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5. Linear complexes. If we use homogeneous coordinates whose firskamequal
to 1 then we will have,s = X = 0, and from (16)bs = A Cs, Whered = — & Suppose we
choose parameters, Uy, Us such that the last three projective coordinatespaig r.
Recalling the definition of the covariant derivative, wi# have from (16):

hlk = — prk = [ank P + enx (77+ 1A p)],

hzk =—axP+ewx(k+10),

h3k = - awR+ew (0 +A1)],
atizguk =Ynk t Z(h:akjyr =a[Y-pY—q¥—ry;]

tCek[7+AT—P+Ipy1-(k+AQ Yy~ (0+A71)ys],

which we write, with a self-explanatory notation, as:

2 _ 2
oy =an Y + C 77, and analogously 0"z

=anw Z+Cu { -
au, oy, au oy “

(23)

Proof of thatThe necessary and sufficient condition for a comfiiee linear is that
the formy must be zero(16 cont.) proves that the condition is necess@gnversely, if
x =0 —ie.cnk= 0 —then (23) will show that if = 0 then the second derivativesyof
will be zero; i.e.,y will be a linear function op = u;, q = U, r = Uz, X = 1, and the
complex will be linear. However, i¥ # 0 then (23) will show that one can find a

0’z 0%y
ou, du, ou, du,
subtracting the result that is obtained by permutingvith |, one will find that

= 0. Differentiating with respect; and

qguantity ¢ such that
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2 2 _

y7i o7y = L o7y = 0; i.e., from (23), and from the fact thétz O, one will deduce
ou, du, ou, du,

that 14 anx — 14 ank = 0, and sinc@ # 0, one will havey = 0, i.e.,iz = const. Hence —u

y is a linear function of the;,, 1 —i.e., ob, g, r, Xx— and the complex will again be linear.

A very easy study to carry out in general would bsttaly all of the congruences that
are contained in a given complex using our methods anddadhie relationships between
them that are projectively invariant. We content elwes by proving thatf all of the
congruences of a given complex are W then the @xmll be linear. A congruence of
the complex will be obtained by taking to be equal to a functioffus, uy) of ug, U : It

2
will be Wif it determined from the,xﬁ, d’x (for h, k =1, 2)is zero. We writed,
du ~ du, dy,

instead o, in order to recall that one must consideto be a function ofi;, u, in the
derivatives. One will have:

;J=:$+x3§i (and analogously foy z ,etc.) h(k, =1,2)
24 “
(24) d*x _ 9%x +62x6f 6f+ 0°z 6f+ 0%z af+az 9% f
dy, dy Oydy 04doyoy Oy Lo y 0 | 40 | o B @ v
Set:
O = B + 85 of of +ag 6f+83 of
ik ek 3auh ou, hauk kauh’
_ of of of of
Wk = Cnk + Ca3 + Can + Cak '
u, du, ou, ou,
so, from (23), one will have:
d*x > _of o°f .
=ow Y+ o7+ — and analogously ig).
du, dy, e w7 ou, du, AU, ( gously i)

If x=1,p=uy q=us r =fthen the determinant that must be zero in orderhier t
congruence to b&/ will reduce to:

o’f 9%t  9°f o’f y
ou? dudu, A8 o+ M

100

0°f d’y d’z| _|o°f o v Dy ¥ 7
2 - 2 12 712 3

ou’ du duy dg ou; 2 772

0’z d*z oz 0%z
ou; dy dy dg ou;

0'23 y22
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If the first factor in the right-hand side is zéow any f(i.e., for any congruence) then
the a will be proportional to they the a, to thee, and ¢, to . From the conjugacy

relations (18), one will havg = 0, so the complewill be linear. However, if one makes
2

0’y

the second factor equal to zero then from (23), it wilbfv that thea 3
u auy,

(with the

2
crookedd) will be proportional to theaa—az, and as above, one will again find that the
u, oy,
complex is linear.
The formula that was exhibited here can be utilizedHerstudy of the congruences

that are contained in a given complex.

6. Congruences.We have two complexes &’that are defined by (12):

(12) & =D2x+xSXD;x (inwhich one setdus =Ry (and analogously foy, etc.)
(12") & =Dax+xSXDyx (inwhich one setdus = R)).

If the x, y, ... are not normalized then one will note that thel” will still be
multiplied by o when thex, y, ... are multiplied by a factqp.

The expressioft):

1
(25) W= Az (X, X1, X2, X11, X12, X22)

is zero for any W-congruence, and only for them, when one does not change the
coordinate variables \u(i.e., it isintrinsic) and will be multiplied by 1 f* when one
multiplies thex, y, ... by o, and thereforeg by o andA, by o*. Except for the W-
congruencegwhich are regarded adbnorma), the calculations will present themselves

in a simple way if we choosp in such a way that W will be unityWe will have
complete determinacy if theormal coordinates of a line of the congruence hidnecform

of ¢, which, when it is assumed to be a linear element, will defineetacnihat is
completely specific to the congruence and will be preserved under tprejec
transformations. Obviously the determinant:

() We call that expressioW precisely because it is zero for Mecongruences (viz., congruences of
lines whose coordinates all satisfy the same secahelsdiomogeneous linear equation.).
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by virtue of (14). That is:

(26) {ﬁ(x,xl,xz, Xff’)} =-W=-1

One immediately recognizes that (from the rulé geatains to forming the square of
a determinant), and by virtue of (1), (2), (4), X1@3), the left-hand side is equal to a
determinant that one can easily calculate to B&*S &2 [S &E]7). Therefore:

(26, cont.) §?S¢E7-[SéP=1.
Set:
(27) E=ESEE -ESE?, F=ESE -ESE?,  andanalogously iy, etc.

£SéE-&'sE?
JSESE?~ (K
thus-defined, like the, &', will still be multiplied bypo when one multiplies the, etc. by
p.) From (26) and (27), we will have:

(If the x, y are not normalized then one séts , etc. Theé, &,

(28) SEP=S¢?  SE’=s§?, SEF=SES SEE=S¢'E =0.

The complexeg , & are complexes of the pencil that is determinechbycbmplexes
& & and are in involution withf and &. Therefore, the complexésé&’, &, & belong to
the same pencil in involution with the complexes X<, X. There exist complexeSt+
i& in that pencil that are obviously speciarhat is, from (28), one will have $ £ i& )?

= 0, so the two lines whose coordinates afe i will be the directices of the
congruence that is common to the pencil of compléxé’, &, & and will then be the
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two lines that are common to the complexes x<, X. They are the line€) that are
conjugate tangents at x to the two focal shéats, principal focal lines)and the lines x

+ B (£+ i&) will describe the two pencils of focal linégiz., tangents to the focal
surfaces)when one varieg. The two conjugate pencils — i.e., the pencils of lines that
have their centers at the center of one focal pencil and the plane atht#reone for their
planes — are so-called “central pencils.” The complexXeand & are the complexes
that one calls “satellites” or “accompanying,” which contain the centrahpiés that
correspond to a point of one focal sheet and the points that are infiniteg/tolais The
involution that is determined in the focal sheets by the intersedfahg two complexes

2 X R dy andX x; R dy is the involution of the conjugate tangents to the focal sheets.
(The focal pencils constitute the intersections of the complexesxx). This fact can
help one write down to the differential equations of asgmptotes to the focal sheets.
(The problem of writing all of the other formulas thatate to the focal sheets is more
complicated, but not difficult.)

Along with W, we have found some additional invariants for a congeiénthe form
of ¥ &2, % &2 ¥ & & [which are coupled by (26, cont.)]. However, in orderind the
complete system of such invariants and their mutualioaektips, we must now pursue a
more analytic path.

We can search for the formuka — as X = bs { + &s '+ gs X as in the case of
complexes, and then seek to deduce the derivatives o, thef”. Along this path, we
would find the forms. bs du dus, 2 ¢s du dus, 2 grs du dus, in addition tog, for the
definition of a congruence. We prefer to follow a diiet route and to obtajust one
form & of degree four, in addition t@, and if one so desires then it would not be difficult
to substitute a form of degrawo for ®. In fact, any form of degree four, with the
process otovariant divisionthat | already studied elsewhere, can be writteonm and
only one way in the forr® =1 g%+ ¢ + xx, wherey, x, ¥ are forms of degregvo

that are conjugate tg, and they, ¥ are conjugate to each other. (For examplé, if
2a;2 du dw, — i.e., if theuy, uy are the developables of the congruence — theuill have
the typebsidu? + by, du? and they, ¥ will have the typeciidu’ + c2 du?.) Hence,
instead of givingd, one can give the invariahtind the two formg/, . (The invariant

will be determined fronw? = 1 when one is given the formgs ¢, x.)
7. The form @ of degree four. Recalling (8), we will set:
(29) q):zkrqudur dUdedeh:SdX Dox=-S (DZX)Z.
From the rules of differentiation with contravartiaifferentials, one has:

(30) Sdx Dox =Y as du dPus + P, S 02%)% =3 as d?u, d’us — .

() For these theorems, ctyalsch, Wiener Sitzungsberichte 11A00 (1891). The complexed , &
here are whatvalsch calls theBegleitcomplexéauxiliary complexes).
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Summing (30) gives d °¢ =Y as du d’us + X as d’ur d’us, which is an identity that

| already found iroc. cit. Any of equations (30) will give a new definition fox All of
those definitions will show thab, like @, is an intrinsic form; hence,it is determined
completelywhen thex, y, ... are normal coordinates. If the coordinates are no
normalized then upon multiplying y, ... by o, ® will change into:

(9, cont.) D =D+ @2 MNp+ 20 (pDyo— 20P).

Let (rs, hk) denote the four-index Riemann symbols fgrso a known formula of
Ricci in the absolute calculus will give the identity:

(31) Xest = %t = = (St 1P) Ay X, -
p.q
Setting [cf., (21)]:
(32) Nrspg = = SXis Xpg = SXr Xpgs s

one will deduceThe hspq are symmetric in the four indices, except fors= hys1; and
h1212: h2112 = h2121: h2121: h2112, for WhiCh, one will have:

(33) h1212— h1122: (21, 21)

Comparing this with (29), and recalling that tharesymmetricin the four indices,
one deduces that:

(34)  kiij = hijj (1,1 =1,2), hpp=kiot (21, 21), hin=kin— £(21, 21).
Given the formsb, ¢, all of the h will be determinate.

One deduces the value\&f* (which we have set equal to 1) immediately fro)(2

0 a, a, a,
W2 — i all hllll h1112 h1122 .
AZ a12 hlle h1212 h1222
a22 h2211 h2212 h 222

(35)

| also say that:

0 A A Ay
(35, cont.) W?= &, Hig Hip Hoagy, ,

aiZ H1211 H 1212 H 1222,

a22 H2211 H 2212 H 222
in which:

(36) Hrspq = Z A A g -
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In fact, if one multiplies the right-hand side of (86nt.) by:

10 0 0
Oa) 2a,a, &,

0 a,a, a,a,+ &, &,
Oa, 2a,a, &,

N =

then one will find the determinant of the right-hand &itl€35).

One will then also find the preceding invariants [coufiigd26, cont.) whet % =
1]
(37) Sszz_zhrquRrRstRq, nglz_zhrquRrRsR;)F{],

and analogously for &2,

SinceW # 0, for a congruence that is M thex, Xs, X, etc. will define six linearly-
independent systems. We can write six analogous quantigas, thegs;, X, etc. — as
linear combinations of those systems, and we write:

(38) Xrst = brst X+ z hrstj A]i )|( + z lstpq Abi '%j )ﬁ '

p.q..j

(and analogously foy, ...).

Multiplying (38) by x, and summing over the analogous expressions, one will find
that hspp = SXp %st . Thus, then that appears in (38) will coincide with thethat we
defined previously and calculated with (34). Note thatlio¥zs from (38) thato.s; will
be symmetric in its three indices, whiilg,q will be symmetric irr, s, t, as well as i, g.

Multiplying (38) by —x and summing over the analogous expressions, one will find
that:

(39) 0= lgpePoq-
p.q

Multiplying (38) by —xs and summing over the analogous expressions, one will find
that:
(39! Cont-) - Squ Xrst = bet apq + z IrstnUAni ATj hqu :

0,

The left-hand sides of (39, conawe determined completely gy ®. In fact, taking
the covariant derivative of (33), one will deduce alltlod Sx.s Xpqt + S Xpq Xst , @nd
[since, from (31), Sy %st IS Symmetric in its indiceg, g, as well as in the indicess, t]
one will also deduce that the §q X< are all given as functions of the covariant
derivatives of thén, and thus, from (34), they will be known when oneingg ¢, ®. If
one is giveng, ® then (39) and (39, cont.) will constitute a system afr fbnear
equations in the four unknowg; , lrsu1, lsuz, lisp2, such that the determinant of the
coefficients of the unknowns will be, from (35, conegual tow? = 1. Theb, | are also
determined in a simpler way when one is given the fogm®. If one is given those
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forms then one will know the system of equat(B883%, which permits one to solve for the
congruence. The integrability conditions for those equations are the analogties of
Gauss-Codazzi equations in our case.

Observation. — The preceding study applies to congruentkis the places where
one can suppose th&Y # 0. Let the formsg, ®, which arenot normalized by the
preceding methods, be constructed for such a congrueince. |

(40) Ax1+ 2B x2+Cxot+taxi+LBx+yx=0
(and analogous expressiong/jn..)

is the equation (written with covariant derivativagttis satisfied by the line coordinates
then if one multiplies (40) by or by x, and sums over the analogous expressions then
one will find that:

(41) Aay+2Bap+Ca=0,

and thata,; a + a2 = 0. Hence, i £ 0 thena = =0, and (40) will have the type of:
(40, cont.) Axg+ 2B x2+Cx2+ yx=0.

Other relations ar@ hy; + 2B iz + C ey = 0, which one finds upon multiplying
by x; and summing over analogous expressions. One can talkedasurfaceus, u, or
the developable of the congruence, or the characteis(#0, cont.). In the last case,

=C=0. Thusp;» =0, h12ij =0, ¢ = a dU.l2 + oo dUZZZ ® =Kkqiq11 dU.f + ko200 du;‘ -2

(21, 21) du?dui. Thus,® has the type)()_(+%(21—’221)¢2 (cf., 8 6. One has$ =
-8

2

% (21’221): %curvature ofg). Giving® is equivalent to giving just the quadratic fogm
—a;

that is conjugate t@ ; the form¢ in 8 6 is zero. In ordinary derivatives, (40, tbis
then:

9°x__0dlogya, ax dlogy &, dx
ou, du, ou, du oy du,

+ yx=0.

It seems that for a complete study of the congre®d (abnorma), one must also
examine the form 8¢&2, in which theé are defined by §x=Séx =S&xs=0; e, if
they are the coordinates of the osculating complex.



