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INTRODUCTION

The mechanics of parametric systems that is tradilipdeveloped from the ideas of
Lagrange always encounters some significant difficuilien it desires to enter into the
guestions of friction between solids (viz., impossibitityd indeterminacy) or the general
notion of constraint (Béghin’s servo), and on the otlaerdhthe Lagrangian form of the
equations of motion gives us no indication about thareaif the integration problem.

In his celebrated lectures on integral invariants, Efigtan showed that all of the
properties of the differential equations of the dynaroickolonomic systems result from

the existence of the integral invariaj‘nw, w=p; dd — H dt Therefore, any holonomic

system whose forces are derived from a force funasi@ssociated with a formw such
that the equations of motion are the characterisfitie exterior formde In the course
of the last ten years, under the influence of the tapsts, the theory of exterior forms on
differentiable manifolds has been erected on foundatibas seem definitive. It is
therefore natural to wonder whether classical mechanight not benefit greatly from
that line of thought if one constructs it by basing it uparexterior form of degree two,
whether the notion of a constraint might not be eanisdl from a more intelligible angle
thanks to the notion of manifolds, whether the indebeacies and impossibilities that
seem paradoxical in the Lagrangian context might noé lzawnatural explanation, and
finally if it is not possible to consider the problemimegrating equations of motion in a
new light when the latter are generated by a fOrof degree two.

In order to achieve those diverse objectives, it séaem®e useful to recall in Chapter
| the study of the logical bases upon which Galileanhaeics is erected. In 8§ 1, | will
then show that when one proposes to find some geneffatimg for the equations of
motion of a material point that are invariant undss transformations of the Galilean
group, the most interesting form is an exterior forindegree two that is defined on a
manifold \; = Es O Es O T (Es is Euclidian spacel is the temporal number line))( In
8 Il, it will be shown that any holonomic parametristgym withn degrees of freedom is
associated with a forr@ of degree two of rankr2that is defined on a differentiable
manifold whose characteristics are the equations afomd?). That form can be
expressed, if one so wishes, by meansnd?faff forms andlit, and the Hamiltonian form
is only a simple particular case of it. In § lll,Hadl give an overview of how one can be
liberated from the servitude to coordinates in the studyyofhical systems and the
important role that is played by H. Cartan® &énti-derivation operatoir ( ), since the
characteristic field E of the for@ is defined by the relation(E) Q = 0.

Having laid these foundations, in Chapter I, we shabbaupon the general theory
of one constraint that is imposed upon a material syst@ constraint that is imposed
upon a material system is composed of two distinct:

() KRAVTCHENCKO has presented that concept at the®\@tingrés de Mécanique.

() In 1946, in tome LXX of the Bulletin des Sciences Mathéques, pp. 90, LICHNEROWICZ
introduced exterior forms for the formation of the ecuagi holonomic and linearly non-holonomic
systems.

() H. CARTAN, Colloque de Topologie, Bruxellesk950, Masson, Paris, 1951.



2 Application of second-order exterior forms to mechanics

1. One arbitrary relatioa (pi , g, t) = 0 links the position parametegsandp; ,
which define a submanifold &&n.1 .

2. An action of forces that can be applied to thetesy in order to realize that
constraint, which is an action of forces that, ia lBinguage of manifolds, translates into a
constraint field Ethat is defined in the tangent spac&/ig; .

The formda and the constraint field; Bre not independent, since they are coupled by
the condition:

(IL.1) i(E+E)da=0  or i(E)da+i(E)da=0.

An important class of constraint is the one in witicé field E has the form e
whereA is a numerical function o¥..1, ande is a direction field that is knowen priori
(a convention will always permit one to reduce to trasey. Indeed, that category
includes contact between solids, with or without fonti(cf., 8§ 6), zero-power
constraints, whose general definition we shall givg & and Béghin’s servo constraint.
For those constraints, (II. 1) will show that thector A is the quotient of two scalar
invariantsi (E) da andi (e) da. One then sees that one of the great advantagés of
Cartan’s operatori ( ) is that it permits one to determine the classiegctions
independently of the coordinates and to solve the equaifometion. In addition, for
(e) da=0,i (E) da# 0, the postulate of solid rigidity that is imposed upomaterial
system translates inide) da# 0. Finally, in 87, we shall study the determination of the
equations of motion by means of characteristics of @ fo¢ of degree two of rank
1), to which, one appends a Pfaff form, and the existehtd®t form is a consequence of
the notion of compatibility of constraints.

Chapter Ill is devoted to the study of setspofonstraints in the previously-given
sense of that word and the compatibility of that sEte possibility of determining the
factors in the constraints by means of H. Cartap&rator independently of the equations
of motion is also discussed, along with determining th@agBons of motion as
characteristics of a form of degree two and rank 2 (9 that is joined withp Pfaff
forms. Various concrete examples that show the gétyeof the method will be given.

Chapters IV and V will study the following problem for a@péclass of constraints
that include the classical unilateral constraints: $igms are imposed priori on the
factors of the constraints and the forde and the initial conditions are given for any
possible motions of the system. The operatp)y immediately permits one to defipe
equations whose right-hand sides depend upon only the imtiditions and some forces
besides the constraint forces. A geometric interpoetatf the system will permit one to
transform the problem into a problemanalysis situfor a family of 2 p-hedra that is
composed by taking a vector in each column of the raatri
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One establishes that the necessary and sufficie@ fshedra with the same summit
to not have any common interior points is that tfe{(4) diagonal minor determinants
that are extracted from the matrix|f || A% = ||- r™ || a") must all be positive. In
particular, that condition implies that for Appellsonstraints, which includes the
classical holonomic and linearly non-holonomic caaists as particular cases, the initial
conditions, combined with the sign convention that waposeda priori on the
constraint factors and the forrdsa, will be sufficient to determine the final motion. rFo
the other types of constraints, the initial conditiomght not be sufficient. Therefore,
the case of sliding friction, which has been well-knogice the work of Painlevé,
exhibits nothing exceptional from that standpoint. It thesults from this that it is not
the laws of Coulomb friction that must be in questisince any other law would give
rise to some impossibilities and indeterminacies that raepg@on only the sign of the
invarianti (e) daat the pointM, of the image manifold [(€) da< o].

Chapter VI is devoted to the study of the differentistems of dynamics when they
are considered to be characteristics of a f@nof degree two that is defined on a
differentiable manifoldvan.1 . That study is carried out by means of endomorphisms in
the exterior algebra, which are endomorphisms that ledd. tCartan’s anti-derivation
i ()and derivationd () operators. In regard to that, permit me tcallethe text of his
celebrated 1950 talk at tl&olloque de Topologien Brussells in order to facilitate the
reader’'s comprehension of that viewpoint. Instefdriting the differential equations in
an arbitrary analytical form, which always has it®onvenience of making a coordinate
system that is more or less adapted to the questiore into play, one argues solely on
the basis of the generating for&n. The major role that is played by infinitesimal
transformations in the integration of a differehgstem has been known since the work
of Sophus Lie. That role is marvelously illumindtey the operato8 (X), since if the
field X is the infinitesimal generator fd2 then 8 (X) Q = 0. Two big cases appear
immediately:

A) d Q = 0. Any infinitesimal transformation correspondsa first integral, and
conversely. One can integrate by quadraturesibalye knows a sub-ring af functions
in involution. It will then result that fo = dp O dd — dH O dt, finding the cases of
integrability amounts to studying the constructiohthat sub-ring. In the case of
mechanicsH will be quadratic, and one indicates the consioacbdf H relative to the
existence op algebraically-generic elements of that sub-ring ffermit one to recover
the known cases of integrability by a general metioed construct some others.

B) d Q # 0. One supposes thatfields are known that generate infinitesimal
transformations. The integration will then decospmto two phases:

1. The integration of a completely-integrable P$gGtem of rank (2 — ).

2. The integration of a system |ofnyariant Pfaff forms, and the results of that are
already found to be stated implicitly in Elie Cartalectures on integral invariants.

In the mechanical applications, the order of thengletely-integrable system is found
to reduce byg + g) units if, on the one hand, one knog/érst integrals, and on the other
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hand,q constraints, in the sense of Chapter Il. One cagiate by quadratures ih2 r
=p + g, and if ther invariant forms are closed modulo the integrals ofciepletely-
integrable system.

Some examples will illustrate that theory.




CHAPTER ONE

DIFFERENTIAL FORMS ASSOCIATED WITH
A MATERIAL SYSTEM

Since the primary objective of mechanics is to form agonatof motion for a
material system, it is interesting to have a metthad permits one to obtain them in an
arbitrary coordinate system. That is why it is usedudtudy the possibility of associating
a system with one or more differential forms thategate the equations, while those
forms are invariant under the transformations thatspeeifies.

8 |. — Cartan exterior form associated with a material poimh.

The invariant forms that we propose to seek have tngms in the four postulates
of Newtonian mechanics.

1) The mass of a body is an invariable positive nundred,the mass of a material
ensemble is a completely additive function of thesaride.

2) Timet is an absolute magnitude that is defined up to an additistazan

3) A pointM of massm that is animated with a velocityand subject to a forde
will take on an acceleratiadv / dt such thaim (dv / dt) = F with respect to any Galilean
trihedron.

4) TheF is independent of the Galilean reference trihedron.

If two orthonormal Galilean frames are in unifornstiinear motion with respect to
each other then let:

x, t denote the coordinates M with respect to the firstj(= 1, 2, 3)

v denote the components of the veloeitgf M with respect to the first

X! denote the components of the foFceith respect to the first

al denote the components of the velocity of transladiohthe second frame

with respect to the first one
éor denote the coordinates ldf with respect to the second € 1, 2, 3)

denote the components of the veloatgf M with respect to the second
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=7 denote the components of the foFceith respect to the second.
Consider the seven-dimensional space that is thertensduct of the spacés [ E3

0 T (x! O Ez is a Euclidian space,' 0 Ez is a Euclidian spacé,JT is the number line).

The transformations or changes in the Galilean fraone 2 ten-dimensional Lie group

G whose finite equations are:

x'=a & +dr+0,
t =71+t,, i,], care equalto 1, 2, 3.
u=aa’+d

H al H: A denotes an orthogonal matrix of rank three thpedds upon three rotation

parameters that one can specify by using the Caglenesentation’f A= (E - 9 x (E +
97, in whichSdenotes a skew-symmetric matrix of rank threefadenotes the identity
matrix of the same rank.

There exist ten invariant Pfaff forms (viz., thkaurer-Cartanforms) for the group
G, when it is “prolonged holohedrally” [in the sensiElie Cartan )] by means of an

arbitrary orthogonal matrix of rank thrde= H L) H :

w” =Lfdv = Ada?, p varies from 1 to 3,
w” =L2(dX -V df = AL(dE° -a“dr), o’ varies from 1 to 3,
w’ =dt =dr.

The product L [| L™ || = ||dA ||O|A [[* will give rise to three Pfaff forms when
one setg\ = [|L [|O]|A]] -

Among those ten forms, the first six of them aréependent of the differentials of
the three rotation parameters. It will then resblt for a material point that is not
subject to any force, the differential forms that¢ @ahe generators of the differential
equations §) of motion that we seek and are invariant underttansformations of the
groupG are obtained by eliminating the three rotatiorapaaters from those six forms.

That elimination can be carried out by using eitbedinary algebra or exterior
algebra {), and the classical properties of the orthogorettices:

(Y Cf., Hermann WEYLThe Classical Group$rinceton, 1946, pp. 56 and 62.

() Cf., Elie CARTAN, La théorie des groupes continus et fir&authier-Villars, 1937, pp. 121 and
124.

() In anticipation of what follows, it is possible tesaciate a system of differential equations with
forms that belong to graded algebras that generategtersypy means of anti-derivations.

() Cf., N. BOURBAKI, Algébre multilinéaire Actualité scientifiques, no. 1044, Hermann and Co.,
Paris, 1948, pp. 53 and 76.



§ |. — Cartan exterior form associated with a mat@aaht. 7

3 3
> 12mP =0 fori #], Sieap=1 fori=j.
p=1 p=1

a) Upon utilizing ordinary algebra, one will get:

(@) + (@) 7+ (@) 2= Y (0K~ d)

() :
(o) + ()2 + (@) =) (V')
j=1
3
(11 w'w'+ W+ wlw® = (dx -V d Odv .
i=1
b) Upon utilizing exterior algebra:
1 4 2 5 3 6 _ j j j
(1) w'lw'+ o’ 0w+’ 0w®= ) k dv O(dX - v dj.
311”0 0 i#j
kij:zo o :{ 1 iz
o1 j =1
(IV) W'l 0 lw+0’* w00’ 0w’ +wi0wlw 0w
w Do’ Ow*
\Y
v { o' Do’ 0a®

One notes that in the sense of exterior algehea|\f" form is the square of the fI
one, up to a factor of 1 / 2!, and that the twanrfsrin (V) can be replaced with their
product, which is the cube of the'fibne, up to a factor of 1 / 3! . Whereas in erteri
algebra, one is led to only one generating forntHerdifferential equations of motion, in
ordinary algebra, one would be led to either twon® of type | or one form of type Il.

In the case where the material pdvhbf masam is subject to a forcE, the postulate
(3), namely,F = mdv / dt, leads one to replack with (m dv— X' dt) in w” (p =1, 2,
3), whereX' are the components of the forms with respecteditht frame.

The following theorem results from the precedinglg:

Theorem I:

There exist three types of differential forms thabherate equations of motion for a
material point and are invariant under the transfations of the Galilean group:
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13 . .
- dl_ X 2,
s 2miZ:;(m v dy

(A) M
=—) (dxX - vdy?
> ;( )
3
(B) f=> g (dx-vdi(mdv- X dt, d; are the Kronecker symbols,

ij=1

3
(©  w=) k(mdv- X dyO( dk- V gt, k; are the Kronecker symbols.

ij=1

The differential equations of motion are obtairgdannulling the first-order partial
derivatives of the preceding forms with respedhtdifferentialsix’, dv' of the position
and velocity parameters.

As far as exterior algebra is concerned, recatl ifh

Q=A, d)&1 Odwe 0---0 dk, whereiy, ..., i, arer indices that vary from 1 to,

then
0Q

a(dx?)

= (-1)°"A,., dx Odke 0w dx* O dk* -0 dx.

Choice of three types of differential forms thate ainvariant under the
transformations of the Galilean groups. Cartanegior form. — In principle, the
preceding three types of forms are generators @fdifferential equations of motion.
When one performs a change of variablethat acts upon the set of all position and
velocity parametersq{=x (09, t), v! =v! (0 1), (a varies from 1 to 6)], the three types
will have the expressions:

(A)

in which one sets:

s=is,do" ' - Q, 7 dtr-$ g dt
e=1gq, do” do’ -T,, g dird g, df,

N\
S,z = Mg,
p* 0p"
-5 X' v 6\) oV
! Jou 6,0 ot
1 ov' oV OV
ZI XX+ my — -3 X—,
St)m" ”atatcE ot
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g :mJa_Xi Vj
ap iiapa apﬂ’
j o
ro=ms yov _0xX ox |
"\ 00" 0p" ot
Coox ox ox
=md, | VV +——— -V |,
oo "[ ot ot ot j

which are expressions in whieh; denotes the Kronecker symbol:
(B) f=fudo?do? —fa0 do? dt+fdt.

In f, the €us, fa0, foo) define a symmetric tensor that is a function g €) and has

the expression:

ox ox
fas= Mo, —
ap |]apaapﬂ
o o o o
f57(3':rna-i'\}(’)_\/014_4-1' axa_ J%ava_ f atﬂ’
' 0p dp ot dp 0p° ot
. . j
o= v' X1 - mg v 2+ mg 2O 5 0%
ot ot ot 7 ot
and
w=Kkep (do “ 0dp?) —kao dp @ Odt,

©)
where gz, ka0) is an antisymmetric function 0p(, t) that has the expression

oo

op” 9p*

Kep=mk | = .

T a0 ax

oo 0p°

(1.1)

! V . . . .
o o[ |ax ot
kao=- mk a'oj ; +mkViop” ot |- k X|op” ot
X o 0o 1 0o 1

00" ot

We remark that the two forms of typ8)(are not generally expressed directly as
functions of the differentials of the first integgabf motion, while that property is
immediate for the two forms of typdY and C) : (B) is a quadratic form with zero
discriminant, by its very origins, so it will be expsed in terms of the six differentials
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which be the differentials of those integrals foraameenient choice of the first integrals.
(C) is an exterior form that is reducible to a sum akéhexterior products of two
differentials, and as a result, it can be written:

w=k,, dC?0dC’,

for a convenient choice of first integra¥, in which E,,ﬂ IS an antisymmetric tensor that

is a function of th&€” andt.
Traditionally, mechanics is constructed by startingnfrthe quotient bydf® of the
particular forms of typeA that is obtained by imagining the particular transfdomes:

i i k j — <k
X =x (q4 1), =—q +—.
.1 o a+
That leads to the Gauss-Appell principle and to the lrggra@quations: The equations of
motion render the inhomogeneous quadratic forrij:in

=i, d 54 4- QY
a minimum.

That form does not give us any immediate informationualthe nature of the
problem of integrating the motion, since it depends uporira-fike pseudogroup (g,

t) ®). On the other hand, that Gauss-Appell form is pratfior only holonomic and
linearly non-holonomic constraints. In Chapter lle whall see that the notion of
constraint is susceptible to considerable extensioa,tla@ calculations will lead us to
envision the most general transformations that act uposdt of all position and velocity
variables. For those reasons, the forB)sand C) prove to be more interesting.

There is an important difference between the foB)satd C): (C) is bilinear, while
(B) is quadratic, so the calculations are simpler @) than they are for B).
Furthermore, the formQ) immediately leads to the kinetic integral invariaritEdie
Cartan.

The fact that only the differentials of the firstagrals enter into the differentials in
the form C) can be further established as follows: Consider argkdifferential system

0. One can associate the forowith the bilinear formw(9, d) :

ow s ow ow
0(dp”) o(dp”) o(dy

w(9o,d) =" 0

=kep [0 “Odo? - p” 0dp ] —keo [d0“ Odt- & Odp ] .

() The pseudogroup that is involved is that of the mankiig; .
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ow ow ow
: , and —— (as a

a(dp”) " a(dp”) o(dt)
consequence of the preceding) when one consideaddrary one-dimensional manifold
yin seven-dimensional space, along which the diffeal isdand which lies on the two-
dimensional manifold/; that is generated by the integral lines of théed#intial system
of the equations of motion that pertainpjtoviz., w (3, d) = 0. The formw(4, d) is linear
with respect to the differential system, sirctés zero only on the integral lines of the
equations of motion that belong to the sub-modtidiféerentials of the first integrals; in
other words,w (9, d) is expressed in terms of the first integrals.wiNd one takesd=d
then sincew= 1 w(d, d), the formwof degree two will be expressed in terms of solely

the first integral<” of E.

The differential equations of motida annul

(1.2) w=k,; dc” 0d’.

k,; is an antisymmetric tensor that is a functionhefG@“ andt.
The preceding result can be further expressedliasvk: The integral.[V w(3,d) will

be zero for any one-dimensional manifold in the -tirmensional manifoldv, that is
generated by the integral lines of the differerdisdtenE that pertains tg.

(1.3) jv w(0,d) = 0.

With Lichnerowicz {), we say thatw generates ambsolute integral invariance
relation for the system of differential equations of thechemics of material points.

Special case- If dw= 0 thenwwill be expressed in terms of only the differelstiaf
the first integrals oE, and conversely.
wis expressed in canonical form by grouping thet fintegrals together pair-wise:

3
W= Kk, dc" 0d¢ , with o =a+3.
=

dw= 0 implies the fact that a coefficieki, will be a function of only the two integrals
C“ C%. Indeed, ifu denotes one of the first integrals or time thiemwill be a sum of
terms of the form:
K gunde 0de”,
ou

Sincedwis zero,dk,e: / du = 0, sokye Wwill be a function of onlyC? andC?. By a
change of first integrals of the form:

() Cf., Lichnerowicz, Bull. Sci. Math. (ZJ0 (1946).
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C?=C“(C“,C%), c*=Cc*(C%,C%),
wwill become:

3
(1.4) w= Y dc’ Ode”,

a=1
and as a result, it is expressed in terms of soléfigrdntials of the first integrals d&.

Elie Cartan’s kinetic integral invariant- Sincedwis zero,wwill be a closed form,
and there will exist a Pfaff forrd* in the space that is homeomorphidkbsuch thatw

3
= d&. From (1.4),@ = Y ¢ [Hc” will admit w for its differential, and it will be
a=1

expressed in terms of only first integrals of the motnd their differentials. Henc&'
will generate an absolute integral invariant for theedéhtial equationk of motion. If
one considers the two-dimensional manifold that is géeeray the integral curves &f
that pertain to an arbitrary one-dimensional manifglthen the integral (3) will become:

0 :jvz—a)(d,d)z jvzd[af(a)] = jwz)a}(a).

F(V2) denotes the frontier of, , which is composed of an arc of the cupgéM’, the
arcs of the integrals &, Mo M, M;M’, which issue from the pointd, and M, and

the arcMM”.  Along the arcsMMy and M;M’, since @'(J) is a linear form in the
differentials of the first integrals &, it will be zero. It will then result thaﬁFN )(7}(5)

reduces to two integrals that are taken alpn@nd y; where y is deduced fromy by
means of the trajectories that are solutions tdence:

(1.5) Ju @@ =], @) .

The preceding equality expresses the idea thlatgenerates an absolute integral
invariant.
If one returns to the expression f@rnamely:

w= Y k(mdv~- X O( dk~ b gi= mk dvO dx~ mk Vv de ,k X B0

ihj=1

dw= 0 imposes the condition on the Pfaff fokrX ' dx! that it must be closed, and as a
result, it will reduce to the differential of a fttion U, so:

(1.6) w=mk dv O dk- dHI d.
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3 .
With H =T — U whereT = %Zm(\))2 is one-half thevis vivg andU a force
i=1
function, (1.6) will show thatwis the exterior derivative of:

3
o =) mvadv-Hdt.
i=1

The forma} generates Elie Cartan’s integral invariant (1@)differs from the formé?
in (1.4) by a closed form.

The fact that the only differentials that entetoithe form w of degree two are
differentials of first integrals, and thab is the exterior derivative of the form that
generates Elie Cartan’s kinetic integral invarianthe case wherdwis zero will lead
one to choose it as the generating form for théemihtial equations of motion of a
material point and to place it at the foundatiohBlewtonian mechanics.

We shall summarize the preceding study in thev¥ahg theorem:

Theorem II:

Any material point of mass m whose coordinates arthat is animated with a
velocity whose components areand is subject to a forcE whose components are
X'with respect to an orthonormal Galilean trihedroancbe associated with a second-
order Cartan exterior differential forrwthat possesses the following properties:

1. wis invariant under the transformations of the Gdn group; in other words, it
has the same expression with respect to any orthwaidGalilean frame.

2. The differential equations of motion of the poirg ¢he associated equations to
w in the Cartan sense.

3. wis unique.

4. wis expressed as a function of only the differémtat first integrals of the
equations of motion whose coefficients are an ymtisetric tensor that is a function of
the first integrals and one variable — for examgle,If dw = 0then wis expressed in
terms only first integrals and their differentials.

Recall that when one uses the usual variales {, t), wcan be written as follows in
its developed form:

(1.7) w=mk dv' Odx'-mk v' dv! Odt+k; X' dx! Odt,
in whichk; is the Kronecker symbol.

The associated equationsdmre the classical Newton equations:
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99 mdvi- X di) =0,
a(dx))
99 mdx'—vidy=0 (i=123)
a(dv') TR e
which will signify that:
md-p dOM_,
t dt

when they are interpreted geometrically in Euclidian efgac. The existence odv and
the associated equations constitute the natural arslytamslation of the four postulates
of Newtonian mechanics for a material poitf).(
Remarks:
1. wis composed of two parts: a kinetic pat:
@=mkdv' Odx'—mkv' dv! Odt,

which is a closed form, since:

w@=d{Gmvdv-Tdp,

3 .
in which T denotes one-half thes viva%Zm(\})2 , and a dynamic pagty :
i=1

ay =kj X' dx! Odt,

which is the exterior product of the elementary kvdone by the force that acts upon the
point with the differential of time.

2. It is essential to remark that the associatggaons tow link the position
parameters to the velocity parameters, as one isgessticular, from the equations:

0w =dx!'—vidt=0.
a(av)

3. We point out that the relativistic mechanicsrafterial points can be constructed
like Newtonian mechanics in terms of an exteriamfay that is invariant under the
Lorentz group, and that the generating form of dtfethe equations of Newtonian

(*% Cf., Elie CARTAN,Lecons sur les Invariants intégrauRaris, 1922, pp. 1 to 6.
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mechanics is the limit of the formy when one makes the rati®=v / c tend to zero,
wherev denotes the velocity of the material point, aris the speed of light).

4. Itis likewise important to point out that therforw can be expressed in terms of
the six Pfaff forms that are constructed from théedéntials of the position, velocity, and
time parameters, which are forms that are introduceccdtlgi in the problems of
integration and in the study of certain constraints:

w=Kgp [ w? Kgpis an antisymmetric tenso@,(8= 1 to 6).

Examples:

1. A gravitating point that is launched along the vertasadendant and subject to a
resistance that is a function of the veloaity (v).

If mis the mass of that point,is its velocity,g is the intensity of gravity, andis the
height thencwocan be written:

Y~ dvOdz— [vdv+g dz+f (v) dd Odt,
m
or rather:
w dv vdv
— =[g+f (V)] +dt |0 dz+ :
m g+ f(v) g+ f(v
w/ mis then expressed in terms of the two fOFdeV—+ dt, dz+ , and when
g+ f(v) g+ f(v)

they are annulled, from the preceding theorem, Wiktgive the equations of motion,
since the exterior derivative of each of them el zero; in other words, each of them is
closed, so the problem is reduced to quadratures.

In this simple example, one knows the proceduag Will permit one to study the
case in which the equations of motion are integrabl

2. A point moving under the action of given fore€sy, Z, which are functions of,
Yy, z, along with a resistance of the medianf (v) that opposes the velocity. Upon taking
the velocity parameters to be the spherical coatdsof the velocity vectos, ¢, 6, the
position parameters to be the coordinatey, z of the point with respect to a fixed
trihedron, andnto be the mass of the poimb/ m will be written:

= (dvcon@cosy +v cos@cosy dfd—vsin dsin ¢ dy) Odx

318

+ (dvsin@sin ¢+ v cosdsin g df+vsin dcosy dy) Ody
+ (dvcosf@-vsinddf dz- (vdv—X dx - Y dy — Z gizldt
—f(v) (sin@cosydx+ sin@sin g dy+ cosdd2 Odt.

() Cf., F. GALLISOT, Ann. de I'Inst. Fourie (1951), pp. 277 to 285.
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That form, which appears to be more complicated thanctassical equations, will
exhibit the first integrals of motion for a certain @® of X, Y, Z. Hence, for a
gravitating pointX=0,Y=0,Z=-mg:

:'—n) =[dv+f (v) dt + gcos@di] [sin Bcosydx + sin@sin ¢ dy+ cosddz—v df

+ [v d@—gsin @df] O[cos@cosydx + cosédsin ¢ dy- sin 8dZ
+vdyO[-sin@sin ¢ dx + singdcosy dy.

The associated equations are obtained by annulling thersns that are placed in
brackets; in particular:

dy=0, dv+ [f (v) +gcosd dt=0, vdé-gsinddt=0,

whose geometric integration is immediate: It is thejgmtion of the forces onto the
tangent and the normal to the trajectory.

3. Gravitating body moving with friction on an inclinptne.

Let i be the angle of inclination of the horizontal plalet,f be the coefficient of
friction, let m be the mass of the point, I©ix be the axis that points along the line of
greatest slope in the plane, and@st be directly perpendicular to it. Take the velocity

parameters to be the polar coordinateg of the velocityv and the position parameters
to bex,y, w=w + ay:

e = d[ mvcosa dx+ mwsing dy- v d,

whered is the symbol of the exterior derivative, and:

ax =mgsini dx —f mgcosi cosa dx—f mgcosi sina dy] Odt,

o)
:'—n) =dv(cosadx+ sinady) +v da (- sina dx+ cosa dy)
—vdvlOddt+ [gsini dx—f gcosi (cosa dx+ sina dy)] Odt,
or
:'—n) =[d(vsina) +fgcosisinadt O[dy—vsina df

+[d(vcosa) + (f gcosi cosa —gsini) dt O[dx—vcosa df] .

w/ mis expressed in terms of four independent fornag thill give the differential
equations of motion when they are equated to z81d,their geometric interpretation is
immediate. The integration of those equations ball performed in Chapter VI as an
application of the general method.
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8 Il. — Exterior form associated with a parameterized mateial system.
With Brelot ¢), we consider a material syst&to be something that carries:

1. A mass distributiorn(0) or measurex0) that is denoted by (e) and is a finite
function & 0) on a bounded Borel subset that is completely additive

2. A force distribution, which is a vector field of massF (e).

Since functions and Borel subsets are supposed to be bouwrdshall show that one
can associate a parameterized system with an extemaQ = Q. + Qq .

a) Calculating Q. . — Consider a bounded Borel st in a three-dimensional
Euclidian space, and the variable bounded Borel &etwhich is in bijective
correspondence with for every value of tha + 1 real parametexs (i varies from 0 to
n, with ° = t) by means of the Borel vector functionM\t

(1.1) Oou =fM,d).

The domain) is determined geometrically when one is given the mpimhose local
coordinates are in the parameter space. Upon supposing the existence difshe
derivatives off with respect to the boundetifor M that varies irD and the bounded
by differentiating (I1.1):

We saw in 8l that the velocity of a material point can be definedtiembly and that
the associated equations to the formindicate the manner by which the velocity
parameters are coupled with the position parametersegddamt. It then results that we
define the velocity in the following manner. Let:

(11.2) V=V M,d, o)

be another Borel vector function lst of the @ + 1) parameterg’ andn other bounded
parameterg” that admits bounded first derivatives with respechmqt and thep” for
anyM in D. V, will be called therelocityof the pointzz. When one differentiates (l1.2),
one will get:
dV,= a—v.dqi +
oq' 00"

ov do”

(*3 Principes mathématiques de la mécanique classiétibaud, Grenoble, pp. 10-19.
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The projections ofd Ouz andd Vm onto the three axes of an orthonormal Galilean

frame definedx’ anddv . The pointM of D that corresponds to the poiagtof A is
associated with the forma :

@ =k; dv Odx! —k; v dv! Odt

oV of! o oV of’ 9+ af
_K'ap"ﬁd Odd + Iﬁa qu dg- K\{ acf diqjm

« is then a form of degree 2 that is defined on the fibemadifold Von.1 of (2n + 1)
parametersy, t, 0°, whose base manifold is the space-time configurationfoldniy.; .

The material sef\ is associated with the forfd. = J'Da)c om that is defined on the

manifold Vans1 , Where thd symbol refers to the Radon integral:

Q. =kgi do” Odd + ky dd Odd — ke do” Odt — ko ddf O dt..

with
ov! & ov of  ov of!
= om = | ———-———|0m,
Kai ,[D ik 9p° Kic J.Dk“(aql o ocf adj
ov afJ
J I§a a 6t ™

oV of’ 6\} of
m- j Kk ———|onm
ot aq aq ot
We remark that we can likewise calcul&teas the exterior derivative of:
ID(V;/ [ 0u) om-4 df (v,)?om

and that this calculation can be performed by replaciegdtfierentials of the position
parametersid with the Pfaff forms that are constructed by meanthase differentials,
and the coefficients of those forms are Borel fumstiof the parametes at M . One

will then have that the kinetic pa®; of Q is:

Qe = Ko (6 0 &f — koo (of D),

in which «f, o' denote B Pfaff forms that are constructed on the differestiad the
position parameters| and the velocity parameteys’, while oz , ks0) define an
antisymmetric tensor that is a function of thendo”.
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b) CalculatingQq . — Calculating the dynamical part Qf presents a complication
that has not been resolved up to now and is based updadtthat it is not possible to
define a measure of the internal forces in a systém (). We shall then proceed
axiomatically.

Let Fe be a vector measure of the force that is defined @and which we, with
Brelot, will call adyname The presentation that follows conforms to the tha was
adopted by the aforementioned author.

Let w be a vector field that is defined dnand will be called thédield of virtual
velocities Set:

Pw = J'AWQSFG.

By definition, Py, is the power delivered by tliyynamer. relative to the virtual field
w. The elementary work. done byF. relative tow during the timedt will be:

Te =Py, [Mt.

If one takesw :d&: i
dt oq'

will have the expression:

g (i vary from 1 ton) then the power delivered i,

of i g
S
aq
when one sets:
_ ¢ of

i = | —JF,.
Q oq
Now consider the Pfaff fornr=Q dd.
From the preceding definition7will be equal to the elementary work done by the

force measuré€&. in the fieldw = g—;q :

Powerless dynamdf the power delivered,, is zero then one will say th# is
powerlessfor w. Hence, ifw reduces to a field of moments then one will have sévera
fields of moments that are defined AnandF. will then be powerless whenever the
system of forcef. is a system of vectors that is equivalent to 0.

Having posed those definitions, for each sulaset A, consider the dynante. to be
the sum of an equivalent dynarig, which is called thexternal dynameand a dyname
F2 that is equivalent to O that is called théernal dyname In the applications that we
propose to develop, the syst&will be composed of a set of solid bodies. We assume
the following postulate:

(**) Cf., BRELOT, Annales de I'Université de Grenoh®(1943);ibid. 20 (1944).
() R. DE POSSEL, “Sur les principes mathématiques de émanique classique,” Gazeta de
Matematica?9 (1946), Lisbon.
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For any field of moments, the power delivered by the internal fereero.— The
following consequences result from the postulate:

1. The power delivered by the external forces is caledléor each solid body by
takingw to be a field of moments that is defined by each of them

Therefore, the dynamical pdey of Q will be:
Q4 =0Q dd Odt.

TheQ; are functions of theg(, 7', t), where they are the position parameters and the
o' are the velocity parameters.

2. The kinetic parf; of Q must be calculated with the same field of momentgesi

dOy = a—fidqi enters intd). sinceQ. is the exterior derivative of:
0
ID(V;/ d Ou)om-1 df (v,)?om

Upon takingd Oy = a—f.dqi, V, = ip", one will be led to the two classical
aql H aqk

expressions fof. :

= of _pf o |
ID(V#dO'u)dm:{ DW%5m}P dd = g4 & dd,

upon settingy = j :—(;( G(?Liém, which is a symmetric covariant tensor of order 2:

fof . i
a—B‘chm}p'p%%gkiip,

— 2 500 —
T= %.[D(V#) om = %{ A 0q

in whichd denotes the symbol of exterior derivation:
Qc= d(gki p“dd -3 4 pp dﬂ -

Hamiltonian form of Q. . — Since the choice of velocity parametefsis arbitrary,
we can set:
Pi = Oni ,Oh )

which is always possible, sincd 2 gn p" p' is a positive-definite form of rank (det
oni # 0). In order to simultaneously imagine the casesghich the holonomic constraints
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do or do not depend upon time, we shall vary the indieesih from 0 ton with dof =
dt, oo = 1:
Po =G o,

T=To+T1 p%+To (0%

Po=Ti+2To,
SO
Q. =d{ip dd+ p d=(T+ T+ J) d}
=d{indd—(t—1§) dﬂ.
We call: B
(11.3) chzn:dp ddd-dT-F O d

the Hamiltonian expressiofor Q.. In T,, which is the part of that is quadratic when
expressed in terms of e, one must then replace tjp& with their values as functions
of thep, when calculated by way of the equations:
— k
Pi=0i o *+0io-
If the constraints do not depend upon tinieen:

Q.= dpOdd-dTOdt.
i=1

Lagrangian form of Q.. — Upon remarking that:

go = 0T
Ki a il
one will get:
(11.4) Q.= d{g—qu’ -T dtj
9T K o 9°T 9°T L 0T T
= — do* Odqg + . - -1 dd O dg—— 0 dt— d C.
ap|apk P q (aplapk apkap|j d( q apk w aq| bl]

That is the form fof). that leads to the Lagrange equations.
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3. Definition of a holonomic parameterized system- A holonomic parameterized
systemis a set of solid bodies and material points suchttiekinetic part of2 can be
given the Hamiltonian or Lagrangian form.

4. Riemannian manifold and natural frame R. — The Riemannian manifold,+1
that is associated with a holonomic system is thefigaration space-time that is
endowed with the metric:

do? = gin dd dd' + goi dd dt + goo df? (i, hvary from 1 ton).

The frameR at a pointM (d, t) of that manifold is defined byn(+ 1) vectors , &
such that [ = gi, & (8 = ai, (Joo)” = Goo -

We call the system of vectorse the natural frameR atM ; R is then deduced from
R by suppressing the vectes . The point that is the image of the system on the
manifold V.1 has a velocity that is a vector whosen + 1) contravariant components
(¢',)arev=e+de.

For the purposes of mechanics, when one says thasytem depends upan
velocity parameterg, one then considessto be in the subspad sov = e ¢, where

the ¢ are the contravariant componentsrdh R. One must likewise recall that a vector
X whose contravariant components with respecRtare X ' will have n covariant
componentsX; = gix X, and that one can pass from the covariant comportenrtise
contravariant components by the formulas:

X =gix, with g¢'= minor of g, in det [y, |
det|gy |

5. Generalized force— We have characterized a force that is appliea $gstem by
the power that it deliver® = Q ¢ (i varies from 1 ta1). TheQ are then the covariant
components of thgeneralized forcevith respect to the frame. We remark that thé rea
power isP = Q ¢+ Qo . That is then the power delivered with respedhe Riemannian
frame R when we characterize the system of external fobgethe dynamical part d®,

namely,Qq = 770 dt, whererr= Q; dd is a Pfaff form that is defined on a manifddgl; or
Vi (for a system that is independent of time).

6. Equations of motion. — The equations of motion of the system are the
characteristic equation 6f.

Hamiltonian form:

Q =dp Odq — [d (T - To) - Q dd] Odt,
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o(dd) oq
% __ g - 2T g,

o@m) T og

00 __gp-2L"T) g4, at=o,

Lagrangian form:

2: 2 2
o= 0T 4 «g ch+(aT 0°T

—_— - | dd O dc
9p'0g apkaq'j ¢ 0 dd

oT oT
——dp* Odt-—dd O dt+ Q dyO d,
s 2 20 d Q dg
2 2
6Qk _ aideqi+6det:O’
d(dp") 0dpadp dp
0Q 0T . 0°T
= dp +———dq'+ d—dt+d0
oo opor °F Tapeq O apkaq T ?
oT 0°T L . .
but —= g ,0 , ———= 0k , and it will result that the firsh equations can be
a0 6,0 0p'
further written th =g (dd — o' df) = 0 anddd = o' dt.
a(dp")

When one takes into account the fact tmfﬂ: ,0i dt, the lastn will take the Lagrange
form when one points out that:

2 2
akT -dg = akT - pkdt = a—Tdt
dp“dq dp“dq oq'
AT ) 9T 4o dt=0
dt\op' ) 0o

Thosen equatlons keep the same form under the transfarnsapf the point-like
“pseudo-group”d = q (r, t) that acts upon only the position variabgswhich are
traditionally placed at the foundations for ratibm@mechanics. They have the
inconvenience that they prove to be less managealhe study of the integrable cases
or the topological properties of trajectories. fTisawhy it is preferable to consider the
equations of motion to be the characteristics fofran of degree two.

General form. — If one performs an arbitrary change of varial@sthe position
parameters and the velocity parametegs:
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P =pi (X7 1), q=q (x°1),

in which a varies from 1 to @ then upon lettingS’ denoten Pfaff forms indx?, Q will
be written:

Q:ka/;af’D(uﬂ—kaoaf’Ddt,

SO Kag, Kao) Will be an antisymmetric tensor of order 2 that farection of thex?, t. The
equations take the general form:

0Q
2% =Ky f — Ko dt = 0.
oS Kap a0

7. In order for the theorem thus-constructed to make sé&ose the physical
standpoint, it is obviously necessary in the applicatifor the applied forces to be
bounded in magnitude and for the rigidity of the interoaistraints to be respected.

Example. — Calculate for a solid body that moves around one of its fixed gdnt

Oxyzdenotes a trihedron that is invariably coupled with tha@yl(moving trihedron)
Q.+Qy=Q:

Q= [ (k d\}Ddx')JnmUC k Vdvo iﬂ ¢ G,j=1 2 3),

Qd:UCJFmo—M]Ddt

with respect to any Galilean trihedron. In order to tlemoving axes, one must then
calculate the absolute differentials of the posiaod velocity parameters with respect to
those axes.

If X, y, z denote the coordinates of the polt which is fixed with respect to the
moving trihedron, and j, k are the unit vectors of the moving axes then:

OM=xi+yj +zk,
dOM=xdi+ydj+zdk.

If o}, f, & denote three differentiable Pfaff forms that are tomged from the
differentials of the parameters that characterizedisplacement of the trihedr@dxyz
(Euler angles or any other system) then:

di=afj -k,

dj=awk -wi,
dk =afi —ajj,
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dOM=i @z -y ) +j (xd—zdf) +k (y o} —x &) .

Take the velocity parameters to be the compongrmgsr with respect to the moving
axes of the instantaneous rotation vector:

V=0Qz-ryi+(@x—-p3j+py-agjk.
The kinetic parf); of Q is calculated as the exterior derivative of theaclrm:

[ (v, @OM)sm-1 df (v,,)?am,

with
L (V,, [@ OM)dm

[[(az- m)(«f z=@ Y +( - pHW® x @'+ ( Py O’ yw PO

pa}j(y2+ Z) o m+ cp)zj( 2+ Ao m w?’J( %+ 90 |
~(rdd+qa)| yzom-( o'+ )| 20 m( @'+ pIf W

Upon choosing the trihedrodxyzto be the principal trihedron of inertia @ and
using the classical rotations:

A= j(y2+zz)5m, B= j(z2+x2)5m, C= j(x2+y2)5m,
L(VM [OM)dm=Apa +Bqdcf +Cr o,

Hf(v)em=4AF+BE+CP).

If d denotes the symbol of the exterior derivative then

Q.=Adp0d +BdqiF+CdrOd
+Apdd +Bqdd +Crdad— (A pdp+Baqdg+Crdr) Odt.

The calculation ofdat, dof, daf results from exterior differentiating the vector

relations:
di=dj-dk, dj=..., dk = ...

0=dj-dadk-d O0(ddk-di)+FO(Fi-dFj),
or
(dod + ot Oaf)j - (def + @ Oat) k =0, and analogous ones;
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do=-(Jd0df), dat=-(f0&), daf=—-(Jd0),

which are the structure equations of the group of displaoés aroun®.
It results that the expression fQg is:

Q.=Adpldd+Bdqif+Cdriw/—Apdf Dd—B g Dt -Crad OdF
-(Apdp+Bqgdg+Crdr)Odt.

Let us calculate the dynamical p&xg of Q:
The external forces are defined by the power thatdeéyer:
P=Lp+Mqg+Nr,

m=Ld} +M f + N&,

so one has the Pfaff form:

and one will have
Q4= (Lt + M F + NoJ) Odt

when one let&, M, N denote the components of the resultant moment wstect to the
Ox, Oy, Ozof the forces that are applied to the body; hence:

Q=Adp0a)+BdqUicf) +C(dr0)) -Apdf D -B e Ot -Craf Ocf
-[Apdp+Bqdg+Crdr—(Ldd +M o + No#)] Odt.

Differential equations of motion:

g_gz—Adp+Bqa)°’—Cra}+Ldt:0,
:_(f;:—qu+Cra}—Apa)°’+Mdt:0,
:—;:—Cdr+Aqa}—Bqa}+th:0,
%:A(a}—pdt)ZO,
(;qu):s(a}—th):o,
a—Q:C((J’—rdt):O.

a(dr)
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When one takes the last three equations into accourfirghthree equations will be the
equations of motion that Euler gave.

Calculating Q. in the reference trinedron that moves with the body and irspace.
— For the sake of applications, it is interesting tovkitbe expression fo@. for a solid
body that moves around one of its arbitrary pofdtsvhen one uses a trihedron that
moves in both the body and in space for the referamuedron. Leti, j, k be the unit
vectors in the reference trihedron, &%, Q? Q2 be three Pfaff forms that are constructed
from the parameters that characterize the positidheofrinedron that moves around the
point fixed pointO, letx, y, z be the coordinates of a poidt of the solid with respect to
the moving trihedron, let}, ¢f, @ be three Pfaff forms that are constructed from the
differentials of the parameters that characterize absolute displacement of the solid,
and letp, g, r be the components of the absolute rotation of the battyrespect to the
moving trihedron. Hence:

OM =xi +yj +zk,
dOM = (Fz—Y) i+ (WP x—af2)j+(dy-dF XK,
V. =@z-ryi+(x-p3j+PpPy-axk.

Calculate the differentiatlvV while taking into account the expressions for the
differentialsdi, dj, dk :

di=Q% -Q%k, dj=Q'k-0Q%, dk=0Q%i-Q'j,
SO.
dV =[zdg-ydr +qdz—rdy+ (x—p2d (-Q% + (y — g3 Q7 i
+[xdr—z dp +rdx—pdz+ Py — gy (-Q) + @ - ) Q7 j
+ [y dp—x dg+p dy—q dx+ @z —ry (- Q%) + (x — p2 QI k .

dx, dy, dz are the differentials of the coordinateshbfwith respect to the moving axes
and have the values:

dx=(f - Q%) z- (0 - Q%) y,
dy = (& - Q%) x— (o} - QY z,
dz=(J - QY y- (F - Q) x,

and one will then have the following expressiondof:

dV ={-x@d +r &)
+y[pQ*+q(dd-QY —dr +z[p Q% +r (- QY - dq} i

+Hx[q Q' +p (J - Q% +dr]
Yy & +pdd)+z[qQ°+r (J-Q%) -ddl}

+Hx[r Q' +p (- Q% -ddq
—y[r Q®+q(-Q%+dp-z(pd +q )} k.
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Form the expressioly; dV [ d¥ in seven-dimensional space, whekg is the
Kronecker symbol:

ki dv O dx!

=X[dr0d+dq0df+2p 0T -pQ?0d +qQl 00 -r Q' 0f +p Q3 0]
+V[dpld+dr0d+ 20 d 0t -qQP0d +rQ° 0t —pQ2Udd +qQ* O]
+Z[dq0dd +dpUcdd + 2 JOS-rQOF+pQP0F-qQ30dd +r Q* 0 d]

+yz[-drO0df-dgOd+ 20 DF+2r & Dot +p (Q°0F - Q30 &)
—qQ' 0 +r Q' O]

+zx[-dpl @ -drO0add+ X O +2pd DF+q QP00 - Q0 )
—rQ*0df +pQ?0d]

+xy[-dqO0d -dpO0dd+pd 0t +2qf 0 +r (Q 0t - Q% 0 )
—pQP 0t +qQ30d] .

Likewise calculatés; V dv' :

ki vV dv= x?[rdr +qdq+pr(cf - Q% -pq(cf - Q%]
+y* [pdp+rdr+qgp (e -Q% -qr (o - QY]
+7Z [q dg+p dp+rq (o = QY) —1p (f - Q7)]
—yz[rdg +qdr+ (@ -r’)(eJ - QY) —pq(ef - Q) +1p (& - Q)]
—zx[p dr +rdp+ (* —p?)(F - Q%) —ar (& - Q% +pg (- QY]
-xy[q dp+p dg+ (p° - ) (ed - Q%) —1p (o} - QY) +qr (J - QY.
Let:
a:szdm, b:jyzdm, c:jzzdm,

D:jyzém, E:jzxdm, F:jxyém,

and note that these quantities are generally varidb&svary in time, since the axes
move in the body and in space. One will then dedude tha

Qc=[wom= (i &V OdX - k ¥ dvD o r,

SO
Q¢ =

a[dqUdd +dr0d+p o 0 -p QU +qQt 00 -r Q' Ocf +p Q30 S
+b[dr0d +dp0d + 200 0t -qQP 0t +r Q?Uaf—pQ? 0t +qQ* U]
+c[dplat +dqUlad+ 2 JOF-r QP 0F+pQP0F-—qQ3 Ut +r1 Q? 0 ]
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-D[dqUd+dr0cf -2t Oaf-2r o Dt —p (Q®? 0 —Q° 0 )
+qQ' 0 -r Q'O

—E[dr0d +dp0d-2r SO0 -2pd 0F—q(Q30d-Q Oad)
+rQ?°0dd-pQ?0d]

-FldpOd+dqla-2p d 0 -2qF 0 —r (QP0F -Q° 0 w)
+pQ*0d-qQ° 0]

—a[qdg+rdr+pr(cf-Q3% —pq(«d - Q%] Odt

—b[rdr +pdp+qp(«d - Q% —ar (J - QY] Odt

~c[pdg+qdg+rg (of - QY —rp (f - Q)] Ot

+D[rdg +qdr+ (@ -r’)(af - QY —pq(df - Q7 +1p (« - Q)] Odt

+E[pdr +rdp+ (*—p?)(f - Q%) —ar (& - Q% +pq(af - QY] Odt

+F [ dp+p dg+ (0* ) (& - Q%) —rp (o - Q) +ar (¢F - Q7)) Odt.
Special cases:

1. Axes fixed in the body:

a+b=C, b+c=A c+a=B, Q= d, Q% = 5, Q3 = &,

Q.=Adpld +Bdqif+Cdriwd —-ApdF 0w —-Bqe Ot —Cr o OdF
-D[dq0d +dr0cf-qat Odf -1 o O]
—E[dr0cd +dp0d-r O -p ot OS]
-Fl[dpO0df +dqidd -p @ Ot —q of O]
-[Apdp+Bgdg+Crdr—D (qdr+rdq)—E(rdp+pdr)—F (p dg+q dp] Odt

A, B, C, D, E, F are constants.
One verifies that:

Q.=d[Apd} +Bgdf +Cr o —D (qd +rdf) —E (rdd + pd) — F (pef + qad)
-1(A f +Bdf + Cr* — 2Dgr — 2Erp — 2Fpg) df .

2. Axes fixed in space:
a+b=C, b+c=A c+a=B, Qt=0?=Q3=0,

Q.=Adplc +BdqlF+Cdr0w+ B+C—-A) J O+ (C+B-A) @ Ot
+(A+B-C) o Ot

-D[dqU0dd +drd0cf-2q o} Ocf - 2r o O ]

29
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—E[dr0d +dp0ad-2r SO - 2p ot OS]
~FldpOdf +dqUct - 2p o Ot - 29 oF O o)

-{Apdp+Bgdq+Crdr-D (qdr+rdg —E(rdp+pdr) —F (pdg+qgdp
+(C-Aprd+A-Bapw + (B-Qrpa—D[(q —r’)e —padd +rp ]
~E[(r*-p’)df —arad + padd] — F [(p° — )& —rped + qraf]} Ot

3. Body of revolution: If th®z axis of the trihedron is the axis of revolution, while
OxandOy move in the body and in space, then:
C, cC=A-

a= C,

N1
N1

Q¢ =

AdpOdd +Adgld+CdrO0d +Cp I +Cqawl dd + (2A - Qr 0 of
—ArQ' 0 +Cp QPO —AqQP 0t +CqQlO e + ArQ*0 ot + Ap Q30 F
- [Apdp+ Aq dg+ Crdr+ (C—A pr(«f - Q%) - (C-A qr («f - QY] Odt.

8 lll. — The basic principle in the study of mechanical syems without coordinates.

The preceding presentation, by the way that it wasloljged, can give the impression
that it is necessary to use coordinates in order to stuglyptoperties of dynamical
systems. One will easily liberate oneself from trevisude of coordinates by
envisioning the question from the following angle:

A holonomic system is characterized by a fanof degree 2 and ranknZhat is
defined on a manifoli,+1 (*°): Since the space-time manifoll. is fibered withV,, for
its fiber and the number linefor its baseVn.1 Will be the space of vectors tangent to the
fibers of Vie1 (). LetT be the tangent space to the manifald.., let T’ be the dual
space tol, and letA (T’) be the exterior algebra that is constructed dvand is the
direct sum of the vector subspadesof varying degrees > 0 that are generated by the
forms of degree.

Henri Cartan’s operator i (X) (*"). — If x is a field that is an element &fthen, with
Henri Cartan, one calls an endomorphisnAdT ") of degree — 1 that, on the one hand,
maps an element & to A, and on the other hand, for:

al AP, b A% abOA (r=p+0)

satisfies:

(*® Cf., Ch. EHRESMANN, “Espaces fibrés associés a wmieté différentiable,” C. R. Acad. Sci., t.
216, pp. 626.

(16) That conception d¥,,.; is justified because at a poidtof V., then directions in the fibers define
a frameR that will coincide with the fram® that was defined in 8§ 1.4 when one endows with a
metric.

(") Cf., H. CARTAN, Colloque de TopologjeBrussels 1950, Masson and Co., Paris, 1950, pp. 15-27.
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i (Qalb=(@(xa)b+(-1fali(b)

the anti-derivation that is defined by the operaiofx) . Since the algebrA (T") is
generated in the multiplicative sense by its elementegfee 0 and 1A is identified
with the ring of numerical functions), the anti-detieni (x) is determined when it is
known onA° andA' = T”; it is zero omA°, and onA’ it reduces to the scalar product that
defines the duality betwed@nandT".
For:
xOT, x'OT, (X)) OK'=<xXx">.

It will then result that when the operaidk) is applied to an element of degrea A (T
that is denoted byx 00X, O--- 0 X), it can be written as:

i) (0% 0--0%) = > (- <x%>%0--0%0--0%.

I<ksr

The symboIA signifies that the term beneath it must be sugecks

One should further note that the operatfd) has square zero, since its square is zero
onA” andA®.

Having recalled those essential generalitiesdhaextracted from the conference talk
by H. Cartan {"*®"), the operatoi (x) will map, in particular, the forr® of degree 2
into the vector subspadg of Pfaff forms.

(X)) Q=rr,
which is a symbol that will give:

i (X) Q =Kkgp (x* df = ¥ dof) ,
when V., is referred to a coordinate systgth(a = 0 to ), sinceQ = koz do” O de’,
wherek,z is an anti-symmetric tensor that is a functiortta ring A°, x hasx” for its

coordinates, and we suppose that the scalar preldefined by the Kronecker symbol.
In particular, with a Hamiltonian coordinate syste

Q =dp Odd —dH Odt+ Q; dd Odt,

i(x)Q:x[dd —g%dtj—)‘{ dp+g—:| dt- Qd}+ 9{ oll—raa—Ht dt Q dg.

The differential systenx of the characteristics dd can be written in an infinitude of
ways in terms of 2 independent fieldsd, %, ..., x*") ; i.e., such thax! Ox¢ O... 0x*"

("™ The viewpoint that is adopted here is more restrittiam that of H. Cartan, to whom the reader

is requested to refer; all of this application is depetb while preserving the ideas and notations of H.
Cartan.



32 Chapter One — Differential forms associated with teriah system.

0. When one writes the characteristic equatior®® of the formd Q /90" =0 (@ =1 to
2n), that will amount to taking theto be the & special fields (O, O, ..., 1, ..., 0).

We remark that for an arbitrary(] T, the Pfaff form (x) Q will not be an arbitrary
form in T’ but it will belong to the sub-module of characteriftions ofQ.

Characteristic field E. — Since the forn@ of degree 2 that is defined &a,.1 has
rank 2h, there will exist an element B T that is defined up to a factor (viz., a numerical
function) and map$2 to the zero in the space of forms. E is calledd&racteristic
field, and one will have:

i(E)Q=0.

Since the goal of our study is to construct the theogooktraints of an arbitrary nature
for parameterized systems, the following theoremsplaly an important role:

Theorem I:

The necessary and sufficient condition for a Pfaff farta belong to the sub-module
of characteristic forms d@ is that i(E) 7= 0.

1. The condition is necessary because 7iifbelongs to the sub-module of
characteristic forms then there will exast! T, modulo E, such that(x) Q = 7.

I(B)yr=i(BE)DXQ=-i(x0d(E)Q,
i (E) Q=0 impliesthat i(E)7=0.

2. The condition is sufficient. Indeed, fof] T, 7700 T/, it will suffice to remark that
the conditioni (a) /7= 0 signifies thatr belongs to a sub-module af. Apply the
indicated proposition thatrbelongs to a sub-module of characteristic formQdb a =
E.

Theorem II:

Let f be a numerical function o4 . The numerical value of f on a characteristic
line of Q is a function of the parameter t whose first derivative with r@spet is
i (E)Wdf , and its ' derivative igi (E) CHf)(n) .

Before proving that theorem, we point out that i§ a numerical function oWzn+1
then when the operator(E) is applied to the forrdf, that will make it correspond to a

new numerical functionf! =i (E) Odf . In the particular case where E hasZ2ro
components, while the first one equals 1, relativea basisx, one will have fx‘i”
=0f /0x'. That will justify the following definition:

Definition. — First derived function of a numerical function witspect to a field-
If f is @ numerical function o¥n.1 then we shall call the functiofi® =i (E) df thefirst
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derivativeof the functionf relative to the fielcE. The functionf!” is itself a numerical
function onVan.1, SO One can apply the operalE) to the formdf® and call f/* =
i (E)@f” the second derivativeof f with respect toE, which we shall denote

symbolically by { (E) Odf)®. More generally, the™ derivative of the functiori with
respect to E is the functiofl™ =i (E) Odf{"™® = (i (E) oH)™.

Remarks:

1. Iff is a product of two functiong Cv then one can prove in a classical manner
that:

(M = ™ p (P [P )
UMP=u W+ ..+ CPUP LY + L +ul.

2. One can define a derivativéE,) d (i (E;) [Mf) for numerical functions relative to
two fields that are taken in the order ,BE, . Having posed those generalities, one can
prove Theorem Il. Let andg be two numerical functions ovb.+1 . Consider the two
functionsi (E) Cdf andi (E) Cdg. If fis a function ofy thendf will be proportional talg .
Since the operatar(E) is linear and homogeneous:

df _ i(E)m@f

dg i(E)dg

Upon takingg =t and choosing the numerical function that the figJdvhich is defined
to be a solution af(E) Q = 0 such that (E) dt = 1, depends upon to be arbitrary:

df _.
=i (E)df= 0.
el E

In the right-hand side, one must consider the fancf to be a function of along the
characteristic line.
Upon repeating the argument that was madef foith the function f{”, we shall
write:
fe?= (i (E)@f )&

along a characteristic line of the field E, and®&gurrence:
f = (i(E)[@f).

Application.— If one choosesr?independent functiorfsthat have no singularities in
the neighborhood of a poiM then one can represent the characteristic lin¢leofield
E by the system ofrRdifferential equations that one writes:
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df. .
—=i(E EUfi.
it i (E)

That system will permit one to study the local aspettthe motion in the
neighborhood of a poitl, of the manifold, since one can calculate all of thesssive
derivatives aiMp by means of the operato(E) .




CHAPTER TWO

THEORY OF A SINGLE CONSTRAINT IMPOSED UPON
A MATERIAL SYSTEM

8 |. — Generalities.

Let a material syster@ be composed of points and solid bodies that depend mpon
parameters|. In that system, there exist holonomic constraimis one accounts for by
saying that the system depends upgmarameters. It can be visualized by a manifold
Vans1 Of the kind that was specified in Chapter I, 8 III.

Definition. — We say that onenposes a new constraioh the holonomic syste®
when:

1. The image o%is a submanifold 0¥2,+1, witha (M) = 0, MO Vone1 .

2. One extends the characteristic field E by way obmstraint field E, which is a
field that is due to the forces that are necessarydardo realize that constraint.

When one employs a particular system of variablepdsitiond’, velocity ¢ , and
timet, that definition will translate into:

1. A relationa (q, ¢, t) = 0 ( varies from 1 tan) that admits partial derivatives

da/oq # 0O for at least one(if the relation is holonomic then we agree to replaavith
its derivative with respect tb).

2. A generalized forcé to be appended to the forces appliedStcand whose
covariant components with respect to natural franke(Chapter I, 8 I11.4) are defined by

the relative poweP = > L ¢ .

i=1

When one characterizes the systeby a formQ onVa. , restrictingSby means of
a new constraint will amount to replacigy with Q + Q, , Q, = L; dd O dt, with the
condition thatda = 0.

In the expression fd?, theL; are functions of thqi, g, t, where the indektakes all
possible values; one does not take the relatier® into account in the expression Fr

Remarks:
1. There exists a relation that couples the fdemo the field E that will translate

into a relation that couples the partial derivativetheffunctiona to thelL; when one uses
coordinates. The study of that relation will be the ectopf § 1l in this chapter.
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2. From the standpoint that one assumes when oné&eonsa solid body that is
restricted to rolling without slipping on a given surfattet condition will translate into
three relations, and the solid bo&ywill be considered to be restricted by three
constraints of the aforementioned type. In ordemike that more precise, take a
homogeneous sphegeof radiusa that is restricted to rolling without slipping on a fike
plane. With respect to a fixed frame that is compos$edto-rectangular trinedron, let:

& n, ¢ denote the coordinates of the centeg,of
p,q,r denote the components of the instantaneous rotatidaryec
u, v, w  denote the components of the velocity of the poirtootact.

The constraints translate into:

u:é—aq:O, v=n+ap=0, W:Z:O,
B = Xu, P, =Yy P, =2w

On the contrary, a sphere that slides on the pkarestricted by only one constrait
—a=0,P=N (¢ - f{ u?+V?) (see the theory in §in of this chapter).

8 Il. — Relation between the formdaand the field E; .
Since the constraint relation is defined by a nueaéfunctiona = 0 onVaq: , the
form da must be zero on the integral curves of the eqositad motion, so it will belong

to the sub-module of characteristic forms of therf@ + Q, . From the Theorem | in §
[1l, Chapter I, the necessary and sufficient caadifor that to be true is that:

(1.1) i (E+E)M™a=0,
which can also be written:
(1.2) i (B) ™a+i(E)™a=0.

Let us make the condition (I1l.1) more explicit bgking the variables to be the
Hamiltonian variables. The for@ that characterizes the syst&mechanically is:

Q =dp Odd —[d (T2 —To) —Q; dd] Odt.

The constraint is defined ly(pi, , t) = 0,Q, =L; dd Odt
The characteristic equations of the fan+ Q, are:

0(Q+Q) _ dd _o(, - To)

dt,
a(dp) /o]
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6(Q+iQ|): {Qﬂﬂ a(T, T)}
o(dq) oq
_ da Jda
The form da = —dp —dq +6_ dt must belong to the sub-module of
. oq

characteristic forms d® + Q, , which has:

0Q+Q) 0Q+Q) . __0a(Q+Q) 9a dQ+Q)

a(dp) o(dd) ap o(dd) aq  o(dp)

for a basis, so one has the condition:

%{Qﬁh a(T, T)} (,-T)  da_,
op, aq 6d op ot

Interpretation of the condition (II.1). — The condition (ll.1) can be interpreted i
two different ways.

First viewpoint.— Since the fields E and Bre known, the condition (l.1) will be a
first-order partial differential equation that defs the functiora. It expresses the
necessary and sufficient far= const. to be a first integral of the system iffledential
equations of the characteristics of the fabmt+ Q,. As the general integral of a first-

order linear partial differential equations thapeleds upon an arbitrary functiaf,(a) =

const. is also a first integral, but it does natstdute a distinct integral.
Consequence: The constraint relaton 0 cannot be chosen arbitrarily, so it will be a
particular integral of the partial differential egion. That constraint relation is also

represented analytically bf (a) = 0, with 7 (0) = 0. That is why we say that a

constraint relation is defined analytically only tgoan arbitrary function for a holonomic
systemS.

Second viewpoint: As (11.2) shows, if the submanifoll= 0 of V,n41 is given then
the condition (11.1) will be linear in the field,E There will then exist an infinitude of
fields E that satisfy (11.2). One can give a geometrietiptetation to (11.2) by using the
natural frameR(Chapter I, § Il.4). At the poinu of the manifoldV,.;, consider the
vector L (whose covariant components dr¢ and the vectoa (whose contravariant

components aréa/ dp). i (E) [Ha= z% L, is the scalar product of those two vectors.
i=1

The numerical function (E) Oda, which we denote byr, does not depend upon the

constraint force. Equation (11.2) will then takeetgeometric forna [ + a = 0, and will

signify that the extremity of the vectar whose origin igM is situated in a hyperplane

that is defined by the equation:
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.Zn:G_QL +a=0.

That equation determines how to get one of the compsdéht when one supposes that
the other 1t — 1) are known.

8 Ill. — Distinction between a first integral of motion ofS
and a constraint imposed upors

If i (E) da= 0 at any point o¥2n+1 then, from Theorem | (Chapter I, 8§ IlI), that will
signify thatda belongs to the sub-module of characteristic form& ofin other words,
that a = 0 is a particular first integral of the system abfaracteristics of2 . That
constraint can be realized, in particular, without apljpgg any new forces to the
mechanical syster§, since one can satisfy (11.1) by taking the fieldtdcbe zero. That
will permit us to make the notion of a constraint tiaimposed upon a mechanical
systemS more precise.

Definition. — A constraint is imposed upon a syst®mhena = 0 is not a particular
first integral of the equations of motion®f That definition translates into the condition
i (E) Ma# 0, and when one employs the coordingies], t, it can be written:

S oaf 0T, (T,-T) , 9a
.Z:;‘p.(' jZ;, an T

8 IV. — Constraint of the typea = 0,4 e Compatibility.

For a great number of the usual constraints, the mesthaof constraint is such that
one knows,a priori, the direction of the generalized constraint fotce i.e., the
constraint fieldg, has the form1 e of a field with a known direction, wheré is a
numerical function to be determined.

Examples:

1. Two solid bodies in contact without friction, deetconstraint force is directed
along the common normal.

2. Two solid bodies that slide over each other writttibn, and the constraint force
obeys either Coulomb’s law or a generalized Coulomb la@ne then knows the
direction of the constraint force, since it is sieeh on the one hand, in the half-plane that
is defined by the common normal and the vector that is dpptosthe sliding velocity
Vg, and on the other hand, makes an agglth the common normal in that half-plane
such that tap =f . (f = const. is the ordinary Coulomb law. WHeis a function of the
sliding velocity and the normal componeNtof the pressure between the two solid
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bodies, that is the generalized Coulomb law.) The ghmg will result when one takes
into account the couple of the resistance to rolling avatipg.

3. Zero-power constraint. One will see how to deti this in 8 V.
4. Béghin’'s servo constrainTt),(whose direction of action is known.

Upon exhibiting the directioa of the constraint force E A e equation (I1.2) can be
written:

(11.3) Ai(e) Ma+i (E)Ma=0.

By hypothesis, in the case of one constraint imposed 8pofic) [a # 0, the preceding
equation will determine a finite value for the factowheni (€) (Hda# 0. The hypotheses
i (E) Ma#0,i (e) a=0 lead one to attribute an infinite valueto Under the action
of a force whose magnitude becomes infinite, the inbligonstraints that one must
necessarily take into account when one exhibits the iegsabf the parameterized
system must cease to be. One must then imagine fiinendgion of those constraints. In
the sense of the theory of invariable solid bodies, anaeat begin to study the cas) O
da = 0, for which the postulate in Chapter |, 8§ Il (vizzeao-power system of internal
forces) is not valid. We shall encounter an exampl¢haf situation in the case of
friction due to sliding, rolling, and pivoting at the endtbis chapter. The foregoing
leads us to the notion of a compatible constraint.

Definition. — Compatibility of a constraint of type=a0, A e. — A constraint imposed
on a mechanical syste®of typea = 0,1 eis calledcompatiblewheni (e) CHa# 0.

Remark:

If one has simultaneously (€) (da), = 0, ( (E) (Ha)o = 0 at a poinMg of Van41 that
belongs to the submanifoll= 0 thenA will not be determined by equation (11.3). One
can then determine it by means of the valua®@that is calculated by applying Theorem
Il to Chapter I, 8 IlI:

= @ -
a? = (i (E +le) a)? =0,

A% (i (&) da® + A [(i () d) i (e) da) + (i (E) dA) i (e) da) +i (e) d (i (E) da)
+i (E)d (i (6 da)] + (i (E)da)® =0,

which is a relation that reduces to:

A5 (i(e) da)g”+ Ao [i (&) d (i (E) da) +i (E)d (i (e) da)]o +(i(e) da);”

(") Translator: The French phrakaison d’asservissemenneans literally “constraint of servitude (or
slavery,” but nowadays such constraints are referred teervo-constraints,” so | have chosen the modern
terminology.
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at Moy . That equation has degree twalip, so it will generally determine that number,
and otherwise one will use the first expression (o(E+Ae)da)’, which is not
identically zero.

8 V. — Zero-power constraint.

That category of constraints is easily charactenzieein one takes the variables to be
the Lagrangian variables(( ¢ , t) . The power delivered by a force that is defined by

L ¢, like the velocity itself, depends upon the chosen framtewill thus exhibit two
distinct aspects according to the frame (Chap. 1,48 that one envisions:

1. With respect to the natural frafReP = z Lg .

i=1

2. With respect to the franfe in the @ + 1)-dimensional Riemann space:

P=> L4, with ¢=1,

i=0

which is a frame that one is obliged to introduce whenittplicit constraints that one
takes into account in order to conclude with the nodiba parameterized system depend
upon timet. Note that the first expression will be deduced fromsétedond one when one
introduces the usual convention of saying “the power at doisand that the two
expressions will coincide with the implicit constriainio not depend upon time.

For the sake of generality in our arguments in this paphgrwe shall use the power

P= z L g with respect to the Riemannian frafe

i=0
One is liberated from the use of coordinates in theviotlg way: The powefP

corresponds to the fornr= P dt = ZLi q that is defined oW, . Along an integral
i=0

curveZ of the equations of motion that relate to the field &, the value of the formr

will be i (E + E) 7z while the value of the formdt is set toi (E + E) Odt = 1, by

convention (cf., Theorem II, Chap. I, 8§ lll), so:

P="zi(E+E)

2|y

If one now considers the set of integral curketheni (E + E) 7rwill be a numerical
function onVop.1 .
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Definition. — We say that a constraint heeyo powemwheni (E + E) 77=P is zero on
the set of integral curves of the motionSohen it is restricted by that constraint.

Theorem:

n .
A zero-power constraint haEIi g' for its analytical expression, where the quantities
i=0

l; are functions of 'g ¢ , t.

Since the two equatiorss= 0, P = 0 do not have to constitute two distinct constraint

relations, they are two equivalent analytical formstf@ constraint that is imposed 8n
in the sense that was given to that expression in ®He can then take the analytical

expression for the constraint to Be=1 (E + E) 7= 0. The last equation shows tlrais

defined only up to a factor that is a numerical funcoorv,n.; . When one takes the
variables to be Lagrangian, it will result that a zpoaver constraint is defined by:

zn‘lliqi =0, P= Ailiq‘ .
i=0 i=0

Particular cases:

1. Thel; are functions of only thg' . These are the classical linearly non-holonomic
constraints:

ili qi +1o=0.
i=0

2. Thel; are the partial derivatives of a functian(q, t) . These are holonomic
constraints.

3. Thel; are partial derivatives with respect to the of the sdmmogeneous
function of degreen with respect to the| , namely,a(q, g, t) :

n

Ja oa .
Ii:_i’ —_iQ'Ima.
aq ;aq

These are the constraints that App®) @iscovered.
Remark:

The Appell constraints contain the previous two as speasgsm = 1 gives the
linearly non-holonomic constraints, white= 1, =da/adq .

(*¥ Cf., P. APPELL, C. R. Acad. Sd52(1911), 1197-1199.
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Value of the factor A for a zero-power constraint.— Equation (I1.3), witra = |. ¢',
becomes:

An[%lij+a:0, a=i(E)da
= op,
but:
da_oda 04 _ 0a
op 09 op 09
(¢' is the metric tensor oW, or Vis1 .) i @' =/ are the contravariant components of the

direction of action of the constraint force witlspect to the fram& A will then be
determined from:

(11.4) Ai(a—ﬁljj+ a=0.

=09
Particular case— Appell constraint.da/d¢’ = 1! (11.4) becomes:
(11.5) A (W) +a=0.

=1

Since le M’ is the square of the magnitude of the vettwith respect to the frante,

the coefficient ofA will always be a positive quantity for Appell constraintThat fact is
very important for the unigueness of the motions ofystesn S that is subject to
constraints of clasd (unilateral constraints), which will be studied in CleaiptlV and V.

8 VI. — Study of the constraint that consists of contact betgen two solid bodies

that slide, roll, and pivot with respect to each other.

Consider a moving frame that is composed of a tri-rgctian trihedronMXYZ that
has its origin at the point of contact between the $ada bodiesS; andS; , and its axes
are the common normal that points towa&ils while MX and MY are located in the
common tangent plane and are coupled with a systemabrthogonal curves that are
traced ort, .

Some notations that relate to that trihedron are:

Q (P, P>, P’) the rotation of the coordinate trihedron

@ (p', p>, p°)  the absolute rotation of the bo8y

Vao, (@' a? a®) the absolute velocity d®y, which is the center of gravity &

MG, (¢%, ¢ ¢°) the coordinates d®; ,
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V,. (&*, a° a® the absolute velocity d®,,
AG,

MG, (g", &>, ¢° the coordinates aB;,

R the resultant of the action 8fonS

K the resultant moment with respectMaof the action o, onS;
Vs, the velocity of the point d§, that contact$ atM

Vs, the velocity of the point d% that contact$, atM

The vectolV = Vs =V s represents the kinematical stateSpfvith respect tc .
That vector will have the components:
w=a-d+@p-gp)-@P-gp),
W= -a+@p-gp) =P -¢p),
=o' -’ +@p-dp)-@'p°-gp).

The condition of contact betwe& and$S, translates inta® = 0. It constitutes the
constraint relation in the sense of paragraph I.

(11.11) a=a’-d+@'p*-dp)-@'p’-gpH=0.

Let us evaluate the power delivered by the system atticont forces.
The vector that characterizes the relative ratatibS, with respect t& is @ — @ ,
whose components are:

p-p

. s } on the common tangent plaae,
p—p,
p® —p° on common normady .

The power delivered by the constraint forces is:

P= R(VMSL _VMSQ)+K (0.{‘602) .

Under the hypothesis that,s #V,, , @ # a , a non-zerd will be determined only

when one specifies the directions and magnitudés aidK . That is the subject of the
Coulomb laws that we shall recall.
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1) The laws concerning : Vs =V =V, whose normal components is zeré;if

and$ are in contact, will have a tangential componégthat is the sliding velocity d&
with respect t& . R has a tangent componéhiand a normal componeht

a) The tangential componerit is collinear withVgy , but points in the opposite
direction.

b) | T |is coupled N | by way of the relationT | =f | N |, wheref is the coefficient
of friction, so:

R(Vys ~Vis) =N U =[N Vg].

MS
2) Laws concerning : @ — a» has a tangential componest, which characterizes
the rolling of § with respect t0S; , and a normal component that characterizes the

pivoting of S with respect toS; . K has a tangential componelit and a normal
componenK,, .

a) The tangential componett; is collinear withap , but points in the opposite
direction.

b) |K:|is coupled tol\ | by the relationiK:| =d|N |, wheredis a coefficient that
is called theesistanceo rolling parameter

c¢) K, is collinear withay, , but points in the opposite direction, and is coupteN t
by the relation Kn | =@ | N | , wherew is a coefficient that is called thiesistance to
pivoting parameter

It results from these laws that:

K(a-a)=-|N[[Olw|+@|al].

The power delivered by the system of constraint forcékdarsense of the definition
in Paragraph | is:

(1.6) P=N[-f|Vg|-d|lw|-@|al|], N>O0,

or.

(1.7) P=N [us- f ()2 +(u) -3y (p'- pY) 2+ ( p- p) —we( p- pﬂ,
£=+1, e(E*-p°) > 0.

The expression in brackets is a function of thepdametersj that characterize the
position of the two solid bodies in space and tffiest derivativesq . We remark that

the quantities’*, u%, u*, p', ..., p® are homogeneous linear forms in tiie In order to put
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n .

P into the classical formz L ¢, it will suffice to apply Euler’s theorem to eachtbé
i=1

homogeneous functions:

(2 (2 — 6u au
(ul)2+(u2) —_
\/(u) +(u \/(u) +(u2)2'

p'-p’ Zo(p'-p .

(p = pH)2+(p°- p)° —q
/ (- (P pf’)zg 0q

p> - p° Zo(p* = P) .

+ L
J(P - phZ+(pP- P2 0

The expression for tHg will result from that, and likewise that &f, sinceN enters
as a factor in thé; . It is important to point out that this calcudet is valid under the
hypothesis that the coefficientsd, aware functions oN, which is the pressure between
the two solid bodies, the sliding velocity, and tb&ationa or @ .

Special case- f, o, w are either constants or functions Nf which is the normal
pressure, when considered to be a parameter.e$ets:

(11.8) W= - £ ()P4 (U)P -0y (= p) (= p) P e (0° ),

where the expression (11.7) shows tRat N W. SinceW¥ is homogeneous and has degree
1 with respect taj , the classical form o will then be (11.9), which will permit one to
state the theorem:

(1.9) P:NZ%qJ

Theorem I:

When solid bodies contact each other by rubbinigling), or pivoting over each
other, if the coefficients &, ware constantsr functions of the parameter N (normal
pressure) then the covariant components of the tns force with respect to the

natural frame R will be proportional to the partiderivatives of a functio® (g, ¢')
with respect to thej .

Calculating N. — Since the constraint that is defined by conbmttveen two solid
bodies has typa = 0, A g the calculation oN will be achieved by means of equation
(11.3), which is (11.10):

(11.10) N (i (e) (Ha) +i (E) Ma= 0.
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If f, &, ware independent then that equation will be linedt inIn the opposite case,
it will represent an equation that defiriésmplicitly.

The effective determination &f demands that one must calcula{&) CHa andi (e) O
da. i (E) Macan be calculated only when one is given the systeentefnal forces that
act upon the two solid bodies. Since the latterbgrary,i (E) (da will be an arbitrary
numerical function oVzn+1 . As fori (€) (da, it will be determined when one knows the
constraint relation and the power

Theorem II:

When two solid bodies in contact slide, roll, or pivot over each ptherinvariant
i (e) [da is given by the formula:

(1.12) i (e)Ma=A+f(Bsins+Ccoss)+J(Dcosog+Fsing +cwG,

in which { 6, @ denote the coefficient of friction, and the remise to rolling and the
resistance to pivoting parameters, resp., s arate the angles that the sliding vectty
and the rotation of rolling vectow , resp., make with an arbitrarily-chosen direction
the tangent plane that is common to the two salids, and A, B, C are coefficients that
depend upon only the distribution of the massésarntwo solid bodies at the instant t .

We remark that the constraint relation and powerexpressed simply by means of

the velocity parameters', ..., @&°, p, ...,p°:

(1.11) a=a-a+gp -gp -g'p’+gp' =0,
(.13)[sid P=
ou’ oy () +()? o, V(P = PP+ (P*= P) .
=N|—_f - f -3 = -p%) |,
TV D o L ErTR)

in which 8% denotes either of the paramet@s8 or p”. The expression (11.13) faP
involves the partial derivatives with respectufou?, andp® — p*, p> — p°, which have a
geometric significance. Hdenotes the angle that the sliding velositymakes with the
MX axis then:

ut u?

COSS = sins=

[(ul)2+(u2)2 ' [(ul)2+(u2)2 '

If odenotes the angle that the rolling rotation veegomakes witivIX :

p? - p°
J (- pH)2+(pP- )7

1_ 4
COso = P P , Sino=

J (P - )2+ (p?*- P)?
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which will then give the new expression for the power:

(1.14) P=NI,B%

with
l,, =—f coss, l,, = f coss,
l,, =—f sins, l,, = f sins,
., =1, ., =1,

|, =-g°-fsinsg’-dcowr, I g°- fsinsg’+dcowr,

| = g°+fsinsg -¢w, | =-g*+fsinsg’+J cowr,

P2

|, =—fcossg’- f sinsg’-J cos I

fcossg’- fsinsd' +ew

Everything comes down to establishing the formula thanpgmone to calculate the
invariant i(e) da in terms of the paramete8”. Now, when one uses Hamiltonian

variablesi (¢) Oda :ZIig—a; when one uses Lagrangian variables,dif is the
P

fundamental metric tensor then:
) . o0a
i () Ma= N =

]

If one uses arbitrary velocity parameters that are edufd the parameters by the
linear relationg3” = ¢°¢ then:

da _ da 0B” _ oda _ ,

Ii = -p| , — = — = .
H B aqj aﬁp an aﬁp i

. . da oa

i (e) Ma=qg"u’ 1l —= y*I ,
e Q,U.,U,paﬁg y B

in which y*° = g' 4”117 is the contravariant expression for the fundameetaddr in the
i M

new system of parameters. The contravariant tep@dis deduced from the covariant
tensory,s, which is known since it is given by the coefficienttioé absoluteis vivain
the system of axddXYZ Let:

2T =my [(a)? + (&) + (@) + A (pY)* + By (p°)° + C1 (p°)°
2D, pf = 2y P pt — Oy p

+m [(0) + (@) + ()] + A (pY)* + B2 (p°)° + C2 (p°)°
— 2D, 0 P — 2, P pt — 2 p
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in whichmy, m, denote the masses of the two solid bodigs, .., F1 are the coefficients
if the ellipsoid of inertia of5;, with respect to axes that are paralleMXYZ and issue
from G, while Ay, ..., F1 are the analogues & . It result from this that:

prazymazymas Lo pes e e 1
m m,
Y =0, for i#],
yplpl:al’ ypzpz:bl, ypmzcl’ ypzps:dl, ypspl:el’ yplpz:fl,
yPP=g? Y= p? =’ yRRk=d? R P2

i (¢) Oda :y”"lp%will give formula (11.12), with values foA, B, C, D, F, G that

depend upon only the distribution of the masseglénsf the two solid bodies at the
instantt.

1. 1, 4

=+ +al (@) +b(¢) - 2 g g+ (@) + D@ - 2

2.4 6

B=a'g’g'+d'(g)’-€e'g'g’-f'g' g’ +a’g’ P +d*(¢")* - e'g’ o° - F?g" &
C=b'g'g’-dg' g +e(g) -f'g" g’ +b’g" g - d g’ " + ()" -9’ ¢,
D= a¢g°-flgt+a’g° -7,
F=-blg'+f'g -b°g*+17g"
G=-dg'+e'g?-d?g" + €g".

In the case where one supposes fthatw are independent &, N will be finite fori
(E) @™a# 0 only when (e) (da# 0.

That question presents a certain practical intessswe shall show briefly that the
distribution of matter in the two solid bodies mbstvery special in order fore) [(Ha =
0 to be realized for values bk 1.

In order to simplify this, take the case of a@alf revolution that slides with friction
on a plane, while the axis of the solid remainsa plane with vertical symmetry. In the
preceding calculations, one must take:
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=0=¢"=0, d'=0, fl=0, bt= —
and thus, the condition:
I+ @) +fgtg®=0, if coss = 1.

The sliding takes place in the positive sensegplbieX-axis, so since’® is positive,
one must have thaf is negative. Take the reference system to belphaxies that issue
from G. The coordinates d¥l with respect ta@O areé = - gl, {=- g3. If k andf are
given then one can deduce that the contact piaf the solid body is along the branch
of the hyperbola:

(&> +1&¢=-K

with respect tdG, so the minimum distance fro@to M will be given by the length of

/2

.. . .k
the transverse semi-axis——=———. Hence, one has the mequalltyc:s—Ms

NN
L S “1+f2_1 1 , So for a

If the body reduces to a homogeneous bar thlén: —
J2 GM /3

homogeneous bodékﬂz % The double inequality is verified only wheér 4 / 3.

NE

8 VII. — General method for forming equations of motion for a nechanical system
that is subject to one constraint.

Everything comes down to the exterior form of é&gtwo that is associated with the
mechanical systei§ because that form can be expressed by meanafbfdétns.

We suppose that the constrdirg defined bya (pi, ¢, t) =0,Q =Al;dgq' Odt The
case wher€, = L; dq' O dt, in which all of thel; are known except for one of them, can
be considered to be a special case of this, sine#l suffice to group all of the knowh;
with the Q; that correspond to external forces in order taucedt to the preceding case,
and the unknown functioln will play the role ofA . The formQ that is associated to the
system that is restricted by the constraicein be written:

Q =dp 0dd —d (T, —To) Odt+Q dd Odt+Al; dd O dt.

By hypothesis, the constraint imposed ®is compatible (cf., Chapter II, § 1V), so

n .
i(e)da= ZEI' # 0. It will then result that one can always replélece two associated

i=1 0P,
differentialsdp , dd with the two Pfaff formsrandg, which are defined by:

p=1;dd,
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oda
o=——d +—d +
R oq d at

op,

which can be solved for the two associated differesntidbo fix ideas, letip;, dq- be:

o- % Z e dt
_ = op, = 0
dpy = da ’
ap,

The exterior form that is associated with the systan be written:

Q =k (007 +kig (00 f) + koo (00 &) + kgp of O f
— (Kgo I + kio 1T+ koo 77—\ 7) O dt,

when it is expressed in terms of a system of m@faff formso;, 7z «f, wherea varies

from 3 to 2.
The differential equations of motion are the astedi@quations tQ.

1) 662, Kap ¢f — k1o 0— ko T-kizdt=0  [which are 2r{— 1) in number],
(2) a—Q == k12 g— k2a CJ] (kzo /\) dt=0

o
(3) G_Q: kiz 77+ kig &f = kio dt = 0,

oo

to which one adds the constraamt 0 and the defining relations for the forms.

Reduced formQ, . — We point out that if one takes the constraint atocount when
annullings then one will get a reduced form:

Qr =kog (00 f) +kap (f O ) = (Koo &f + koo 7-A 7 Odlt.

Compare the first 2— 1) equations that are associated @trand withQ, when one
setso= 0:

) gj'a Kag & — kog T- Koo dt =0  [which are 2r{— 1) in number],
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Q
r:k2a&f—(k20—/\)dt:0

@) 55

One confirms that these first(2 1) equations are the same. The last equation in the
former system, which will be missing when one uSgs, can be replaced with an
equation that is independent of the previous ones. Upomnvaoigseéhat:

0Q_ _0Q 9(dp)_
3o a(dp) oo

90 =0 is equivalent teai: 0, and conversely. One then deduces that itswifice
oo o(dp)

to append to equations'Y&and (2) the equation that is written:

dql— Zdt

If one replaces, in the set of equations that was just written with value that is
calculated by means of the equatan 0 then one will have the theorem:

Theorem I:

If one is given an n-parameter mechanical systeah ithrestricted by a compatible
constraint a(p', g ,t) = 0,Q, = A |; dd Odt then one can obtain the equations of motion
and the constraint factof by appending to the associated equationftq which are
from Q by taking the constraint into account, on the onadvr= |; dd, and on the other

hand, one of the equations' dq 3 T, dt= 0, where i is such thatg—l #Z0,and p is

replaced with its value that is calculated by meahthe relation & 0in the equations.

Remark:

In practice, ifQ is expressed by means of the Lagrangian variahles, t, and their
differentials then that theorem will translate itbe following rule:

Rule.— In order to obtain the differential equationsnadtion, one replaces the two
associated differentiatsg’, d¢t in Q with, for example, the two formgando. Q will

reduce taQ, by settingo = 0 and replacingy* with its value that is calculated by means
of the equatiora (q, ¢ , t) = 0. The associated equationsto, to which one adds, on

the one handd' - ¢'dt = 0, and on the other hand= |; dd, determine the equations of
motion and the constraint factor.
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Reduced form Qs that gives the differential equations of motion uniquely— As
was just pointed out, the for@ depends upon the 2 £ 1) formsaf, dt, andr:
Qr =kog O &f +Kgp of O 6f = (Kao of + koo 77— A 1) Ot

Sincer= P, dt (whereP is the power delivered by the forces that are necessary
order to realize the constraint, Bo= A P, , P, = |. 4'), replacerrwith P, dtin Q, . One
will then get a form:

Qs = koo Py dt O af + kop of O f — kg of Odt
=kop of O cf = (Py koa+ kao) of Odt,

into which A does not enter. Upon comparing the associated equabidhsand Q; ,
when one replacegwith P, dt, namely:

gag; Kap of - (Py kog+kgo) dt=0  [which are 2r{— 1) in number],

0Q,
oaf

= Kkap f — koaPy dt —keodt =0 [which are 2r{— 1) in number],

one will confirm that they are the same. One cam thet the equations of motion
independently ofi by means o€, in which all that appear are 2 € 1) differentialgdd,

dp and (2 — 1) variablesi , g, wherep;, for example has been replaced with its value
that one infers from the constraiat= 0. The equation that must be appended to the

characteristic equations 6% is dq- - STZ dt =0.
P

Constructing Qs. — Qs is obtained by replacing two associated differentals, dq*
in Q with the values:

dg' =P, dt->I,dq,
i=2

n % + n aa

__i=20p = 0q
dp = kR
P

Theorem II:

If one is given an n- parameter mechanical systeat th restricted with one
compatible constraint gpi, q, t) = 0, Q, = A | dd (0 dt then one can obtain the
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differential equations of motion as the characteristics of a fQgof rank2 (n - 1)that
is deduced fronf2 by replacing the two associated differentials ,dgd with the values
that are calculated, in the first case, by means of the differeotidhe equation of

constraint, and in the second case, by means of the equEileqi — P, dt=0. If the
i=1
variable pis replaced with its value that one extracts fram O then one will append the

form dd — %dt = 0to the system of characteristic equation§ef

Remarks:

1. Zero-power constrain® = 0. SinceP = P, + lp, one replace®, with —1y in the
preceding formulas.

2. Zero-power constraint independent of tife= 0. dd is a linear function of the
other 1 — 1) differentials.

3. Holonomic constraint that is independent of tinBne pair of the variablgs , q
and their differentials will no longer enter inf,. The differential equations of motion
are the characteristics of an exterior form of degneeand rank 2r(— 1).

4. If one variableg' does not enter into eith€l, the constraint relation, d?, then
there will be an obvious advantage to eliminatii) becaus&s will depend upon only
2 (n — 1) variables and their differentials. The differahtquations of motion are the
characteristics of a form of degree two and rank 2 (1), so the variablg' will be
determined by a quadrature.




CHAPTER THREE

MATERIAL SYSTEM SUBJECT TO p CONSTRAINTS

8§ I. — Introduction.

Definition. — A holonomic material syste®that is characterized by an exterior form
Q of degree two and ranknzhat is defined on a differentiable manifoldsisbject top
constraints if:

1. The image o%is a submanifold o¥,n.; that is defined by:

aaM)=0, .., a"(M)=0, MOVo.

2. One appendp constraint fields E ..., B’ to the characteristic field E that is
defined byi (E) Q = 0, which are fields that are determined by the forbes are
necessary to realize that constraint.

When one employs a particular coordinate systenp tonstraints will be defined:

a) From the theoretical standpoint by:

1. prelationsa (pi, d, t) = 0 (h varies from 1 tq).

2. pformsQ" = L"dd Odtthat one must add @ (i varies from 1 tq).

b) From the practical standpoint by:

1. prelationsa (d, ¢ , t) = 0 (h varies from 1 tq).

2. ppowersP” = L"¢' (i varies from 1 tan).

Remarks:

1. The set op constraint relationg® = 0, ..., a’= 0 can also be defined by an
arbitrary set op functions of clas€ *, viz., fx (@, ..., a®) = 0 ( varies from 1 t@), that
are zero at the poinD, where the Jacobian is non-zero. A setpofelations then
constitutes a sub-ring of numerical functions in timg of numerical functions, and
generic elements are defined by any choica’of.., a’ that are independent of each
other. There is obviously much interest in choosiragélp elements to be as simple as
possible in practice, but that choice is not necessateory.
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2. One can always suppose that the fildhat related to the™ constraint has the
form E" = A, €', wheree" is a known direction field and,, is a numerical function on
Vans1, because ifr{— 1) of then components of Eare known and the™ one is unknown

then one can write E= E" + A, € and consider the new fiel= E + E", which

C )
amounts to including the known part of the constrainteerin the external forces that
are applied t&s from the mechanical standpoint. It will then desbat, with no loss of

generality, one can always consider, on the ond,itae power of the set of constraints

in the formP = A 1"g', and on the other hand, the fofm, which is the sum of th@j
that are added t® and is writtenQ, = A 1"dq' Odt, where thed, are p numerical
functions orVzn.1 to be determined, and tHg arenp known numerical functions.

8 Il. Compatibility of p constraints.
The characteristic field for the material systdmattis subject tg constraints is E +
p
Z)lh e". The formsda, ..., da”, which will be zero on the integral curves of the
h=1

equations of motion, must belong to the sub-modtilsharacteristic forms of the fort
+ Q. From Theorem | of Chapter I, § I, the necegsand sufficient conditions for that
to be true are:

(111.2) i(E+Zp:)lhehjdak:0 h k=1, ...p),

h=1
which are conditions that can also be written as:
(111.2) Ani (@) d& +i (E)da* = 0.

We point out that if we change the analytical esentation of the constraints then the
conditions that one will obtain will be only lineeombinations of the equations (111.2),

o
becauself, = —-da", and:
oa

P of
i (E+An &) df=Ani (&) df +i (E)df = Z?L[/lh i (€ dd +i (E)dd .
k=1
Thep conditions (l11.2) constitute a linear systempiminknownsiy, ..., A, . TheA

are determined only if det [€") dd | # 0. That condition is obviously independent of the
variables that are used to characterize the sysfgmconstraints. We shall call it the
compatibility condition because if it is realized then the constraintoiecA, will be
neither indeterminate nor infinite. As we pointad before in the preceding chapter, the
postulate of “a system of zero-power internal fetds valid. For that reason, we pose
the following definition:
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p constraints that are imposed upon a material system camepatible if
def/i €")da"|# 0.

Remark. — That notion of compatibility of the constraieaves out an important
class of motions in which the constraints are iadetnate in the sense of the mechanics
of rigid solid bodies, but that notion is indispxhes if one would like to avoid some
paradoxical results.

For example, take a heavy bar whose extremitiaadB slide without friction on a
vertical circle of radiu®R. ForAB = 2R, apart from the constraints, a uniform rotational
motion of the bar around the cen@iof the circle might be possible. If we considwe t
reactions atA andB then a similar motion will be impossible, becatisese reactions
cannot equilibrate the action of gravity. We cdiow that two such constraints are
incompatible, from our theory.

Let M be the mass of the bar, and kdbe its radius of gyration around its center of
gravity. When one takes the polar axis to be #exending vertical that issues from the
center of the circle, the polar coordinates of tkater of gravity of the bar (which is
assumed to be homogeneous) ta,b& and the angle of rotation of the bar toghdhe
form Q will be:

% = dr Odr +r°d@0d6 + 2r §dr Od+ K2 dg O oip

— (rdr +r20d @ +r 6%dr +k *pd @) Odt + g (cosddr — rsin 8d6) Odt

The characteristic field E has the components:
r’é+ g cosé, _T:L(2r9+gsin6), 0, P g, ¢, 1

Suppose that the bar has a length Rfsih u with u < 77/ 2, so classically the two
constraints translate into the two relatiorrsR cosu, ¢ — 8= 77/ 2, and from our point of
view, they aref = 0, ¢—6 = 0, and if the bar slides without friction themey will

contribute zero powe?' = A r, P> = A,(¢—6). One then deduces:
1. The two form®! andQ?:
Q= dr Odt Q%= (d¢g —dg) Odt.

2. The components of the two direction fieldstfee constraints' ande’ :

e=(1,0,0,0,0,0,0), e :(o,;—zl k—12 ,o,o,o,g.
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Since we would like to examine what happens whemR cosu for u = 77/ 2, the two
fields E ande® will become infinite for that value, and we take tt@mponents of the
fields to be:

E=(r?(r &*+gcosd), -2 (f+g sid), 0,r7 ,r2p ,r?,

2
et=(20,0,0,0,0,0), €= (O,—l,% ,o,o,o,%.

One immediately gets:
2

iEe)di=r? i@E)di=0, iE)d(@-6)=0, i(ez)d(¢—9):1+%.

The compatibility condition can be written:

2 2
i (') di i (%) d(¢ - 6) = r2(1+%j = R co¢ u[ 1+Rck—252“j %0,
Foru = 77/ 2, the two constraints are incompatible.
Geometric interpretation of the scalar functiondet |i (€") da | . — The numerical

function det | (€") dd| can be interpreted geometrically .1 by considering, on the
one hand, the fielé' 0€&* O ... OeP, which has ordep and is constructed from the
fieldse!, €, ..., eP in the spacd that is tangent t¥zn:1, and on the other hand, from the
formda' O0d& O ... OdaP, which has ordep and is constructed from theforms da’,
d&, ..., daP in the spacd’that is dual toT. At any pointM on the manifold, the field of
orderp and the form of ordep will give rise to ap-vector and g-form, respectively,
whose interior product will be deti| () dd | (9. The compatibility condition
det]i €")da" | # 0 then imply the non-vanishing of thatvector and thap-form, which
means the following things:

1. The non-vanishing of thp-vector means that the directions of the forces of
constraint at a poinM of the manifoldVan.; form a p-hedron, and are consequently
independent.

2. The non-vanishing of thp-form implies that thep functions that define the
constraint relations are independent.

From the analytical standpoint, the compatibility doad translates into:
If, on the one hand, one leAsdenote the matrix witp rows whose elements in a row
are the components of one of théormsda’, d&, ..., da® with respect to the basidg,

(*° Cf., N. BOURBAKI, Algébre multilinéaire Actualités scientifques, no. 1044, Hermann, Paris, 1948,
pp. 106.
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dg , dt), and on the other hand, one létddenote the matrix witlp columns whose
elements in one column are the components of oneeop fields €', ..., € then the
product of A with L will define a square matrix of ordgr whose determinant is the
interior product of thg@-vector and th@-form.

[2 ... |P

ga ~oa oda  9a o0& R
op* op'  ad o ot no e
A= , L=0 --- O
ga® =~ oa’ oda’  oda’ J& S

op* op" 0 ad ot o

p poog q o .. 0

The componentd. . of thep-vector are formed by means of determinants of order

p that are extracted from the mattix The componentsAil"'i" of thep-form are formed
by means of the determinants of orgdehat are extracted from the matAx

A L., =det|ALL|.
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8 lll. — Reduced form Q, that is associated withS subject to p constraints that gives
the equations of motion and the constraint factors.

We shall show the existence of {r@ector L . and thep-form A" whose interior

product is not zero permits us to construct a reduced fyrmhose (B — p associated
equations, combined with conveniently-chosen equations, will give the equations of
motion, on the one hand, and fheonstraint factors, on the other.

Set:

I"dg'=7" (h=1,..,p).

The existence of the-vector permits us to calculapedifferentialsdd as functions of the

"

Set:

The existence of the-form A™"* permits us to calculatp differentials dp as
functions of thed".

If the interior product of the-vector and thep-form is not zero then one can choose
the two systems of differentials to tg, dp , which one can express as functions of the
forms 77, &, and with the same partition of the indices (frono ptto fix ideas), which
is always possible with an appropriate choice of rmtati It will then result that the
form Q that is associated with the system can be expressadebags of the 12 Pfaff
forms 7, & (h varies from 1 t@), «f (a varies from P + 1 to ) can be written:

Q =kn (o' 0" +kai (f 0T + ko (of O 71" + kep (f O )

+ (Kgo f +kio 0" +kno 7" = A ) Odt .

The equations of motion and the constraint factorgaen by the characteristics of

Q-
0Q _ i h B _ . .

(1) T Kai o' +Kan 71" + Kgp 0" —Kgodt=0,  which are (- p) in number,
0Q i . .

(2) ﬁz—k;h 0' —Kah & — kno dt+ Ap dt= 0, which are in number,
0Q h . .

(3) F: kih 77" — Kgi ¢f —kiodt=0, which arg in number,

to which one adds the constraint relatiais= 0 and the defining equations of the forms
with thep conditionsa™ = 0.
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Reduction of). — LetQ, (which will becomeQ when one annuls the") be:
Qr =kan (&f 07" +kap (¢F D) = kao &f +kno 77" = An 71" O dlt.

The first (21 — p equations that are associated vithare:

0Q

1) 6afr’ = Kah 71" + Kgp P = Kgo dt = 0, which are (- p in number,
0Q, . .

(2) P = —Koh &f —kno dt+ A, dt=0, which argp in number.

One notes that the set ofh(2 P equations (3 and (2) are nothing but equations (1)
and (2) when one annuls toe". In order to complete that system, one must thieaikst

append the equationsg—Qiz 0 orp equivalent equations to'fland (2). Now, if Q is
o

expressed in terms of the variabesd then one will have the following equations for
the associated equations:

99 _ i - ge=o,

o(dn) ap,
When one performs the change of forms:

0Q 0Q

— = Cloi
d(c") a(dp)

dp = ax 7%, with  det |ai | # O,

in such a way that tmzequationsagj—g): 0 will imply 00 =0, and conversely. It will
R

O.h

then suffice to append the equationsdq —%dt: 0 to (1) and (2), in which one

replacesp of the quantitiegy with their values that are calculated by meanshefp
constraint equatiors’ (pi, , t) = 0. One can then state the theorem:

Theorem I:

If one is given an n-parameter mechanical systean ith subject to p compatible
constraints of the typél’ﬁpi ,q,t) =0, P"= A, 1" g'dtthen one can obtain the differential

equations of motion and the p constraint factdksby appending to the firg2n — p
equations that are associated with the faim, on the one hand, the p equations dq

—Edt: 0, and on the other hand, the p equatidfisig’ = 77", where p of the pare

op,
calculated by means of the p constraiafs 0.
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Remark. — In practice, ifQ is expressed by means of Lagrangian variajleg , t
and their differentials then that theorem will traslinto the following rule:

Rule. — In order to obtain the differential equations of imtand the constraint
factors, one replaces tpepairs of associated differentialg, d¢f in Q with the 2 forms
", o, Q, that one deduces frof by annulling theo" and replacing of the variables
¢ with their values that one calculates by means@ptconstraint equations. The first
(2n — p) associated equations @, , to which one appends, on the one hand,pthe
equationgld — ¢ dt = 0, and on the other hand, theefining equations of the", 7" =

I"dq’, will determine the equations of motion and pheonstraint factors.

8 IV. — Reduced formQs that gives the differential equations of motion uniquely.

WhenQ;, is formed in the way that we indicated in the precedinggraph, it will
depend upon the 2 ¢ p forms w?, thep forms 77", anddt :

Qr =kgn (of 07" +kep(f Oaf) — Kao & +kno 77" = Ay 77 Ot

Sincerr" = P"dt (whereP" is the power generated by the forces that are negessar

realize theh™ constraintP” = A P"), one can replace eaet' with P"dt and thus obtain
a form:
Qs =Kgn (of O PMdt) +kap (&f O cf) —kao of Dt

in which none of the constraint factofgappear any more. The for@y has rank 2r( —
p), because itsx(— p™ power is:

QP =K OFO... S Odt (Kis a numerical function).

Upon comparing the 2n(— p characteristic equations 6fs and the first 2r{ — p
associated equations®y , in which one replaces eact! with P"dt, namely:

00, i 5
S =Kkgn Pdt+ kgp " = kgodt =0,
0Q, . 5

ST =Kkgn Pldt+ kgp 0" = kgodt =0,

one will confirm that they are the same. One cam tbbtain the equations of motion
independently of the constraint factors by mear@@<fin which all that appears will be 2
(n — p differentialsdd, dp , and (& — p variablesp;, ¢, wherep of the variableg; have
been replaced with their values that one calculatesdans of the constraint equations.
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In addition, one must append to the characteristic emgtfQs, thep equationsdd

—Edt that correspond to the differentialg that do not appear @ .

op,

Forming Qs . —Qsis deduced fronf@ by replacingp pairs of associated differentials
dp, dd with their values that one calculates by means ofwtbesystems:

h h h
aa dp+aa dd+aa dIZO, Iihdqi_Puhdt:O (h:l’ ,p)

Theorem II:

When one is given an n-parameter mechanical systi#mp compatible constraints
a" (P, d,1) =0,Q = A1"dqg Odt, one can obtain the differential equations of motion
as the characteristics of a form of raBkn — p that is deduced frorf® by replacing p

pairs of associated differentials dmld with the values that one calculates for the fap
means of the p differential equations of constraamid that one calculates for the' diy

means of the p relationgdg' — P"dt = 0. If the p variables pare calculated by means

of the p constraint equationd & 0then one can append the p forms el%Ldtz Oto
P
the characteristic system ©f; .

Remarks:

1. For a zero-power constrai®® = 0. SinceR," = P"+1", one replace$" with

_|h
1h

2. For zero-power constraints that are independetima, P" = 0, andp of the
differentialsdd are expressed as functions of the other f.

3. Holonomic or pseudo-holonomic constraints that ratependent of timep pairs
of the variable , ¢, along with their differentials, will no longer figarin Qs . The
equations of motion will be characteristics of an gateform of degree two and rank 2

(n-p.

4. If p variablesq do not enter into eithe®R or the p constraint relations or the
powers of the constraints then there will obviouslyabeadvantage to eliminating tpe
differentialsdd, becaus&s will no longer depend upon the & £ p variables and their
differentials. The differential equations of motiorilwe the characteristics of a form of
degree two and rank 2 p, so thep variablesq will be determined by quadratures,

since thep formsdd —%dt are closed modulo the characteristicef
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8 V. — General method for the study of a mechanical systenittv n parameters.
Applications.

One can naturally deduce a general method for the stuchedfanical systems that
depend upom parameters from the preceding four paragraphs collectivelfiose
systems are always composed of sets of solid bodidsnaaterial points that are
restricted by a certain set of constraints of the g/@, d, t) = 0,P = Al. g', which are

supposed to be compatible.

1. The constraint factots are always determined independently of the motions by
the combined use of the forthand H. Cartan’s operato ). In order to do that, it will
suffice to determine the following things for the systéat is freed of those constraints:

a) The characteristic field E of the correspondingrf@®, which will be immediate
whenQ is written in canonical form.

b) The fieldse, ..., €® of the directions of the constraint forces.

Thep equations (I11.2) determine the system of constrairtef® completely.

On that subject, we point out thateff ..., e® do not depend upon thethen those
equations will be linear in th&, so the system (I11.2) will constitute a systemmplicit
equations for thel . In particular, that is what happens in the caserictidn due to
sliding, rolling, or pivoting when one considers the @owits of friction, which are the
parameters of resistance to rolling and pivoting, taubetfons of the normal pressures.

2. The equations of motion can always be obtained indepély of the constraint
factors by means of the characteristic equations fofra Qs , to which one appends
suitable differential forms (cf., Th. lll, § V). he properties of that differential system
will be studied in Chapter VI of this work. First, we Blggve some simple examples of
the application of the preceding methods.

Example I. — A heavy homogeneous disc of mdgsradiusR, and moment of inertia
M I with respect to its center rolls and slides alonglithe of greatest inclination an
inclined plane that makes an angleiodvith the horizontal. One supposes that the
coefficient of friction is a function of the slidingelocity v and the normal pressuié
namely.f (v, N).

Upon taking thex-axis to be the line of greatest slope in the plane, tipgin
downward, theOy axis to be the perpendicular to £, 7 to be the coordinates of the
center of the circle, anfto be its angle of rotation, the forinfor the free disc will be:

Q=MdéOdé+ MO+ ME PO d- ME &+ g+ k9 )0 ¢
+ Mg (sini dx — cosi dh) [Idt.

The characteristic field E has the components:
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E =(gsini,—gcosi,0,&, 1, 6,1).

The constraint translates intp = 0, so the power i® =N[e f({+ Ré) +7], with
(E+R6O) <0, hence =N [ef (df+ R df) +dr]. Note thatv = £+ R6.
The normal pressung is given byN i (e) dr+1i (E) d7 = 0:

i(edn= i (E) dp=-gcosi, so N =Mg cosi .

1
M )

In order to obtain the differential equations, fa@y, which is deduced fror® + Q,
by replacingn with O anddn with:

—ef(dé+R A9 + [ +£ f(E+RO) dt,
SO
%: dé0dé+ R BO B-(§ E+ K6 )0 d
+ gsinidé Odt +gcosi £f (dx+R dq Udt.

The equations of motion are the characteristic®«f An intuitive choice of four of
H. Cartan’s operators will permit one to put thegeations into the form:

i (<) Qs = dv 2y ~9dt=0,

sini +¢&f (v)cosi( Bkzj
i 6A) Qs = fdv = +-o,

sini +&f (v)cosi( Bkzj g
i 60) Q= df—— _—5R005| f (\_/)dv _

k*sini+&f (v) cos(k2+ RZ)
i 0¢) Qs = dE + RAG-+ vav =0
9 sini + &t (v)cosi( Bkzj
The existence of the preceding fieldé, ..., xX* amounts to infinitesimal
transformations of the form@s, as we showed in Chapter VI, 8 Il. The system is

integrable by quadratures.

Rolling without slipping. — There are two zero-power constraints in ourmyieo
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n =0, P'=N#p, §+RO=0, PP=T({+R6),
P =1, P? = £+R4.

u

The components of the direction fields of the caists are:

elz(oﬁ,o,o,o,o,g, ezz(i,o, R ,o,o,o,g.

MMk

First determine the components of the reactiombgns of the operators:

i(el)dﬁ:ﬁ, i©) di=0, i (E)dsi = - g cosi,
i) d(é+RO)=0, i) d(é+RE)= ﬁ[ui_jj
i (E)d (£ + R&) =g sini,
SO

_i(E)dn _ - Mg cosi, —|(E)d &+ RH) _ Mgsini
i(e") dy i(e)d(é + FY) 1+52

The differential equations of motion that are destlifromQg are obtained by starting
from:
Q+Q,

—dé0dé+ 0+ RPbO d-(&E F+n g+ k& 40
+ g (sini dé— cosi dn) Odt+N dp Odt+ T (df + R df Odt

and replacingds; with 0, d7 with +P'dt= 0 (sinceP; = 0), ad by—%dé, anddq with

%(—d5+ P = - d—Ff (since P? = 0), namely:

2 [1+k—2jdfmd5 [1+k?:2jédéﬂ dt— gsinidf O dt.

M
One immediately deduces thaf = ~—— gsml dt, dé= &dt, which are classical results.
1+?
Example Il. — Homogeneous disc rolling and slipping on a fipdahe curve, while

the disc remains in the plane of the curve.
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Let Ox andOy be two fixed axes, leh be the mass of the disc, kbe its radius, let
mik be its moment of inertia around its center of gra@hyet & 1 be the coordinates of
G, let @ be the angle of rotation of the disc arouhdet X, Y be the components of the
resultant of the external forces other than thdsihe action of contact of the curve on
the disc, and lef” be the resultant moment of the external forces unldersame
conditions.

The entirely-free disc is associated with the extdorm:

Q=d(m{ &+ m &+ mkd - Td+ (X dE+Y dp+T dg Odt,

in whichT denotes one-half thas vivaof the disc.

The curveC on which the disc rolls and slips is supposed to be akbye, y, which
are functions of the arc-lengsiof the curve. The oriented half-tang&tto C makes an
angle ofa = (Ox, Pt) at an arbitrary poir®, so the radius of curvature Rwill be p =ds
/da. It is easy to take moving axBg§ Pn with (Pt, Pn) = 77/ 2. The coordinates @ in
this system are, on the one haadand on the other handG = R, which are obtained in
the following way: One draws a norm@P to C through a poinG on the plane, and then
the pointsP (a) andPG = R on that oriented normal.

The differentialglé, d;7 are expressed in termsdd, dR using the formulas:

dé=(o—R cosada-dRsina, dn=(o—-Rsinada+ dRcosa.
Letu, v be the components of the velocity®@fwith respect to the axéd, Pn:
§=ucosa-vsing, =usina+vcosa,
so one has the expressions Toié d& +77 dr7, andQ as functions of the chosen variables:
T=1Im(F+V+ Kéb?, &dé+ndp =(e-Ruda+vdR

Q =m[(p- R dulda—udROda +dvOdR+KdgOdE]
—m(u du+v dv+IK4dé) Odt
+[(Xcosa+Ysina)(p— R da + (Ycosa—-Xsina) dR+T dg Odt.

The characteristic field E has the following compaseaunder the hypothesis that
R#z0:

E_(XcoscHYsma+ uv  Ycow- X sior a T u v,é'?,lj.

m o-R m " o-R mk'p- R
The constraint translates inta= 0, so the power is:

P=N{v+ef[(p-R)a+ adl},
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withe=-1ifu+ad >0,e=+ 1ifu+afd< 0. One then deduces that:

Q =N{dR+&¢f[(p— R da+add}.

Hence, the components of the direction of the camgtfield will be:

e= (ﬂ,i’ﬁ’o,o’o’@.
m m mK

The value of the normal reactidhis deduced frofN i (€) dv+i (E)dv=0:

H 2
=- |_(E)dv =Xsina-Ycosa+ m u :
i(e)dv p-a

In order to obtain the differential equations,nfio®s , which is obtained by starting
from Q and replacinglv with 0 anddR with:

-¢f[(p-Rda+adq +ef[(p-1a+ ad] dt,
sincev = 0:

Qs=m(p-Rdulda+muaefdlda+musf[(p—ra+ab]daOdt
+mikkdd0dé—m(udu+k@dg) Odt+ (X cosa + Ysina) (0— R da Odt
—(Ycosa-Xsinag) ef[(p—Rda+adf Odt+I dgOdt.

The associated equationsQggive:

o __ m@—-R du—muefdd+musf[(o—Ra+ad] dt

o(da)
+ (Xcosa+Ysina)(p— R dt—(Ycosa—Xsina) ef(p—R dt=0,

a—QS:—mk2 +mefaudr+ddt—efa(Ycosa—Xsina)dt=0,
0(do)

0Q

*~=m(p—R da—mudt=0,

o(du) w-R

0% _ R (do- ddt) =0,
o(ad)

to which one appendg%: m (dR — v dt = 0. The latter takes into account the given

constraintR = a. The system can be further written in the form:
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2 —
Ed—u—gf uZ:E[Xcosa+Ysina—£f(Ycosa—Xsina)],
2da m
with:
£=-1, ofu+ aéd >0,
£=+1, ofu+ ad <0,
dé __p-a . p-a
mké— =T +mefau-efa(Ycosa—Xsina) —,
da u u
46 _ yp-a dt=2"%da.
da u u
Remarks:

1. The points for whiclp— a= 0 are singular points whose geometric significance is
as follows: The center of gravity of the disc des®ibecurvel that is parallel taC,
whose radius of curvature — a so the curvature df will be infinite at the points for
which p— a= 0, and those points will be the points of regressidn in general (s@ —

a will change sign while going through zero). At such axpdhe circle must cross the
curve C, which is materially impossible. Our theory of trempatibility of constraints

shows that at similar points, the constraint mustdesidered to be incompatible. In
order to do that, it will suffice to proceed as we idhe example of the bar, for which,
certain components of the field E will become infinge one begins by multiplying all
of the components of E amrdby (0 — 8 ; one will then have the compatibility condition:

i(e)dv:E % 0.
m

2. If X, Y are functions of only the position Gfthen they will depend upon onty.
When that constraint is realized, the motion ofcaaterG of the circle will be the same
as that of a material point that slides with foction a curve that is parallel @and at a
distance of from it.

3. If ' depends upon onlyr in the preceding conditions, moreover, then the
equations of motion can be integrated by quadrature

Disc rolling without slipping on the curve C. — The disc is restricted by two zero-
power constraints:

1. v=0, Pl=NO;, Q'=NdROdt
2. u+afd=0, P*=T(u+ad), Q?’=T[(p—R da+adg Odt.

The components of the directions of the constfaelds are:
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elz(o,i,o,o,o,o,g, 62=(1,0,i,0,o,o,(3,
m m’  mk
)
i () dv=_, (@) dv=0, (B dy= YOOST- XS
m o s
. 1 . . 5 . 1 az
i(e)d(u+ad) =0, i (@) du+ald)=—+ ,
m mk
i(E)d(u+ag):XC°S"+YS'm+ uv d |
m p-a mKk
and
2 .
N=Xsina-Ycosa+ m u o T=- (XCOSG+ZS|rla)k2+aI'.
p-a a’+k

The differential equations of motion are the chtastics 0ofQs, which are deduced
from Q + Qs by replacingdv with 0 anddR with 0 (because dtis zero),R with a, d&
with —du/a, 8 with —du/ a, andd@with — (p— & /a da :

2 2
Qs=m(p-— a)[1+§jdu Dda—m(1+§ju dulldt

+[X cosa+Y sim—%} (p—a daldt

If X, Y, ' depend upon only the position of the circle in giene then when the
constraint is realized those functions will depeipdn onlya . Under those conditions,
the formQg will be the same as the one for a material pdiat moves without friction
on a curve that is parallel ©at a distance a.

Example Ill. — Rolling with slipping of a sphere on a fixed da The sphere is
supposed to be homogeneous of mdssadiusa, moment of inertiM k* with respect to
one of its diameters. With respect to three fissttangular axes, wheis taken in the
plane andDzis directed along the normal to the plane, let:

&n ¢ be the coordinates &, the center of the sphere,

p,qr be the components of the absolute rotation ofginere,

o, of, @ be three Pfaff forms that are constructed fromaiheolute differentials
of the parameters that fix the position of a tritwedthat is invariably
coupled to the sphere

X, Y, Z be the components of the general resultant oexternal forces that
are applied to the sphere other than the reacfitimeqglane.
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The associated for@ to the free sphere is:

Q=M (dé0dé+dpOdy+ & 0 d)
+M I (dpOdd} +dqOdef +dr Ode +p dO b +q f0 o + 1 0 o)
-M [(§dé+rdy+{ d +1 (p dp+q dg+rdr)] Odt
+ (X dE+Y dp+2Zdd) Odt.
(For the kinetic expression fd®, refer to Chapter I, Il, namely, a solid body moving

around a fixed point.)
The constraint under the hypothesis of sliding on thergptranslates into:

Z=0, R= N[¢ - fy(§-ag?+(7+ ap?],

in whichf denotes the coefficient of friction of the spherethe plane, which is assumed
to be constant.

Replace the velocity parametefs 77 with the polar coordinates, a of the velocity
of sliding of the contact poir of the sphere on the plane:

§ —aq=pcosa, ¢ =pcosa+aq dé=dpcosa—psinada+adq
N +ag=psina, N =psina —agq, dn=dpsina +pcosada—adq.

The constraint then translates irfo= 0, and:

P=N[{ -fcosa(é —aq) —fsina (/7 +ap)],
so one has the form:

Q, =N[d{-fcosa (dé—adf) —fsina (dn +a «f)] Odt.

FormQ, , which will give the normal component of the reawtand the differential
equations of motion when it is combined witf—{ dt = 0. In order to do that, replace

d¢ with 0 in Q anddd with:
d¢=m+fcosa (df—adf) +fsina dn +a ),
> Q=M [(dpcosa—-psinada+adg Od¢ + (dosina + pcosada—adg 0d7g]
+MIE(dpOat+dgOdf +dr0af + M [p(cf O ) +q(f 0 +r (F O )]

-M(p+acosaq-asinap)dpo—ap(pcosa+qsina) da
+ap (cosadq—sinadp + K rdr] Odt—M (K +a° (p dp+q dg Odt.

The associated equationsQgare then:
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0Q,
o(ds)

0Q
a(dn)

=-M(dpocosa—psinada+adg +X dt+Zfcosadt=0,

=-M (dpsina+pcosada—adp +Y dt+Zfsinadt=0,

0Q
a(dp)

0Q
a(da)

= M (décosa+dnsina)—M(p+acosag—-asinap)dt=0,

= Mp(-sinad¢ +cosadn) + M (pcosa+qgsinag)apdt=0,

0Q
a(dr) =-Mad7+MK o +Mapsinadt—M (K +a°) p dt=0,
Y

0Q
a(d(;) = Madf+M K o —Mapcosadt—M (K +a%) qdt=0,

L= MK @dp+qd—raf)+Zafsinadt=0,

L =_MK(dg—pa +r of) —Z afcosadt=0,

" =(@Z+N)dt=0.

One then deduces:
dé—-aqdt _ dn+a pdt:

. pdt,
cosa sina

o =pdt of =qdt @ =rdt, ﬂzO,

dt
2 2
Md—p: Zf a +2k + Xcosa +Ysina, Mpd—a:—XsincHYcosa,
dt k dt
Md—pzzazfsina, M%:—Zazfcosa
dt k dt k

The equations that givdp / dt, da / dt define the hodograph of the sliding velocity.
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Special case- Heavy, homogeneous sphere sliding on an inclined plandehotes
the angle of inclination, s& = Mg sini, Y = 0,Z = — Mg cosi, then one will recover
Painlevé’s result: The equations that give the motibthe center can be integrated by
guadratures.

Case of rolling without slipping. — The characteristic field E of the for@ that
corresponds to the completely free sphere has com@onent

[ﬁ,%,ﬁz,o,o,om Spar }
Rolling without slipping translates into three@grower constraints in our theory:
¢{-aq=0, 7 +ap=0, (=0,
P'=A({-aq, P=u@n+ad, P=v{,
Q=) (df-adf) Odt, Q% =y (dn+ad) Odt, Q%®=vd¢Odt.

The direction fields of the constraints have tbmponents:

¢=[L000_-2 00,00,0,00[
M M K

2 1

€=0L 02 00000000k
MM K

e :(o,oﬁ ,o,o,o,o,o,o,o,o,oJ(.

The calculation ofi, u, v, which are components of the reaction of the plamé¢he
sphere can be carried out by means of H. Cartgésators:

i(el)d(é—aq):ﬁ[Hi—ij, i @d(f-ag=0,

i () d(é-aqg=0, i(E)d(é—aa):%,

i€e)d( +ag=0, i(ez)d(/7+aab=ﬁ[1+s—ij,
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i@ d( +ag=0, i (E)d(7 +aq =%,
. 3 : . 2. ; . 3 ; 1 . ; Z
i (e) dd =0, i (e) dd =0, I(e)dZ:V’ I(E)dZ=V,
hence:
X Y
A=- >, M=— >, V=-12z
1+2 1+2
k2 2

One wishes to know the differential equations tiefine the motion of the center of
the sphere. One then forfs, which is deduced frof + Q, by replacingd{ with 0,
d¢ with 0, dp with —dr7/ a, dqwith , «f with —dr / a, andaf with d&/ a:

2

Q=M (1+%j d&0dE+ di O d7)+ MK drila?
+ Mz—z(—ﬁdeaf'+$d/7Da)3— rdg O df)

-M (1+i‘—ij (Edé+ndr)Odt—- M rdrddt+ (X &+ Y ¢) O d.

The associated equationsQgare:

2 2 2 2
a_QS:_Mk-:a d$+Mk2a(—/7af'+rd/7)+th:0,
0(d¢) a a
0 k? +a’ :
%: M= (d€ - dt) =0,
00, K2+a® . K
5 - M dn+M—(éw’-rdé)+Y dt=0,
3(dn) el az(f $)
0 k? +a’ :
0Q

S — _ 2 k_2 . _ ¢ —
=5 =oMKdr M (dE-Edp)=0,

lo
a(dr)

= MK (F-rd)=0.
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The second two reduce to:

c 2 . 2
ME: 2a 2X’ Md_ﬂ: 2a 2
dt a +k dt a“+k

They show that the center of the sphere movdseiplanex = a, like a material point

2 a.2

a’+

X,

: , a
that is subject to the force;
a

e sz, which is a special case of a theorem by

Routh.

Example IV. — Sliding of a homogeneous sphere of mdssadiusa on two fixed
rectangular planesOy, zOx. One supposes that the external forces reduce getiezal
resultant whose components with respect to the @xgzareX, Y, Z.

With respect to those axes, let:

&nd be the coordinates of the cent&of the sphere,

p,qr be the components of instantaneous rotation of the sphere

of, of, @  be three Pfaff forms that are constructed from tlifereintials of the
parameters that fix the position of a trihedron inuayian the sphere.

The exterior form that is associated with the &pbkere is:

M(dé0dé+dp0dyp+ & O o)
+MdpOd+dqld +dr0d +pdd 0w +r d Daf) +MIEqdf Ot
-M[dé+ndr+7 dZ + (p dp+qdg+rdr)] Odt+ (X dE+Y d7+2Z dQ) Odt

The corresponding characteristic field has the coreiptsn

E:(X Y Z

= —,-=.0,0,0¢ 8 ¢ 1.
YRIYRY Eﬂ(pqr}

The first contact constraint between the sphedetlam planexOy translates into:

7=0, PL=N,[{ - f(E-ad?+(7+ ap?],

in whichfy is the coefficient of friction omOy, or upon introducing the polar coordinates
Pa, a of the sliding velocity of the contact poiitof the sphere with the plan®©y :

¢é-aq=p,cosa,

. . P'=N,[{ - f,cosa ¢ —aq)- f, sing i+ ap)],
n+aq=p,sina,

since:
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Q' = N,[d{ - f,cosa (df - ac? )- f, sina (d7+ av' )] d.

The components of the direction field of that ccaistrare:

el:(—fAcosa -f,sim 1 -af, sim af, cog

! ™’ MK?

M M M MkZ ,0,0,0,0,0,0,0,}.

The second contact constraint between the spheréha planexOytranslates into:

=0, P2 =Nyl - T, /(C —ap? +(é+ ap?],

in whichfgis the coefficient of friction oaOx or upon introducing the polar coordinates
pp, B of the sliding velocity of the point of contaBtbetween the sphere and the plane

zOx:
{—aD=Pﬁ 0_0513’ P? =N,[7 - fycosB  —ap)- f, sinB €+ ar)],
E+ar=p,sing,

SO
Q% =Ng [dn —fz cosB(d{— aat) —fg sin B (dE +a )] Odt.

The components of the direction of the field @fttbonstraint are:

™’ ! MKZ

&= —fgsin 1 —fgsing af;cosr —afy siw
M M M Mk?

0,0,0,0,0,0, 0,}.

Let us determine the normal components of theticeacby means of operators:

@) de= i(eZ)dz':w, (B)d¢=2,
i(el)d/7=‘fAMﬂ, @@=t i

The compatibility condition for those two consitaiis:
i©)dZi(e) di—i(e) d (&) & = #(1 fafasinacosB %0 .

Upon supposing that this is satisfied, one thetudes that:

_ Z+ fycospY _
Na=- . : B=
1-f, fy sina cosB

_ Y+ fsinaZ
1-f, fysina cosB
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In order to obtain the differential equations of motione constructQs by replacing
d¢ with 0 andds with 0 in Q, and associating the differentialg and d; with the
system:

d{—fasinadny =facosa (dé—adf) +afasina o + P dt,
—fg cosfdJ+dn=fgsing (df+a ) —afscosfdl + P? dt.
Thus:

Q.= M déOdé

+MIdpOdd+dqid+dr0d +pd Dd+qad Dt +r of O
+ 12 (p dp+q dg+r dr)] Odt

Y
+
1- f, fg sina coss
+afz cosf (1 —fasina) «f] Odt

[fz sin B (d&+ a o) + fafs cosa cosB (dE— adf)

Z
+

1- f, fy sina cosB
+afasinB (1 —fz cosa) «f] Odt + X dE O dt.

[fa cosa (df— adf) + fafs sina sin B (A€ + a )

Hence, one has the associated equatiofs to

9% vidg e xdt+ dt
a(d¢é) 1- f, fysina cosB

x [Y (fg sin B +fafg cosa cosp) + Z (fa cosa +fafg sina sinf)] = 0,

a_QS: —_— —_—
" M I (-dp —qdt +1 f)

N adt
1- f, fy sina cosB

[Y s cosB(1-fasinag) + Zfasina (1-fg cosp)] =0,

Z—QQ;:MkZ(—dq—ra}+pa)°’)

—adt
1- f, fy sina cosB

[Y fa fg cosa cosf + Zfa cosal =0,

0Q, _ S
6(4)3_Mk2( dr—pdf +qdf)

+ adt
1- f, fy sina cosB

[Yfssinf+Zfa fgsinasing =0,
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—aQS = - = —aQS = - =
308 M (d&-&dt) = 0, 30 M I (¢} - pdt) =0,

a_Qs:MkZ(a}_th):o, 09, =M I (J-rdt) =0,
o(dg) a(dr)

to which one must appertf — { dt = 0,dr - 7dt = 0, and the defining relations of

and S, which take into account thgt= a, /7 = a, and which will permit one to defing
andr as functions of, p, a, B:

aq=é-apcota, ar=&-aptang.
That system can be further put into the followiagm:

M de =X+ aglt [Y (fg sin B + fa fg cOsa cosp)
dt 1- f, fy sina cosB

+ Z (fa cosa +fa fg sina sin f),

dp adt . .
k> — = Y (1-fasina) cosB+Z(1-fgcosp) fasinal,
dt 1—fAstinacosﬁ’[ (1= 1a ) cosfrz(L-tscosfa )
2 < —_
m X[ A, dCpeota) | fACOST (74 v cosp)
a“\ dt dt 1- f, fysina cosB
2 4 _ .
Mk—z £+ad( ptans) _ nglna (Y+Zfasing,
a“\ dt dt 1- f, fy sina cosB
d¢

E:é, a}:pdt (J:qdf, @ =rdt.

Example V. — H. Beghin’s servo-constraint— A material plan€ can slide without
friction by translation on a fixed plax®y. A heavy, homogeneous sphéref radiusa
can roll without slipping on that plane. The mati@f the plane is governed
automatically in such a manner that the centehefdphere turns uniformly around the

fixed vertical axiOzwith a given angular velocitw. Let us calculate the reactions and
form the equations of motion of the system.

Let:
u, v be the coordinates of a point in the plane,
&n ¢ be the absolute coordinates of the center ofgihers,

p,q,r be the components of the absolute rotation o§piere,
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of, of, @ be three Pfaff forms that are constructed from tisohite differentials
of the three parameters that characterize the dmsplant of a
trihedron that is coupled to the sphere,
be the mass of the plane,

M be the mass of the sphere,

M K be the moment of inertia of the sphere with respecone of its
diameters,

g be the intensity of gravity along the descending vertical

The associated exterior form to the system withoostaints is:

Q=M (dé0dé+d)0ap+ & O )

+MIdpOd+dqid+dr0d +pd 0d+qad Dt +r1 of O
+ 4 (duddu+ dvd dy

-M[édé+ndi+{ df + I (p dp+q dg+rdr) +g dd Odt
— u (@du+ vdyO dt

Constraints— From our standpoint, the constraints translatte i
1. Contact between the sphere and the pléne:0 :
power:P' = NZ, form: Q'=Nd¢Odt.
Rolling without slipping of the sphere on the @an
2. {-aq-u=0,
power:P? = X({-ag- 1), form: Q*=X(dé-a «f -du) Odt.
3. n+ap-v=0,
powerP?=Y(+ap-V, form: Q*=Y(dn+adt—dv) Odt.
Servo-constraint:
4. -wn=0:
power:P* = Pu, form: Q*=P duldt.

5 n+wé=0:
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power:P°> = Qv, form: Q°=Q dvOdt.

Calculating the reactions.— Use the operatois( ). Form the table of the field
components:

dé | d7 | dz | du | dv | dp dq |dr|df|dp|df|dujdv| | of| o |dt

EOO-gOOOOOEUZuqurl

N 1

eOOMOOOOOOOOOOOOOO

1 -1 -a

l—| ol o0o|—]0]| O -|/0]0|0O0|]O0O]O0O|O|O0O|0]O0O0]O

M 7% Mk

3 1 -1| a

e/ 0|—0|0|—|——| 0 (0O|]O|J]O|JO0O|]O|]O|O]O|O]|O

M M| Mk

4 1

el 0| 00} —, 0| O | O |O|J]O|J]O|lO|]O|]O|O|O]O]O
7]

5 1

e 0| o0}o0}0|—] 0| O |O|J]O|J]O|lO|]O|]O|O|O]O]O
7]

One immediately deduces the non-zero values of the¢ d that relate to the various
constraints:

1. i(e")de = ﬁ i (E)d{ =-g,
oY d(é—age 0= L1228 ], 1
2. ie)d(é-ag- 0 M(1+k2j+,u’

i) d(é-ag-y=- =,
U

i) d(é-ag- =0,
3. i€ dn+ap-V= Mi[1+_2j+i’
i(e*)d(n+ap-yY=-

i(E)d (@ +ap-Vv)=0,
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. : 1 . : .
4. H(€)d(¢ —wm) =, H(E) (¢ -wr)=-w,

5. i (€)d(7+wé) =V1, (B (7 +wé)= wé.

One verifies that the constraints are compatibiece the determinant is equal to
(M%), so the values of the coefficients of the constsathat we interpret as the
components of the reactions will be:

For the plane on the sphere:
X=Mawj =-M d § Y=-Mwé =-M & 1, N=Mg.

For the fixed plane on the moving plane (in othierds, the components of the force
that must be applied to the moving plane in ordeetlize the servo):

P:—{M +,u(1+i—iﬂaf{, Q:—{M +y(1+i—iﬂa)2/7.

Equations of motion.— FormQs , which is deduced frof by replacingd¢ with 0
anddd{ with 0, since that constraint has zero power,a@ptdp anddq with their values
that one infers by differentiating the conditiorfs@ling without slipping, replacingd,

«f with their values that are calculated by annullihg formQ?*, Q2 resp., since those

constraints have zero power, replacit§ and d77 with their values that one calculates
by differentiating the servo-constraints, and rejplgdu anddv with their values that are

calculated by means dfi= P'dt = udt, dv= P°dt = vdt, resp.:

é=wn, n=-w ap=Vv + w¢,

aq=ay -, du=udt a}:i(\'/dt—dn),

dé = wdn, di=-wdé, adp=dv+ wdé,
adg= wdh—du,  dv=vdt, @3 = i(df—Udt),

SO

Qo= 2M wdn Odé

2

+M§[(d/7+ wEd) O(dv + wdd) + (wdn—) 0(dE—an di) +dr O +r dr Odi
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+Mz—2[(v + @d)(dE- udt) Od + (w1 -u)dd O (vdt — dy)

+r(vdt—dn) O@WE- ud)] -M o (7dn + £dé) Odt .

Since the coefficients @, the constraint relations, and the powers of thetcainss
are constant or depend upon o8}y, u, v, the differential equations of motion will be
given by the characteristics Of :

0Q, _ k_2 B _

oy Mgz @-andy=0,

0 _ k_2 _

a(d\'/)_ MFle (dn + awé dt) =0,

00, :—M—i(af’—rdt):o,

a(dr) a

a—QS:—ZMa)dn

o(dé)
+Mz—2[—w(d/7+a)5dt)—(a)d/7—du)+(\‘/+af)a)°’—r(\‘/dt—dr7)]
-M F&dt=0,

00, =+ Mwdé

o(dn)
+M§[(dv+a)df)+a)(d5—aj7dt)+(af—u)af’—r(\'/dt—dq)]
-M F&Edt=0,

0Q, k?

=M = [~ dr— (v + af)(dé - udt) + (a7 - u)(vdt—dp)] = 0.
o a

The first two equations give:

dé—an dt=0, dn+ «édt=0,
and upon integrating:

&=Acoswt + B sin wt, n=-Asinwt+Bcoswt.
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One gets the last one upon taking the first two into ad¢cdurs 0. Equations (4) and (5)
defineu andv; i.e., the velocity of motion of the plane:

k? k? k? k?
M;du=—Maf(1+¥jEdt, Mgdv:—Maf[H?j/]dt.
Example VI. — Generalized constraint: Simplified problen of radio-guided

engines.— A heavy solid body is subject to the action of aandhat exerts a known
force F on the solid body at each instant that points aloagdhgent to the trajectory of
the center of gravitys of solid body. The motion is supposed to be planar ardki®
place in the material symmetry plane of the solid badypse existence we postulate,
namely,xOz We suppose that a mechanism directs the tangent todjectory ofG
towards a moving bodyl whose coordinates are functions of timex (t), z (t). Find the
system of equivalent forces that are necessary éoretlization of that motion.

Let:

&n be the coordinates of the center of gra@tgf the body,

6 be the angle of rotation of the solid body aroundstster of gravity,

a be the angle between the tangent to the trajecto &and the horizontal
axis,

M be the mass of the body,

M & be its moment of inertia around an axis that is perpalad to the
symmetry planeOx

The associated exterior form for the free solid biedy

Q=M @dé0dé+dd 0Dl + RO &) - M (£dE+{ df + K6 db) O dt
+ (Fcosadé+Fsinad{—Mg dd) Odt.

Conditions:

1. The tangent to the trajectory must point alGhg :
a=&((-9-{(§-9=0.

2. The angle of rotation of the body around itself mostequal toa, up to a
constant:
(=X sin@—-({—2 cosf=0,
o)
a’= (£-X)sin@— (¢ —2)cosd+ [(§—X) cosB+ ((—2 sing 8 =0.

Since one knows nothirg priori about the forces that are necessary for realizing a
similar constraint, we shall take the power of the etide to beP = A& + ¢ +vé, and
thus get the forn®, . The components of the field of the fofint Q, are:
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(1 1 . B Vs
E—(M(Fcosaﬂl)ﬁ F simr+u—Mg )Mkz £¢ 6 }

Write down that the formsa' andda’ belong to the sub-module of the characteristics
of Q +Qy; i.e., that:
i (E)da'=0, i (E)da=0.

Upon denoting the distanégM by D and the velocity of the body By, one must
have:

Asina— (u— Mg cosa—- M %(ZCOSO’— xsiny ' =0,

Asina— (u— Mg cosa + D%+ M (Z2cosa — Xsina |
+2M [(§-X)cosa + (( - z)sina i =0,
which is a system that shows that onlgndA sin a — ¢ cosa are determined.

If one letsW denote the velocity of the movilg and letsp denote the angle between
the tangent to the trajectory and the horizontahtbne will get:

Asinag—ucosa=-Mgcosa +%VWCOS@'—¢ ),

14

= = %gcosa—%vw cos¢—¢ %c‘r V- W cogt-¢ + %(Xsina—‘z‘cosa .




CHAPTER FOUR

THEORY OF UNILATERAL CONSTRAINTS:
CASE OF ONE CONSTRAINT

8 |. — General considerations.

For a mechanical systefthat is defined by the characteristic field E fooariQ of
degree two on a differentiable manifolg,.; that is restricted by a constraint of type
0, Ae (viz., a constraint for which one knows that the cimn of the constraint force that
is defined by the fiel@), physical reasons will impose a sign.Athat is knowra priori.
One can always arrange for the sign that is imposed Aporbe positive by replacing
with —e. In all of what follows,A ande will be assumed to satisfy that condition. ©Met
be a point oW,n+; that belongs to the submanifad: 0.

Definition. — We say that a constraint of type 0, Ae hasclass Uif the functiona(t)
that is defined by the value afalong the integral curve that is tangent to the velott
E atMo has a well-defined sign.

One can always suppose that the sign imposed afprs the positive sign for the
neighborhood on the right> ty (t is the value ot at My), because one can always
replacea with —a, which is a hypothesis that we suppose to be realizetian follows.

Justification for those considerations.— The preceding conventions might seem
arbitrary. We shall show how they originate in seramples.

1. A solid bodySin contact with another or&, with or without friction.
We saw (Chap. II, 8 VI) that a similar constragtefined by:
w=0, P=N[MP-f|Vy|-J|la|-w|lal|].

The separation of the solid bodies can happen onfy~if0 ; contact happens whih
> 0.

That type of constraint is the origin of the temmilateral constraintthat is given to
constraints of class.

2. H. Béghin’s servo constraint.

A disc B that is framed by an angJgis coaxial with a dis@ that is framed by an
anglea . The constrainh =4 -d = 0 is realized by applying a couple whose powét is

= Af to the disdB by way of an electrical control device that constisuaa index that is

invariantly coupled wittB. When the index that is coupled Agust touches the index
that is coupled t®, an electrical current will be established, and a mibiatrturns in the
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trigonometric sense will apply a couple whose powd? is A3. The unique sense of
rotation on the motor imposes the constraint that0. The breakdown of the constraint
can take place with no deterioration of the contantgifa= S-d > 0.

3. More generally, the zero-power constraints andAjhyeell constraints in which
the mechanism that realizes them imposes the condiiata > O for the constraint to
break down and > 0 for the constraint to be acceptable.

The questions that one poses are then: When one khewsitial conditions at the
point Mg of Van:1 , which belongs to the submanifad= 0, what motion will it produce?
Do the mechanical conditiores(t) > 0, A > 0 that are imposed priori determine the
possible motions?

8 Il. — Possible motions aMg .
Two motions are possible kil :

1. The unconstrained motioM] that is defined by the integral curZethat issues
from Mg and is tangent to the vector field E.

a is a numerical function o¥-n.1 that becomes a function bbn the curve. That
motion will be acceptable if that function, which isaeaitt, , becomes positive, which is

a hypothesis that translates ir{t%%j > 0, and if that derivative is zero, it will translate
0
into a™ > 0, which is a derivative that certainly exists, beeag) (a# 0 (Chap. II,
8 1lI).
From Theorem Il of Chapter I, 8 Ill, that conditioartslates intoi ((E) (da), > O, or
into (i (E)[a)™ > 0 if the firstn derivatives are zero.

2. The constrained motiom() that is defined by the integral curie that issues
from Mo , which is tangent to the vector field EA¢ . That motion will be acceptable
whenA > 0.

Now, A is defined by the equatidn(E) Oda+ A i (¢) Oda= 0. The constraint is
assumed to be compatible (Chap. Il, 8 IMg) [Ha# 0, so:

_ _i(E)da
i(e)da

A is defined to be a numerical function\gs.1 that will become a function a@falong the
integral curveZ; whosen™ derivative is:
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AD =i (E +Ae) dA]™.
Theorem I:

If (i (E) a)™ is zero for r< n andnon-zero for = n + 1at M thenA and its first
(n-1) derivatives will be zero at dMand:

= (i () [a), A5 = (i (E)a)g™ .
By definition:
A (r) =i (E +)le) d/](r_l) =i (E) d/](f‘l) +1i (e) d/](r—l).

(i (E) @Ma)o = 0 implies thatdp = 0O, so:
A" = (B)dA" ™) = (i(E)dA); ™.

By recurrenced can be presented in the form of a produ€l, withu =i (E) [Ha, v =

i(e) da

, A and its first o — 1) derivatives a1, are zero, the™ of which is given by:

o B
© T (),

Consequence: Suppose thigE)[da)l’ = 0 forr < nand# 0 forr =n+ 1.

1. For a motiorM, the first non-zero derivative of the functiar{t) will have order
(n + 1) and will have the valug{™™ = (i (E)da){" .

2. For a motionNl), A and its first i — 1) derivatives will be zero 8, , so then™
derivative ofA can be calculated from:

= (i (&) Wa),AS" = (i (E)[da)i™.
One can summarize the preceding results in thmautar;
(1) 85" = (i(e) [t As” = (i (E) W)™,

in which one setd = 0 for a motiorM, anda = 0 for a motion ) . It is important for
the mechanical applications to remark tiigtE) [da){™" depends upon only the initial

conditions and the forces that are applied to ty&tesn besides the ones that are
necessary to realize the constraint. Formula)(tlah also be established by means of the
following theorem:
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Theorem II:
If f and A are two numerical functions omi that are regular, along with their
derivatives in the neighborhood of a point M, dhénd e are two given fields without

singularities in the neighborhood of M then tfre+ 1)" derivative of the function f
relative to the fieldE + Ae can be calculated by means of the formula:

(11-2) fie =)™+ .+ Ag)" P D A Gra + ((E) )™

in which ¢, =i (e) Odf, ¢, =i (€) Od (i (E) OdH®?Y, and (A ¢,)" ~P * ¥ denotes the
(n- p+1)" derivative of the product ¢, with respect to the fiell + Je.

By definition, 2., =i (E) If + A i (e) CHf .
Upon settinglf = ®, , i (€) THf = ¢, , then™ derivative off ¥ will be written:
(1) D = o™+ () ).
One can apply the procedure that was employed fouttaidnf to the function®:
®Y =i (E) D, + A (€) D, .

Upon setting (E) [H®, = ®,, i (€) (HD; = ¢, the 1 — 1)" derivative of ® can be
written:

@ O = O + (A )"
One pursues the argument, and after () operations, one will get:
(n+1) ® =i (E) M ®p + A Pz .

Upon adding corresponding sides of the preceding {) relations, after remarking
thati (E) T ®, = (i (E) )™, one will get (I1.2).

Application.— If A and its first 0 — 1) derivatives are zero B, then formula (11.2)
will give:

(11.3) £ — A0 (i (e) df) , = (i (E)df ).

When that relation is applied fo= a, that will give (I1.1). Formula (I1.1), thus-
proved, will give 8™ = (i (E)da){™" for a motion ¥) upon settingl = 0 andA{"” for a
motion (M) upon settinga = 0, and it will show, moreover, that upon varymgl and its
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first (n — 1) derivatives will be zero Mo, if (i (E)da)!™ is the first non-zero derivative
atMp .
Discussing the possibilities.
Theorem:

1. If (i (e) da), > Othen the initial conditions will suffice to determine the ultimate
motion.

2. If (i (e) Oda)o < Othen the initial conditions can determine the ultimate motion,
but that will be impossible {f (€) a), > Oor (i (E)da)!™, and indeterminate when:

(i (E) Ma)o>0 or @i (E)mia)g”*” > 0.
Indeed:

1. If (i (E) @™a)o > 0 and ( (E) [Ha)o # O then the relation (I1.1), with = 0, will give
for:

. A=0, (%j >0 the motiorM is acceptable
(i (E) ™a), > 0: dt ),
a=0, A, <0 themotiorM is unacceptal
_ da . .
. A=0, (—j <0 the motiorM is unacceptal
(i (E) Ma)o < 0: dt ),
a=0, A, >0 themotionM isacceptable

If (i (E) d™a)o = 0 and(i (E)da){"”# 0 then the relation (11.1), with = 0, will give that
(M) and M) are both possible for (E) [Ha), > 0 :

for A=0, (%j >0
dt J,

for a=0, A, >0.

There will then be indeterminacy.
If (i (E) @™a)o < 0 then ) and (M) will both be impossible:

for A=0, (%j <0
dt J,

for a=0, A, <O.
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If (i (E) Oda)o = 0 and (i (E)da){™# 0 then one get the same results by using
(1.2).

Geometric picture for that discussion.— Consider the vector§, and e in the
tangent space t@..1 atMy . The submanifold = O dividesVan+1 into two regions in the
neighborhood oMy . Associate the forrda with the vectora whose origin inMg and
which points in the direction of the positive regiorAssociate the two covariant
components o, andey relative toa with the vectors:

a=((E)[bapa  A=-(i(e) [Ma)a,

respectively, which are collinear wigh

If (i (e) Oda)o > 0 thena andA have opposite directions, aadwill correspond to a
motion (M) or (M) .

If (i (e) Oda)o > O thena andA have the same direction, andaifhas the opposite
direction toa then that will not correspond to any motion, whileaifhas the same
direction asa then that will correspond to two motions.

8 Ill. — Mechanical consequences.

The preceding study showed the important role thatagegl by the sign of the
invarianti (e) (a, whose analytical expression is:

Ja

n
i (e Ma= ) —I. .
i=1 i

For a constraint of the Appell type, which includes tlodonomic constraints and

linearly non-holonomic constraints as special caagesye saw in Chapter Il, 8 V(e) 0
dais equal to the norm od, so it is always positive. For such constraints, itfigal
conditions suffice to determine the ultimate motidiar the other types of constraints (in
particular, for constraints with friction, such as sésnce to rolling or pivoting, to which
we shall return in the following paragraph), the inigainditions, combined with the
mechanical conditions, might not be sufficient. la thdeterminate case, if one would
like to specify the final motion then it would be nee@egdo add a selective condition for
(M) and M)) to the initial conditions.

Analytical reason for the indeterminacy.— By using the geometric interpretation of
the differential system for the equations of motibattit defines the curves that are
tangent to a field F on a manifo\@,.1, with F = E for a motionN]) and F = E +le for a
motion (M), the field F, thus-defined, will be discontinuous on shémanifolda = 0.
There will then be two possible integrals that corredpimnthe motionsNl) and (M)
when one takes the initial poiiMy to be on the submanifold = 0. The mechanical
considerations that > 0 ifa = 0 anda > 0 if A = O will permit one to separate the two
motions only ifi (e) Cda > 0.
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Theorem:

The appearance or disappearance of a constraint will necessarily imply a
discontinuity for the derivatives of the functions that represent ¢t®m If one is given
2n functionsfon \bn+; that are independent and have no singularity in a neighborhood
of My , which is taken on the manifold=a0, then the motiongM) and (M,) will be
defined by the differential systems:

M) %ﬂ(E)Edfi, M) %ﬂ(EMe)mfi,

with
Ai(e) Ma+i(E)Ma=0.

If Ao # 0 atMo then one will deduce thaf:f,®, . ) ~(f,2) = 4o (i (€) D)o , which

will show the discontinuity in the first-order derivags of the function§ .
If A and its first Q — 1) derivatives are zero sl then formula (11.3) will give:

( fi ,(é)Me)o _( fi,(g)o: Aén) (I (e) EUfi)o,

which shows that the derivatives of order+1) of the function$§ are discontinuous.

8 IV. — Examples that show the existence of indeterminacyd to a constraint.

1. Let us return to the example of a servo constridiat was described at the
beginning of this chapter.

Let |, denote the moment of inertia of disclet” denote the couple that is applied to
it, let I, be the moment of inertial of dif; and suppose that the servomotor that follows
B can turn only in the negative sense.

The constraint translates inf®— a = 0, or intoa =B—-d = 0, conforming to the
viewpoint of Chapter I, I, since the power that ises=ary to realize that constrainPis

=-A83.
The generating for® of the equations of motion is:
Q=I,dd0da+1,d30dB-1,dad Odt- |,df0dt+I, dr 0 dt-A B0 d,

and thus, one has the equations:
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Motion M), A =0 Motion (M)),a=0
-l,da +I',dt=0, -l,da +I',dt=0,
da-adt=0, da-adt=0,
1,d3=0, l,dB-Adt=0,
dg-£dt=0, dg-£dt=0.

The components of the field E dre/ 11, 0, &, B, 1, and those of the fieldare 0,
-1/1,, 0, 0, O.

It will then result thai () Oda=-1/1,,i (E)dda=-T1/11. In this case, the
relation (11.1) that permits one to discuss the polisds is written:

da A _ T,
_— t— =—_1
dt 1, l,
Discussion:
%‘z —% <0 forA=0 thenM ) willbe unacceptab
1
>0 i sinceda /dt must be positive
A= —I—l <0 fora=0 then M, ) will be unacceptal
1
sincedA must be positive,
%‘z —% >0 forA=0 thenM ) will be acceptable
1
<0 i sinceda /dt is positive,
A= —I—l >0 fora=0 then{, )will be acceptable
1
since the two discs will turn clockwis

In the case wherg; is negative, there will be indeterminacy. That indateacy can
be eliminated only by an arbitrary choicedaf/ dt # 0 for a motion 1) andA # O for a
motion (M) .

2. ltis clear that one can multiply the examplethe preceding type by associating
an electrical contact that creates a force fielchvaitconstraint relation that is coupled
with the contact.

3. Case of two solid bodies in contact with slidingtfon and resistance to rolling
and pivoting.
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In Chapter Il, 8§ VI, we calculatdde) [(Ha for two solid bodies in point-like contact.
The relation that permits us to discuss the possilsiliiges the form:

(%) = (i (¢) a)o N = (i () [Ha)o,

with
i (el Ma=A+f(Bsins+Ccoss)+J(Dcosog+Fsing) + cwG.

If (i (6) Oda)o > 0 for { (E) Oda)o > O then the only possibility will b{%‘j =
0

(i(E)lda),; i.e., the two solid bodies will separate. FofH) (Ha)o < 0, § (e) [a)o N =
(i(E)da),, they will slide over each other.

If (i () da)o > 0 for ( (E) a)o < O then there will be two possibilitie%%—?) >0,
0
which is separation of the two solid bodies, &hd 0, which is sliding contact between
the solid bodies, and for (E) [(Ha), < 0, one has the impossibility of either separation or
contact.

If one neglects the resistance to rolling and pigptinen the impossible case was
pointed out for the first time by Painlevé and is knownthe name of théainlevé
paradox(*%), who likewise pointed out that one can encounter smheterminacies in
problems with friction. If one neglects sliding frai and the resistance to pivoting then
L. Roy (% pointed out that the resistance to rolling can likewgsve rise to some
indeterminacies and impossibilities.

We remark that pivoting friction or the combinationstifling friction and resistance
to rolling and pivoting can give rise to the same phenomena

Those anomalies, which do not appear in that wayherctassical holonomic and
linearly non-holonomic constraints, have led somehiok that they are due to the
imperfection in Coulomb’s laws and that more preciseslavould avoid them. The
study that was made in this chapter shows that thisheotdse, since the origin of the
paradoxes and the indeterminacies lives in the conceptodtraint itself and is
concerned with an arrangement of the vecéqrsz., the constraint field) ara (which is
associated with the forae) at a pointMg on the submanifold = 0 of Va4 if i (€) (Hais
negative.

The case of sliding friction is therefore just thestficase where those facts were
confirmed historically.

(*% Cf., PAINLEVE, C. R. Acad. sci. Parik21 (1895) and_econs sur le frottemenHermann, Paris,
1895.
(*Y Cf., L. ROY, Congrés de mécanique appliquée.



CHAPTER V

THEORY OF UNILATERAL CONSTRAINTS:
CASE OF SEVERAL CONSTRAINTS

8 |. — Mechanical aspect of the problem.

When one considers a mechanical sysEimt is restricted bg constraints of class
U (Chap. IV, 8 1), with the initial conditions being @iv, it is natural to demand to know
what the possible motions will be and in what cases ¢heitons that were imposed
priori for the constraints to break down and the constfactors will be sufficient to
separate the motions.

The mechanical systeBwill be defined by the characteristic field E of a fofhof
degree two on a differentiable manifo\@,.1 , and each of the constraints will be
characterized by an analytic submanifalti= 0 and a constraint field, €', whered, is a
numerical function to be determinegl,is a known field, and the indéxvaries from 1 to
p. Giving the initial conditions amounts to giving a poMg of Va1 . The entire
discussion is based upon the following theorem:

Theorem I:

If f, A1, ..., Ap are (p + 1) numerical functions on ¢, that are regular, along with
their partial derivatives in the neighborhood opaint M, and ifE, €', €, ..., e are (p +
1) given fields without singularities in the neighbodd of M then the(n + 1)"

p
derivatives of the function f relative to the fi&d+ Z)lh e" can be calculated by means
h=1

of the formula:

(v.1) B0 = (4 )0+ L+ (A, @)+ L+ A gl (1 (E) A

with ¢ =i (€") Do, g5 =i (¢ O (i (E) Wf)® and summation over the dummy index h
in each parenthesiél, @)™ ™", while the exponerfh — p + 1) indicates derivation with

p
respect to the field + > 4, €".

h=1
The proof is carried out as it was for Theorem Il, Ch¥p.By definition:
fO =i (E)df + Ani (&) THF .

Upon setting (E) CHf =@, , i (€") Hf = ¢, then™ derivative off (1) will be:
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(1) F0= o+ (4,40

One can apply the procedure that was employed witliutietion f to the function
D,

Upon setting (E) [H®;, = ®, , i () b, = 47, the 6 — 1)" derivative of & will
give:

2) oM = dL + (A, g1,
One continues the argument, and after (L) analogous operations, one will get:

(n+1) oY = (E)dd, +A, ¢"

n+l*
Upon adding corresponding sides of the precedmng () relations and remarking

thati (E) H®, = (i (E) )™, one will get (V.1). One can apply (V.) to tpdunctions
a', ..., a at a pointMo , which gives:

(V.2) @5 = (A 4" = (A B PP = (A @) = ((E) WA ).

In particular, if { (E) CHa), # 0 for allk from 1 top, which means that E does not
belong to any of the tangent spaces to the submanibkd®, then:

(V.3) @)% - A (i(e") m™a), = (i (E)Ma*), k=1, ...,p).

The relations (V.3), whose right-hand sides do not dkpepon the various
possibilities, will allow us to discuss the nature ofpbssible motions:

Hypothesis A: If the motion takes place with the breakdown ofgle®nstraints then
one must sed; = 0, ...,Ap = 0 in the left-hand side of (V.3), which will give:

(@) = (i (E)da"), k=1, ....p).
Hypothesis A will be acceptable ([ (E)da“), > 0.
Hypothesis B: If the motion ofS takes place while respecting theonstraints then
one must set:

@)P=0, .,  @%=o0

in the right-hand side of (V.3), which will give the fmNing system op linear equations
for the determination of thé :

- A(i(g) da), = (i (E)da‘),.
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Since one supposes that the constraints are compatihleChap. 1ll, § 1), that
system will admit a solution.
Hypothesis B will be acceptableAf >0, ...,4,>0..

Hypothesis C: If the motion ofS takes place while respectikgof the constraints

then one can suppose that they are theliddtthem, to fix ideas, and that the othpr—
k) break down, so one must set:

@)P=0,...,(@)P=0, Aw1=0,..,4,=0

in the left-hand side of (V.3).
One will then be led to solve a linear system inuhlenowns:

My A, @MDY L (@D,
namely:
-Ai(E)yma -...-Ai () Ma =i (E) d,
'—”;i;'i”(él')"['H'a*”:m—"){k'i'('é')"tiiém—”i”(é')'t'dé"
@D - i (€) M - ... - Ai (&) ™ =i (E) Ma*?,
.(.6.1 'P')'g'”"':'}l'l'i”('él')”tﬁ&"m—”.'.'."—")l'k'i'&é'kjnc'&éf’m':”i"('é')'ﬁﬁéf","

whose determinant is non-zero, since theconstraints that are taken from tipe
constraints must be compatible.
Hypothesis C will be acceptable if:

A1>0,..,A4>0,@"M° >0, .. @)">0.

8 Il. — Equivalent problem in analysis situs.

One can give a geometric form to the simultaneous eedion of these various
hypotheses that will simplify the discussion.

We remark that if a constraint of type= 0, Ae is given then that will mean that one
knows, on the one hand, the fiEdwhich consists of elements in the tangent spédes
Van+1, @and on the other hand, the foda which consists of elements in the sp@céhat
is dualT. a ande are the physical realization of the imposed constraihhe two
elementse andda are independent of any coordinate system. Those ®voeeks are
associated with the invariante) [(Ha ; i.e., { (e) da)o will have a value at a poi of
Vonea that is independent of the choice of coordinates. \Wiehave the followingp?

invariants atMo relative to thep fieldse', ..., €® and thep formsdd', ..., da’:

i (€ ma=r"
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Thep elements™ are the elements of a matrixf{ ||.

Now consider g@-dimensional vector spa&s , and in that space, on the one hand,
arbitrary independent vectoas, &, ..., & that have the same origin, and on the otper,
vectorsA®, A%, ..., AP that are defined by:

Al al
AZ

| ==
A’ af

Thep equations (V.3) are equivalent to the vectorial relation
(V.4) a+t+ hWA'=a.

(The change of sign comes from the definition thas w@ven to the vectorAh.)
Hypothesis A means that one can decompose the veatoE, into thep vectorsa’, ...,
aP, and that its components will all be positive assalteof the fact thatr belongs to a
well-defined regiorRy in E; .

Hypothesis B means that one can decompose the \@atdf, into thep vectorsA®,
..., AP and that its components will all be positive as altesf the fact thatr belongs to
a well-defined regiofR, in E; .

Hypothesis C means that one can decompoisio thek vectorsA®, A% ..., A¥ and
the p — K vectorsa“?, ..., a, and that its components will all be positive as altesu
the fact thatr belongs to a well-defined regidR”*in Ej, .

The problem of analysis that consists of determinirgg ghssible motions of the
systemS restricted byp constraints of clasd when one knows that initial conditions is
then equivalent to a problemamalysis situs.

One is given a sheaf opZectors in a Euclidian spaég that have the same origin:

a.. a.. &
Al AK... AP

If one take9p of those vectors:

A, Ak @, L ab,

in which (1, ..., Ik, i1, ..., Ip) IS @ permutation of the firgi integers and they are
chosen in such a way that two vectors will not appeathe same column of the
preceding matrix, then one will gepehedron. One can associate a regigre R "
with eachp-hedron that we call thmternal regionof the p-hedron, such that i is in
R then the components @f (X, , ..., X, , X, -, X ) relative to thap-hedron

will all be positive numbers:
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@=X A+ 4 X A+ x @ 4o+ xa”,
1 Kk s 'p

The preceding decomposition afcorresponds to a motiokl ili_kf_}'k"i" of the system in
which k constraints that are taken from ghpersist, while § — K others will break down.
When a is given, the number of possible motions will copasd to the number of

regionsR**"** to whicha can belong simultaneously.

1l

Total number of possibilities: There are as many regioﬁ%f}'k"i" that one can realize

as there are combinationslofectorsA®", ..., A* that are taken from amomgof them,
namerCE. The total number of regions is then equal to the gtine combinations:

CE+C’13+...+C';+...+ Cg =

The number of possibilities in a mechanical systerhigheestricted by constraints
of classU will then be 2.

Necessary and sufficient conditions for the uniqueness the possibilities.— In
order for a vectom to correspond to only one motion, it is necessary arfitisuit that

the 2 regions Rik”."'i“ should have no commgndimensional domain or that they should

have no common internal point. Since the vectdrs.., AP are defined by starting with
the vectorsa', ..., a® by means of the matrix | rh ||, one will be led to study the
conditions that the elements of that matrix musisBain order for the various regions

"% to have no commoprdimensional domain.

1l
Theorem II:

The necessary and sufficient condition for all of the internal regim@8 p-hedra in
a p-dimensional Euclidian space that are obtained by taking p vectors in tloeisvar
columns of the matrix:
al... a.. &

Al A< AP

to have no common p-dimensional domain is that all of the determinants of the diagonal
minors that one can extract from the square mafni¥ || should be positive, where the
vectorsAl, ..., AP are defined as functions of the vectafs..., a" by means of the matrix
-l

Preliminary lemmas:

1. Twop-hedra that are constructed frédifferent vectors will have no comman
dimensional domain only if at least one of kheequalities:
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(V.5) XX <0,..%xX <0

is satisfied, wheregl, cer X Xil, Xik denote the components of a vectoEgfwvith
respect to th& different vectors.

Since the tw@-hedra are composed loflifferent vectors, that amounts to saying that
if one takes? from columnj in order to compose the firgthedron then one must také
from the same column in order to compose the sepdratiron.

It will then result that the same vectarwill have the following expressions with
respect to the two bases that relate to thosethedra:

a= Xilail +.,,+)$qa!q + XMAW et XkAik + ?(k+1aik+1 teet P(pdp’

= Il oo Iq Iq+1 oo Ik 7 Ik+1 oo v Ip
@=X A+ b X AT+ @™ok xah + X A et XA

To say that the internal regions to those paleedra have no commgndimensional
domain means that one cannot simultaneously have:

x>0,....,x >0, X >0,..X >0,
X,>0,...% >0, x >0, ...%x >0;

in other words, at least one of thenequalities (V.5) must be true.

2. Two p-hedra that have only one pair of differing basis vectils have no
commonp-dimensional domain only if the quotient of the two diagonatmeinants that
are constructed from the elements of the matrix'[f || is negative.

If the two non-common vectors ag and A* then a will have the following
expressions in the bases that relate to theptivedra:

a=X At + .+ X A+ xed +xe @t L+ xd
a=X] A+ .+ X AT+ XA+ aMt L el
Now, if &, ..., &, &1, ..., & are the components af in the basisA?, ..., A¥, &,
..., a’then:
A=A+ L AGAH G @ L+ &

Upon replacinga® with its value in the first expression far and identifying the
coefficients ofA¥, one will get:

Xie = & X

The equivalent condition te X < 0 is thené < 0. & is expressed by means of the
minor determinants that are extracted from the m#trix"™|| . In order to do that, it will
suffice to express the vectas ..., & as functions of the vectoss, ..., A¥ &, ..., a;
I.e., to solve the system:
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Spllglo ok gko Algplkigel o

_rklal_ _rkkak:Al+rkk+1ak+1+ +rkpap,

A .
S0 & = 22kt with:
12k

—ru k-1 —ru —rk

Do 1= : , o D ox=| :
—pk _pkelkel —rk —pk

A1 k-1 and g,k are two diagonal minor determinants that are extraftted the
matrix |- r™ || . The necessary and sufficient condition for therhal regions to the
two p-hedra that are constructed from the two series obvect

Al AR K QP
Al AR AR g P

should have no commgndimensional domain is thﬁw< 0.
12k

3. All of the possible pairs of twp-hedra that have only one pair of differing basis
vectors will have no commoprdimensional domain if all of the diagonal minors loé t
matrix ||r“|| are positive.

Let us apply Lemma to the following various pairpdfedra:

1. The regions internal to the twwshedra that are defined by the two series of
vectors:
al, &, ...,a ..., a"

at, a ..., A% ...a&
will have no commorp-dimensional domain if £ < 0, namelyr** > 0.
Consequence: The diagonal elements of the maty|[must all be positive.
2. The regions internal to the twehedra that are defined by the two systems of
vectors:

a, a,...,a A% d, d .. a"
at, &, ..., a% AK Al af ... a°

will have no commomp-dimensional domain i

Upon taking the preceding condition into account, onstrhave:
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Consequence: The second-order diagonal minors of thexniar® || must be
positive.

3. One can follow the argument by recurrence. Thenateegions to the twe-
hedra that are defined by the two systems of vectors:

at, as....a A"\ ... A* &% a”t ... &
at,a ...,a A L AR A% att LA

will have no commomp-dimensional domain if:

‘-r“ —rﬂl” rM rﬂl”
1z Hu k+l | o4 Hu
-r B s -1 r e F
_r/M _r/iv <0 or ((_])_)k r/M r/iv <0.
_rv/i _rvv rv/i rvv

By hypothesis, the determinant in the numerator is ipesio since the determinant
in the denominator has a different parity, one musehav

AA Av

r r

>0.

VA vV

r e

Proof of Theorem II:

1. First, imagine the case of twwshedra that are defined by the following two
sequences of vectors:
al, & ..., a a*t ..., a"

AL A% AR N AP

The same vectog will have the following expression in the two basest tielate to
the twop-hedra:
a=xja + ..+ xd +xmadt+ . +xad
a=Xi At + XA+ X, a M+ L XAl

We shall show that at least one of khmequalities (V.6) is satisfied when all of the
diagonal minors of the matrixr[f || are positive:

(V6) X1 X1 <0, ceey Xk Xk < 0.

The equations:
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Al:—l’llal - _rlkak_r1k+1 ak+1_ _rlpap,
Ak:_rklal_ _rkkak_rkk+1ak+1_ _rkpap

shows that one can pass from ¥ ..., X to thexs, ..., X by the substitution:

=X = rllxl +... 4 rklxk,
. R R

and since\, = det

_R R

X, == x+...-+—2> ,

1 Akxl Ak&

(V.8) e
_R R

-X =X L SV

k Ak><1+ +Ak>&

If one of the inequalities; < O, ...,x < 0 was always satisfied whanis in the
domainD (X; > 0, ..., X« > 0), while one of the inequalities (V.6) was aywdrue, then
the proposition would not be proved.

Therefore, suppose that none of the inequalkies O, ...,x < 0 is always satisfied
when a is in D. The variablesq, ..., X cannot be always positive whenis in D,
because, in particular, fof, = 0, ..., X; # 0, ..., X« = 0, the equations (V.7) will givg =

i )

—rA— X;; sincer ) andA (diagonal minor) are positive;, will be negative. The variables

k
X1, ..., Xk Will then be annulled whea traverse®. In particular, forx; = 0, =0, ...,X
# 0, equations (V.8) will give the variabl¥s, ..., Xy as:

i i
-X :ix., ey = X =—Lx, ...,—Xk:&x..
Ta VN A,

From Lemma 3/ and R! diagonal minors are positiveg is negative, becausg is

positive inD, so it will result that all of the coefficient®’, ..., R/ are positive. If the

argument is repeated for all valuesjdfom 1 tok, then all of the coefficients of the
equations (V.8) will be positive.

When a is in D, since the first of equations (V.8) are all negatithe same thing
must be true for the right-hand sides, so at least of the variables, ..., Xx will be
negative. Thus, at least one of the inequalite§)(is satisfied.
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2. Now imagine the general case. Let two arbitmhedra be constructed frokn
different vectors. The same vecwim E, will have the following expressions in the two
bases relative to those tyehedra:

a= Xilail ...+ xqa!q + Xq+1Alq+1 +oot XkAik + ?( aik+1 +... P(pa!p,

k+l

a= XilAil +ot xiinq + )gmai“*1 oot >|<kaik + xmaikﬂ +-- p’(pai".
In order to find the substitution that permits on@ass from the:

Xpo oo X0 Xy v X t0the X, Xy X e X

g+l

one evaluates the vectors of the first basis as ibnmebf those of the second one. The
defining relations of the vectors:
Al ... AK .. AP

imply the following system in the unknowns:

—at, .., —at, —A, L —Ak,

namely:
—ritigls ——pilage zpegei gl te ey AL
_riqilail _.“_riquai.q :ri EI Q"lél?‘l +.“+ri iq th+ Aq
_riq+1ilai1 _.“_riq*‘liCIaiq _Aiq+1 :riQ"li 'J"lai. gl +.“+ri q—’h Dé D’
pikiigi ---—r'k"‘ai“ — A :I'ikiqﬂém'*'""*'l’i k pép.

We remark that the determinant of that sysvése,mq is a diagonal minor of the matrix

[IF]| . The calculation ofa", ..., —a"™, —A", ..., —A%* shows that the coefficients
R:, ..., R", R™, ..., R are diagonal minors ofr|[“| :

. R R
_ai1: I:al Ail +. 4+ Rq A'q+ 'q+1a'q+1 oo+ Rk aik +. 4+ 'p a'p’
i1v_iq ll'_iq ;{q ilq 1'1.— a
iq iq 'q+1 iq+1 }
—gla= i iy i iq i g R_k i ng ip
a‘= Ar+...+ A+ a™+...+ ax+.-.+ a’,
i1v_iq ll'_iq :{q ilq 111.— a
iq+1 iq+1 'q+]_ iq+1 -
— Algn — Rl iy Rq ig Rq+1 i1 Rk i F?; ip
A= L _Arv+...+ A+ a™+...+—* gk +...4+ ar,
Ail,—iq Al,—iq Aiq iq ¥ g
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_h Ab 4L NG PN PN I PN
At +-..+ A+ a™+..-+ ak+...+ ar.

ip, =i g iq LI 1 q

Ril q qu
- iy = - )ﬁl+‘ +— | )I(k
A|1|q Aliq ‘ Aiq Ahq
iy Rq ka ik
=X, —ix+ +—Lx X+ +Rq ,
‘ Aii ' Ai ‘ i " iy “
(V.9) . 5
R, LR LR §
X Ee X b b X A X et = X
) A|1|q Aliq ! Aiq ! Ahq
iy iq Rqﬂ
= g X .
Alllq Alllq Aiiq Aiq

Conversely, evaluate the vectors of the second basimetsons of those of the first
one. One then deduces, by a calculation that is ansdagathe one in formulas (V.10),
that:

_ p.'f : li“ Lo P
RS
— :'0 '0 q+'0i_1 )I(q+l+...+'0ik ?(k,
(V.10) A A A
p: o p‘“ A
- =X g et
A A K
- 'O'kxl+ -+ 'k)g+ N Xt +'[Zk X, -

Once one has remarked that the diagonal elements nmulas (V.9) and (V.10) are
composed of quotients of diagonal minors of the matriX*||| (so they will all be
positive), it will suffice to recall, point-by-pointhé argument that was made in the
preceding case in order to show that the one of thables x , ..., x , X, ... X

Ik

will be negative in the domaib (X, >0, ..., X, >0, x_>0, ..., x> 0), which will

imply that the internal regions to the twwshedra have no commop-dimensional
domain.
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Theorem lll:

The p-dimensional spaceg E completely covered by t&8 p-hedra that have no p-
dimensional domain in common.

Let a be a vector ifE, that is determined by its componeats..., a’with respect to
the basis that is composed of the vecats?’, ..., &. Sincea is arbitrary inE,, the
components will have arbitrary signs that define a serpiefip — and + signs that will
be well-defined when one takes the vectors in the arger., a8”. The decomposition of
a into vectors of the corresponding bases relative to paehron:

ab ...oas, A Ak ge g

will generate a coordinate system whose sequence &fwifrbe well-defined when one
arranges the indices of the vector in the natural order, (uitop), which is an operation
that is always possible, since one takes one and onlyemer from each column of the
matrix:

al, & ..., a*% a

Al A2 AP AP

The sequence of signs that relate to thepgvaedra are different, or else their internal
regions would not be distinct. (It will suffice tthange the orientation of the vectors for
which the signs are all negative in order to obtain @rediction.) Now, there are”2
sequences of different signs anfl gions: Therefore, any sequence mfsigns
corresponds to a region and conversely. In particutaretwill exist a sequence pf
signs that are all positive. It will then resulttthiae spacds, is, in fact, covered by the
set of internal regions to thé @-hedra and that is in a well-defined region.

Number of conditions that the elements of the meﬂtmhk || satisfy in the case of

reduction.— When one writes out that all of the diagonal mirafrthe matrix |f™* || are
positive, one will get (2—- 1) conditions because:

1 2 k —
C,+Co+--+Ci+--+ Co=2 - 1.
These (2 - 1) conditions bear upon th elements of the matrix. One can mention

two simple cases where that number of conditionsbeareduced. In order to do that,
consider a vectogr of E, whose coordinates with respect to the two bases:

at, a® ...a and Al A% ... AP

we denote by andX;, respectively, so:

a=) xa, a:Zp:XiA‘.
i i=1
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The fact that the internal regions to the tydedra that are defined by those two
sequences of vectors are distinct translates into foife anequalities:

X1 X1 <0, ..., % Xk<0, ....% X <0.

P _
Then consider the bilinear forgr (x, X) :ZXiX' , Which generates the quadratic
i=1

form ¢ (X) = 1(r"™ + r) X" XX since |k || = ||~ r™ [ || X ||, where |+ r™|[ denotes the
transpose of # r™||.

p
One will then have the identity x X' =~ ¢ (X).
i=1
It will then result that if the formy (X) is always positive-definite ik, then one of
the inequalities X1 < 0, ..., X% X, < 0 will surely be satisfied. Since the fact that the
form is always positive-definite i, is independent of the chosen basis, one can take the
bases to be two systems arbitrprlgedra, which shows that the internal regions toghos
two p-hedra have no commgmdimensional domain. There are then two simple cases:

First case:The quadratic formy = 4 (r"™* + r*" X" X is positive-definite.

Second caseThe matrix |f™ || is symmetric, and the associated fafris positive-
definite.

In these two cases, the’ @2 1) conditions reduce {conditions that one can obtain
by expressing the idea that a nested chain of minors"bf||are all positive.

§ IIl. — Study of the case(i (E) M) = 0.

In all of the foregoing, we have not envisioned theeda which the vectar is found
in the internal domain of one of thé p-hedra, since we supposed in Paragraph | that

(i (E)Ma*), # 0 for allk from 1 top. It is easy to see what happens wheis, more
generally, in &-dimensional domairk(< p) that is common to*%-hedra.
First, imagine the special case where 0 inE, ; i.e., that(i (E)[da“),= 0 for allk

from 1 top. Formula (V.2) shows that if théi (E)da*)"™ are the first non-zero

derivatives for alk from 1 top then, on the one hand, for an order less thahe A, will
be zero aMy , as well as all of their derivatives up to order(1) inclusive, and on the
other hand, the first non-zero derivatives of &evill have order i + 1). It will then
result that:
(@95 = (A) ™M (i(e" Ma'), = (i (E)da“)§™
or
(@5 —r™(A)e’= (i (E)a )™ .
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Upon interpreting that relation in the vector spBge one will see that the discussion
of the possibilities will be accomplished by playing thens game with the vectoes,

..., a Al .., AP as before. One determin¢s*){™ [{4,){" by means of the vectar
that is defined by its componen@igE) [da“){™™" .

General case— If a belongs to the domain that is common fophedra k < p),
which means thati (E)da*),= 0 for k values ofh, then it will suffice to decompose

into ai, which belongs t& , namely, the space common to tHepzhedra, andC x ,
which belongs to the space complementarygtwith respect tds, .

ak :XilAil .ot Xiinq + )I(q+1aiu+1 .ot )I(kaik,
Co= X, @+t a".
Since:
X,=0,...X =0,% =0, ..% =0a=0,

q g+

by hypothesis, one comes back to the preceding casewill Isuffice to take the
components o to be the first derivatives ofi (E) 0d)™? that are not all zero fdr
fromi; to ix . If certain derivatives of orden (+ 1) are simultaneously zero then one
considers a subspacek.

8 IV. — Mechanical interpretation of the precedingresults.
The following theorem results from the preceding study:
Theorem IV:

When a mechanical system S is restricted by p @omst of class U, namely* &p; ,
q,t) =0,Q = Alkdg', & > 0, A > 0, if the initial conditions satisfy the equations
a“(p’, g, )= 0thenthere will be2” possible situations. The necessary and sufficient

condition for the uniqueness of the motions is #tladf the diagonal minors that one can
extract from the product matrix A must be positive:

A5 el

Application to Appell constraints. — The matrix ||rhk || is symmetric for Appell
constraints, which have zero power and include Hb®nomic and non-holonomic

constraints as special cases (cf., Chapter 1l, § Mndeed, for such constraints,=

0a“

op,
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oa"

da"/0q . Since that matrix is the product of two matriéeandL, with A = 5
P

L=

H 1" H it will result from the fact that:

h h o
oda _ aal D«,")q -
op 99’ ap

that in the case of Appell constraimts= L” [0G, in whichL™ denotes the transpose of the
matrix L, andG denotes the symmetric matrig|| || .

The relation [§™ || =A L =L" 0G. L shows that ||| is symmetric. The following
theorem will then result from Theorem IV and theoset case of reduction under the
conditions that were pointed out at the end of Papdghid

Theorem V:

For a mechanical system S that is restricted byopstraints that are, on the one
hand, of class U, and on the other hand, of Appgle, the initial conditions will be
sufficient to determine the final motion.

Other types of constraints.— For the other types of constraints, the initialdibons

might not be sufficient to determine the final motibthe diagonal minors of the matrix

hk " . . . . . .
[[r™ || are not all positive. In particular, that is what hagpe systems of solid bodies in
contact with friction when the sliding velocities &etvarious points of contact are not
zero. In the indeterminate case, it is necessargpfmend some conditions that are
equivalent toda" / dt # 0, A, # O to the initial conditions in order to specify the fina
motion.

8 V. — Constraints for which the expression for power cadepend upon the
existence or breakdown of other constraints.

In the foregoing, we were occupied with constraintsheftypea” = 0, A &, where
the field€" is knowna priori, and consequently those constraint will be independent o
the existence or breakdown of the other constrainte digcussion of the possibilities
can be made in the case of solid bodies in contactfuidtion where the sliding velocity
is zero at the initial incident, and that will lead doeenvision some constraints whose
expression for the power can vary according to theenags or breakdown of some other
constraints, and consequently, their constraintdgied might depend upon other
constraints. In order to simplify things, imagine adsbbdy with a permanent symmetry
plane that is in contact with the line of intersectaf that symmetry plane with a fixed
perpendicular plane. ifandw are the components of the velocity of the pointasftact
of the solid body with the plane then:
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a) Contact that involves rolling without slipping transtatmto two zero-power
constraintsv=0,P, = yw;u=0,P,=Au.

b) The cessation of contact translates idvo/ dt > 0, # = 0, and it will also imply
thatA = 0 . The power of the constramt= 0 will then depend upon the realization or
breakdown of the constraint

¢) The appearance of slidingy= 0,up = 0,dw/ dt = 0,du/ dt # 0) will modify the
powerP,, which will becomeP, = i1 (w + £f u), with e (du/dt) <0,e=+ 1. The power
P2 will then depend upon whethelu / dt is positive, negative, or zero; i.e., upon the
breakdown or realization of the constraint

For a set of solid bodies that depend uporp@sition and velocity parameters and
havep mutual contacts, the examination of the possible ginstat the instart in the
case where the sliding velocities of fheontacts are zero & can be accomplished in
the following way, although it does not admit a georodsrm that is as simple as the
one that was envisioned above: Having chogemoving tri-rectangular trihedra
P X"y Z'whose summits arBy, , respectively, which are tHe" contact points, and the

axis P, 2" is oriented along the common normal, it would be athgeous to begin to
write the system of equations that will permit oned&termine the rolling without
slipping and the cessation of contact.

The condition of rolling without slipping at ¥ contact translates into:

u =20, vh:O w=0,
P=x"u" P=Y", P=z"w.

Rolling without slipping at the contact points constitutep 2ero-power constraints.
From our theory, we must suppose that they are compabieh will always permit
one to choose the parameters to be fhguantitiesu”, V', wW'. The conclusions of § IV
tell us that there will exist a quadratic form wih @mponents for the reactions and that
3p of the equations can always be put into the form:

du" 9

I a'h,
dt  oXx"
o 9g _ B
(I) dt aYh ﬁ (h - 1! "'1p)!
aw  ag _
dt az" =

whose right-hand sides are independent of the pogsibilit
These equations immediately indicate the contactsbﬂeak dowrnIV\}1 / dt > 0 and

the acceptable rolling without slipping by writing thapt— ot dd—vfz 0,2'> 0,

(XM? + (Y2 < (f, Z")?, wherefy, is the coefficient of friction at the" contact.
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The appearance of slipping at thg contacts.— In order to envision the hypothesis

h h
that slipping appears everywhere, it will suffice to reelgdit with d’? cosa,, Z—f

. dph . dw’ . hoo. K . K
with ot sing,,, T with 0 , X" with —fx Z“ cos o, , andY" with —fx Z* sin ci, where

p" and &, are the polar coordinates of the sliding velocityhe h™ contact with respect
to the axe$ X y'. One will then obtain the system:

h
do’ﬁ —aafh cosT, —% sio, =a" cog, + 3" sia,
() 2. _66X¢h cosT, —% sio, =a" cog, + 3" sia,
09 _
3. _ﬁ - yh .

Equations (I1.3) determine tt#&" as functions of ther". Equations (I1.2) determine
the an, by means of a system of trigonometric equations.

Equations (I.1) determine théo" / dt . The values that were found will be
acceptable whed* > 0,dp"/dt>0.

Remark. — Once the angleg, have been determined by calculation, one can skscu
the signs oZ* > 0,dp" / dt > 0 by using a vector representation that is aymls to the
one that was used in 8 Il of this chapter, sineedinections of the constraint fields will
be known under those conditions.

Case of slipping appearing ak contacts and rolling without slipping at the(p —
k) other contacts.— One can suppose that the slipping appears dirsihek contacts.
One will deduce the following system from (I) bynaethod that is similar to the
preceding one:

h
1. dd%_aa)fh COoT, _66—51 Simh :ah COSFh+,Bh Sia_h ,
2. - 6¢h sinah—a—¢h cow, =q" simrh—,B“ cog, ,h= 1o ,
(D) 5;<¢ oY

3. - ="

oz" v

0 0 0
4 _afh:ah’ ‘a—jh:ﬁh, —a—gﬁyh, h=k to3p— X

The reactions, which arg3 X —k in number, are determined as functions ofdhe
by the last p — % — kequations. Thi equations (I11.2) determine tha . Thedp" / dt
are determined by thie equations (Ill.1). One can then envision tipec@nditions for
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validity: dd' /dt> 0,Z" > 0, X"? + (Y"? < "? (h varies fromk + 1 top in the last
ones).

We shall confine ourselves to these generalities, sincebjective is to show that
our method will permit us to organize a very delicate disonss




CHAPTER SIX

STUDY OF THE DIFFERENTIAL EQUATIONS OF MECHANICS WHE N
CONSIDERED TO BE CHARACTERISTICS OF A FORM OF DEGRE E 2
THAT IS DEFINED ON A DIFFERENTIABLE MANIFOLD  Van+1 .

In this chapter, we propose to show how the viewpdiat tonsists of envisioning
the systemX of differential equations of motion of a mechanicgstem as the
characteristics of a for2 of degree two that is defined on an indefinitely-défaiable
manifold Van.1 Will permit one to known the structure of the sub-medfl functions that
are solutions t@.

The practical applications are easily deduced from #ad, in particular, in the
integrable case.

In order to carry out that study, it is advantageousenuision the differential,
infinitesimal transformation, and anti-derivation cggers from a viewpoint that was
pointed out by H. Cartan®j. The following paragraph is abstracted from his
presentation.

8 |. — Definition and properties of operators.

Graded algebras.— If A is an associative algebra over a commutative Kingith
unity then agraded structures defined when one is given some homogeneous vector
subspaces® of degree§ = 0) such that the vector spagés the direct sum of th&” and
the product of an element Af and an element & will be an element o™,

Endomorphism of degreer. — An endomorphisnt) of the vector structure ofis
said to havelegree rwhen it map#\ into A”* for eachp.

Products and compositions of endomorphisms.— If A and g are two
endomorphisms of degreesandr’, respectively, then one calls the product of the two
endomorphisms, when taken in the orden, the endomorphismuA of degree r+ r”.
(The operation is performed from right to left.)

That product is not generally commutative. Consideriegitto endomorphismagA
and A will lead to two new endomorphisms:

1. The symmetric compositiohy + uA .

2. The antisymmetric compositiotiy — uA = [A, 44, which is called théracketof
the endomorphismég, .

(** Cf., H. CartanColloque de topologique de Bruxelles 1985sson, Paris.

) Cf
(?® Cf., N. BourbakiAlgébre Chap. |, &, pp. 49, Paris, Hermann, 1942.
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Special endomorphisms:

1. Derivation.— One calls any endomorphisftof A of even degree that enjoys the
property:
f@alb) =6 +al¥(b)

with respect to the multiplication id aderivation If A possesses a unity eleménhen
a()=0.

2. Anti-derivation. — One calls any endomorphisiah of A of odd degree that
possesses the property:
d@a)=d@ b+ (-1Pald(b)

with respect to the multiplication i for a O AP, b O A ananti-derivation.
In addition,d(1) = 0.

Composition of derivation and anti-derivation. — One verifies that a consequence
of the preceding two definitions is that:

1. The bracket of two derivationg,[ &] is a derivation.
2. The bracket§, d of a derivation and an anti-derivation is a derivation

3. The symmetric compositiodd, + &0 of two anti-derivations is an anti-
derivation.

4. The square of an anti-derivation is a derivation.
Differential and exterior algebra:

Definition: One calls the anti-derivation of degree + 1 that Esesethe property that
d [d = 0, moreover, thdifferential d

There exists a graded algebra relative to the antrateyn d that is called the
exterior algebrawhose unitary moduled’ is composed of the differentials of the
functions of the ringk, where A’ is identified with the ring of operatoi§, and the
functions are imagined to be differential forms of @éego.

H. Cartan’s operators i (X) and & (X) on a differentiable manifold. — In the
applications to indefinitely-differentiable manifolds tha&e have in mind, the tangent
vector fields constitute a modul@ over the ringK of indefinitely-differentiable
numerical functions. T’, which is the dual td, is the module of differential forms of
degree 1.A (T), which is the exterior algebra over the modlieis the exterior algebra
of differential forms of all degrees.
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Operator i (X). — Since the algebra (T") is generated, in the multiplicative sense, by
its elements of degree 0 and 1, an anti-derivation widiermined when it is known on
the subspaces’ andA’.

Any x [ T defines an anti-derivation of degree — 1 of the algalf&’) that is called
theinterior product by xwhich is zero o®°, and onA’, it reduces to the scalar product
that defines the duality betwe@&randT".

Remark. — The operator (X) has square zero, becaugg) [0 (X) a zero derivation on
A% andA, so it will be zero everywhere.

Operator 8 (x). — Any x O T defines a derivation of degree 0 that is composed
symmetrically of the anti-derivatiorssandi (x) :

(VI.1) 0 =i () M+dO(X).

Operator £ (X). — Anyx [ T defines an endomorphism of degree 0 that is the bracket
of the anti-derivationd andi (x):

(V1.2) EX=[di(X¥]=d0 X —i(x)d.
Remarks:

1. IfQUOA(T") then8(x) Q will be the infinitesimal transformation 61 by & (X) ;
hence, the name “infinitesimal transformation” thais given to the operatéi(x).

2. The operator§andd commute.

3. The operatorsandd anti-commute.

4. nsuccessive applications 8{x) will give:

60 (9 =G (0 ) + @0 )"

In particular, when one applies it to a functfon the ringK, the preceding formula

will give:
8™ () f=(@()dH®™ .

Endomorphisms that relate to two fields.— There are some endomorphisms that

correspond to two tangent vector fiekjs/ that are derivations and anti-derivations, and

we shall specify the ones that will be useful to us.

1. The product of the endomorphisnfy) i (X) is an endomorphism of degree — 2.
As a result of the associativity of the exterior proid

Py =i(yDx.
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The preceding endomorphism maps a form of degree twa\intdf Q = k; dX O dx’
(kj is an antisymmetric tensor) then:

09 Q=k Ky -y x)=>k

i,j=0

X X
y Y

That is the left interior product gfl]x andQ.

2. The bracket of a derivatidfh(x) of degree 0 and an anti-derivatiofy) of degree
— 1 is an anti-derivation of degree — 1, so one will bedeconsider the anti-derivation
that relates to a field that is composedof and denotedx| y], namely, theLie bracket.
That notation is justified because that anti-deromtiill be zero orA°, and oA, it will
reduce ta ([x, y]) df relative to the elemelf, so one will have the formula:

(V1.3) [6(), 1 WM =6(X)i()—=i(y) 8K =i(xV]).

3. Consider the two endomorphisigx) 0 (y) andi (y) 08 (x) . Their difference
will give a new endomorphism:

()i (y)=i(xdi(y)+di)0(y),
1) @) =i()iy)d+i(x)dd(y),
6()i(y)—i(¥)8(y)=di(xUy)—i(xOy)d.
Consider the endomorphissr{x [ y) that relates to the composed elementy :
(V1.4) X)) -1 (X)) =exOy) =dixOy)—-i(xOy)d.
4. When one permutesandy in (VI.3), one will get:

(V1.3) [O(), 1 (1 =8()1 () =1 ()8 =i(y.x]) .

Upon subtracting (VI3 from (VI1.4) and taking into account the fact thgt X] =
—-[x y], one will get:

(VL1.5) )1 () -0y i (¥)=ex0y)+i(xy]).

5. The bracket of two derivatiors(x), & (y) of degree O is a derivation of degree 0,
so the corresponding derivation will be the derosatvith respect to the Lie bracket, [

yl-
An application of (VI.1) will give:

g(x) 8(y) = 6(x) [i (y) d+di ()],
6(y) 6(x)=6(y) [i () d+di(¥)].

Upon taking into account the fact that the opesatandd commute:
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[6(x), 6] =6(X) 6(y) - E(y) 8(X)
=[-8y i H+dOoX i) -e)iX]
Formula (VI.5) permits us to transform the right-har into:
[6(x), 6] =[e(xDy) +i([x yh] d+d[e(xDy) +i(x y)I.

Now, e(x Oy) d +de(x Oy) = 0, as a consequence of (VI.4) or the anti-commutatbfity
the operatorg andd. The right-hand side then reduced 1(@x, y]) d + di ([x, y]), and
from (VI.1), that is nothing buf ([x, y]), so:

(V1.6) [6(X), 6(W)] = (X Y]) -

The operato@then operates upon not odlyandA (T’), but also o, and the field
that is the transform of by & (x) will be denoted by, y] = 8 (x) .

8 Il. — Study of the system of differential equation& that is characteristic to Q.

Take the formQ = k; d¥ Odx', wherei andj vary from 0 to B, and k; are the
components of an antisymmetric tensor, and are funciiotise ringk. We denote the
system of characteristics Ofby 2 .

Definition. — One calls the element EDBsuch that:

i(E)Q=0
the characteristic fieldassociated witlf2.

By hypothesis, the forn® will have rank 2 (i.e., Q" # 0). The field E is then
defined by the preceding equation only up to a numerical funetsoa factor, since its

(2n + 1) components are proportional to tha §21) determinants that are the minors of
order 21 that are extracted from the matrix:

0 k12 k1,2n k10
k21 o - kz,zn kzo

k2n,1 0 k2n,0

It is advantageous to choose the proportionality fasuich that (E) dt = 1, as we did
in Chapter I, 8 1lI.
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Theorem I:

Any x[O T corresponds to a Pfaff formathat is zero along the integral curvesXf
Conversely, any Pfaff form that is zero along the integral curv&scofresponds to an x
T, modulcE .

i (x)Q =,

iXi(E)Q=-i(E)i (X Q,
since
iI(E)Q=0, i(E)m=0,

which shows that7 belongs to a sub-module of characteristic form$2p&0 77 will be
zero on the integral curves Bf.

Conversely, if a Pfaff form is zero on the integratves o> theni (E) 7= 0. Since
the formsrbelongs to a sub-module of characteristic formgetiell exist anx modulo
E suchthat (x) Q =7z

First integral of Z. — From now on, we shall call any closed Pfaff fohattis zero
on the integral curves &f afirst integral of .

That definition is justified because such a form a¢ always the differential of a
function in the ringK that is defined oi2.:1 , but it is only a function that is defined on a
neighborhood oV,n.1. In other words, any point &fn+; belongs to a neighborhoadl
such that the restriction of the formUbis the differential of a function that is defined on
U.

Any closed form 7 of degree 1 that is zero on the integral curves owill
correspond to ax [T modulo E whose {2+ 1) components arerfZ 1) functions that
are solutions of a system of linear first-order paditerential equations:

(IV.7) d(i(x)Q)=0.
Infinitesimal transformations of X :

Definition. — An arbitrary elementw® of degreep in A (T’) is said toadmit an
infinitesimal transformation that is generated by IXT if the operatord (X) transforms
w® to zero in the space of forms when it is appl@d:t

B(X) W’ =0.

In particular, ifQ has degree two then it will admit the infinitesinh@nsformation
that is defined byg (X) then the same thing will be true for the diffetial systen® .
We remark that the (2+ 1) components of the field X that is the geraraif the
infinitesimal transformations fo€ are solutions to a first-order system of partial
differential equations (VI.8):
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(V1.8) O(X)Q =i (X)dQ +di (X) Q = 0.

A. - STUDY OF THE CASEdQ = 0.
A comparison of (V1.7) and (VI1.8) will show thatdf2 = 0 then the systems of partial
differential equations that define the infinitesimal sf@nmations and the fieldsthat are
generators of first integral will be the same. Hewee has the theorem:

Theorem II:

Any X that is the generator of an infinitesimal transformation will corresptmd
first integral, and conversely.

Example.— LetQ =dp O dqi —dH Odt. We look for the condition foR to admit
the infinitesimal transformation that is defined by tfperatoré (t) :

o) Q= d(dH—a—Hdtj:O, d(a—Hdtj=O,
ot ot
which shows thafiH / dt must be a function of only the varialtjenamely,V’(t) . That
infinitesimal transformation corresponds to a firsegral:
H-V({t)=h.

It is the Painlevé integrdb —To—U -V (t) =h.
In the particular case 0H / dt = 0, it will be the classicalis vivaintegral.

Consequence of the preceding theorem: The sub-module of the tangent vector
fields to the manifoldV2,.1 that are generators of infinitesimal transformatidms >
corresponds to the sub-module of first integrals by dualitty respect td .

Let X, Y be two fields that are generators of infigiteal transformations fa@ :

8(X)Q=0=di(X)Q, i(X)Q=r,
8(Y)Q=0=di(Y)Q, i(Y)Q=0.

If [X, Y] #0 then the Lie bracket of the two fields will copesad to an infinitesimal
transformatiord ([X, Y]), and as a result, a new first integral:

O(1X, Y]) Q =di ([X, Y]) Q = 0.

One obtains its expression by remarking that undeptésent hypotheses, formula
(V1.3) will give:

i (X YD) Q=80X)i(Y)Q=i(Y)8(X)Q=6(X) o=i(X)do+di(X) &
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=di(XOY)Q.

The new first integral is essentially the diffeiehbf a function in the rind< whose

expression is:
2n

2K

i,j=0

Yiy
X' X!

i.e., the interior product on the leftiofX 0Y) andQ .
In particular, ifQ =dp Odq' —dH Odt, and if the formsrand o are the differentials
of the functiond andg in the ringK then if X is a solution (X) Q = df that is defined

modulo E = —a—H.,a—H,l , then one will have X a—f.,—i,o , SO:
oq' ' dp oq  dp
99 9Jg
: n.[dp,  0q
I(XOdY)Q-= )
XEMa=2 o ar
op,  oq

One recognizes the Poisson bracke) (n the right-hand side.

Corollary:

If the fieldsX and Y, whose brackefX, Y] is non-zero, correspond to the first
integrals df and dg, respectively, then the fipid Y] will correspond to a new first
integral that is the differential of the Poisson bracket. The gk, Y], Z] will
correspond to the brack€(f, g), h). The bracket identity corresponds to the Poisson
identity.

Fields in involution. — If [X, Y] = 0 then we will say that the two fieldsand Y are
in involution. The two corresponding first integrals are said tenbavolution.

Theorem llI:

Any field X that is the generator of an infinitesimal transformation foris in
involution with the characteristic field = 0.

We remark thatd (E) Q = 0, as a consequence of the fact t@t= 0 and the
definition of E, namelyi (E) Q =0 . It will then result that any element thataaipled to
Q will be mapped to zero in the corresponding setlfig) . In particular, the field X
that is the generator of an infinitesimal transformatiath be mapped to zero in the
tangent space:

6(E) X=[E, X] =0.
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Case ofn known fields in involution. — Suppose that one knowdields X, Xz, ...,
Xn that are pair-wise in involution and are generatorsifriitesimal transformations of
Q. They will correspond ta closed Pfaff formgaz, ..., 77 that are first integrals af :

i (X)Q =7, i (X) 1=0.

Since then fields X are supposed to be linearly independent, the integrail be
independent. The formr= 74 [J ... [ 77 of degreen will be non-zero.

1. Q belongs to the sub-modulemformsz, ..., 77 .

If g is an integer then:
i (X)Qi=qrmY,

i (X OX)Qi=qi(X) 70Q" +(-1)q(q-1) 7070Q%"?
=(-1)q(Q-1)7070Q"2,
so forg>n:
i(X1...X) Q%= (1)""q...q-n-D)mA0..0F0Q%"
=(-1)"%q..(@q-n-1) 7OQ™™.

Upon takingg = n + 1, sinceQ has rank 8 Q™* = 0, sox0Q = 0, which is an
equation that will show thd® belongs to the sub-module offorms 77. One can then
write:

Q:Zn:ﬂjDa)".

j=1

2. Then forms &' are closed modulo theintegralszz .

dQ = ZITJ. Ode' , because thesg are zero. Since Q is zero:

j=1

ZITJ. Oda = 0.
=1

Upon multiplying the two sides b O ... [ f[J ... 07, where the ” sign that is

placed aboveg means that the term in question does not appear roleict, one will
get: _
mOdw =0,

which is an equation that shows tla' belongs to the sub-moduleforms 7, ..., 7&;
in other words, th@ forms «’ are closed on the submanifolds that are defined by the
first integrals/z =0, ...,77 = 0.
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Theorem IV

If one knows n fields that are pair-wise in involution and are generators of
infinitesimal transformations d@ then the systera will be integrable by quadratures.

That theorem is only a translation of the Liouvilartan theorem into the language
of manifolds.

Remark. — The forms7, 77, w*, w" are exact differentials only locally or on a
neighborhood oY2n+1 .

For such a neighborhood, one can calculate the insegmd put them into the form
=r,(p.q.t),s’=s’(p, d,t) . With that reservatiorQ can be expressed by means of

just the differentials of the first integrals:
Q=dr,0ds'.

Q can be put into that form in an infinitude of ways byans$formation of the infinite
symplectic group that acts upon theset...,rn, s, ...,s'. Then functionsrs , ..., I,
which are pair-wise in involution, constitute the genet@ments of a sub-ring.

Application. Search for the integrable cases of the chacteristic systemz of a
form Q of type Q =dp qui —dH Odt. — If one knows how to integrakethen one will
know a representation for the first integrgls const.,s! = const. Q, whose exterior
derivative is zero, can then be put into the fém dr; 0 ds'.

There are 2ways of considerin@ to be the exterior differential of a Pfaff form:

h h
(V1.9) w=>Y pdd-> d"™dp,, ~Hdt.
i=1 i=1

Consider the fornR" = d (w+ s’ dr) that is defined on a manifols,.: (*). The
form Q" is zero, by construction, on the submanifaléiép, q',t) =r’, s’ (i, ', t) = s/,
so w+ s’ drj will be a closed form, and when one writes thas qual to the differential
of a functionf (q', Pnsha , ri, t), in which the indices andj vary from 1 toh and 1 ton,
respectively, one will get:

_ of n-h+i _ _ of H__af Sj_ of

o TR S

) 2 2
When one is giveh(d', pa+h4, I, t) such that the determina .ta. f of
oq' or, 0P, s O]

IS non-zeroH can be obtained by eliminating thérom the equations:

(**) Vans1 is the topological product 8.1 with a symplectic manifol$p, .
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of n—-h+i of H=- of

pi B a_qI , q B _apn—h+i E

The first integrals; are defined by the implicit equations:

af n—h+i af
Pi=—==. g =- .
aq apn—h+i

The first integrals’ = const. are defined modulp= const. bys! = af / r; .
Remarks:

1. Then functionsr! (pi, ', t) are obviously in involution sind@ = dr; O ds.
2. Giving the forndf on the submanifolds:

_ of n-h+i _ _ of H__af Sj:i
or,

aqi , apn— h+i , E

of Van+1 is then a practical means for obtaining a set foinctions in involution.

3. Two closed formsy « of type (VI.9) will generate different integrability ess
only if the local submanifolds’ (p;, q, t) = const. that correspond to those integrability
cases are different. Hence, if one writes out thatformw=p; dd —H dt + s’ dr; is
closed on the submanifolghsas functions of onlyd{, r;) then one will get the same case
upon writing that the form: _ _

w=-qdp-Hdt+s'dr

is closed on the submanifoldsthat are functions of only;i( p)) .

4. In order forQ to not be the sum gf forms, it is necessary and sufficient that
must not be the sum pffunctionsfy that each depend upon a different set of variables

~ Case of mechanics-H must be a positive-define quadratic fornpatH = A’ p p, +
A p + B, where the?’, A, B are functions ofr{+ 1) variables], t.

That fact leads us to the preliminary question of wthat canonical changes of
variables will be that preserve the degree of the bkesg; . If a change of variables for
which the homologue of the setpfs the set of preserves the degree of a relation in the
p then it will be linear with respect to theand conversely. The for@ = dp O dd -
dH Odt will becomeQ =dr; 0ds' —dK Odt. The formdp Odd — dH Odt-dr; O ds’

+ dK O dt which is defined on the a manifoldn.1 , will be zero on the submanifolgs
=pi (,s,1),d=d (r;, s’ t), so the formg dp +r; ds' + H dt — K dt will be the
differential of a function that is linear in tipe, namelyp; ¢' (s, t) +¢° (s/, t), so:
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i 2 (el o¢'
d=¢' (0, r,-=pia—f,-, H-K=p

i 0
9p 99"
ot ot

The equations] = ¢' (s', t) show that the desired canonical transformations are
nothing but the transformations of the point-like pseudotgrQ that acts upon the
variables ¢, t).

It will then result that from the viewpoint that Wmave chosen, two functiom$ must
be considered to be distinct only if they are not deddcom each other by a point-like
transformatiorQ.

The pseudo-grou@ likewise transforms any integral that is algebraitheyp; into an
algebraic integral of the same nature. If théunctionsr; , which are pair-wise in
involution, are algebraic with respect to fhehen since the; are defined by means of
the implicit equationg; = of / ', the partial derivative8f / dq must be functions that
are algebraic with respect tp. One will then obtain certain integrable cases sirbgly
choosing the forndf to have coefficients that are algebraic intthe

Remark. — It is quite certain that in the practical applicasi@f that method, one will
be limited by the fact that one does not know how teesthe algebraic equations. One
can sometimes get around that difficulty by using on2noforms (VI.9) that are given
by the integral invariani.

EXAMPLE I. —n integrals that are linear in;p — Any integralp; that has the form
a'p+ o = const., where the are functions ofd’, ..., q", t), can be reduced to the form
P, +a@° = const. by a transformatic:

. gl
ap+ a® will becomed’ P, gi.ﬂroz const. by a transformatidp. One can satisfy
q

that relation by choosing thg' to be functions of, ..., q", t such that:

a Ez 0 forj that varies from 1 ta—1, a a_qf“: 1.
oq o
g', ..., " will then be 0 — 1) distinct integrals of the systemplays the role of a
parameter):
dg _ _dq
praa b
g"is a solution to the system:
dg _ _dq' _ dq"
o T a1

that is obtained by means of one quadrature by taking thedangc — 1) integrals into
account.
An integral that is linear with respect to fhecan be put into the form:
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pnt+apg=rn

by a transformatio®, so the functior (d, r;, t) will have the fornf =r, q" + gn + @n, in
which g, is a function that is independentraf andg, is a function that is independent of
theq". If there aren integrals that are linear with respect to phafter the successiv@
transformations then the functibean be put into the form:

f=Zn‘,riqi +g+ g,
i=1

in which g is a function of @, ..., ", t) that is independent af , ..., r,, and @ is a
function oft, ry, ..., rn.
H= —g—?—%—f must be quadratic with respect to fhe since one passes from the
to ther; by the linear substitution:
_0g
pi=—+ri,
Jq

so —0¢ / ot must be a form that is quadratic with respect tathe.., ry:

O WA LAY, =3[R AT AL

The reduced form dfl by means of is then:

i dg ag 0 a9 o 00
2H=A'| p-—= || p-—— |+ R| p-— |+ A-2—=,
(” adj[“ awj (p aqj ot

in which theA!, A|, A% are functions of only the variablgandg is an arbitrary function
ofq', ...,q", t. Hence, one has the theorem:

Theorem:

The necessary and sufficient condition for therbdm linear integrals in involution
is that H should be reducible to the form aboveabyransformation of the point-like
pseudo-group.

Il. (n— 1)integrals that are linear in p; , while the n" one is quadratic in thep; . —
From the foregoing case, the presencenef 1) linear integrals will lead one to dunto
the form:

n-1
f=>rq' +g+¢

j=1
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by successive transformatio in which g is a function of they', ..., d", t that is
independent of the, ..., r,, andg is a function of the,, ..., r, that is independent of the
1 n

q,....q.
P, — 99 | - aﬁ : wherea—¢i1 is a function ofr, ; since the integral, must be
oq" 0q oq

quadraticy, will have the form:
ag ) d
rh= A" pn——g +2B| p- gn +C,
oq’" oq

which is an expression in whidd and C are functions that are linear and quadratic,
respectively, with respect to the(j varies from 1 ton— 1). One then deduces that:

3¢ _ -B+\B2- A"(C-)

n_

aq Ann
H must be quadratic, so sinbb+g—? = —%—f, %—fmust become a quadratic form of rank

n with respect to thg; when one replaces the ..., r, with their values. That quadratic
form can always be written in the form:

2
09 Jag Jdg
— = A p,- +2 - tv,
ot [m MJ ﬂbhawj

which is an expression in whicla and v are linear and quadratic, respectively, with

respect to the; (j varies from 1 ton — 1). If one replaces the - 3—31 T 5—3 as
functions of thers, ..., r, then %—f will depend linearly upon the radical
JBZ-A"(C-1):

09 _ E

JBZ-A™(C-r1).

ot A

0¢ ¢

The expressioanq”+E must be an exact differential for amy so the
q

expression\/ B?- A"™(C-r)(dd" — E d) (1 /A™ must be itself an exact differential.

A" andE depend upon onlg" andt (ry, ..., rn, enter intoE only as parameters), so if one
considers an integrating fact@ for dg' — E dt then the particular transformation
g"=qg"(q", t) will show that:
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BZ- A™(C-rt) dqO"
(DAnn\/ ( n) q

can be an exact differential only if the functions tatter under the radical depend upon
only q".

Consequence=- One can always reduce to the case:

n- n- 2
o0 —(iA”iri+A”j+\/(iA”i;+A“J A””[z AJ[r+ZZ Ar+ A?O—,qj
i=1 i=1

ij=1

aqn Ann

by a transformatioQ) of the point-like pseudo-group, in which tAedepend upon only
the variabley”, and:

i,j=1

a¢_ & ij 00
E__ > alr, +22ar+a +a'r

in which thea depend upon only
One then deducéd$ and the quadratic integna:

ooy -2 o
0g

+a£121A( J(” aq'J ZA(" aqj ’ﬂ at

ij ag _ﬂ 0
r”'.,zlA( aqj[p aqj ZA[“’ aoij“g'

Special case:g = 0, thea = 0, except fora" = 1, and theA' = 0. One then gets
Delassus’s integrable case.
One can summarize the foregoing in the theorem:

Theorem:

The necessary condition for the systeto have a quadratic first integral ard — 1)
integrals that are linear with respect to theip that H must be reducible to the form
above by the point-like pseudo-group Q

lll. hintegrals that are quadratic in p and (n —h that are linear in pi. — The (1 -
h) linear integrals can always be reduced to thenfar-0g/0q =r; (i = 1ton—H by a
transformatiorQ, anddf can be written:
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n-1 )
df=>rdq +dg(d', ....q" t) +dg,

i=1

in which rps1, ..., rp denote theh quadratic integrals, we remark that if theare

n
constants thenz a“r. will also be a quadratic integral, gocan be only a function of
n-h+1=1
the forms that are linear m++1, ..., 'n Whose coefficients are functions of the variables
n-h+1 n

q ", ...q,t.
Now, then™ quadratic integral can always be put into the form:

m=A"p + 2B, +C,

in which B andC depend upom,-1 , ..., prh+1 - It will then result that,, must enter
linearly under a radical of second degree. Siheea function of forms that are linear in
therpssa, ..., 'n, the same thing must be true for the other ones. @meecluce to the
case in which that radical depends upon only one variable tognsformation of the
point-like groupQ. One will then be led to the following expressiondo:

df'Zrdq +J2 Y [an g, dd [ >34 n+2ndr+a°jdt+dg,
i=1

j k=n-h+1
in which the g, are functions of only thg* , the ¢ are forms that are quadraticrinj =

1 ton — H with coefficients that are functions of only ttfe and thea depend upon only
t. The corresponding functidth will then be defined by:

e ag o dg Jg o9
nhil L g H+ 2+ 2+ Y 1 +a p-—
: 2 { TPk ( aqj('? oq P7ad

Special cases:

1. nquadratic integrals. One gets the generalized Staeaselhy taking tha' = 0,
and thegy to be a function of the variabtg.



8§ Il. — System of differential equatiokghat is characteristic @. 127

2. One gets the ordinary Staeckel case by tafgieg0 and all of thea to be zero,
except fora" = 1.

3. Liouville’s integrable case. This is simpler to bbsh directly by taking:

n-1 n-1
df=\23 VB -C+Afdd+/2,/BY (-)-G+Ayfdd-yd
i=1 i=1
One then deduces that:

n-1
FP=Bi(=Ci+Am), %m=3{2«m—q+ﬁm) H=r,
i=1

SO H =

i=1

- {i( P +C H or in classical form:
2 A

\ > C(d)
2H = ZAZBM)+T .
= > AT)

i=1

IV. nintegrals that are linear with respect to theq'. — If there exish integrals that
are linear with respect to tluéthen the functioh must have the formh=r; @) (py, ..., Pn,
t) + ¢ (P, ..., Pn t), becausey =r; @' / dp; . The simplest sub-ring of functions in
involution is composed of the functionss' = of / arj = ¢'(py, ..., pn, t). A canonical
transformation that preserves the degree ofjtigll lead us to the case where:

f=rig @, 0+ @@y . pnt),

in which the functionsp' depend upon only the variablgs andt, since they are
functions that are independent of the Eliminating ther; from the 6 — 1) equations:

q.: Ja¢ al/l H:rj%.}-a_w
ap; on ot ot
will give:
og’ o'
H=¢q ot [ 9Y_ ot Baﬂ
d¢' ot 0¢' op
ap, ap;

That function must be quadratic:
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ag’

1. aa; —apF +2bi M) p+a),

ap,.

which shows thap' is a function of the solutioR of the Riccati equatiodp / dt =
atyp+2b () pi+c ().

2. %_f_g_g[a(t)nﬁzbi(t)pi+G(t)]=a”F*F“Zai“*aoo’

in which thea are functions of, ¢is a function oRy, ..., R, andt, which one determines
by quadratures.

In summary, one constitutes a sub-ringnofunctions in involution by giving the
solutions ton Riccati equations.

A variant of the process consists of giving the sub-biy means of functionss', ...,
s

Examples:

dp i — (p2+a)ﬂ' i 2 £-1
1. §“_—+ ——tnh d=1bn 7 +a)?ldp.
2 oira 5 Y[ (pi+a) ™ dp,

f:2l’( J- dp, j+n I’[ (g +a)” +yij"(p§+a)[%—1dpn]

p:+a
qi:_r(pf‘*a’)ﬂ'
P
n-1 2 A1 )
o = +21, +Zf[2ﬁi B +V(p§+a)ﬁ_l} e
pn+a i=1 p|
SO
n-1 ' n-1 .
2H=Yyp’d+2). ApRpa+(F+a)d.
i=1 i=1
2 Tpita |
n-1
f=2r +rt+yr.p (p+a) +y,
-2 el 2rppira)ivy



8§ Il. — System of differential equatiokghat is characteristic @. 129

(14

q =r(pZ+a)h +

1
+22r p AP, (PE+a)y ™.

q'=2r
pn ta apn i=1

One determineg by means of the condition:

—(p§+a)gp +2p B I% ZVp. ,

n

namely:

n-.

ZVD.(pn+ [ D=

iz +a)
Sso:

2H :iVnz—Ziﬁ PR+ G(F+a).

Special case: & 2,a=0. One finds spiral surfaces whose geodese&sdeatermined
by quadratures (cf., Darboux, tome Ill, pp. 81).

B. - STUDY OF THE CASEdQ # 0.

Theorem V:

If X OTandX O T correspond to an infinitesimal transformation andrat integral
of Z, respectively, then the Lie bracKat, X ] # Owill correspond to a new first integral
of Z whose expression will begX [0 X) Q.

The formula (VI.3) gives[X, X]Q=6(X) i(X)Q—-1(X) 8(X) Q..
The hypothese8(X) Q =0,1(X)Q = 77, d77= 0 implies that:

i[X, X]Q=di(XOx)Q.

If the Lie bracket [X,X ] is a non-zero element @fthen when the operatofX, X]
is applied toQ, it will then correspond to the differential offanction in the ringkK,
which will be a function whose expression (X 0 X) Q . Since the differential of that
function is zero along the integral curvesofit will be a new first integral oE . Its
calculation will be immediate:
X X

XOx) =kl ol
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The study of the systednis carried out in conformity with Lie’s ideas by mearis o
one’s knowledge of certain infinitesimal transformasion

Definition. — We say that elements X, X?, ..., X' O T, which are generators of
infinitesimal transformations @@ define a complete system if:

[X?, X9 = y*X", p, o r0(tor),
where they”” are functions in the rinff .

Lemma:

There is an infinitude of ways of choosirgelements’x ..., x*" that belong to T and
are such i(X") i (x) Q=i (X' Ox') Qis equal tol for j =i, and0 forj # .

If the X' are known then the componentsxof (j fixed) will be solutions of the
linear equationsr(< 2n + 1):

i(X'Ox)Q=0 for j#i, i(X'DOx)Q=1 forj #i .

One can benefit from the arbitrariness to chooseisokifor thex’ that are as simple
as possible.

Let 7' =i (x') Q, where the indekvaries from 1 to & so when the corresponding 2
Pfaff forms are equated to O, that will constitute ohéhe expressions for a system of
differential equation&.

Theorem VI:

The system of2n — 1) Pfaff formszz" **, ..., 7" is completely integrable, so the r
forms7, ..., 7" are invariant forms.

We apply formula (VI1.5) to a formr’ by takingx, y to be two fields X, X7 :
(VI.10) B(XA)i (X ' = 8(X)i (XA ' =e(XPOX) i +i[XP, X 7"
From the way that the fornzs' were chosen, the left-hand side is always zero.
1. Fori>r:
i (X9 =0, i (XA =0, i (XPOXY 7 =y”0X) 7T =0,
e(XPOX9) ' =—i (XPOX9) drr'.

The vanishing of the left-hand side of (V1.10) will imghat:



8§ Il. — System of differential equatiokghat is characteristic @. 131

i (XPOX%dr' =0.

Thexl_, ..., X?" form an ordinary differential system that is then ctatgly integrable,
so thedsr' will belong to the sub-module of the' . Since thec; are functions of the

ring K, one can then write:
dr' = ¢, (7 O 7).

Let us study what the hypotheses on ¢pewill imply:
i (X?OX%) dr' = ¢ i (X?OX%) O O,
0=c,i(XAi(X)Qi(x)Q) oG (x)Q).
Sincei (X9 O (x)) Q is non-zero only fof = o, it will then result that the preceding
equality will reduce to:

Ci i XA (X)Q=0.

Sincei (X% O (x*) Q is non-zero only fok = p, one must have},= 0 ; i.e.,c; =0
forj<r, k<r.

Those conditions imply that77™* belongs to sub-module of forns™ ; in other
words, the system of (2— 1) forms 777" is completely integrable.

2. Forisr:

i (X)) =0, if i 7, i (X7 =1, if i=7.
The vanishing of the left-hand side of (V1.10) gives:
0=i(XPOX9)dm"+ y* .
Upon taking into account the fact thiat' = ¢, 77 O 77°:

i (X9 i (X)) P Om=c, i (XAi(X)ix)QOiK)Q.

Sincei (X9) i (xj) Q is non-zero only fofy = g; its value will then be 1.
Sincei (XA) i (x") is non-zero only fok = p, its value will then be 1.

yrp‘T:CT =-c!

op o *

In addition, thecj‘k will generally be non-zero functions for=i <r andj andk >r .
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Let us show that theforms 771, ..., 7T  are invariant forms:
dr'=c, 7 0nr* for (i=1tor,jk=1to2)

Since the @ forms 7%, ..., 7" are expressed linearly as functions of the 2
differentials of the first integrals &, if one performs that substitution on the left-hand
side then upon introducing conveniently-chosen functidrnike first integrals:

dr =>K . d¢” Od¢” with o =a+n,

in which the k[‘mu are functions of the first integral and one of tlaiables {, for

example). Ifu denotes an arbitrary first integral or the variabteen upon taking the
exterior derivative of the two sides of the last eaquregtj one will have:

. ok
d(dr)=0=) aﬁa duddd¢ O dé”.

Since there is just the one tedndc¢’ O d¢”, ok! ./0u= 0, andk' ., can only be a
function of the two integrais” andc®. One can reduadz' to the form:

dr' =) dc? Ode™
a=1

by a change of first integrat§ = ¢ (¢”,c™).
It will then result thatr' = ©de’”. Sincern' is expressed in terms of only first
integrals and their differentials, it will indeed beiawariant for the systers .

Practical consequences for the integration af . — Having chosen thendorms 7'
in conformity with the Lemma, one can begin the deaflar the solutions to the
completely-integrable system'™**, ..., 7°". When a solution to that system is known,
one will be reduced to the integration of a differensigdtem of forms 7%, ..., 71 for
which one knows invariant forms.

The search for a solution to the completely-integradylstem 7', ..., 7 is

simplified by the following remarks:

1) If one knows that there exigt first integrals then one can benefit from the
arbitrariness that exists in the choice of xhéo make those first integrals belong to the

sub-module ofr™*?, ..., 7
2) If the mechanical system is restrictedgyonstraints:

a“=a(,d,t) =0, Q¢=L dd Odt,
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which are compatible with the infinitesimal transforrmas, then one chooses some of

thex in such a way that thae® will belong to the sub-module off2- r) forms 77"+
2n

.

One can then reduce the order of the completely-integsystenr™?, ..., 72" by (p
+ Q) units.
More particularly, if 2 — r=p + g and if ther forms 77%, ..., 77" are closed modulo

r+1

the formsr"™*, ..., 7™ then the integration will be accomplished by quadratures

8§ Ill. — Applying the preceding methods.

I. — Heavy point moving with friction on an inclined planBecall the notations of
Chapter I, 81, and sef) = w/ m, so:

Q =dvi(cosadx+ sinady) +v da (- sina dx+ cosa dy)
—vdvOdt+gsini dx Odt—fgcosi (cosa dx+ sina dy) Odt.

One immediately knows three fields X, Y, T that @eate infinitesimal
transformations fof2, and whose components are given in the table:

oO|0|0|Q

o|lr|o|<

—|=<|x
O|0|I0|IL
olo|r|X
OO

One then has:

i (X) Q=-dvcosa+vsinada +gsini dt—f gcosi cosa dt,
i (Y) Q=-dvsina—-vcosada-fgcosisinadt,
i (T) Q= vdv-gsinidx+fgcosi cosadx+f gcosisina dy.

Let us determine four forms , 75, 77, 77 by means of four field, y, t, u,
conforming to the lemma. The components of the feddtisfy the equations:

i) Q=-1, iXi(Y)=0, i (%) (T)=0.

One can take the componentxad be:

singa vcota
cosa, — ——, 0, - -,
v fgcosi
SO
2
i () Q =7z =dx+ — _[vdvcosa+vc_ﬂ[daj.
fgcosi siny

Upon doing the same thing wigtandt, one will get:
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the componentsf vy are (sina, cosa, 0 - v -, (ﬂ
v fgcosi
SO
i(y)Q=rm=dy+ ! _(vdvsina+v’-cosa[\ckr),
fgcosi
and
the components of t are (O, 0, 1 -, —COt_a_, Oj
gsini g sini
SO
i0Q=m=dt+_— V9T
gsini sina

The fieldu such that (u) i (X) =0,i (U1 (Y) =0,i (Ui (T) =0 will have the

f coti 1 f cot cosr
components 0, 0, O, : , — - - , SO
vsing  vsing VvV siny
i(uQ= ]T:M+E/— f Cotii_
sina v sina

The completely-integrable system reduces to thglesiequatiorrz= 0. It is a closed

f coti
form, so it can be integrated by quadratwre: #(tan%j . The threerz, i, 71
[

are closed moduler. The integration is accomplished by quadratures.

Il. Motion of an electrified particle of chargeand gravitating mas® in an electric
field E and a magnetic field H.

We suppose that the electric field is derived franforce function, and when it is
added to the force function from which weight igided, it will be denoted by. The
conditions that the field Il must satisfy will bpexified later.

If one refers the Euclidian space in which thetipler moves to three coordinate axes
andxt, Xé, ¢, X, x*, X denote the components of the velocity of the plertivhile H*,
H?, H® are the components of the field H, then the féXrthat is a associated with the
particle will be:

3 - E of .
Q=>dd OdX - X dxDO de-— 5 dxO d
i=1 i=1

+%[(X2H3—>‘(3H2) dx+(3CH™= X HY d+( R H= R H df.

The presence of the magnetic field implies th& # 0. Since the force that is due to
the magnetic field is orthogonal to the displacetremd the electric and gravitational
fields are derived from force functions, one carfinde the vis viva integral. It
corresponds to a fielklin the tangent space to the manifvldwhose components are:
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of of of
__l__l__l_xll _le
ox' ' x ax

in which the variables are assumed to be arranged ordee X, X2, 5, x*, x4 3, t
i () Q=1dV—df.

In what follows, we suppose that the magnetic fieldhkees around the vertical axis
Ozand that it components in cylindrico-polar coordinatedJar 0,V =V’ (p), W=0, in
which p denotes the distance to t@z axis. In cylindrico-polar coordinates a, z, the
expression fof in canonical form is:

Q =dpUdr+dqOda+drda

2
- pdp+i2qdq+ rdr—q—3 do |0 dt+ or ¢>+£ a1r+ﬂ dzO ¢
yo yo 0p oa 0z
e

+—Kv—vq—V' rjdp+(Upr—pr)ckr+( pV—H % d%D C.
mi\ p Y

Let us specify the form of the functidnby the existence of certain infinitesimal
transformations:

Z=(0,0,0,0,0,1,0), A=(0,0,0,0,10,0), T =0, 0, 0, 0, 1),
SO
6(2)Q =0, 6(A) Q =0, 8(MQ=0.

Apply the formula (VI1.1), while remarking thdtQ can be put into the form:
dQ=[-V'drOdrOdt+d(p V') OdzOdf .

(A Q= d[— dq+% dt} = 0, which is a condition that will be satisfied wi#rl da is

a function oft.
We now suppose that/ da = 0, so:

of

8(2)Q=0=i(2)dQ +d i (Z)Q):—%d(pV’)DdH ol[—onwrE

=d (ﬂ dt) ,
0z

which is a condition that is satisfied whéf/ 0z is a functiort, so it will be realized, in
particular, whef / 0z = — g (g is the intensity of the field of gravity).

dt+-=(pV) dt}
m
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If the preceding conditions are supposed to be realized ttianwill imply, in
addition, the existence of two first integral.is written:

2
Q=dpUdp+dgUda +dr 0dz- (pdp+% gdagt+ rdr—% dOjD df
of e ,
+|—dp-gdz| Odt+ —[-V'rdpo+p V dZ Odt,
op m
i (A)Q=dq.

If P denotes the field whose components(&rer%V’,0,0,0,0,— 1,9 then:

i (P)Q =-SV/(r) dp+dr +gdt.
m

Upon applying the general theory, one will knowethinvariant formsz*, 772, °,
and three forms that define a completely-integragems®, 77°, 7°. Since one knows
three first integrals, one can choose three fielthat will make them the three forme’,
71°, 1°. An easy calculation will give:

mt=da - qzd,o, 7t =dq,
0
2 r 5 €.\,
T°=dz+—dp, m’=dr——V’'(r)dp+g dt
p m
3_ _ 1 5_ 2 qz 2 _
= dt+pd,0, m=d| p +?+r 2f(p)+29z|.

When the first three forms are equated to zerey thill constitute a differential
system that is not generally integrable by quadestunodulo the last three. A special of
that is: When one suppresses grawity 0, 77*, 772, 77> will be closed modulaz®, 77°, 7°,
and the system will be integrable by quadratures.

lll. — Motion of a solid body on a plane in the caseenghthere is a permanent
symmetry plane.

From the theory that we developed, we must conglue solid body to be free. Its
position is defined by three parameteésand /7 are the coordinates of its center of
gravity G, anda is the angle betwee@y andGx;, whereGy is the normal to the plane,
and Gx is a half-line that is invariably fixed in the &blbody. The three velocity

parameters aré, 77, &. The external forces other than the reactiorhefglane have
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the general resultai, Y, and a resultant moment with respecGiof I'. Let M be the
mass of the solid body, and lebe its radius of gyration with respect@ The exterior
form that is associated with the free solid body is:

Q=MUéOdé+d0dp+ Rar O dr)-M(Edé+n dn + Ka dar) O dit
+[XdéE+Y d7+T da] Odt.

The associated field E has the components:

X Y Z ;.
Ty T ’ -la‘ll'
M M M <1

Study of the constraintet P be the point of contact of the solid body with thaeng
whose coordinates with respect to the a&es Gy that are parallel to the plane and
normal to it, resp., ar@ and b, respectively.a and b are functions ofa that one
determines by considering the profile of the body, whiakeined by the envelope of its
tangents. A tangent to the profile has the equation:

Xy cosg+yising—p(¢) =0

with respect to the ax&€3x;, Gy;, which are fixed in the body, and a normal will have t
equation:

—X1Sing+y;cosg—p’(¢) =0,
and on the other hand:
a+@=rr.
It will then result that the expressions &andb as functions o& are:

a=p’(m-a), b=-p(7-a).

The velocity of the poinP, which is the point of contact of the solid body witie
plane, will have componen&s-ba, 77 +ad with respect to the fixed axes.
The constraint equation that expresses the condifioantact with the plane is:

l=np+aa=0.

The power delivered by the forces that are necessargal@ze that constraint will
depend upon certain hypotheses:

A. Perfectly-smooth plane— That is a zero-power constraint:

P= N(7+ad), N>0.

TheQq that must be added @ in order to gefd is:
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Q4=N(d7+ada) Odt.

The constraint fielé will have the components:

(o,i 2 ,o,o,o,g.
M MKk

B. Rough plane with a coefficient of frictionf, resistance to rolling parameterg,
and sliding and rolling of the body { ~bg # 0 :

P= N[j+ad+¢ f(&-ba) +£dd], N> 0,
with
£(£-ba)<0, £0<0, e=+1, a=+1.

The formQq that must be added £ in order to gef is:
Q¢=N[dn+ada+ef(dé—b d) + & dda] Odt.

The constraint fielé will have the components:

ﬂ,i,w’o,o,o,ol
M M Mk

C. Body rolling without slipping on a rough plane:
P=T({-bad)+ N(@+ad+gdda), N> 0,

with two constraint equatioms = { —bd = 0 ;| = 7+ad = 0, and the two inequalities
ga <0, |T|<fN.
The formQq that must be added £ in order to gefd is:

Qq=[T(dE=b ) +N (dr7 +a da+ & dda)] Odt.

The two constraint fields have the components:

ezz[i,o,_—bz,o,o,o,g,
M MK

el = ,i,a”;é,o,o,o,%.
M Mk
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Reaction of the plane— One of the principle advantages of the use of Hta@ar
operatorg (X) is that one can determine the reactions without hawqeviously solve
the equations of motion. In the two cageandB, the componeni of the reaction is
given by the equatioN i (e) dl +1 (E) dl = 0 when one replaceswith its values in each
case:

dl=dnp+ada+ ag dr,

al

) Y
i (E)dl= —+ +aag?.
(E) v v
Case A:
2 2 2
i(e)dlzi+a2, N:_k(Y+|;/Iaaz)+aI"
M Mk ke +a

which is an acceptable value whén Mag?+al /K <0 .

Case B:i(e) dl = Vl+ a(a- T\/Ifk?+ £9) . That quantity must be non-zero in order for

the constraint to be compatible. Hence, the vaudl will be acceptable when it is
positive.

K2(Y+ Mag?) + a
kK®’+a’-cfbatg ad

If k*+a’-¢efbateg ad < 0 andk?*(Y+ Mar®)+ d > 0 then there will be two
possible situations: viz., slipping and cessatiboamtact, sincell /dt=i (E)dl >0 . For
K*(Y+ Mag®)+ d < 0, there is an impossible situation that one icéerpret as a
tangential shocl).

Case C:The component3 andN of the reaction of the plane are solutions to the
system:

(1) { Ni(g) di+Ti(e) di=~-i(E) dl,

Ni(g)dm+ T g) dn¥— (E) dnr

Once one has determined the direction fieklsand e, above, sincedl =
dn+adda+ ag dr, dm=dé-bdg - bd dr, one will have:

+—a(a+£15), i (&) dl= —ab

) 1
i dl=— ,
(e1) T K2

M M k?

(*® Cf., E. DELASSUS and J. PERES, Nouvelles Annales dadfaatiques (5 (1923), 383-391.
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i(E)d|:i+a—r2+aa2,
M MK

. b(a+&0) . 1 b
i dm=-——1"72 i dm=—+——
(e1) I (&) VREYIG
i (E)dm= X brz -ba?.
M Mk

The constraints will be compatible onlykif+ a? + b?> — & a d# 0, so:

_(K+a’+agd)(X-Mid?)+ f ar£d)( Y+ Mi’)— b

T=
k>+a’+b*- agd

_ab(X-Mba®)+(Y+ Mw®)( K+ B+ &

N =
K>+a’+b*— agd

The hypothesi€ is acceptable only N> 0 and [T | <f N.

Determining the various possibilities of escajpdljng without slipping, and slipping
can be accomplished by interpreting the systemg@gmetrically. Trace out two
rectangular axe®©[, Om in a plane and consider the vectorandt whose coordinates
are Ci(e)dl,—i(e)dm), (i (&) dl, -1 (e) dm), resp. Similarly, trace out the half-
linesD andD’, T =% f N, N> 0. Since the left-hand sides of the systemaf®)
independent of the possible situations, one caerpréti (E) dl, i (E) dm as the
coordinates of a poirA in the plane. Draw through, on the one hand, the paralleltto
that cuts the support toatN and cutd andD"at a anda’, resp., and on the other hand,

the parallel toO m that cutsOl at|. One can deduce the possible situations that can

exist from the signs dfl and |, the position ofA with respect tara’, and the sign of the
productT dm/ dt; recall thadl / dt =i (E) dl anddm/ dt =i (E) dm(cf., Chap. I, § llI):

Escape: i(E)dl>0

Rolling without slipping:N > 0,A is interior toaa’.

The onset of slippingl > 0, T dm/ dt < 0, A external toaa”.

Note that the presence of the resistance to gofi@rameter will exhibit the cases of
indeterminacy and impossibility. Hence, or 0,b> 0,6 =-1, > (K +a°) / a, the

vectorsl andn have the arrangement in the adjoining figuje (Those situations will
then result for suitable valuesigE) dl andi (E) dm.

(T) Translator: That figure was not available to me attitme of translation.
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Study of the differential equations of motion.— A study of the differential
equations of motion can be carried out when one knowsrtiiratesimal transformations
that the generating for® admits. The components of the reaction are determised a
functions of the external forces and velocitiesit suill suffice to express the idea that
(which corresponds to the free solid body) admits fbeemnentioned transformations, as
well as the differential form of the constraint edoiat which isdl =dr7+ada + ad o .

Hence, impose the infinitesimal transformations loa $ystem that are generated by
the fields:

T=1(00,0,000 1),
==(0,0,0,1,0,0,0),
H=(0,0,0,0100).

One immediately verifies that the fodhadmits them. Now, express the idea MDat

admits them, while supposing that the system of extdomneésX, Y, I' depends upon
only the variabled, n, a,t:

d0 = Lo+ 4y |odende+ | Y ae+2Y da |Ddy Odt
Ja on 0¢ Ja

0Z or
+ | —déf+— Oda Odt.
[05 d 5/7d,7j

1. 8(MQ =i (MdQ +d (i (T) Q)

oX oX oY oY
=|—da+— ddé+| —dé+—da |Od
(aa and”J d (65 $*oa j 7
+ a—Zd5+a—rd/7 Oda-d(Xdé+Y dp+T da) =0,
o0& on
hence:
X rndt-2dpodi-2C dendi=o,
ot ot ot
which implies that:
a—XEO, a—YEO, a—rEO.
ot ot ot
2. 6(MQ =i(M)dQ +d (i (T)Q)
oX oX oY or
= —da+—dp-——dp——do |Odt+d (X d
[aa on " og " ag j e
_oX or

oY
= —déUddt+—dpU0dt-— dx 0 di= 0.
oé J 0é ” 0é
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x av or
o0& o0& o0&

0.

by a similar calculation.
ConsequentlyX, Y, I are functions of only the variable which are conditions that
we shall suppose to be realized in all of what follows.

Study of caseA: motion on a perfectly-smooth plane— Since the constraint is
holonomic and independent of time, one can construetlaced fornQ (cf., Chap. Il, 8
VII, remark 3) that is obtained by taking the constrait account:

Qs=Mdé0dé+M(KR+ &) v O dyr —~M[{dé+(KP+ @) a do+ ara? dr] Odt
+[X dx+ (T —aY) da Odt.

Conforming to the lemma in the cadeQ)d # 0, we determine four fieldg, t, u, v
whose components are given by the following table:

dé da dé | da |dt
1 ¢
| T 0 0 0
¢ M M (K2 +a%) d
t)o —% 0| 010
M(k*+a%)a
u 0 Madaz_r+aY 0 —% 0
M (k® + a%) d
1
vio |- X M| 0|0
M (k> + a2) d

One deduces the following invariant forms fromttha

Sda i) Q.=dt- 939
a a

T=i(d Qs=dé—
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for which the system of completely-integrable forms is

-aY

=i (U) Qs= (K +a%) ada +aad? do - tr,

=i (V) Qo= dé - da .
Ma
7% is an exact differential, so upon integrating, one gét:
22 2 2 2
a“(k +a)—VJ.(F—aY) dr = const.

7 is closed, modulaz®, while 77t and 772 are forms that are closed modutd, 77*. The
system is then integrable by quadratures.

Study of caseB: solid body sliding on a rough plane— There is no appreciable
advantage to using a reduced form, since a convenient cbibioelds ¢, t, u, v will
permit one to easily construct differential forms tlat not depend upon the normal
component to the reaction of the plane. We then(ake

Q=MdéOdé+MdiOdp+ MK v 0 dr— M ({dé+ndn + K a da) O dt
+(XdE+Y dp+T da) Odt + (?)N[dn +ada+&f (dé—b da) + & dda] Odt

Always while applying the lemma to the cak@ # 0, we determine six field§ 7, t,
u, v, w, whose components are given by the following table:

dé | dn da dé dn da |dt

‘ N ¢ 0 0 0o |0
M Mk2¢r

nl| O 1 /. 0 0 0 0
M Mk?3ar

tl ol o _ 1 0 0 0 0
MKk3ar

ul 0 | 0 | (a-efb+gd)Y-T | 0 |(a—efb+ada | -g | O
Mk?2

(") Translator: The sign on the last term was not miirtehe original text.
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VI-1]| ef _X-efyY 0 0 0 0
Mk2a

w|l 0] 0 ag 0 _1 _a o
Mk? M Mk?

The following invariant forms:

da, m=i()Q=dp-Lda, m=i@®Q=dy- ~da
a a a

[~

T =i (HQ=dé-

will imply the completely-integrable system of forms:

T'=iuQ=[(a-efb+adY-T]da-M(a-efb+& J adi+MIEada,
=iV Q=Md (-£fn) —(x—,sfv)%",

m°=i(W) Q=di+ada+ar dr.

For the calculation of (w) Q, one takes into account the value Mfthat was
calculated before. The form® is nothing but the differential of the constraintheTform

7%, which takes the constraint into account, is a difféaé equation that is lineas?,
and which one can integrate by quadratures.

IM[K+a—efba+ada +Ma(a—efb+ada’da+[@@a-sfb+ad Y-T]=0.

The form7° is closed moduloz®. The formszr* and 77° are closed modular* and 77°.
The system can then be integrated by quadratures.

Study of the caseC : rolling without slipping. — We distinguish two cases according
to whether one does or does not neglect the resistamo#ing couple.

a) 0= 0: The two constraints then have zero power anthdependent of time. As
we showed in Chapter 11, 8 IV, one can then constaugduced form by taking the two

constraintsé —ba = 0,77 +ad = 0 into account:

Q, =M (b* +a% + K¥)da Oda - M [(b* + & + K) ada +(aa+ bha? dr] O df]
+(Xb-Ya+l)daOdt.

Sinced Q, = 0, the infinitesimal transformation that is definedthg operatoi@ (T)
will correspond to the first integral:
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1M (b2+a2+k2)afz—j(x b-Y a+I) da = const.

Since the time is defined as a function afby means of the closed form modulo the
preceding one:

i () Q =dti- ~da.
a

b) d# 0 : The constrain —bgd = 0 has zero power and is independent of time,
while the other ongj+ad = 0 is not. As a consequence, we shall carryoolit the
partial reduction that corresponds to the former:

Q, =M (b* +I°) dg Oda+ M d7 O d7 - M [(b* + k) dda +bba? do+n dj] Odt
+(Xb+NdaOdt+YdpOdt+N (dn+ada+& oda) Odt.

One determines the fields t, u, w, while always employing the same principle, and
by way of the operatar( ), those fields generate:

1. The invariant formsr®, 77
1_; - n 2 _. _ 1
m —I(O)Qr—dﬂ—gda, Vs —|(t)Qr_dt_Eda_

2. The forms7®, ¥, constitute a completely-integrable system:

=i (U) Q =M (b*+K) ddd +Mbbd?da - M(at+£0)a dj
+Xb+lN-@+&d Y] da
=i (W) Q= d(+ad),

77° takes into account the latter, which is the défeial of the constraint relation, is a
differential equation that is linear i*, and which can be integrated by quadratures:

IM @ +K+a +a& d) da?+ M(bb+ aat+ ad)d’ dr— [Xb+T —@+& J Y] da
=0.

7%, which is closed modula7®, defines the time as a function ofr by means of a
quadrature.

IV. — A heavy, homogeneous solid of revolution of nidsand center of gravité is
extended by a rod that points along its axis oblgon Gz . That solid body is in
contact with a fixed horizontal plar@x; y; , so the rodsz slides without friction in an
orientable slot whose axis is the fixed nori@a to the plan€®x; y:. We shall study the
rolling without slipping of the solid body on thdape, and then its slipping, while the
coefficient of frictionf of the solid body on the plane is constant.
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The meridian of the surface of revolution that boutigssolid body is defined to be
the envelope of the tangent planes to the surfaceh M$pect to a system of axes that
are fixed in the body, il is the polar angle d&z between the norm&H to the tangent
plane then one will have:

zcosA—-vsinA—-b(4) =0,
zsinA +vcosA—-Db’(A) =0.

@is the angleGz, G2, sofd+ A = 7z P is the contact point of the body and the plane, and
the components dBP with respect to the axésw; (horizontal to the plan®©zG) and
Gz (viz., ascending vertical) ake (77— ), — b (77— 6).

Let Mc?, Ma® be the moments of inertia of the solid body withpeesGz and a fixed
perpendicular axis, respectively. Lat a, { be the cylindrico-polar coordinates Gf
Let ¢, 6, ¢ be the classical Euler angles, which are the rotgg@mameters of the body
aroundG.

When one uses the trihedr@uvz(Gu horizontal), which moves in the body and in
space, the associated exterior form to the free salicdbe obtained either by applying
the formula that was established in Chapter I, § With Q' = « = d@, Q* = &f =
sin@dy , Q° = & cot @= cos@ dy for the motion aroun or directly as the exterior

derivative of the Pfaff form that generates thegnal invariant:

pdp +uda+ldd+a’pa+alqdd +c*r o —Hdt,
with
o =do, of = sin@dy, « =d¢ =cos@dy, u=p’a,p,qr,

which are components of the absolute rotation vglaxf the body along the moving
axesGuvw:

2
2H=p2+%+22 ta (P )+ gl

One will then obtain:

2
%: dpOdp+dulda+dZ0dd - (pdp+2 dZ+% du—% QOdet
—gd¢0dt+a’dpOdct +a?dqidf +Fdriad —c?r of Oaf —a’r cotq of O ot
- [a® (p dp+ q dg +c?rdr] Odt.
The characteristic field E for the free solid bdds the components:

uZ 2

=t 0, - g, q%ot@—%rq,
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2

C—zrq—pqcote, 0,0, 12 Z.pagr 1,
a P

while the differentials of the variables are arrahgethe sequencedp, du, d{, dp,
dg, dr, dr, da, dJ, o, o, &, dt.

A. Study of a solid body rolling without slipping.

1) Constraints. — The rodGzalways remains in the pla@zG which translates into
the holonomic constrainr = ¢/ + 77/ 2 . From our point of view, it is a zero-power
constraint:

a = sind -0
q

u 1 L, .

— P =—(ag-u),
0° M @-¢)
so the form is:

o'=Lda--¥ |oat.
M sind
Rolling without slipping of the body on the platranslates into three zero-power
constraints. Upon writing out that the componesfts/, are zero with respect to the
trihedronGu, Gy, Gy, one will get:

2

a=——-(bsin@+bcosh g+ (bsind-b coshr =0,

Dle

X

P? = V[—,oc'r— (b'sin@+bcosh q+ (bsinG-b' coshr],

Q%= %[—pda— (b’ sin 8+ b cosh f + (b sin B—b' cosh ] Odt,
3_, _ s Y, _ %
a=p+bp=0, P _V('O +bp) =0, Q —M(dr+bd69,

a'=¢ +bp=0, P4:%(Z+bp)=0, 94:§(dz+b'd@.

The first six non-zero components of the constrigtds €', €, €°, e are given in the
following table (the constraint fields have onmtycomponents that are not all zero in
Hamiltonian coordinates).
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do | du |dZ| dp dg dr
el ol 1]0]o0 _ 1 0
a’sind

el o —plo| o0 _bcosd+b sid | bsind-b codd

2 2

a C

el 1/0lo|b 0 0
a2

el o|ol1]b 0 0
a2

The compatibility condition on the set of constraistdeduced from the determinant
of the symmetric square matrix [g") da|| :

1 1 _1_ bsind+b co¥

— 0 0
o° a’sin’ég 0 a st
;. .9 2 . 2
_£+b sind+b cod 1+ b cog+ 1B sif )+ i si@— b cés”) 0 0
0 a’sin’*@ a’ c?
b> by
0 0 1+¥ 3
bb o]
0 0 ’a 1+¥
namely:
2 ;2 - 1)\2 s 2
1+b_+b_ 1 + bcosf+ B sirg N bsid- b co8 _1+ | 1 £0
a® a’ )|\ asind 30 ¢ p°>  d&sin’d

The values of the reactions are obtained by calcgléftiei (E) dd‘ (k = 1 to 4):

. c? 2pgcosd 4o
i (E)da’ =- rp+ - ,
S a’sind P sird  p°
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2 .
i (E)da = (b cos@+b sin @[pqcot@—% rpj+%’2+ (b+b")(qsin8+r cos p,

2 2
i (E)da = %+[q2 cote—% r pj -b'p?

2
i (E)da'=-g+ b’[q2 cote—% rqj— b" p?,

S0
2 /2 12 2

1+b—+b—2 A 1+b—2 LI b g+bp 1+£—— +b —62r— qcotd |,
a> a )M a’)p® a’ a

2 2 7 2
1+%+% %:—@i; 1+gjg+ p (U’+ bL5 b j+ b{—é r- cpotej,

a2

AX_(1 _bcosf+b sid) crp  2pq cof  2p
M |p a’sind a’sin@ sing o

1 1 c’rp up .
+ (—2 > j (bcosg+1b swﬂ{ - pg co - - b+ B )p(gsi@+ r cod |,
p°asin“d a 0°
AL
M

;. . 2
:(_1+MJ{U_€+(b+ b") p(gsin@+ rcod )+ b cog+ B sif () pq c(ﬂ—c Zpﬂ
P a“sind P a

N 1+(bcos€+b’ siné?i+ bsid-B cod )| crp  Pq cét, Eb
a’ c? a’sin@  sind ,03

in whichA denotes:

1 +b00516?+b’ sing ) | bsif-6 co8? 1 1
asinéd ap ¢

2

p° asind)’
2. Differential equations of motion.— The compatible constraints give:

P ibcosh+1 sirg
p°q _ _sinf

, = , b =-bp, "=-hp.
sind bsind-b co¥ P P ¢ P
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(b sin@—b’cos@% 0, since the envelope does not reduce to a point.)
Since they have zero power, one can repldeewith «f / sin 8, «f with

P ipcosh+b sirg

Sing_ , , do with —b dg, andd¢ with —b’ d@in Q in order to obtain a
bsind-b cod/

reduced form. Howevedp + b dfis an exact differential, where is a function ofé,

namely, o =B (6 + C (Cis a constant). Sinag ¢, {do not enter int@, one can obtain

a reduced fornfs / M that is defined on a family of manifoldg [submanifolds oW:3

that are defined by the constraints and the family B () + C] to be the exterior

differential of the Pfaff form:

B+C R

(B+C)2 . , %+b0059+b singd g
+a’+c o — t,

sin’ @ bsind-b co¥ &

(b +b'?+a) p dg+

with

2 . . 2
2H; = (B + b + &) IDz{(B+C) +a2+c2[ B+ C+sind(bcosf+ b sirg )j

sin* @ sind p si-b co¥ )

}q—Zbg
Sinceb, b', B are functions o8, q = ¢ sin 6, «f = sin @dy, one can perform the changes

of the velocity parameters:
r): (b2 + b:2 + a2) p,

q= {(B+C)2+ asin?9+ CZ(BJFCJ’Sine(bCOSgJ’ B sirejz:l q

bsind-b coy sirg’
Q. - _ —
M- d(pdd+qdy/— Hdy,
with
- 1 —
2Hl_ b2+b,2+ a2 p
=2
+ a ) ) 2_2bg-
(B+C)2+ aZSin2€+ Cz(B+C+S|nH(bCO§+ b S|r9j
bsin@d-b co¥?

. Q). e . . o
Sinced M IS zero, any infinitesimal transformation will cespond to a first integral,

so the infinitesimal transformations:
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t=(0, 0,0, 0, 1) and W=(0,0,0, 1, 0)

will correspond to theis vivaintegral and the linear integrgl = const.; integration can
be achieved by quadratures.

B. Study of the solid body slipping on the plane.

1. Constraints.— A rod sliding without friction in a slot is alwagbaracterized by:

a=4__9 _o lei[da—ij Odt.

p°~ sind M sing

Contact between the solid body and the planedsattterized bg? = ¢+ b’ p = 0:

Q%= %{dﬁ fcoso[pda+ (b sin@+bcosd) «f + (b cosd—b sin ]
—fsino(do+b o)} Odt,
in which ois the angle between the velocity of slidigandGu, andA/ is the magnitude
oV p+bp: -u/p-b(rcosd+qsid }+ b ( sird—q cof
sino coso

=A.

The constraint fields have the components:

1
a’sind

e'=(0, 1,0, O~ , 0),

bf sinc f coso

e’ =(-fsing pfcosq, 1, = (b cos@+b' siné),

a?
f cctzsa (b' cos@- Db sin H),
SO
i (&) dat :iz+ : .12 | i (@) dal:fcosa_f cowr b209§+b sié |
p°- a‘sin“é a“sind
i (e")da®=0, i (€)da®=1-f Z—Esin .

The constraints are compatible if:

i2+ 2_12 (1—fb—gsinaj¢0.
p°- a‘sin“é a
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The constraint factors are deduced fiiof) da', i (E) da’ by calculation:

2
g+b'p’+ b(; rq- cfcot@j
N =

U

1_fbb

a.2

L[i+ 1 j:2u,0+ crp 0 C0F

sino

o’ a’sin’é p® a’sind Yo

2
+f0$ g+b'p’+0 C—rq— f cotd | |.
bb . a2
1-f sino

a.2

2. Differential equations of motion.— The first holonomic constraint permits one to
eliminateu andda, u =%y , da =dy.

The introduction of the variabled and o leads one to perform the change of
variables:
_Acoso+py+ sind b’ sird+b cob ¢

5= A sin g—bp, r
P P bsind-b co¥

The second constraint permits one to eliminatanddd, {=-b'p:
d¢=fsino(dp+b df —f cosa[(p+b) dy+ (b cosf—bsin G dg + ({ —f ) di].

The reduced form@s / M depends upon the nine differentials of the vaeishb] g, o,
Y, Y, ¢, qpt butit does not depend upon the variahles ¢ :

%: d{(Asino-bp) do+ & ¢wdy—-b pfsino(do+b d§
+b' pfcoso[(p+b) dy+ (b cosf—-bsin 6 dg]
+b p(bp+fA)dt+a’pdf+a®y sirf dy
N Cz)lcosa+,oz//+ sind b cog+b siA
bsin@d-b cos?
+g{fsino(dpo+bdf —fcoso[(p+b)dy+ (b cosf—bsin b dg)]} Odt,
with

(dg + cos@dy) —T dff

2T = (A sing—b p)? + p%?+ b? p> + & (p* + Y sirf 8+
Cz()l coso + pY + sinf b cod+b siff wjz
bsiné-b coy '

One knows only three obvious infinitesimal tramefations forQs / M, which are
generated by the fields:
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t=(0,0,0,..,1), #=(0,0,..00,1,0), W=(0,0,..0,1,0,0),

because it will suffice to remark that if an antisynimeetensork,z does not depend upon
one of the variablep®" then the formQ = kuz do” O dgf that is defined 0Wan. will
admit the infinitesimal transformation (O, O, ..., 1). Twution to the problem depends
upon integrating a system of five completely integrabffFérms indA, do; dA, dp,
dé&, which one does not know in finite terms.




