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1. The scope of the present study is to give a systeirstbrder differential forms
that are invariant under collineations and to give therifisic significance” (i.e.,
independent of the choice of coordinate variables) thatdadistinguish a congruence or
complex of lines, as well as to geometrically interphet results thus-obtained and write
down the differential equations whose aforementionemidonvould allow one to get back
to the congruence or complex. The integrability coownd for them ar¢he analogue of
the Gauss-Codazzi equatioms the metric geometry of surfaces that pertains to the
projective geometry of line systems. There are teuedh forms of degree two that are
coupled by certain conjugacy conditions (viz., apolarity) iffane prefers, in the case of
congruences, there will be just two forms, one of whiah thegree two and the other of
which has degree fourThe search for all the projective invariants of a congruence or
complex is thus reduced to the seaf@b would one perform using classical methdds)
the invariants of such a system of fornidie first two forms that relate to a complex are
preserved, not only by collineations, but alsp projective deformationand can be
defined in metric geometry to beompletely determined by the complex and to be
preserved under all such transformation¥hose two quadratic forms determine three
systems ofo! lines of the complex that are the analogues of the lifecurvature of a
surface. It is not difficult to extend the notions of detic, curvature, etc., to both
complexes and congruences, and to thus develop a thedahefarthat is analogous to
the theory that was developed for surfaces. The metlaidl thave proposed in the
papers that | published in the Annali di Matematica camesee.g., to determine all
complexes with a continuous Lie group of projective dafions into themselves, etc.

We use the algorithm of Ricci's absolute calculus asmtravariant differentials';
about which, we recall only thatfis a function ofJ; then the elementary formudéix =
> x d?ui + X xs du dus will continue to be true if one writes the covaridetivatives and
contravariant differentials in place xf andd?u, resp.

The method that is proposed can be appliedlltproblems that relate to geometric
entities whose coordinates are coupled by a quadratic relatfon: example, to
hypersurfaces and systems of spheres or hyperspheresesfibct to the conformal
group of a Euclidian spac8) (

() Cf., a paper that | published in the Atti della R. &dcd. Scienza di Torino.
() One will find nothing new in regard to surfaces in ordinspace. Cf., the final paragraph of my
paper: “Applicabilita proiettiva di due superficie,” Rer@irc. Matem. di Palermél (1916).
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2. Line systems. We denote the projective coordinates of a linexby, z p, q, r,
which are assumed to be coupled By (

(1) SE=X+yY+Z+pP+F+r?=0.

However, it is not pointless to introduce complex qii@st because we will prefer to
compare only the squaresmfq, r, and their derivatives.

A line systems defined by giving the, etc. (i.e., the, y, ..., r) as functions oh
parametersy (i = 1, ...,n). n=1 for ruled surfaces, which we shall not study, ard2
for congruenceg) = 3 for complexes. Obviously, it follows from (1) that

(2) Sxx=0 ( <n).
Set:
() ¢ =Y as dy dus = SdxX.

Suppose thahe discriminantA # 0 (which will exclude the congruences with coincident
focal surfaces and the complexes of tangents to a slrfdetA;s denote the algebraic

Kk
complement of;s in A, divided byA, and Iet(lI j denote the Christoffel symbols of the

second kind. If one uses the second covariant derigati’g then (2), (3) will imply
that:

(4) s = SX X =— SX Xs, SXj Xst+ SXs Xt = — SX Xs ~SX X%t =@t = 0

(since the covariant derivativesaf are zero). One deduces immediately that:

(5) SXj Xst = SX Xst = 0.
Set:

(6) DX =2 As %s Aix =2 As dy dus

DZX:zAjszs, D3X:2Xj5tdL§dUst(.

From (5), one will have:

(7 — SXjh Xst= S X Xsth,

SO

(8) - S D2 %)? = Sdx Dsx.

The coordinates, y, ... aredetermined up to a factor.What will happen if one
substitutesx = px, § =py, etc.? The new valug from (3) will obviously be’¢ ; the

X will be the covariant derivatives 6 = p x with respect to not only thg, but alsog

= f¢. If one setsn = 1, &« = 0 forh # k and denotes the new values of our expressions
by an overbar then one will easily find that:

() A sum will be denoted by S & according to whether its addends are obtained from @thehn by
substituting they, z, etc., forx or by varying the indices.
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(and analogously for, etc. Note thapbs is calculated frong.)
We deduce some immediate consequences. If we take:

(20) X= lAzx then SXx=-1, SXx=0.
n

For any value of r, s, the linear complex whose coordinatesxared, X, etc. will

vary in the pencil of complexes that is determined by the compMrase coordinates
are ¥s — X as, etc., and thg€special)complex whose coordinates are x, dtgith the
noted exception of the quantities that are deduced by sulvgtly, z p, ... for x).

- =T 2 2
(11) er - aTsX :,O(er - x a’S) +X |:prs _;prps +EarsAlp_inSA2p:| .

The complex whose coordinates a¥e, etc., varies in the linear system that is
defined by the complexes x, X. That line system is really""* systems, since the x, x
X define nt+ 2linearly-independent system#.one had:

ax+ Y bx +cX=0 (and analogously fof ...),

multiplied that byx and summed over the analogous expressions then one deulude
from (2) and (10) that = 0. If one multiplies by and sums over the analogous

expressions then one will ha\E b.a, = 0 for any value of, and sinc&\ # 0, one will

also havebs = O; it will then follow thata = 0.

The complex whose coordinates are:
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(12) E=Dox + xS X Dox (and analogously fay, z, 77 X, 0),

in which the duare consider to be parameters coupledgoy O, will remain unchanged,
and for their coordinates one will have simpfy = p & From (2), (5), (10), one will
have:

(13) SEX=SEx=SEX=0.

Any complex£ is in involution with thex™? linear systems that were considered
previously. If = 2then because there are two such compléxégey will be denoted by
&fand ¢’ If n=3then there will be only one such compéexvhich will be confirmed in
the following calculations (although it would seem tharéhshould beo® of them that
depend upon three parametdus that are coupled by = 0). The fact that there are two
complexesé for n = 2 is obvious from the fact thgt = 0 is a second-degree equation.
Indeed, lefR; : R, and R : R, be the two values afu : dv that annulp . We can assume

that theR;, as well as theR', transform like thedu, — i.e., they define a contravariant
system. TheR, R are determined up to a contatdtiore), and we will find a further
indeterminacy upon observing th@@(RiR2 - R B will remain invariant under changes
of the coordinate variablas, if we demand that the expression should be equakto
\/—_1 (). With that convention, it will follow immediatelpat:

JARR-RRB=1RR=1 A RRF RR 4

(14) .
2aRR=1:ARRB-2 AR RF ARR..

3. Line complexes. (13) determines thé etc., up to a common factor. In order to
determine those coordinatgdrinsically, we can set them equal to the complements of
the £ in the determinantx( xi, X2, X3, X, ¢) (the quantities in parentheses are written in the
first row, while the other ones are deduced by substitutieg, z, ... for thex), divided

by /A. (If A <0 and the complex is real then one can get a reiy dy dividing

by,/—A.) Note that:The ¢ 7, ... , thus-defined, remain invariant under not only

changes of the variableg, but also under multiplication of the X, y, ... by an arbitrary
factor.
From the rule for squaring a matrix, (2), (4), (10) gnle:

() That expression is imaginariflggible], sinceR; : R, and R : R, are complex conjugates in this

case. | shall not give the real entities here, apdaslly since, as one will see, the essential fatis
study will be concerned with expressions that are alwesidor real complexes.
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0O 0 0 0 -1

O0a, a, a; 0
0321 Ay &y 0] =-1,
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>~

(15) S&?

which makes it obvious thaft = &

With our hypothesis thak # 0, our complexé will never be special. We see the
geometric significance of this quite quickly. The coexels whose coordinates agex,
X, & are linearly independent. That is because if onealkadbX + cé + > h, x = 0, and
analogously fory,..., and one multiplied byé and summed over the analogous
expressions then one would find from (13), (15) that 0. One would therefore also
have thata = b = h; = 0, which would then show us that tkeX, x, define a linearly-
independent system. Thus, any six quantities — in partidilars, yrs, etc. — can be
written in the form:

Xrs = Qs X+ Ds X+ Cs £+ ZI}SXt (and analogously iy, ...),
t

in which, a, b, | are quantities to be determined. If one multiplieslblyis and sums over
the analogous expressions then one will find from (1),({0), (13) thatrs = as. If one
multiplies byx, and sums then one will find from (5) thﬁl}sahtz 0 for anyr, s, h.

t

SinceA # 0, one will have .= 0. Therefore:

(16) Xrs = &s X+ brs X+ Cis ¢, namely, Dx=¢X+xy+éy,
where

1
(16, cont.) xy=X2cCsdu dus= _ﬁ (X, X1, X2, X3, X, D2X), Y=2 bsdu dus.

These ar¢he fundamental formulagat allow one to solve for the complex — e.g., for
the formsg , ¢, x. If one multiplies the;, y, ... by the same factgrthen (9), (11), (15),
(16) will give:

17) =00 X=px T =py+Dip-2dF +4 [iAlp——lAzpj-
yo 30 3

We see how one caemove the indeterminacy i, ¢, x. The functiony, which
has the most complicated behaviorthis least importantas one seesAs for the rest of
them, one can make them proportionalytaf one desires, by choosing one of the line
coordinates to be equal to 1. (For examplex fetl andxs = Dox = X =0. From (16)4
will be equal tody, whered = — &) Multiplying (16) byA,s and summing the results that
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are obtained varying the indicess, one will find thatthe formsy, y are conjugate to the
reciprocal ofg ;i.e.:
(18) 2Asbs=2AsCs=0.

However, it does not seem appropriate to make, »e®Jl, since that equality would
not be preserved under projective transformations. hdRatonsider the third-degree
equation inwthat is obtained when one makes the determinané4 — Gs | (viz., the
discriminant ofay — x) equal to zero. If the three roots of that equatiorzare then if
one thinks of thelu as representing homogeneous coordinates of the poiatplanec
theng = 0, ¢ = 0 will represent two conicS, , Cy , the second of which onjugateto
the first one, which is thought of as its envelope. réfoge,if the three rootsw, are zero
for every s then either the form c is identically z@nowhich case, the complex must be
linear) or C, will degenerate into a line that is tangent tp @nd another line that passes
through the point of contactThat case, which we shall call tAbnor.malcase, must be
studied separately. In the general case (viz.nthmal case), the root& will change to
@ = w/ pwhen one multiplies the vy, ... by o. We can determing in arational and

intrinsic manner by demanding that a symmetric function ofdh¢e.g., the one that
presents itself as the denominator in the formulardgilts from solving equations (19)]
should be equal to unity.The other two symmetric functionmdependently of the
preceding,will be two projective invariants of the compléxhich | believe have not
been noticed up to now), and which can be calle®l projective curvatureof the
complex. Fixingg, it will remain for us to determine, in an intrinsic walyecoordinates
that one callsxormal of a line of the complexwhich are subjected to only orthogonal
transformations with constant coefficients and unity determinant undeneatiibns.
The formsg, ¢, x also remain determinate, each of which defimeedric geometry that
is completely special to the complex and invariant under collineat{&usfar, we had
generalized only the notion ahgle: It was defined by the metric that hador its linear
element.)

In addition to theabnormalcase, we also exclude the one in which the cadys<,
are bitangentsthose cases are quite simple, but they must be stuspedasely. In the
other cases, one can show that (16) is equivalesysiem of total differential equations
Indeed, if one letss{ rp) denote the four-index Riemann symbols #then from a
formula of Ricci’s in the absolute calculus, the grahility conditions for (16) will be:

Xest— %ts = = > (St, 1P) Apg Xq .
p.q

which will become:

(19) asX—atXs+Cs&—Gt &=
= (Cits — Gst) €+ (Crts — Gst) E=brs % + bre X — Z(St, I’p)qu)Qq
p.q
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in the present case, and when that is solvedsfog, X, X, it will give themas linear
combinations of the x,x & (Y). (16), (19)then constitute a system of total differential
equations that permit one to determine a complex of givendoymy. The integrability
conditions (which | shall not write down, for the sake of spaceitations) are the
analogues of the equations of the Gauss-Codazzi equations for the metricrgesfmet
surfaces in the projective geometry of complexXdse expression:

(16, cont.) X=- L (X, X1, X2, X3, X, D2X),

Jz

when squared, will give a simple expression)othat one can also deduce from (16), if
one recalls (15):

(20) XY =-SO2X—@X=X))* ==S D2x— ¢ X)?
=—S D2%)2+ 20 SX Dy x— 92 SX?

since 0 = S = Sx(D2x — ¢ X).
In order to compare this with the theory of congruenaes,notes that if one sets:

(21){ Neq = —SX<X,;  thenonewillhaves SBx*E> h dydudy dy
_ZXZZ%ZHSquSA}Jq -S X(Q)&:_%z '% qu dld dl‘{l

4. Geometric interpretation. Projective deformation of a complex. Letax+ by +
cz+tlp+mg+sr=0@ b, c, |, m, s=const.) be a linear complé€xthat is tangent to the
given complexC along a certain line. One will then have not only & = 0 (which is
just a concise way of writing down the complé)x but also Sax = 0. The compleX
will cut the given complexC at another line that is infinitely close t@nd is determined
by S> a %s du dus = 0; i.e.,¢ SaX + y Saf= 0. If one thinks of tha as the
coordinates of a point in a three-dimensional spateen that equation will determine a
pencil of quadric cones whose vertex is the imagimoint ofr. Each of those cones

() In order to see that (19) can be solvedtfia generic line u= ui°, one can, e.g., reduce they to
some canonical form fag = ui°. If the conicsC, , Cy have just one point in common (e.g., the pdint=
dw, = 0) theng will reduce to the forrmluj + 2duy, dug , while y will be of the type)B(duj + 2duy, dws) +

adu?

.,» where, from (18), (?) = 0; this is then tienormalcase. If the two conics have the paiot = dus

= 0 in common thery will be of the typea duj + 28duys dw, (& ?) 2rdyps) dusy + 24 dw dus . If the
pointdy, =duw, = O is the point of contact then the Ii%%z— x—wmw)=0Ji.e, @ —-)du+ 26dy + 24 dus

= 0] must pass through it; thus= 0. Hence, from (18)y + 2y= 0 (while they are in the abnormal case,
for which the conics are bitangents) ame 0, 5# 0. One sees easily that (19) are soluble in that-ease
i.e., thatCy, C, also have four distinct intersections. As one seethédt case, one can suppose thatufor

=u’) ¢=df + df + dE, = a du’ + B A +y df [illegible] a# 8% y# &
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corresponds to a linear complExhat is tangent t€ atr, and vice versaThe complex
is geometrically the complex that corresponds to a quadric gon® that is apolar or
conjugate to the cong = 0, which is thought of as its envelope. The linear system of
complexes that is defined by the complexes ,XX)s the system of complexes that is in
involution with the comple&

There is another compleé® along the lined, y°, ..., which are functions of the same
parameters; — i.e., there is a one-to-one correspondence@itfhe two complexes can
be projectively mapped to a pair of homologous lina$, so one can transform one of
them with a suitable collineation in such a mannerakatgr, r’, one will have:

x=pX, xs=p (X +mX),
(22)

9°x 9°x° ax° ax°
= + U + U, +h X |,
du, du, {aui oy, oy oy j
with suitable values ob, m, i, h. One deduces directly that along the lines °, the
forms ¢, ¢ ° of the two complexes will be proportionghupposing thathis condition is
satisfied for all values of (o, if one multiplies Xby a convenient factor then one can
assume thap = ¢ ° identically) is a necessary and sufficient conditfor C, C ° to be
mapped projectively to two homologous lines ?,and for the two formg, x ° to be
equal on them.

In fact, if one setg = ¢ ° identically then (22) will become, in covariant cooad#s:

(22, cont.) x=X°, xs= X+ ms X, Xij = K? +,UiX?+,Uj>§0+hij X

It is enough to recall the value (16, cont.)dh order to see that= x°.
Conversely: Letp = ¢ ° identically. If one hag = x ° for the linesr, r° then we can
transformC® with a collineation such that one will haxe X°, x. = x°, £= £° for the line

considered, and then the expressions, $x X, S&?%, SEx, SEx, SxEwill have the
same values for both complexes; the compi@will belong to the pencil of the two
complexesX, x. If one writes down (16) for the two complexes toae will see that for
the linesr, r °, (22, cont.) will givem = 4 =0 forp=1. Q. E. D.

The formsg, x collectively constitute therojective linear elemendf the complex.
The problem of the projective deformation of a complexe= of determining the forms
{ that are compatible witly, y — then reduces to the study of the integrability conditions
for (16), (19).

One first studies the case in whiglis identically zero.



