford torsion, and the arc length, resp., at corresponding points, then 
one will have: 

1

ρ
ρ

= 
1

T

T
 = 

1

d

d

σ
σ

; 

 
(as Prof. Bianchi observed for flat space) this therefore permits one to reduce the 
construction of a curve for which one is given intrinsic equations to a curve for which 
one has ρ = const or T = const. 
 The analogy between (14) and the Frenet formulas immediately gives some theorems 
for which the proof repeats, step-by-step, what one proves for the analogues in flat space.  
Therefore, e.g.: 
 
 If two curves have parallel principal normals at corresponding points then the angle 
between their corresponding tangents will be constant, and the curvature of one of them 
will be a linear function of that of the other one.  (This can then be of service in the study 
of the Bertrand curve in curved space.) 
 
 One can thus deduce the things that are done in all of the theory of helices, etc., in a 
different way.  What seems important to me to observe is that often the calculations are 
performed more simply in curved space than they are in flat space.  If we, e.g., would like 
to find the evolute of a curve then it will suffice that we look for those times when the 
ruling that is generated by a normal to the curve with direction cosines (ξi cos ϕ + λi sin 

                                                
 (1) Here, we have used (λ, µ, ν) in order to denote both of the triads (λ, µ, ν), (λ′, µ′, ν′ ), since that will 
certainly not cause any confusion; one must just remember not to confuse the ξ with the ξi . 
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ϕ) (where ϕ is a function of σ) generates a developable – i.e., when the two Clifford 
images of the ruling correspond with equality of arc lengths s.  Now, one has: 
 

ds2 = 2[ cos sin sin cos , ]id d d d xξ ϕ λ ϕ ξ ϕ ϕ λ ϕ ϕ+ − +∑ . 

 
 If we start with the usual observations of § 3, using (14) and recalling that 1 / T 
admits two determinations then we will see that is suffices to annul the terms with double 
signs in the preceding expression in order to find the desired condition, and by 

calculation, we will then get: ϕ = 
dσ
τ∫

. 

 A more noteworthy result, for which, we will see some applications in what follows, 
is given by the following proposition: 
 
 Any curve C in elliptic space will correspond to two curves C′, C″ in flat space that 
correspond to C (and therefore also to each other) point-by-point, with equality of arc 
length and first curvature, while the torsions at corresponding points will differ by a 
constant.  Conversely, two curves C′, C″ in flat space that correspond point-by-point with 
equality of arc length and first curvature, and whose torsions differ by a constant ± 2 at 
corresponding points will give, without quadrature, a curve C in elliptic space that has 
curvature + 1 that will correspond, point-by-point, with equality of arc length and first 
curvatures and that will have Clifford torsions at a point that are the torsions of C′ and 
C″ at corresponding points. 
 
 From (14), the first part of this theorem is obvious; we prove the second part.  If we 
let (α, β, γ), (ξ, η, ζ), (λ, µ, ν) denote the direction cosines of the tangent, principal 
normal, and binormal at a point of C′ and let (α′, β′, γ′ ), (ξ′, η′, ζ′ ), (λ′, µ′, ν′ ) denote 
the cosines of the correspond line for C″, let s, 1 / ρ denote the arc length and curvature 
of C′ and C″ (at corresponding points), and let 1 / T and 1 / T′ denote the corresponding 
torsions then we will have: 
 

(a)    

; ; ,etc.

; ; ,etc.

d d d

ds ds T ds T

d d d

ds ds T ds T

α ξ α α λ λ ξ
ρ ρ

α ξ α α λ λ ξ
ρ ρ

 = = − − =
 ′ ′ ′ ′ ′ ′ ′ = = − − =
 ′ ′

 

 
for the Frenet formulas in flat space. 
 Since α 2 + β 2 + γ 2 = α′ 2 + β′ 2 + γ′ 2 = ξ 2 + η 2 + ζ 2 = … = 1, we can imagine that 
the (α, β, γ ; α′, β′, γ′ ), (ξ, η, ζ ; ξ′, η′, ζ′ ), and (λ, µ, ν ; λ′, µ′, ν′ ) are the scrolling 
parameters of three lines of the space curve.  Since one has dα 2 + dβ 2 + dγ 2 = dα′ 2 + 
dβ′ 2 + dγ′ 2, from (α), the lines (α, β, γ ; α′, β′, γ′ ) will describe (§ 6) a developable – 
i.e., one that envelops of curve C – and since, from (α): 
 
λ α + µ β + ν γ = λ′ α′ + µ′ β′ + ν′ γ′ = λ dα + µ dβ + ν dγ = λ′ dα′ + µ′ dβ′ + ν′ dγ′ = 0, 
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the line (λ, µ, ν ; λ′, µ′, ν′ ) is precisely the binormal to that curve at a generic point, and 
since, from (α): 
 

ξ α + η β + ζ γ = ξ′ α′ + η′ β′ + ζ′ γ′ = ξ λ + η µ + ζ ν = ξ′ λ′ + η′ β′ + ζ′ γ′  = 0, 
 
the line (ξ, η, ζ ; ξ′, η′, ζ′ ) is precisely the principal normal to the curve C at its generic 
point. 
 These last arguments could also be made if one knew something about the torsions of 
C′ and C″; however, in such a case, one could say, at most, that if σ is the arc length of C 

then one will have dσ = ds.  If we, in turn, suppose that 
1 1

T T
−

′
 = const., and if, for 

greater simplicity, we suppose that 
1 1

T T
−

′
= ± 2 then we will see immediately that dσ = 

ds.  In fact, we will see that in a space with curvature + 1, the arc length will be defined 
by: 

dσ = { }1
( ) ( )

2
d d d d d dλ ξ µ η ν ζ λ ξ µ η ν ζ′ ′ ′ ′ ′ ′± + + − + + . 

 

 The fact that the constant difference 
1 1

T T
−

′
 is ± 2 is no loss of generality.  If 

1 1

T T
−

′
were a constant that is distinct from ± 2 then one would have, as one easily infers, 

a curve C in an elliptic space with a curvature that is different from + 1.  (The rest of the 
time, one can always go from such a pair of curves to a pair of curves for which one has 
1 1

T T
−

′
= ± 2 by a similitude). 

 We prove that if C corresponds to C′, C″ with equality of arc length then when (α) is 
compared to (14), that will prove our theorem completely. 
 A corollary that will be of great utility is the following one: 
 
 Any pair of curves in flat space that have constant, but distinct, torsions and 
correspond with equality of arc length and first curvature will correspond to a curve with 
constant torsion in curved space, and vice versa. 
 
 Moreover, the theorem that one can find all of the curves in flat space that have 
constant torsion by quadrature will appear in a new light; from the theorem that we just 
proved, one deduces that: 
 
 The problem of finding the curves of constant torsion in flat space, and that of finding 
all of the plane curves in elliptic space are equivalent.  Therefore, since the solution of 
one of them is immediate, the other one will be solved completely. 
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 We finally observe the generalization to space curves that was recently obtained by 
Prof. Razzaboni for the transformations (1) of the curves with constant torsion can be 
interpreted for these theorems on the Euclidian metric as a transformation of those pairs 
of curves with constant, but distinct, torsions that correspond with equality of arc length 
and first curvature. 
 

On scrolled surfaces. 
 

 § 9.  By way of example, we would like to state a very simple theorem about scrolling 
surfaces – i.e., the ones that can be generated by a continuous scrolling of a curve, and 
which (Bianchi A) thus admit a second similar generation: 
 
 The necessary and sufficient condition for a surface to be scrolled along u = const. 
and v = const is that the tangents to the u = const. along v = const. be parallel and 
therefore merely the tangents to v = const. along a u = const.  Therefore, one can set E = 
G = 1 in the quadratic form that defines the surface and make F = cos σ, so one must 
have D′ = sin σ ; conversely, if E = G = 1, F2 + D′ 2 = 1 then the surface will be scrolled 
along the u and v. 
 
 The linear element of the Clifford image of the ruling that is defined by the tangent to 
a v = const. along a u = const. is given (we denote the partial differentials with respect to 
v by d) by: 

ds2 = 

2
1

,
i

x
d x

uE

 ∂ 
  ∂  

∑  

 

= dv2 

2

2

3

1 1 1
, , ,

2i i

i

E
x x x xvx x
v u u v uE E E

 ∂ 
   ∂ ∂ ∂ ∂  ∂+ + −    ∂ ∂ ∂ ∂ ∂     
   

∑ . 

 
 The expression in the right-hand side must be zero. 
 Developing this, while noting the identity, and recalling the formula that gives the 
second derivative of (xi) as a function of the first derivative and the direction cosines of 
the normal, and noting that: 
 

                                                
 (1) BIANCHI, Giornale di Battaglia, 1884.  
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1 2 3 4

1 4

1 4

2 2
1 4

x x x x

x x

u u
x x

v v

x x

u v u v

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂ ∂
∂ ∂ ∂ ∂

⋯ ⋯

⋯ ⋯

⋯ ⋯

 = D′  

1 2 3 4

1 4

1 4

1 4

x x x x

x x

u u
x x

v v
ξ ξ

∂ ∂
∂ ∂
∂ ∂
∂ ∂

⋯⋯

⋯⋯

⋯⋯

 = ± D′ 2EG F− , 

 
one finally obtains, with the usual meaning for the double sign: 
 

(D′ ± 2EG F− )2 + 

2

24 ( )

E G
F E

v u
E EG F

∂ ∂ − ∂ ∂ 
−

 = 0; 

i.e: 

D′ ± 2EG F− = 
12

2

 
 
 

 = 0. 

 

 Analogously, one will find that 
12

2

 
 
 

 = 0.  One can thus make E = G = 1, and then 

D′2 = 1 – F 2.  The first of these three formulas proves that the surface results from 
scrolling; the last one proves the second part of our theorem. 
 
 

On ray congruences. 
 

 § 10.  The congruence of lines in curved space was studied by Fibbi in one of his 
papers that was published in Annali della Scuola Normale Superiore, Tomo VII, 1895.  
Without going into the particular cases, we will study those consequences that one can 
infer from the consideration of plane figures that are generated by drawing the parallel to 
the rays of a congruence through the point (1, 0, 0, 0) that meets the polar plane.  Let (xi) 
denote the generic point of the surface that is chosen to be the initial one of the 
congruence, and let (ξi) be the plane through it that is normal to the corresponding rays.  
Fibbi sets: 

 
2

1 2 3 4

1 2 3 4dx dx dx dx

ξ ξ ξ ξ
 = E du2 + 2 F du dv + G dv2, 

 

 
2

1 2 3 4

1 2 3 4

x x x x

d d d dξ ξ ξ ξ
 = E′ du2 + 2 F′ du dv + G′ dv2, 

 
∑ dxi dξi = e du2 + (f + f′ ) du dv + g dv2. 
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 We will have for the linear element of the planar image above: 
 

ds2 = ∑ [d(x, ξ)i]
2 = 2 2[ , ] [ , ] 2 [ , ] [ , ]i i i idx x d dx x dξ ξ ξ ξ+ +∑ ∑ ∑  

= ∑ dx2 – (∑ ξ dx)2 + (∑ x dξ)2 ± 2 (x, dx, ξ, dξ). 
 

 Let (x, dx, ξ, dξ) denote the usual determinant, whose rows are (x1, x2, x3, x4), (dx1, 
…), (ξ1, …), (dξ1, …); the double sign is due to the usual reason.  When (x, dx, ξ, dξ) = 
0, the angle between two consecutive generators will have just one determination.  
Therefore (§ 6), (x, dx, ξ, dξ) = 0 is, as Fibbi recognized directly, the equation of the 
developable of the congruence.  The part of the preceding formula that has constant sign 
is, with Fibbi’s notations: 
 
(α)    (E + E′ ) du2 + 2 (F + F′ ) du dv + (G + G′ ) dv2. 
 
 The part that has the variable sign is, without the factor of ± 2, equal to: 
 

(b)  

2 2 2 2

2 2 2 2

2 2

2

2 2

2

2 2( )

2( ) 2

( ) ( ( ) ) ( )

( ) ( ( ) ) ( )
.

E du F du dv G dv edu f f du dv g dv

edu f f du dv g dv E du F du dv G dv

Ef Fe du Eg F f f Ge du dv Fg Gf dv

EG F

E f F e du E g F f f G e du dv F g G f dv

E G F

 ′+ + + + +


′ ′ ′ ′+ + + + +


′ ′− + − − − + − =
−

 ′ ′ ′ ′ ′ ′ ′ ′ ′− + + − − + −
 =
 ′ ′ ′−


 

 
 (α) and (β) are two quadratic forms that are completely independent of the surface 
that is chosen to be the initial one. 
 
 
 §§ 11.  Theorem: The only equations that must be satisfied by the forms (α) and (β) 
in order for the Fibbi form (which is already linked by simple algebraic equations that 
Fibbi himself had noticed) to correspond, in reality, to a congruence, are the ones that 
say that their sums and differences must be forms with curvature + 1.  (Recall the 
numerical factor that multiples β.) 
 
 This theorem, which permits one to generalize the equations of Gauss and Codazzi to 
the congruence are deduced by recalling that for one line − and therefore, also the ∞2 
straight lines of a congruence − one can give the planar images arbitrarily; that will then 
define the congruence. 
 The determination the points of a plane in curved space (and the Euclidian sphere) for 
which one is given the linear element reduces to the integration of a Riccati equation.  
Therefore: 
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 Given the form (α), (β) of a congruence or a Fibbi form that satisfies the preceding 
conditions, the integration of two Ricatti equations will suffice to determine the 
congruence effectively. 
 
 The traces on the representative plane of the lines of the congruence are obtained (§ 
4) by halving the segments that connect corresponding points of the two plane images; if, 
as usual, one lets (Y1, Y2, Y3, O) and (Z1, Z2, Z3, O) denote the corresponding points of 
these images and lets ϕ denote the distance between them then the linear element of the 
plane that is referred to that trace will be: 
 

2

2(1 cos )
i iY Z

d
ϕ

  +
   +   

∑ = 

2

2

sin
2

42cos cos
2 2

i i i idY dZ Y Z
d

ϕ

ϕϕ ϕ

 
 + ++ 
 
 

∑ . 

 
 One will note this immediately when, in addition to linear elements of the planar 
images, one knows ϕ and the derivatives of ϕ with respect to u, v, u′, v′, where one 
imagines the (u, v) to be the coordinates that define (Yi), the (u′, v′) to be the ones that 
define (Zi), and all four of them are imagined in that distinct derivation.  Indeed: 
 

cos

u

ϕ∂
∂

 = 
Y

Z
u

∂
∂∑ ;  

cos

u

ϕ∂
′∂

 = 
Y

Z
u

∂
′∂∑ , etc. 

 

2 ∑ dY dZ = d2 ∑ Y Z − ∑ (Y d 2Z + Z d 2Y). 
 
 This last equation reduces immediately once one recalls the formula that gives d2Z, 
d2Y in terms of Y, Z, and their first differentials. 
 If might be interesting to observe that when the congruence is W, it will suffice to 
know the linear element of the plane that is referred to that trace (when the u = const., v = 
const. are the developables).  Indeed, with a geodetic representation of the face on 
Euclidian space, the representative plane will correspond to the plane at infinity.  Such a 
linear element will become the linear element of the Euclidian sphere, referred to the 
spherical images of the developables.  Using the notation of Prof. Bianchi (Lezioni, etc., 
Chap. 10, §§ 149, 150), one must have: 
 
    D1 : 1D′′  = D2 : 2D′′ ,  i.e., set  ρ = eτ, 

 

(γ)    
12 12 12 12 22 11

1 1 1 2 1 2u v u v

τ τ τ τ         ∂ ∂ ∂ ∂+ + + −         ∂ ∂ ∂ ∂         
 = 0, 

 
while Guichard’s equation, when subtracted from the preceding, becomes: 
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(δ)    
2

u v

τ∂
∂ ∂

= 

12 12

12 12 22 11 1 2

1 2 1 2
F

u v

   
∂ ∂   

         − − − −      ∂ ∂     
. 

 

 The latter gives a result in form τ = M(u, v) + ∫ ϕ(u) du + ∫ ψ(v) dv, where M is 
known, and ϕ and ψ are to be determined.  If one substitutes this in the preceding 
equation then one will get ψ(v) as a function of ϕ(u); by differentiating that with respect 
to (u), one will get an equation for ϕ(u) that takes the form: 
 

A ϕ 2 + B ϕ + C + D ϕ′ = 0, with A, B, C known. 
 

 When this equation is repeatedly differentiated with respect to v, that will give the 
means to determine ϕ, and therefore τ and the congruence.  Without entering into a 
detailed discussion, we further observe that if we suppose that F = 0 then the preceding 
equations will become: 
 

2

u v

τ∂
∂ ∂

= −
2 log EG

u v

∂
∂ ∂

; 
log logE G

u v v u u v

τ τ τ τ∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
 By altering the parameters in u = const., v = const., one can arrange that ρ = 

1/ EG satisfies both of them; if one then sets: 
 

τ = − log EG  + ∫ ϕ(u) du + ∫ ψ(v) dv 
then one will have: 

ϕ ψ = 
log log (log , log )

( , )

G E E G

v u u v
ϕ ψ∂ ∂ ∂+ +

∂ ∂ ∂
 = 0, 

 
and since ϕ = ψ = 0 is a solution, E will be a function of G.  This is a theorem of 
Weingarten for the W surface.  However, here we observe that if the equation: 
 

1 = 
1 log 1 log

( ) ( )

G E

u u v vϕ ψ
∂ ∂+

∂ ∂
 

 
is soluble then one will get the other W-congruence from the same linear element; e.g., 
for E = 1, G = sin2 u. 
 
 
 § 12.  We return to curved space and resolve the question of knowing whether a 
congruence is W when one is given the fundamental forms − or what amounts to the same 
thing − the linear elements of its Clifford image planes.  Thus, it will suffice that we 
recall that a line is defined by its scrolling parameters, which, as we know, are nothing 
but the projective coordinates of the line.  Now (Darboux, Leçons, t. 3, page 345), the 
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coordinates of a line that describes a W-congruence are solutions of the same second-
order partial differential equation, such that if (α, β, γ; α1, β1, γ1) are the scrolling 
parameters of a generic line of the congruence then one must have: 
 

0 = 

1 1 1

1

1

22
1

2 2

22
1

22
1

2 2

u u

v u

u u

u v u v

v v

α β γ α β γ
γα

γα

γα

γα

γα

∂∂
∂ ∂

∂∂
∂ ∂

∂∂
∂ ∂

∂∂
∂ ∂ ∂ ∂

∂∂
∂ ∂

⋯⋯ ⋯ ⋯

⋯⋯ ⋯ ⋯

⋯⋯ ⋯ ⋯

⋯⋯ ⋯ ⋯

⋯⋯ ⋯ ⋯

. 

 
 We now observe that α2 + β 2 + γ 2 = 1 and that dα 2 + dβ 2 + dγ 2 is known, so it is 
the linear element of one of the planar images of a congruence. 
 One can therefore conceive of α, β, γ as the coordinates of a variable point on a 
Euclidian sphere, for which one knows the linear element as a function of u, v; one can 
therefore express the second derivatives of the α, β, γ as functions of their first 
derivatives, the α, β, γ themselves, and the coefficients of that linear element, and 
analogously for α′, β′, γ′ .  Substitute these values for the second derivatives of (α, β, γ, 
α′, β′, γ′ ), develop their determinant, and form the sum of the products that are obtained 
by multiplying the third-order minors that belong to the matrix that is formed from the 
first three columns with the complementary minors.  If we denote the linear elements of 
the two planar images by e du2 + 2 f du dv + g dv2 and e′ du2 + 2 f′ du dv + g′ dv2, and set 

∆ = 2eg f− , ∆′ = 2e g f′ ′ ′− (which are supposed to be non-zero) then we will easily 

find the values of the third-order determinants above. 
 One will have, e.g.: 
 

u

v

α β γ
α

α

∂
∂
∂
∂

⋯⋯

⋯⋯

 = ∆, 

2

2

v

u

α β γ
α

α

∂
∂

∂
∂

⋯⋯

⋯⋯

 = − 
11

1

 
 
 

∆, etc. 

 
 Let ∆ denote the determinant: 
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11 11

1 2

12 12

1 2

22 22

1 2

e

f

g

   
   
   

   
   
   

   
   
   

, 

 
and let (− A) denote the determinant that one obtains by switching the signs in the last 
column; analogously, set A′ and (− A′ ) equal to the corresponding determinants for the 
second linear element.  One then sees immediately that the condition for our congruence 
to be W is obtained by making the expression that is obtained by adding to A the sum of 
the terms in (− A), multiplied by the complementary minors of the corresponding terms in 
A′, and the expression that one deduces from that by exchanging e and e′, f and f′, g and 
g′. 
 We would now like to present another application of our principles to the theory of 
congruences, and precisely to the concept of the “density” of a congruence at a point.  In 
order to define that density at a point P, Fibbi proceeded in the following manner: 
 On the plane p through P that is normal to the corresponding ray of our congruence, it 
refers to an infinitesimal rotation dω around P, and on the line of the congruence that 
emanates from the point C of dω, it refers to the point D that is conjugate with respect to 
the absolute of the point C.  The line that connects the point P to that point D will 
determine an infinitesimal area r2 dω′  on a sphere of infinitesimal radius r and center at 
P.  The ratio dω′ / dω is what Fibbi called the “density” of the congruence at the point P.  
Along with the “density” that is defined in the Fibbi way, we introduce a new element 
that we call the “Clifford density” of a congruence, which is perhaps better adapted to the 
intrinsic nature of elliptic space, and will, in any event, take us to one of the most 
important theorems of this present treatise.  Through any point A of elliptic space, draw 
the parallel – à la Clifford – to the line of the congruence that emanates from the points of 
dω; it will determine an infinitesimal element dω″ in the polar plane A; the ratio dω″ / dω 
(which will naturally have two determinations) will measure the “Clifford density” (right-
handed or left-handed) of the congruence at the point for us; the arithmetic mean of these 
two densities will measure what we call the absolute Clifford density of the congruence at 
the point P.  We proceed with the effective calculation, observe that with no loss of 
generality, we can suppose that the point P is the point (1, 0, 0, 0), and that the plane p 
through P that is normal to the ray of the congruence that passes through P is the plane 
(0, 0, 0, 1).  We take two points P′, P″ on dω that are infinitely close to P, and consider 
the planes π′, π″ through P′, P″ that are normal to the corresponding rays of the 
congruence.  If we recall the relations that link the coordinates of a point and those of a 
plane, and the condition for a point to belong to a plane, then we will see that, up to 
higher-order infinitesimals, one can set: 
 
 P′  = (1, dx2, dx3, 0), 
 P″  = (1, δx2, δx3, 0), 
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 π′   = (0, dξ2, dξ3, 1), 
 π″   = (0, δξ2, δξ3, 1), 
 
where d, δ are differential symbols. 
 If we point the parallel in the first direction then we will get, from the usual formulas, 
that the Clifford images of the rays of P, P′, P″ will have the coordinates: 
 

(1, 0, 0, 0), 
 (−1 – dx2 dξ3 + dx2 dξ2, − dx2 + dξ2 , − dx3 – dξ2, 0), 
 (−1 – δx2 δξ3 + δx2 δξ2, − δx2 + δξ2 , − δx3 – δξ2, 0), 
 
respectively, when one takes the point (0, 0, 0, 1) to be the point through which the 
parallel is drawn.  Up to negligible infinitesimals, these three images will then have the 
coordinates: 

(−1, 0, 0, 0), 
 (− 1, − dx2 + dx3, − dx3 – dx2, 0), 
 (− 1, − δx2 + δx3, − δx3 – δx2, 0), 
 
and the area dω″ of the triangle they span will be given by: 
 

36 dω″ 2 =

2

2 3 3 2

2 3 3 2

1 0 0

1 0

1 0

dx d dx d

x x

ξ ξ
δ δξ δ δξ

−
− − + − −
− − + − −

, 

i.e., by: 

6 dω″ = ± 3 3 3 3 3 32 2

3 3 3 2 3 22 2

d dx d d dx dxd dx

x x xx

ξ ξ ξξ
δξ δ δξ δξ δ δδξ δ

  + + + 
  

. 

 
 It is easy to verify that (with a suitable choice of sign): 
 

6 dω  = 3 2

3 2

dx dx

x xδ δ
 

and 

6 dω′  = 3 2

3 2

d dξ ξ
δξ δξ

. 

 Therefore, calculate the sum: 
 

3 3

3 3

d dx

x

ξ
δξ δ

 + 2 2

2 2

d dx

x

ξ
δξ δ

. 

 Setting: 

dξi = i idu dv
u v

ξ ξ∂ ∂+
∂ ∂

,  δξi = i iu v
u v

ξ ξδ δ∂ ∂+
∂ ∂

,  etc., 
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one sees immediately that this sum is equal to: 
 

(du δv – δu dv) 3 3 3 32 2 2 2x xx x

v u v u u v u v

ξ ξξ ξ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ + − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
, 

 
and recall that everything will remain unaltered upon changing the sense of the 
parallelism, unless this sum is considered to have the altered sign, as one proves by a 
simple calculation.  Now (as is known for the calculation of the coordinates of P′, P″, π′, 
π″ ), we have: 

dx1 = dx4 = dξ1 = dξ4 = 0; 
 

therefore, with Fibbi’s notation, which one also recalls, one sees that the preceding sum 
can be written: 

± (f − f′ ) (du δv – δu dv), 
 
where, from what was said, the double sign corresponds to the double sense of 
parallelism.  One thus has: 
 
(α)    6 dω″ = 6 dω + 6 dω′  ± (f − f′ ) (du δv – δv du). 
 
 When one is given dω, since: 

E G – F2 = 
2

, , ,
x x

x
u v

ξ ∂ ∂ 
 ∂ ∂ 

 

 
(where, as usual, the symbols in parentheses denote a IVth-order determinant (§ 3)), and 
since dx1 = dx4 = dx1 = dx4 = 0, the formula that was noted above will become: 
 

(β)     6 dω = 2EG F− (du δv – δu dv). 

 
 (α) and (β) give the following theorem: 
 
 One of the two Clifford densities of a congruence at a point will differ from the 
corresponding Fibbi density by the curvature of the ambient space plus: 
 

± (f − f′ ) 
2

1

EG F−
, 

up to a numerical factor. 
 The absolute density of a congruence at a point is equal to the curvature of the 
ambient space, augmented by the Fibbi density at that point. 
 
 The necessary and sufficient condition for the two Clifford densities to be equal is 
that f = f′, i.e., that the congruence be normal (which is a theorem that will soon be recast 
in a more opportune form). 
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 One finds the generalization to an arbitrary congruence of the fact that two curvatures 
are defined for a surface, and we can say that: 
 
 The relative curvature and the absolute curvature of a surface at a point P are 
nothing but the Fibbi density and absolute density, resp., of the corresponding normal 
congruence at the point P.  This last density is then equal to the right density and the left 
density of that congruence at the point P. 
 
 

On the theory of surfaces. 
 

 § 14.  In the preceding paragraphs we have already obtained some theorems about 
surfaces that we will now prove in a direct manner without appealing to the general 
formulas that were just found on the theory of congruences. 
 With the usual notation, let: 
 

E du2 + 2 F du dv + G dv2, D du2 + 2 D′ du dv + D″ dv2 
 

be the two fundamental forms of a surface (Bianchi A); let (xi) and (ξi) be the coordinates 
of a generic point and its corresponding tangent plane.  We will have: 
 

ds′ 2 = ∑ (d[x, ξ] i)
2 = ∑ ([dx, ξ] i)

2 + ∑ ([x, dξ] i)
2 + 2 ∑ [dx, ξ] i [x, dξ] i  

 
for the linear element of the Clifford image of the corresponding normal congruence. 
 Develop this with the usual identity that relates to determinants with two equal rows; 
one will have: 

ds′ 2 = = ∑ dx2 + ∑ dξ 2 ± 2 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

dx dx dx dx

x x x x

d d d d

ξ ξ ξ ξ

ξ ξ ξ ξ

, 

 
where it is easy to verify that the double sign is due to the double sense of parallelism.  
Now, (Bianchi, loc. cit.), one has: 
 

 i

u

ξ∂
∂

 = 
2 2

i ix xFD GD FD ED

EG F u EG F v

′ ′∂ ∂− −+
− ∂ − ∂

, 

 

 i

v

ξ∂
∂

 = 
2 2

i ix xFD GD FD ED

EG F u EG F v

′′ ′ ′′∂ ∂− −+
− ∂ − ∂

. 

 
 Using this formula and recalling that: 
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2

1 4

1 4

1 4

1 4

x x

u u
x x

v v
x x

ξ ξ

∂ ∂
∂ ∂
∂ ∂
∂ ∂

⋯⋯

⋯⋯

⋯⋯

⋯⋯

 = EG – F2, 

one obtains that: 

     

1 4

1 4

1 1

1 4

x x

u u
x x

u u

ξ ξ
ξ ξ

∂ ∂
∂ ∂

∂ ∂
∂ ∂

⋯⋯

⋯⋯

⋯⋯

⋯⋯

 = ± 
2

FD ED

EG F

′−
−

, 

 

     

1 4

1 4

1 1

1 4

x x

u u
x x

v v

ξ ξ
ξ ξ

∂ ∂
∂ ∂

∂ ∂
∂ ∂

⋯⋯

⋯⋯

⋯⋯

⋯⋯

 = ± 
2

FD ED

EG F

′ ′′−
−

. 

 Analogously: 

     

1 4

1 4

1 1

1 4

x x

v v
x x

v v

ξ ξ
ξ ξ

∂ ∂
∂ ∂

∂ ∂
∂ ∂

⋯⋯

⋯⋯

⋯⋯

⋯⋯

 = 
2

FD GD

EG F

′′ ′−
−

∓ , 

 

     

1 4

1 4

1 1

1 4

x x

v v
x x

u u

ξ ξ
ξ ξ

∂ ∂
∂ ∂

∂ ∂
∂ ∂

⋯⋯

⋯⋯

⋯⋯

⋯⋯

 = 
2

FD GD

EG F

′ −
−

∓ , 

 
where the upper (lower) signs must be taken consistently.  If we develop the value of ds′ 2 
with the formula that we just obtained then we will finally have: 
 

ds′ 2 = e du2 + 2 f du dv + g dv2, 
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where, with the usual notation for surfaces: 
 

 e = E + E′ ± 2 
2

FD ED

EG F

′−
−

, 

 

 f = F + F′ ± 
2

GD ED

EG F

′−
−

, 

 

  g = G + G′  
2

FD GD

EG F

′′ ′−
−

∓ . 

 
 Once again, one must use the upper (lower) signs consistently, and the sign ambiguity 
is due to the double sense of parallelism.  Furthermore, note that: 
 
 The part of ds′ 2 that has a constant sign and the part that has a variable sign can 
serve as the individual forms for a system of parallel surfaces. 
 
 The part with constant sign is obviously the sum of squares of the corresponding 
linear elements on the two polar surfaces.  As for the part with a variable sign, it is easily 
verified that, also in elliptic space, the geodetic torsion of a curve at a point A (i.e., the 

torsion of the geodesic that is tangent at A) is given by 
1 d

T ds

σ+  (where T is the torsion, s 

is the arc length, σ is the angle between the normal to the surface and the principal 
normal of that curve), which is zero for the line of curvature and is also given by: 
 

2 2

2 2 2

( ) ( ) ( )

( 2 )

FD ED du GD ED du dv GD FD dv

EG F E du F du dv G dv

′ ′′ ′ ′′− + − + −
− + +

. 

 
 One then has that the geodetic torsion of an element of the curve is equal − minus a 
numerical factor − to the variable part of the squares of the Clifford linear elements of 
the surface (i.e., to the difference between the squares of two image arcs), divided by the 
square of the length of that element. 
 
 Now, let u, v be lines of curvature of the surface; recalling the Codazzi equations, one 
gets, this case: 
 

 e = 
2

2sin

E

w
 = 

2
2

1
1E

r

 
+ 

 
, 

 

 f = EG  (cot w1 – cot w2) = ± 
1 2

1 1
EG

r r

 
− 

 
, 
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 g = 
2

1sin

G

w
= 

2
1

1
1G

r

 
+ 

 
, 

 
where r1, r2 are the curvature rays of the surface. 
 These formulas are sufficiently important for us that it would not be wrong for us to 
derive them in a different way that will have the advantage of showing how much the 
concept of the scrolling parameters of a line conforms to the intrinsic nature of elliptic 
space. 
 
 
 § 15.  Form the u = const. and the v = const. of an orthogonal system and let (X1, Y1, 
Z1), (X2, Y2, Z2), (X3, Y3, Z3) be the scrolling parameters (in a certain direction) of the 
tangent to v = const., the tangent to u = const., and the normal to the surface, resp., at its 
generic point (xi).  It is easy to write the effective expression for the surface, and if one 
takes the derivative with respect to u, v, while recalling the relations between the 
parameters of the polar line and the formula that gives second derivative of xi and the first 
derivative of ξ1, ξ2, ξ3, ξ4 , then one will obtain the following set of formulas: 
 

 dX1 = 2 3 2 3

1 1

2 2

E D G D
X X du X G X dv

v uEG E EG E

′ ∂ ∂   − + + + ±   ∂ ∂     
, 

 

 dX2 = 1 3 1 3

1 1

2 2

E D G D
X E X du X X dv

v uEG G EG G

 ′  ′′∂ ∂   + + − +    ∂ ∂    
∓ , 

 

 dX3 = 2 1 1 2

D D D D
E X X du G X X dv

G E E G

 ′  ′ ′′    ± − − + − −      
     
∓ , 

 
with the usual consideration regarding the sign.  These formulas are perfectly analogous 
to the corresponding ones in Euclidian space that one deduces by replacing D′ with D′ ± 

EG . 
 
 The effective determination of a surface that is given the fundamental forms reduces 
to the integration of a system of two total differential equations that are each reducible to 
a Ricatti equation. 
 
 Thus, in curved space, as in Euclidian space, one will have: 
 

D du2 + 2 D′ du dv + D″ dv2 = − 1 2 3( )E X du GX dv dX+∑ . 

 
 Therefore, in order for a parameter line λ X1 + µ X2 + ν X3 (λ, µ, ν constants) through 
the point (xi) to generate a developable when one moves along a v = const. the spherical 
images of the generating line must becomes equal; i.e., if D′ = F = 0 then 
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2

E

vD
G

λ µ ν

∂ 
 ∂+ 
 
 

= 0, 

 
and by moving along u = const. instead one will then have that: 
 

2

G

uD
E

µ λ ν

∂ 
 ∂′′ + 
 
 

= 0. 

 
 One can solve another question with the aid of the preceding set of formulas: 
Determine the congruence in which rays that are dragged along by an arbitrary 
deformation of an initial surface, to which one imagines that they are invariably linked, 
always defines ∞1 Clifford rulings − or, what amounts to the same thing − a congruence 
for which one of the Clifford images is degenerate.  If the u, v are the lines normal to the 
rays that are traced out on the initial surface Σ and those of their orthogonal trajectories, 
respectively, then the scrolling parameters of a generic ray of the congruence will be: 
 

X = cos ϕ X1 + sin ϕ X3, Y = cos ϕ Y1 + sin ϕ Y3, Z = cos ϕ Z1 + sin ϕ Z3, 
 
where ϕ is a function of u, v.  The linear element of the Clifford image that is obtained in 
the sense in which one calculates the X, Y, Z is given by: 
 

ds′ 2 = 
2 2

2 22
X X X X

du du dv dv
u u v v

 ∂ ∂ ∂ ∂   + +    ∂ ∂ ∂ ∂     
∑ ∑ ∑ ; 

 
now, it is easy to calculate, precisely with the set of formulas in this paragraph, that: 
 

 
2

X

u

∂ 
 ∂ 

∑ = 

222 cos
2 sin

D D E D EG

E u u vE G G

ϕ ϕ ϕ ϕ
 ′∂ ∂ ∂ + + + +    ∂ ∂ ∂   

∓
, 

 

 
2

X

v

∂ 
 ∂ 

∑ = 

2 2

cos
sin

D EG G D

v uE E G

ϕ ϕ ϕ
   ′ ′′∂ ∂+ + −      ∂ ∂   

∓
, 

 

 
X X

u v

∂ ∂
∂ ∂∑  = 

D D EG

u vE E

ϕ ϕ ′∂ ± ∂ + +   ∂ ∂  
 

− cos cos
sin sin

E D EG G D

v uG EG E G

ϕ ϕϕ ϕ
   ′ ′′∂ ∂+ −      ∂ ∂   

∓
. 
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 In order for the corresponding Clifford image to be degenerate, one must have: 
 

2 2 2
X X X X

u v u v

   ∂ ∂ ∂ ∂     −        ∂ ∂ ∂ ∂           
∑ ∑ ∑  = 0; 

 
i.e., one must have that (the square of): 
 

  
D

uE

ϕ∂ + ∂ 

cos
sin

G D

uE G

ϕ ϕ
 ′′∂ −  ∂ 

 

    + cos
sin

D EG E D EG

v vE G EG

ϕ ϕ ϕ
  ′ ′± ∂ ∂+ +    ∂ ∂  

∓
 

is zero. 
 If one develops this, recalling that if K is the curvature of the initial surface, then: 
 

DD D EG D EG

EG E G

′′ ′ ′±− ∓
= EG K, 

and one will have: 
 

− sin ϕ cos cos cosD G G E
D

u E u u u v vG E G

ϕ ϕ ϕ ϕ ϕ ϕ′′∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂

 

 

+ sin ϕ cos cos
sin

D EG E D EG G
K EG

v v u uG G E E

ϕ ϕ ϕ ϕ ϕ
′ ′∂ ∂ ± ∂ ∂+ − −

∂ ∂ ∂ ∂
∓

 = 0. 

 
 One multiplies this by D and replaces D, D″ with their values that one deduces from 
the penultimate formula; the result must be identically zero in D, D′.  Therefore, one will 
have, in the first place: 

cos G

uE

ϕ ∂
∂

 = 0. 

 
 For ϕ = π / 2, one recognizes immediately that K = 0, and one has the normals to a 
surface of zero curvature.  For cos ϕ ≠ 0, one must have that G is a function of only v; 
since the coefficient of D′ must also be zero, one will have ∂ϕ / ∂u = 0.  Analogously, one 
finally obtains: 

log cos

v

ϕ∂
∂

 = 
log E

v

∂
∂

, 

 

cos cos sin
sin

E E
K EG EG

v v v vG EG G

ϕ ϕ ϕ ϕ ϕϕ
 ∂ ∂ ∂ ∂− ± −  ∂ ∂ ∂ ∂ 

 = 0. 
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 If ϕ is constant (which we can always assume to be zero) then one can set E = G = 1 
and obtain the line that is inclined with a constant angle to a surface Σ with zero 
curvature and normal to the common point to Σ of the geodetic of a system (of ∞1 parallel 
geodesics) that pass through that point. 
 
 If ϕ is not constant then one will set ϕ = v, E = cos2 ϕ = cos2 v, and the last equation 
will become successively: 
 

sin cos sin
sin

v v v
v

vG G

∂  +  ∂  
 ± 2 sin v cos v = 0, 

 
sin sin

cot
v v

v
v G G

∂    +   ∂    
 ± 2 cos v = 0. 

From this: 
sinv

G
= ± 

1

sinv
(2 sin v cos v dv + C), 

 

G  = ± 
22sin

cos2

v

v C+
, 

where C is a constant. 
 One then obtains a surface of rotation (or deformation) for the initial surface that 
becomes, in the limit, precisely one of the Weingarten surfaces that present themselves in 
the direct study for Euclidian space. 
 After this study, observe that now it is sufficient to set: 
 

D′ = 0 
 

in the set of formulas in this paragraph and to take the sum 2
3dX∑ in order to obtain the 

linear element of § 14 once more, as desired. 
 Moreover, one must observe that the term in du dv that has the double sign − which 
can seem surprising on first glance when one recalls the analogous situations for 
Euclidian and hyperbolic spaces − is, in turn, something that is predictable “a priori,” 
because u = const., v = const. are precisely the developables of the congruences of 
normals to the surface (§ 11). 
 
 
 § 16.  We now pose the following question: 
 
 Given the two planar images of a congruence (in bijective correspondence), how do 
we know whether the congruence is normal? 
 
 Meanwhile, the analysis that one makes when u = const., v = cont. define the lines of 
curvature of a surface shows that a necessary condition is that the images must 
correspond with equality of the areas.  We now prove that, conversely: If the images are 
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such that two corresponding parts are equivalent then congruence will either be normal 
or dual to a normal congruence (this last property is not contrary to the generality of the 
result, since dual congruences have the same Clifford images).  (Cf., § 13).  In fact, if the 
u = const. and the v = const. are the developables of our congruences (i.e., the lines that 
correspond with equality of arc length on the Clifford images and prove to be real) then 
the part of the linear element of the Clifford images that has variable sign will reduce to 
at most the term in du dv, and if the two images correspond in the manner that is assumed 
then the term in “du dv” will be zero, or in the part with constant sign, or the one in 
which the sign is variable.  In this last case, the congruence will have an indeterminate 
developable – i.e., one that is formed from the lines that are normal to a plane; in the 
other case, F + F′ = 0.  Now, let: 
 

ds2 = A du2 + 2 B du dv + C dv2, D du2 + 2 D′ du dv + D″ dv2 
 

be the fundamental forms of one of the focal sheets (falde focali) of the focal point (x1, x2, 

x3, x4) of the congruence, and let ξi = 
1 ix

uA

∂
∂

 be the direction cosines of the ray through 

xi .  One will have E = F = 0, and in order to have F + F′ = 0, one must have: 
 

F′ = x x
u v u v

ξ ξ ξ ξ∂ ∂ ∂ ∂  −   ∂ ∂ ∂ ∂  
∑ ∑ ∑  

 

= 
1 1x x x x

u u v u u vA A
ξ ξ∂ ∂ ∂ ∂ ∂ ∂      −      ∂ ∂ ∂ ∂ ∂ ∂     

∑ ∑ ∑  = 0. 

 Now: 
x

u
ξ ∂ 

 ∂ 
∑  = A ; 

x

v
ξ ∂ 

 ∂ 
∑  = 

B

A
; 

x x

u v
ξ ξ∂ ∂  

  ∂ ∂  
∑ ∑  = B, 

 
so one will therefore have: 

2 2

2 2

1 1

4

A A x x

A u v A u u v

∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂∑  − B = 0. 

 
 Recalling that D′ = 0, one will have, given that (X1, X2, X3, X4) are the direction 
cosines of the normal to the surface, that: 
 

2

2

x

u

∂
∂

 = 
11 11

1 2

x x

u v

   ∂ ∂+   ∂ ∂   
 − Ax + DX, 

 
where the Christoffel symbols are referred to the form: 
 

A du2 + 2 B du dv + C dv2. 
 One gets: 
 



Fubini – Clifford parallelism in elliptic spaces. 36 

2 2

2

x x

u u v

∂ ∂
∂ ∂ ∂∑ = 

11 111

1 22

A C

v u

   ∂ ∂+   ∂ ∂   
 + A B, 

 
so one finally has (since A ≠ 0): 
 

− 2 11 11
2

1 2

A A A C
A

u v v u

    ∂ ∂ ∂ ∂+ +    ∂ ∂ ∂ ∂    
 = 0, 

and since: 
A C – B2 ≠ 0,  A ≠ 0, 

one will have: 
12 11

2 2

  
  
  

= 0. 

 

 If 
11

2

 
 
 

 = 0 then the v = const. will be geodetic and the congruence will be normal; if 

12

2

 
 
 

 = 0 then one will have 
12

1

 
 
 

 = 0 for the dual surface, and the dual congruence will 

be normal. 
 It is therefore enough to see that, as is permitted, the lines of equal length under such 
a correspondence of a Euclidian sphere with itself are real (in which case, one certainly 
has A ≠ 0, as one supposes); in fact, if the two linear elements are referred to the common 
real orthogonal system then it will assume the form 2E du G dv+ , 2E du G dv′ ′+ , and the 
lines in question will be given by: 
 

2 2( ) ( )E E du G G dv′ ′− + −  = 0. 
 

 Since E G= E G′ ′ , the differences E E′− , G G′−  cannot have the same sign, and 

one will have that E , G , E′ , G′  are positive; therefore, these lines will certainly be real.  
(This proof of the reality of these lines was cordially communicated to me by Prof. 
Bianchi.) 
 
 
 § 17.  We have given the general conditions that the Fibbi form must satisfy in order 
for it to correspond to a real congruence.  Therefore, it would not be inopportune to verify 
them for the congruence of normals to a surface, at least, when one chooses u = const. 
and v = const. to be the lines of curvature.  In fact, we express the ideas that the complex 
of terms appear in the expression for the curvature of: 
 

e du2 + 2 f du dv + g dv2, 
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and contain “f” linearly, and its derivative is zero; whatever must happen in our case, 
because under an exchange of sign of f, the element will again remain a spherical 
element.  We get: 
 

2 2
2 21 2 1 2

1 2 1 2

1 11 1 1 1log 1 log 1

1 1
1 1

E E
r rr r r r

u v v u
r r r r

         ∂ + ∂ +− −         ∂ ∂         −
∂ ∂ ∂ ∂   + +

      

 

 

+ 1 2

1 2

1 1

2
1

1

EG
u r r

v
EG

r r

   ∂ −   ∂∂    
 ∂  
 + 
   

 = 0. 

 The third term in this sum is: 
 

 

2

2
1 21 2

1 2

1 11 1 log
log

2
1

1

G
r rr r E

u v u v
r r

   
∂ − −   

∂   + ∂ ∂ ∂ ∂ +
 
 

 

 

   + 

2

2
1 21 2

1 2

1 11 1 log
log

2
1

1

G
r rr r E

v u u
r r

     ∂ − −    ∂ ∂     + ∂ ∂ ∂   +
      

. 

 
 Combining the terms that contain E and the ones that contain G, the preceding 
equality then becomes: 
 

 1 21 2 1 2

1 2 1 2

1 11 1 1 1 log
log

2
1 1

1 1

G
r rr r r rE

u v v u
r r r r

      ∂ − − −    ∂ ∂ ∂       +  ∂ ∂ ∂ ∂ + +      

 

 

  + 
2 2

2 21 2 1 2

1 2 1 2

1 11 1 1 1log 1 log 1

2
1 1

1 1

r rr r r r

u v v u
r r r r

      ∂ + ∂ +− −      ∂ ∂      −
∂ ∂ ∂ ∂   + +   
   

= 0. 

 



Fubini – Clifford parallelism in elliptic spaces. 38 

 If we replace 
log E

v

∂
∂

, 
logG

u

∂
∂

with the values that are given by the Codazzi formula 

then we will obtain an identity in 
1

1

r
, 

2

1

r
. 

 The terms that were removed thus prove to be zero, so in order to see that the 
curvature of the element is + 1, it is sufficient to see that: 
 

 1 = 
2

1

1 2 1 2

1
1

1 1

1 1
2 1 1

G
r

u u
EG EG

r r r r

    
∂ +    

− ∂    
  ∂ ∂     + +         

 

 

+ 
2

1

1 2

1
1

1

1
1

E
r

v v
EG

r r

   
∂ +    

∂    
 ∂ ∂   +     

. 

 

 If we replace 
1

1

u r

 ∂
 ∂  

, 
2

1

v r

 ∂
 ∂  

 with the values that they get from the Codazzi 

equations then the preceding equation will become the Gauss equation: 
 

1 + 
1 2

1

r r
= − 1 1 1G E

u u v vEG E G

    ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂     
. 

 
 Here, we have two equations, instead of three (viz., two Codazzi and one Gauss), due 
to the fact that it is implicit that f + f′ = 0, which expresses the idea that corresponding 
parts of the two images are equivalent. 
 
 
 § 18.  The angle that two corresponding elements (to two polar surfaces) AA′, BB′ 
form between themselves is measured immediately when one thinks (§ 2) that the 
direction BB″ that is conjugate to BB′ at B is precisely the line that is dual to AA′, and is 
therefore parallel to AA′ in the two senses.  Therefore, the angles of AA′ with BB′ are 
equal or supplementary to those of BB′ with BB″. 
 If AA′ is tangent to a line of curvature for A then it will be normal to BB′ in both 
senses (and will therefore meet BB′ ).  We would now like to study what happens for the 
angle ϕ between the corresponding elements on a surface and on the planar image 
(constructed in a certain sense).  Take the lines u, v to be the lines of curvature, and 
measure ϕ in the same sense by which the planar image was constructed.  For the 
singularity of the result, one performs the calculations in two ways, one of which will be 
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given in the rational form cos ϕ, while the other in the form sin ϕ.  Let (Y1, Y2, Y3, 0) be 
the image point of the point (xi) of the surface relative to the plane x4 = 0, and let (Xi) be 
the direction cosines of the parallel through (Y) to the element that emanates from (x) 

with the direction cosine 
dx

ds
 
 
 

; if we denote the corresponding arc length of the planar 

image by ds then: 
 

cos ϕ  = 
X dY

dσ
∑  = 

1 1 1

2 2 2

3 3 3

[ , ]
1

[ , ]

[ , ]

dY Y dx x

dY Y dx x
ds d

dY Y dx x
σ

 

 

cos2 ϕ = 

2

2 2
2

0 [ , ] [ , ]
1

0 1 [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

d dx x d x

dx x d x
ds d

dx x d x dx x d x ds

σ ξ
ξ

σ
ξ ξ

∑
∑

∑ ∑
, 

 
and, recalling the usual identity: 
 

cos ϕ = 1 − 

2
( , ) ( , )dx x d x

ds d

ξ
σ

 
  
 

∑ = 1 − 

2
[ , ][ , ]dx x x d

d ds

ξ
σ

 
  
 

∑ = 1 − 

2
dx d

ds d

ξ
σ

 
  
 

∑ . 

 
which makes: 

sin ϕ = ± 
dx d

ds d

ξ
σ

∑ . 

 
 We now avail ourselves of the notations and formulas in the set of § 15 in order to 
find a rational form for cos ϕ. 
 The third formula of this set gives: 
 

3dX

dσ
 = 2 1 1 2

D du D dv
E X X GX X

d dE Gσ σ
′′  ± − + −  

   
∓ . 

 
 The scrolling parameters of the line that emanates from the point (u, v) of the surface 
to the point (u + du, v + dv) are: 

1 2

du dv
E X G X

ds ds
+ . 

 
 One has, with the one notations: 
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cos ϕ = 

3 3 1 2

3 3 1 2

3 3 1 2

1
dX X E du X G dv X

dY Y E duY G dvY
ds d

dZ Z E du Z G dv Z
σ

+

+

+

. 

 
 One splits the right-hand side into two determinants and replaces dX3, dY3, dZ3 with 
their values; one gets: 
 

 cos ϕ = 
2 3 1

2 3 1

2 3 1

1
X X X

D
E du E du dv Y Y Z

ds d G
Z Z Z

σ
 ′′ ± −  

 
 

 

+ 
1 2 3

1 2 2

1 2 3

X X X
D

G dv du Gdv Y Y Y
E

Z Z Z


  −  
  



∓ . 

 
 One of these two determinants is equal to + 1, while the other one is equal to – 1, so: 
 

cos ϕ = ± 2 2

1 2

1 1 1
E du EG du dv G dv

ds d r rσ
  

± − +   
  

. 

 
 From the formulas that give cos ϕ, sin ϕ (which are immediately seen to be 
equivalent), one has: 
 
 The asymptotes are characterized by the fact that the tangent at a point is parallel to 
the tangent at the corresponding point on the image curve. 
 
 The lines of curvatures are characterized by the fact that they result from the 
displacement of equal angles in two planar images. 
 
 One will then have that cos ϕ = 1 for the asymptotes, so one sees that this property is 
quite different from the analogue for Euclidian space. 
 
 
 § 19.  Note that: 

e g – f 2 = E G 
2

1 2

1
1

r r

 
+ 

 
. 

 Therefore: 
 
 The ratio of the areas of two corresponding infinitesimal elements in the planar 
image and the surface (around the corresponding points A′, A, resp.) is equal to the 
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curvature of the quadratic form that the linear element of the surface is endowed with at 
the point A; i.e., to the absolute curvature of the surface. 
 
 As a result, the relative curvature is given by the ratio of the infinitesimal elements of 
two dual surfaces. 
 As one sees, we have a fact that is analogous to the one that is presented for the 
torsion of the curve; that, combined with the facts that were enumerated in these 
paragraphs, will give rise to the observation that the property of the parallels in Euclidian 
space seems, in many cases, to split into two classes, one of which has the property that it 
is preserved in hyperbolic space, and the other, the property that it is it preserved in 
elliptic space.  One then observes: 
 
 The angle between the image lines of the lines of curvature is given by the 
complement of ± (w1 – w2), depending on the sense of the parallelism. 
 
 We again explicitly point out a result that was mentioned elsewhere: 
 
 The planar image is degenerate for the surfaces with zero curvature, and for them 
alone.  One could predict the first part of this theorem by noting that the asymptotes of 
such a surface have torsion ± 1. 
  
 Thus, since the mean of the squares of the torsions of the asymptotes at A is equal to 
the curvature relative to the surface at A, the mean of the squares of the Clifford torsions 
is equal to the absolute curvature. 
 
 The orthogonal systems of the surface that are preserved in the planar image are given 
by: 

2 2
2 1 2 1 1 2

1 1 1 1

sin sin

E du G dv

E G
du EG dv dv EG du

w r r w r r

   
± − ± −   

   

 = 0; 

 
i.e., by: 

± 2 2
2 2

1 2 1 2

1 1 1 1
( )

sin sin
EG E du G dv E G du dv

r r w w

   
− − + −   

   
 = 0. 

 
 One has w1 + w2 = 0 for the minimal surface, so: 
 
 For the surfaces with minimal area, the asymptotes form an orthogonal system on the 
surface such that they are preserved in the planar images. 
 
 
 § 20.  Now, following the advice of Prof. Bianchi, we shall apply the preceding result 
to the W surface. 
 Let: 

ds2 = E du2 + G dv2 
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be the linear element of such a surface, when u, v are the lines of curvature; since the 
Codazzi formulas are identical for our space and elliptic space, the Weingarten formula 
will also apply here.  If we thus set: 
 

E = 2

1

β
, G = 2

1

( )θ β′
, 

with 

2

1

r
 = θ(β), 

1

1

r
 = θ(β) – β θ′ (β), 

 
then we will get the linear element of the planar image: 
 

e = 
2

2

1 ( )θ β
β

+
,  f = ± 1,  g = 

2

2

1 [ ( ) ( )]

( )

θ β β θ β
θ β

′+ −
′

; 

i.e.: 
 f = const. for a W surface, and “e” is a function of “g”; the determination of the W 
surface is thus reduced to the search for all such linear elements of the elliptic plane or 
Euclidian sphere. 
 Conversely, if one satisfies this condition then one can write down the preceding 
formulas, and then, by Weingarten’s observation, the Codazzi equations will be satisfied, 
and by a previous calculation, the Gauss equation will be satisfied. 
 However, we would like to examine this result more precisely, and if we observe the 
remarkable fact that of the two conditions “f = const.” and “e is a function of g,” one of 
them is a consequence of the other one when one already knows that: 
 

e du2 + 2 f du dv + g dv2 
 
is the linear element of one of the images of a surface, when referred to the lines of 
curvature.  In fact, since u, v are the image lines of the lines of curvature, the spherical 
element: 
 

e du2 + 2 f du dv + g dv2 
 
must continue to have curvature + 1 when one changes the sign of f.  Recalling that f is 
constant, and subtracting one of the equations that express the idea that the curvature of 
the form: 

e du2 ± 2 f du dv + g dv2 
 
is equal to + 1 from the other one, one will get (setting f = 1, for simplicity): 
 

1 1

1 1

e e

u v v ue eg e eg

   ∂ ∂ ∂ ∂−      ∂ ∂ ∂ ∂− −   
 = 0; 

i.e.: 
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( 1) ( 1)e eg e ege e

u v v u

∂ − ∂ −∂ ∂−
∂ ∂ ∂ ∂

 = 0, 

so 
( ) ( )eg e eg e

u v v u

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

= 0, 

namely: 
e g

u u
e g

v v

∂ ∂
∂ ∂
∂ ∂
∂ ∂

 = 0. 

 
 Therefore, our theorem can be stated in the following form: 
 
 The search for the W surfaces in elliptic space reduces to the search for the linear 
elements of the Euclidian sphere for which f is constant and the curvature remains equal 
to + 1 when one alters the sign of f. 
 
 This explains the origin of the condition in Weingarten’s theorems in Euclidian space 
that “e is a function of g.” 
 Moreover, we see that: 
 
 A necessary and sufficient condition for a surface to be W is that it one can make: 
 

1 2

1 1
EG

r r

 
− 

 
 = const. ≠ 0. 

 
 If f is a non-zero constant and e, g are functions of u or v that do not change value 
when one switches “u” with “− u” or “v” with “ − v” then the linear element will 
correspond to the planar image of a W surface. 
 
 In fact, if one switches u with − u (or v with – v) and e and g do not change in value 
then that will show that f changes only in sign, and one thus finds oneself in the presence 
of two forms with curvature + 1 that differ by only the constant sign of f. 
 We must now resolve a question that was already posed on other occasions, namely, 
that of constructing a surface for which one is given the planar images by quadrature; in 
fact, the process is different from the one that one follows in Euclidian space, but also 
much simpler. 
 Let (Y1, Y2, Y3, 0) and (Z1, Z2, Z3, 0) be two corresponding points of the two planar 
images in the plane x4 = 0.  If one chooses the plane x4 = 0 to be the initial surface of the 
corresponding normal congruence then one will have (§ 4) for a generic ray of that 
congruence: 
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x1 = 1 1

2(1 )

Y Z

YZ

+
+∑

, x2 = 2 2

2(1 )

Y Z

YZ

+
+∑

, x3 = 3 3

2(1 )

Y Z

YZ

+
+∑

, x4 = 0, 

 

ξ1 = 3 2 2 3

2(1 )

Y Z Y Z

YZ

−
+∑

, ξ2 = 1 3 3 1

2(1 )

Y Z Y Z

YZ

−
+∑

, ξ3 = 2 1 1 2

2(1 )

Y Z Y Z

YZ

−
+∑

, ξ4 = − 
1

2

YZ+∑ . 

 
 In order for this congruence to be normal, one can set: 
 

dw = − ∑ ξi dxi , 
 

w = ( )

1 2 2 2 3 3

1 2 3

1 2 3

( ) ( ) ( )

2 1

d Y Z d Y Z d Y Z

Y Y Y

Z Z Z

YZ

+ + +

+∫ ∑
, 

 
and for the generic point (x) of one of the ∞1 corresponding surfaces, one will then have: 
 

Xi = xi cos w + ξi sin w, 
 
where an arbitrary additive constant enters into w. 
 We would now like to interpret this fact in a Euclidian metric.  Take a point (xi) in 
elliptic space, and set x = x1 / x4, y = x2 / x4, z = x3 / x4, where the x, y, z form a tri-
rectangular trihedron.  A point for which x4 = 0 will represent a point of the plane at 
infinity, and the values of x1, x2, x3 will give the corresponding direction cosines.  
Observe that the metric on the plane at infinity relates to the conic x2 + y2 + z2 = 0, so it 
will coincide with the analogue of the plane x4 = 0 in curved space, which is referred to 
the conic 2 2 2

1 2 3x x x+ +  = 0.  Thus, the pair of elements e du2 ± 2 f du dv + g dv2 of the 

plane x4 = 0 corresponds to the same pair of linear elements for the sphere in flat space, 
if, for the moment, we make a point A in the plane x4 = 0 correspond to that point of the 
sphere that determines the direction that corresponds to A under the projectivity above.  
The absolute is then changed into the imaginary sphere: 
 

x2 + y2 + z2 + 1 = 0, 
so we finally have: 
 
 Given a pair of spherical elements e du2 ± 2 f du dv + g dv2 with f constant, the lines 
that are parallel to the ray that is determined by the midpoint of one of the arcs that are 
terminated by a pair of corresponding points A, A′ and pass through a point B that is 
placed upon the diameter that is normal to that arc and at a distance of tan ϕ  / 2 (where 
ϕ is the distance between the points A, A′) from the center of the sphere (where ϕ is the 
distance between the points A, A′) will generate a W congruence in which focal planes 
are anti-polar with respect to that sphere. 
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 § 21.  Returning to curved space, we will give some simple examples of these 
theorems that will also lead to interesting consequences. 
 The problem of determining the developables in elliptic space is equivalent to that of 
determining those of our spherical elements for which θ(β) = β, namely, f = g = 1; i.e., 
the elements e du2 + 2 du dv + dv2.  Set u′ = u, v′ = u + v.  This element will become the 
other one: 

(e – 1) du′2 + dv′2, 
 

namely, the one that relates to the surface canals (canali) in flat space that, as one will 
deduce from the Weingarten formulas, or those of Codazzi, have constant e or g, 
provided that one chooses the parameter of the corresponding line of curvature suitably.  
What is known of the rest is that all developables in elliptic space are known. 
 Another, much more interesting, case is the one for which w1 – w2 = const., since the 
evolutes of such a surface will be complementary pseudo-spherical surfaces.  Since the 
angle of the spherical images of the lines of curvature must (§ 19) be constant, the 
problem of determining such surfaces is identical with the problem of determining the 
spherical elements of the form: 

e dα2 + 2 dα dβ + dβ2 
 
that have constant K, i.e., one of the form: 
 

e−2τ dα2 + 2 cos σ dα dβ + e2τ dβ2, 
 
where σ is constant [complement of ± (w1 – w2)]. 

 The geodetic torsion of an element of such a surface is proportional to 
2

d d

ds

α β
; one 

observes, moreover, that our result can be stated: 
 
 In order to find all systems of lines that divides the sphere into ∞2 equivalent 
infinitesimal parallelograms, it is sufficient to find the Clifford images of the more 
general pseudo-spherical, normal congruence in curved space. 
 
 By comparing the results that were obtained for these spherical linear elements with 
the ones that were obtained by Prof. Bianchi in his article in t. XVIII of Annali di 
matematica (1890), one will obtain some consequences that seem noteworthy to me. 
 Prof. Bianchi proved that any spherical element: 
 
(α)     ds2 = 2 2 2 2

1 2H du H dv+  

with 

(β)    tan 2

1

1

2

H

v H v

σ  ∂∂
 ∂ ∂ 

 = cot 1

2

1

2

H

u H v

σ  ∂∂
 ∂ ∂ 

, 

 
where σ is constant, is the linear element of the spherical image of a Euclidian, pseudo-
spherical congruence that is referred to the lines that correspond to the asymptotes of the 
focal sheet, and that if one sets: 
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τ = 1 2

2 1

1 1
tan cot

2 2

H H
du dv

H v H u

σ σ ∂ ∂+ ∂ ∂ 
∫  

then one can set: 
 

(γ)   
1 2

1 2

sin cos sin ,
2 2

sin cos sin ,
2 2

e H du H dv d

e H du H dv d

τ

τ

σ σ σ α

σ σ σ β−

  + = 
  


  − =   

 

namely: 

(δ)    
1

2

cos ( ),
2

sin ( ),
2

H du e d e d

H dv e d e d

τ τ

τ τ

σ α β

σ α β

−

−

 = +

 = −


 

 
so the element (a) can also be written: 
 
(ε)    ds2 = e−2τ dα2 + 2 cos σ dα dβ + e2τ dβ 2, 
 
where α = const., β = const. are the orthogonal trajectories of the planar images of the 
developables of the congruence, and conversely, any element (ε) can be put into the form 
(α) when (β) is true.  Moreover, if 2θ, 2ω are the angles between the asymptotes of the 
two focal sheets of the pseudo-spherical congruence above then one will have that: 
 

(ζ)    H1 = 
cos( )

cos
2

θ ω
σ
+

,  H2 = 
cos( )

sin
2

θ ω
σ
−

, 

where: 

(η)   
( )

u

θ ω∂ −
∂

= tan
2

σ
cos (θ + ω),  

( )

v

θ ω∂ +
∂

= − cot
2

σ
cos (θ − ω). 

 
 We now have to make the observation that when the coefficient of du dv is constant, 
and the coefficient of du2 is a function of the coefficient of dv2, the linear element will 
remain spherical when one changes the sign of f. 
 One then poses the following question: 
 
 What geometric relation exists between the two W congruences that are determined 
by the method of Prof. Bianchi by starting with the element (ε) and the element: 
 
(ε′ )   e−2τ dα2 – 2 cos σ dα dβ + e2τ dβ 2 
 
that can be deduced by changing the sign of cos σ? 
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 The element (ε′ ) is deduced from (ε) by changing σ into π – σ.  Thus, the element 
(α′) that is deduced from (ε′ ) in the same way that (α) is deduced from (ε) will be: 
 
(α′)     ds2 = E du′2 + G dv′2, 
 
and this will give rise to the relations: 
 

(δ′ )    
sin ( ),

2

cos ( ),
2

E du e d e d

G dv e d e d

τ τ

τ τ

σ α β

σ α β

−

−

 ′ = +

 ′ = −


  

 

(ζ′ )    E  = 1 1cos( )

sin
2

θ ω
σ
+

, G  = 1 1cos( )

cos
2

θ ω
σ
−

, 

where the angles θ1, ω1 satisfy: 
 

(η′ )  1 1( )

v

θ ω∂ +
′∂

= − tan 
2

σ
cos (θ1 – ω1), 1 1( )

u

θ ω∂ −
′∂

= cot 
2

σ
cos (θ1 + ω1). 

 
 When (δ′ ) is compared to (δ), that will say that u′ is a function of only u and v′ is a 
function of only v; if one compares the values of: 
 

e−τ dα ± eτ dβ 
 
that are obtained from (δ), (δ′ ), and recalls that (ζ), (ζ′ ) then one will get: 
 

(θ)   
1 1

1 1

cot cos( ) tan cos( ) ,
2 2

tan cos( ) cot cos( ) .
2 2

du du

dv dv

σ σθ ω θ ω

σ σθ ω θ ω

 ′+ = +

 ′− = −


 

 
 Use the given values of (θ) in the right-hand sides of (η′ ), and therefore replace 

tan
2

σ
cos (θ + ω) and cot

2

σ
cos (θ − ω) with the values that they get from (η): 

 

(κ)     

1 1

1 1

( ) ( )
,

( ) ( )
.

dv

v v dv
du

u u du

θ ω θ ω

θ ω θ ω

∂ + ∂ + = ′ ′∂ ∂
 ∂ − ∂ − =
 ′ ′∂ ∂

 

 
 It is therefore natural to set: 
 



Fubini – Clifford parallelism in elliptic spaces. 48 

θ1(u′, v′ ) = θ (u, v) ; ω1(u′, v′ ) = ω (u, v) 
which gives: 

(λ)    u′ = u tan2 
2

σ
,  v′ = v cot2 

2

σ
, 

for the (θ), so: 

(µ)    

2 2
1

2 2
1

( , ) ( , ) cot , tan ,
2 2

( , ) ( , ) cot , tan .
2 2

u v u v u v

u v u v u v

σ σθ θ θ

σ σω ω ω

  ′ ′ ′ ′= =  
  


  ′ ′ ′ ′= =    

 

 
 As for the rest of them, one verifies immediately that these values of θ1 and ω1 will 
satisfy (η′ ), and therefore, by Prof. Bianchi’s theorem and from (ζ′ ), one will get the 
spherical element (α′ ) that one deduces from (ε′ ) in the same way as (ε) is deduced from 
(α). 
 (µ) gives precisely the following theorem: 
 
 The Clifford images of a pseudo-spherical, normal congruence in curved space, 
referred to the developables, admit linear elements that are the linear elements of the 
spherical images of two pseudo-spherical congruences in plane space, referred to the 
orthogonal trajectories of the developables (which therefore correspond on the 
congruence); the focal sheets of one of the two congruences are Lie transforms of the 
focal sheets of the other one, and the Lie transformation by which one passes from one to 
the other is determined immediately once one is given one of the two congruences. 
 
 The geometry of elliptic space then gives a geometric interpretation of an arbitrary 
Lie transformation that is applied to a pseudo-spherical surface when it is imagined to be 
the focal sheet of a suitable pseudo-spherical congruence.  Moreover, the most general 
Bäcklund transformation for flat space is thus obtained from the only complementary 
transformation in elliptic space, while the Lie transformation comes about by the fact of 
the double sense of parallelism.  Moreover, in a more correct language, we see a doubling 
of the Bäcklund transformation into a complementary transformation and a Lie 
transformation. 
 We also note that for a pseudo-spherical congruence in flat space, one will have a 
spherical linear element: 

e−2τ du2 + 2 cos σ du dv + e2τ dv2. 
 
 The only solution to a Riccati equation will suffice to determine the associated 
element: 

e−2τ du2 − 2 cos σ du dv + e2τ dv2, 
 
and therefore the most general pseudo-spherical, normal congruence in curved space.  
Thus: 
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 Given a pseudo-spherical congruence in flat space, with the single solution of a 
Ricatti equation, one gets two complementary pseudo-spherical surfaces in curved space 
and another pseudo-spherical congruence in flat space. 
 
 Conversely, suppose that we are given a surface S in elliptic space for which w2 – w1 
= const. – i.e., a pseudo-spherical, normal congruence – and that we know the bisecting 
lines of the planar images of the developables.  We will then have an orthogonal system 
of lines such that the double system of its isogonal trajectories, under a certain angle, 
divides the sphere into equivalent infinitesimal parallelograms.  By quadrature, one will 
obtain (Bianchi, loc. cit., § 33) a cyclic orthogonal system on the sphere such that the 
axes of its circles form a Ribacour congruence with a pseudo-spherical generator; one 
then deduces a pseudo-spherical generator and one of its infinitely small deformations, 
and therefore a pseudo-spherical congruence. 
 
 Therefore, given a normal, pseudo-spherical congruence in curved space – i.e., a 
surface in curved space – for which one has: 
 

w1 – w2 = const., 
 
one will deduce two pseudo-spherical congruences in Euclidian space, and therefore a 
tetrad of pseudo-spherical surfaces in that space, as long as one knows the bisecting lines 
of the planar images of the developables. 
 
 
 § 22.  The fourth formula in § 15 ultimately gives another consequence. 
 Let: 

ds2 = 2 2 2 2 2 2
1 1 2 2 3 3H d H d H dρ ρ ρ+ +  

 
be the linear element of curved space, referred to a triply-orthogonal system, and let (X1, 
X2, X3), (Y1, Y2, Y3), (Z1, Z2, Z3) denote the scrolling parameters of the normals to ρ1 = 
const., ρ2 = const., ρ3 = const,., respectively.  We immediately get for the four formulas 
above: 

1 1
,

1
,

1

k k k
i l

k i k k l

k i
i i k

i k k

k l
l l l

l k k

X H H
X X

H H

X H
X H X

H

X H
X H X

H

ρ ρ ρ

ρ ρ

ρ ρ

∂ ∂ ∂= − − ∂ ∂ ∂ 
∂ ∂= ± ∂ ∂ 
∂ ∂= 

∂ ∂ 
∓

 (i ≠ k ≠ l). 

 
 In these formulas, which are deduced immediately from the relations that couple H1, 
H2, H3, the double sign is attributed to the double sense of parallelism, and in order to fix 
that, one will then recall that one takes the upper or lower sign according to whether (i k 
l) is an even or odd permutation (odd or even), respectively. 
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 It then results that 2
iH  = 

2

k
i

i

X
X

ρ
 ∂
 ∂ 
∑ , etc., so one will have: 

 
 Two triply-orthogonal systems that correspond point-by-point with parallelism in one 
sense of the fundamental trihedron will be equal to each other. 
 
 

On the Riemannian representation of parallel lines 
 and on isocyclic surfaces. 

 
 § 23.  The formulas that give the transformation from Riemann coordinates to 
Weierstrass coordinates are the following ones: 
 

x1 = 
2 2 21

4
2 2 21

4

( )

( )

x y z

x y z

− + +
+ + +

; x2 = 
2 2 21

4

x

x y z+ + +
; x3 = 

2 2 21
4

y

x y z+ + +
; x1 = 

2 2 21
4

z

x y z+ + +
. 

 
 A generic plane is represented by the sphere of Euclidian space: 
 

x2 + y2 + z2 + a1 x + a2 y + a3 z = 1
4 , 

 
in which, a1, a2, a3 are arbitrary constants, and all of these spheres intersect in a great 
circle of the sphere: 

x2 + y2 + z2 = 1
4 . 

 
 A system of generators of the sphere x2 + y2 + z2 + 1

4  = 0 is given by: 

 

(α)     
( ) 0,

2

( ) 0.
2

i
x y iz

i
y iz x

λ

λ

 + + − =

 + − − =


 

 
 If one is given two spheres: 
 

(β)     
2 2 2 1

1 2 3 4
2 2 2 1

1 2 3 4

,x y z a x a y a z

x y z a x a y a z

 + + + + + =
 ′ ′ ′+ + + + + =

 

 
then in order to find which pairs of generators of the sphere x2 + y2 + z2 + 1

4  = 0 support 

the circle (β) (viz., the image of a line in curved space), one subtracts x2 + y2 + z2 + 1
4  = 0 

from (β), and then eliminates x, y, z from the equations thus obtained, as well as from (α).  
One will arrive at: 
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1 2 3

1 2 3

1

1

1

1

a a a

b b b

i i

i i

λ λ
λ λ

−
−

−
−

 = 0 

for the determination of λ. 
 From this, one deduces that: 
 
 In order for the circle (β) and the circle: 
 
 x2 + y2 + z2 + 1

1 2 3 4a x a y a z′ ′ ′+ + −  = 0, 

 
 x2 + y2 + z2 + 1

1 2 3 4b x b y b z′ ′ ′+ + −  = 0 

 
to meet in the same pair of generators of: 
 

x2 + y2 + z2 + 1
4  = 0, 

one must have: 

2 31

2 31

1

1

b ba

a ab

−
+

−
 : 3 12

3 12

1

1

b ba

a ab

−
+

−
 : 3 1 2

3 1 2

1

1

a b b

b a a

−
+

−
 

 

= 2 31

2 31

1

1

b ba

a ab

′ ′′−
+

′ ′′−
 : 3 12

3 12

1

1

b ba

a ab

′ ′′−
+

′ ′′−
 : 3 1 2

3 1 2

1

1

a b b

b a a

′ ′ ′−
+

′ ′ ′−
 . 

 
 Therefore (§ 4): 
 
 In the conformal representation of curved space, parallel lines are represented by 
circles that intersect in the same pair of skew generators of the image sphere of the 
absolute. 
 
 
 § 23.  From that, and a theorem of Prof. Bianchi that was cited above, one deduces 
that: 
 The surface that is generated by a circle that moves – with or without deformation – 
and always intersects the same pair of skew generators of a sphere x2 + y2 + z2 + 1 = 0 
will admit the family of these circles as its family of isothermal curves. 
 
 This theorem can be generalized; indeed, one has: 
 
 All of the circular surfaces in a flat space that admit the family of circular generators 
as their family of isothermal curves can be obtained in the conformal representation on a 
flat space of the spaces with constant curvature as images of the isothermal lines of the 
latter space – i.e., (Bianchi A) as images of the rulings generated by the binormals to a 
curve of constant torsion. 
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 Having proved this theorem, one then has immediately (because under conformal 
representations of a non-Euclidian space in a flat space, the circles go to circles and the 
families of isothermal curves go to isothermal curves) that: All of the circular surfaces in 
an arbitrary space of constant curvature that admit circles as families of isothermal 
curves are deduced, with conformal representations, from the ruled locus of binormals to 
a curve with constant torsion in a space that has constant curvature, moreover. 
 In a beautiful article of Demartres (1), it is proved that the point P of intersection of 
the line that is common to the planes of two consecutive circles and the line that joins the 
intersection points of one of the these circles and the projection of the other circle onto 
the plane of the first one is a fixed point in space.  Then, take a moving trihedron, whose 
origin is the center of any generic one of these circles and whose x-axis passes through 
the point P, in such a way that the coordinates of the point P are (α, 0, 0).  Demartres also 
proved that if R is the radius of the circle then binomial α2 – R2 is a constant, so all of the 
rest of the Demartres discussion can be avoided with a very simple consideration: Indeed, 

consider the sphere T with center P and radius 2 2R α− .  Since the equation of the 

corresponding circle with respect to the moving trihedron is: 
 

x2 + y2 = R2, z = 0, 
 
one verifies immediately that this circle meets our sphere at diametrically-opposite 
points.  Now, if we represent a space of constant curvature on a flat space in a conformal 
manner in such a way that the sphere T represents the absolute then the circles in question 
will correspond to lines in curved space, and our circular surface will have a ruling for its 
image in curve space, for which the lines forms an isothermal family; this is what we 
would like to prove.  With Demartres, we call such surfaces isocyclic surfaces; we will 
then have: 
 
 The problem of constructing the isocyclic surfaces in spaces of constant curvature 
(or, in particular, in flat space) coincides with the problem of determining all of the 
curves with constant torsion in a space of constant curvature. 
 
 It then remains for us to resolve two questions: One of them is to find the effective 
formulas that permit one to pass from one problem to the other.  The other one is to 
interpret this theorem when it is applied to flat space with just the Euclidian metric; 
naturally, that is the more interesting question of the two. 
 Therefore, let the isocyclic surface Σ in flat space be defined by the form: 
 

ds2 = E (du2 + dv2), D du2 + 2 D′ du dv + D″ dv2, 
 
and let u = const. be the constituent circles of the usual isothermal family.  The absolute 
curvature 1 / ρu of the u = const. will then be a function of only u; the torsion of the u = 
const. will always be zero, and if one lets σ denote the angle between the principal 
normal to u = const. and the normal to the surface at generic point then one will have: 
 
                                                
 (1) Annales de l’École Normale Supérieure, t. IV, 1887, page 145, et seq. 
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which, from what we said, gives the derivative with respect to v: 
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with which, the assumed property gives: 
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while, for the Codazzi and Gauss equations, one has: 
 

(4)   D D″ − D′2 = − 
2 2
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 The surface Σ′ that is imagined in curved space will have the linear element: 
 

     ds′2 = 
2

E

λ
(du2 + dv2), 

 
where λ is determined by observing that the u = const are geodetic, so: 
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log
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log E

u

∂
∂

. 

 
 The second fundamental form of Σ′ is, as one calculates immediately: 
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D1 du2 + 2 1D′  du dv + 1D′′  dv2 = 

 

= − 
2 2 2 2

2

( 2 ) 2 ( )( )D du D du dv D dv E xX yY zZ du dvλ
λ

′ ′′+ + + + + +
. 

 
 If one sets Xx + Yy + Zz equal to the value that it gets from (1) ρ12 − D′ W and recalls 
that one can assume that λ − 2ρ is constant then one can deduce [recalling (1) and (3)] 
that: 

D1 du2 + 2 1D′  du dv + 1D′′  dv2 = 2D D D
du du dv

λ λ
′′ ′− − . 

 
 The u = const. then reduce to asymptotes – i.e., to lines, precisely.  In order to find λ 
without quadrature, one uses the Codazzi and Gauss formulas; one will get λ / D′ = 
const., and the Codazzi and Gauss formulas will reduce to: 
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D

u E

′∂  
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 = 0, 
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log

D D
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 = const. 

 
 From (2), (3), (5), the first two of these equations are consequences of each other.  If 
one could therefore prove one of the two directly, along with the third one, then one 
could prove our theorem, and in a new way. 
 (α) gives, from (3): 

2

u v

σ∂
∂ ∂

 = 0. 

 
 Therefore: Consider a quadrangle in an isocyclic surface in flat space that is defined 
by two circles and two orthogonal trajectories for the system of circles.  Calculate the 
values of σ (angle between the normal to the surface at a point with the plane of the 
circle that passes through that point) of the four vertices of the quadrangle; the sum of 
the values that the aforementioned angle take on at two opposite vertices is equal to the 
sum of the values that they take on at the other two vertices. 
 
                                                
 (1)  BIANCHI (Lezioni, Chap, V, page 114). 
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 However, a result that is far more noteworthy can be deduced from (α), (β). 
 It shows us that the binomial differential: 
 

(D″ − D) du = 2 D′ dv 
 

admits 1/ E  as an integrating factor, namely, that: 
 

D1 du + 2 1D′  dv = 2
D D D

du dv
λ λ

′′ ′− − du – 2 dv 

 

admits / Eλ  as an integrating factor (which one sees once one is given the linear 
element of the isothermal ruling).  Therefore: 
 
 One finds the asymptotes of the corresponding isothermal ruling on any isocyclic 
surface with only quadratures. 
  The asymptotes to any ruled locus of binormals to a curve of constant torsion are 
determined by quadrature. 
 
 This last theorem has an elegant geometric explanation: One knows that the 
asymptotes on any ruling are determined by means of a Riccati equation; it is therefore 
sufficient to know one asymptote, since the other one will be determined by quadrature. 
 If we compare the construction that was given by Darboux (t. III, Chap. XIV) of the 
conformal Euclidian image of a surface in curved space with the construction that 
Demartres gave for the isocyclic surface then one will obtain the following theorem, 
which permits one to construct exactly one − and therefore all − of the asymptotes to an 
isothermal ruling with just a quadrature: 
 
 A characteristic property of the ruling that is defined by the binormals to a curve with 
constant torsion is that the developable that is defined by the planes that are tangent to 
the ruling and the absolute will have an asymptote of the ruling as its edge of regression. 
 
 The last problem to be solved is that of interpreting the results that were just obtained 
for the isocyclic surface in flat space in the Euclidian metric.  If one recalls the theorem 
of § 8, which I arrived at precisely in order to resolve this question, then one will have 
immediately: 
 
 The problem of finding the isocyclic surfaces in flat space is equivalent to that of 
finding those pairs of curves with constant, but distinct, torsion in that space that 
correspond point-by-point with equality of arc lengths and first curvature.  The 
Razzaboni transformation for them will give a transformation of the isocyclic surfaces. 
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Varied and supplementary observations. 
 

 In addition to the questions and examples that were treated in the present treatise, 
other problems can be posed.  For example, that of giving the typical forms for the linear 
elements of the Clifford images of particular congruences (e.g., pseudo-spherical, etc.).  
All of the questions that result in elliptic space are much simpler to treat than the 
corresponding ones in flat space, due to the property that was proved above that the 
Clifford images determine a congruence.  We have therefore solved only the most 
important cases of knowing the normal congruences and W-congruences – i.e., their 
images – but with processes that are indirect and greatest simplicity; we have, however, 
always assumed that the Clifford images were non-degenerate.  If one of them can 
degenerate then in order for the congruence to be normal it will be necessary that the 
other one degenerates, as well, and one will have the congruence of normals to a surface 
of zero curvature, as we already know.  However, one can say more: 
 
 The congruence will be W if and only if just one of the Clifford images reduces to a 
curve C, or C is a line, or the lines of the other corresponding image to the points of C 
are geodetically parallel. 
 If both of the two Clifford images are degenerate then the congruence is W and is 
normal to a surface with zero curvature. 
 
 This last theorem gives a new characteristic projective property of the normal 
congruences to a surface with zero curvature, while so far it was proved that having 
degenerate images is a property that distinguishes these congruences only for normal 
congruences. 
 These theorems are proved immediately: If α, β, γ in § 12 are functions of only “u” 
then the equivalence of § 12 becomes: 
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2 2 2 2 2 2
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u u u v v v

α β γ
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α β γα β γ

α β γ α β γ
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∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
 If the first of these two determinants is zero then α, β, γ will be coupled by a linear 
relation, and the curve C will be a line; if the second one is zero then one soon recognizes 
from the procedures in § 12 that the v = const. prove to be geodetically parallel. 
 Finally, if α, β, γ are functions of only v – i.e., both of the Clifford images reduce to a 
line – then it is quite clear that the corresponding congruence will be W, since the second 
of the two preceding determinants will be annulled; indeed, the congruence will be 
properly normal, as one sees from an argument that is analogous to the ones in § 16, and 
as one can also convince oneself geometrically. 
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 Something else to note in the present treatise is, perhaps, the definition of the angle 
between two skew lines;  I therefore believe that it is not pointless to give them another 
equivalent definition that is independent of any concept of parallelism. 
 Let a, b be two lines and, without diminishing the generality, let a be the line that 
connects the point (1, 0, 0, 0) with the point (0, 0, 0, 1), and let the common 
perpendiculars to a and b be the line β that goes from the point (1, 0, 0, 0) to the point (0, 
1, 0, 0) and the line γ that goes from (0, 0, 0, 1) to the point (0, 0, 1, 0).  The line b 
removes segments of length ϕ, f from the lines β, γ by starting with the points (1, 0, 0, 0) 
and (0, 0, 0, 1), respectively; the line b will be the line that connects the point (cos ϕ, sin 
ϕ, 0, 0) to the point (0, 0, sin f, cos f).  It is then easy to construct the scrolling parameters 
of a, b, and if one lets w denote the angle between these two lines then one will have, as 
one sees immediately, cos w = cos (ϕ ± f) according to the sense in which the angle is 
measured.  Therefore: 
 
 The cosine of the angle between the two skew lines is equal to the cosine of the sum or 
difference between their minimum and maximum distances, according to the sense in 
which it is measured. 
 
 It then follows immediately from the theorem that was cited many times above that 
the angle between two lines will admit just one determination when and only when the 
two lines are coplanar. 
 We would expressly like to note that in all of this treatise the question of the 
orientation of a line was always left untouched, and therefore that of the precise 
determination of the angle between two skew lines; a greater degree of precision was 
always useless for us, and could be easily established, moreover. 
 I must also add that I had already completed the present treatise when Prof. Bianchi 
informed to me that Study (Ueber Nicht-Euclidische und Linen-Geometrie; Greifswald, 
1900, pages 73-79) has treated Clifford parallelism.  In those pages, Study, starting from 
the purely geometric viewpoint, stated and then gave some very simple corollaries to the 
following two theorems: 
 
 The totality of polar pairs of lines in curved space can be referred to the totality of all 
pairs of lines that are formed from a line of a fixed star and a line of another fixed star in 
flat space.  The rotations of one or the other of these stars will correspond to scrolling in 
one or the other direction in flat space. 
 
 The totality of oriented lines in elliptic space can be imagined to be bijectively 
referred to the pairs of points of a Euclidian sphere, in such a way that the motions of 
one or the other of the images correspond to scrolling in one sense or the other. 
 
 The application of our principles to hyperbolic space leads to complicated formulas in 
imaginary numbers.  The direct study of Lobatschewsky parallelism would not be quite 
so symmetric, since in hyperbolic space the two senses according to which one can draw 
parallel lines are not distinct from each other, as they are in elliptic space. 
 

___________ 


