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Introduction

Mechanics is generally conceived of in terms of kingah quantities such as
velocity and acceleration and dynamical ones like fow¢h the differential of the
velocity vector being coupled to the product of the foreetor anddt by Newton’'s
principle. When one assumes that mechanical phenoaner@pable of being described
by differential equations, it becomes interesting toehavgenerating form for the
differential equations that is completely invariant untter transformations of the point
group that acts upon a set of @osition and velocity variables.

From our viewpoint in Newtonian mechanics, a mat@aaht of massn is framed by
seven variable®, t, V (i varies from 1 to 3), to which one associates arriextiorm that
is constructed from the differentialg, dt, dv :

w=mddv' Odx' —=m gV dv! Odt+ g X' dx! Odt

(g; is the Kronecker symbol, arXl' are the components of the fofeghat is applied to
the point), w is invariant under the transformations of the Galilegoup, and its
expression will have the same form with respect to athoaormal Galilean frame. The
differential equations of motion are the associatedtemnsto w:

dw =—-madv' +X'dt=0, a—w.:m(dxj—vjdt)zo.
3(dx) a(dv)

It is essential to point out that it is the asatadl equations tav that couple the
parameters ' to the differentials of the parameters of positidmnd time.

We have shown) that in the context of classical mechanics fanaterial system
with 2n position and velocity parameters, one can alwags@ate a second-order Cartan

() Cf., Communication au Congrés des Sociétés Savantesolile, 1952, in press. C. R. Acad. Sci.
234(1952), 2148-2150.
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exterior form whose associated equations define thereiiffial equations of motion,
when they are combined with the constraints of anrarlgihature that are imposed.

|. — Establishing the dynamical equations of continuous media
in Newtonian mechanics.
1. Lemma:

If one is given a second-order exterior fotnthat is defined on a manifoldb,Mhen
one can associate it with a bilinear form(J, d) . The equations of motion will annul
w(0,d) for any choice of thé.

Let:
w=kgpdo” Odp’— b, do” Dt

in whichkgg is an antisymmetric tensor, ahg is a vector.
One can associatewith the bilinear form:

_ ow ow 0w
8= 030 ¥ Dataoh O oy

or
w(8 d) =kap[dp” Odp’ - p° Odp] - b, [ Odt— ot Odof].

If d denotes a differential element of the integral ifedoh Vi in Voneg , and the
differential equations of motion are:

Jw _ Jw _ Jw
a(dp”) a(dp”)

=0

(1) 2

(which is a consequence of the precedimg equations) then one will indeed have
w(0,d) = 0 for anydon an integral manifold.

Remarks 1:

1. The preceding result can be further expressedFar any one-dimensional
manifold y in the (2 + 1)-dimensional space, in order for the manifdld that is
generated by the integral manifoldls that are based upop one will have that the

integral IV w(o,d)=0.
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2. Since the formw(od,d) is zero on any manifold/, that is generated by the
integral manifoldsv; that are based upon w(d,d) will be a linear form in the first
integrals of the differential system (1).

If one takesd = d then sincew= 4 (d, d), one can deduce that the exterior founs
expressed solely in terms of the differentialshef first integrals of the system (1).

w=k; dd0dc’, thek; are functions ot', ¢’, and a variablé
3. dw= 0, wherewis expressed in terms of the differentials offtist integrals:
w=k; dd Odc'.

O O O
Sincewis a closed form, there will locally existaa such thatdw = w. The formw is

O
likewise expressed in terms of the differentialshaf first integrals of the systerm is a
linear integral invariant of the systef) in sense of E. Cartan.

2. Equations of continuous media-— Consider a three-dimensional medium that is
referred to a curvilinear coordinate systgrh(i varies from 1 to 3). LeV be a finite
volume, and lef\V a volume element; lgp be the density of matter at a point, andAst
be a surface element on the boundary.of

Associate the volum€ with the form:

Q(3d) = jvac AV +jvwfv AV +jpvwfs AS,
with

(2) =3 0dd —& Odp—dr Odt,
which is the kinetic part odvin Hamiltonian form.
3 .
(3) w, =Y Qaod Odt
i=1
is the dynamical part abthat corresponds to the volume forces, and:

3
(4) w_ ASY -A§ TS g0 d

ij=1

is the dynamical part abthat corresponds to the surface forces.
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Transform the integraJ'FV w, AS by using Stokes’s formula, and let D denote the
symbol of absolute derivation.

[ w, 05=dt0] T oqag= dtDJ.{D(TU)gqu Ti Déi?i)}w.

The component&q enter into (2) and (3) in a contravariant form. Oae put them
into covariant form by means of the contravariantriméénsorg’, &' =g’ & :

T . oT
=op 0/ df-—dt|- d| dp-— di0J ¢,
a p'[qapijd(ﬁ)aplj o

=3°Qaq O,
i=1

upon introducing the contravariant components of thewelforces, so:

__ i _oT D(T")
= J.V{pg (dpj o0 dtj Qdt-——1 o %Dé’qA\/

(5)
D(T")
Do’

+jvp5p {dﬁ——pdt} V+ dﬂ]J' T=2AV.

In the expression fo®2, we have not taken the internal forces in the velinnto
account, because those forces are completely unkn&nmm the postulate of classical
mechanics that the power generated by the internalsfasceero for a velocity field that
is a field of moments, which is equivalent to postafatinat the work done by internal
forces is zero, g denotes a displacement in the three-dimensional sphaoewe shall
considerdg to be something that corresponds to the displacenremntsat follows. One
has the Killing equations:

D(o
®) D(oq) , (0q;)

=0.
Dq’ Dd

For each point of the medium, if thég satisfy equations (6) then tre that
correspond to the differential equations of mofimnthat point will be such th& = 0.

a) Upon choosing thég to be the translations that are solutions to theatons:

D(2q)

2~ =0,
Dq’

(")

whenQ is in the form (5), it will reduce to:
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Q (5, d)
_ ; oT D(T") _ 9T
j{pg (dpj P} dtj Q dt+ o dﬁDéq oY) pm[ du——an o}}A \.

The integral on the right-hand side must be zerafty choice of continuous functions
that are solutions to (7) and amyp; that are arbitrary continuous functions, so the
following six equations will result:

ij
P9’ dp _oT dt|- Q dtr——~2 D(T") dt=0,
®) oq’ D¢
dg _oT dt=0,
op,

which are reducible to the three classical secadé+aequations:

D(T")

qu Vi:qi'*'rijkqjd(’

9 py=Q'-
in which "', is the Christoffel symbol of the second kind.

b) Upon choosing théq to be arbitrary displacements and taking equati8hinto
accountQ will reduce to:

Q(ad)=dtof T D(zq')Av_ a Djv[ﬂ D(3q) , 1 D@JjAV

2 Dqg’ Dq
or, upon taking (6) into account:

t ij _Ti
—W A= = jV(T TH=Z AV,

Q (g = deof T 20D
v Dg'

D(99)
Dqg’

Since Q is zero for a choice of continuous functions tha¢ solutions to (6) and
D(99)

Dg’
the constraint tensor is symmetric.

# 0, and the preceding integral is zero, one mugt id = T, which shows that
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Remarks 1:

1. Upon taking the continuity equation into account, care put the nine equations
into the form that was pointed out by Lichnerowié}, (vhich will then lead to the
equations of the relativistic mechanics of continuous aedi

o(pv)  D(pVV +T) _

ot Dq’ Q-

2. In order to establish the Killing equations, (8)will suffice to write down the
idea that the absolute differential of the squdrth® element of lengttisis zero under a
point transformation.

Il. — Mechanical equations of a point in special relativity.
Special relativity is based upon the following fodestes:

1) The velocity an electromagnetic wave is a cmtst with respect to any franfe
on the space-time manifold, .

Upon assuming that, can be referred to some Galilean coordinatss z, t, which
are formed by a tri-rectangular trihedron that ssoiated with a time variable, that
postulate will imply the existence of the fundansémetric invariant¥):

(1) ds’ = ? d2 —dx¥¢ —dy? —dZ,
in whichdsdenotes the arc length of the trajectory at thatpo V, .
2) A point is endowed with a rest energy which an essentially-positive number.

3) A forceF that acts upon a material point will be definethwespect to the frame
R by the contravariant components of a quadri-veEtor ForF = 0, the trajectories are
geodesics oY, that are defined by the equations that are agsaolciith an exterior form
of degree 2.

Axiomatically, associate the poiM with the second-order exterior formthat is
constructed from the differentials of the four paesersx (i varies from 1 to 4, witlet =
x*) and the differentials of the four parametdrthat are coupled with the relation:

3

@) 62 - Y W) =1,

i=1

() Cf., Lichnérowicz Eléments de calcul tensorjédrmand Colin, no. 259, pp. 157.
() Cf., E. BorelIntroduction géométrique & quelques théories physiBaes, 1914, pp. 8.
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B w=

e{cdu“Ddt—i di0 dx- & dbD dsi 'u do }s{ 4F-di i P’%ﬂa :
or B - -
(4) w=eykj [du' Odx’ —u' du’ Odg +k; F' dx! Ods
with

kj =+1 for i=j=4,

= ifi #j
k|J 0, =, kij:_l for i=)=1,2,3

Theorem:

The formw is invariant under the transformations of the Lorentz group that are
applied simultaneously to the variabldsx and leave the two quadratic forrisand 2
invariant

Let two Galilean frames be given & to which one associates the two systems of
eight variables:

1. The frame!, U'.
2. The framef?, a °.

One passes from the first one to the second by méains fmrmulas:

g((T:aicr)c'_i_btf, a,U:aiJui,
SO
dé?=a’dx, da’=a’du.

The invariance of the quadratic form in (&), u' u'! =k, a” a? implies the
following properties for the matrik = H a{’”:

0 for i#]j,
K,8d =kj=1 +1 for i=j=4,
-1 for i=)=12,3
Hence: _ _
Koo dar? 0dE = k8 & du O dx=kj du' Odx/,

KoaPda?=k a’aud¥=k;u'dx,
0 oo & & )
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koo P dE7 = k&’ d F dd=k; F'dul,

which gives the invariant oy when written in the form (4).
Equations of motion- These are the equations that are associatedyvitthich are
written in the theoretical form:

0w _ _ 0w _
o a(du4)—e0(cdt o d3, 300 (- g di+ F 9gs,
ow

09 e+ idy 2% = o du- Fdso.
a(du) a(dx)

Usual equations— When one has the applications in mind, it isvemment to
introduce quantities that are accessible to measamewith respect to the usual trihnedron
XY, Z

The usual velocity of the point will be_the vectorwhose components aré =
dx / dt, namely, the ratios of the differential® anddt ; one has :

ds =c*df - > (dX)* = c* df (1 -B?),
upon setting:
SN2
v 3,( dx
= -, V= _— .
o c ;[ dtj
Upon replacingds with dtcy1-/5° in the equations (5), one will get the usual
equations:
i_dXI_ LJ EL\}:Fi 1_ﬁ2
Ve dt{q/rﬁ
(6) o (8)
u'= , d & 4 2
— 32 — =Fcy1-p5°,
1-B dt{ 7 cy1-8

where the last four of them can be interpretedorétty in the spac&/, by means of the

energy-impulse vect@gyr = (& /c) u:
d _ . a >
—(p) =f1 with f=F\1-6°.
dt

Remarks:

1. If one wishes to obtain the equations in thdieensional space of:
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(u4)2 _Z U)2=1

then one will deduce that:
cdif = cLdd =V d,
u
with:

u=—Y ds= cy/1- 32 dt,

coJ1-5

and the expression (3) fawwill become:

(7) w:eokj\;d"_j 0 dt- g V_J}D dk- k F D ¢1-8° |,
B e

which gives the first three equations of (6) andl. (6
It results from (7) that if3 — O then after one divides by & w will have the
following limit:

1, i j o E d
®) - <limew = TV Ddd -3V dve k Fdud ¢

which is the generating exterior form for the difetial equations for a point in
Newtonian mechanics. That will give one the rglatic idea of considering the quantity

&

2. Composition of collinear velocities in relativistimechanics— In our way of
looking at things, the velocity with respect toramieR is defined to be the ratio of the
differentialsdX to the differentialdt : v/ = dx / dt . In order to establish the rule of
composition for velocities, consider two framed, ((£ °) that coincide foix' = 0, and
then slide the axe®¢ and & along each other, while the ax®g and G, © and &
remain parallel, respectively. One will then paesn the first one to the second one by
means of the formulas:

= mto be the mass of a moving body ang= e, / ¢? to be the rest mass.

© €9 :H a’ HxH X H with the matrix: H & H =

L o o 8,
O o pr O
O r OO
&L o o

Hence, one passes from the system of eight vagal| u) to the system of eight
variables €, a ) by way of formulas (9) and:

(10) llar 11 =] & | <] v
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The invariance of the quadratic form:

(0,4)2_2(a,i)2 = (u 4)2 _Z(ui)z

i=1 i=1
implies the following relations for the coefficiesntr” :

(@) -(@)*=1, (@) -(a)*=1  -ara,+a/a;=0,
o)
a} =a;=coshg, a; =a;=sinhg.

It will then result that the formulas for the chh@nof frame are:

1) { & =xcoshg + d sinkp 1) { a* =u'coshg +u* sinlp

cT = xsinhg + ct costy a’ =u'sinhg + u* coshy

From formulas (6), the velocity of the point witbspect to the first frame g
=cut/ u*, and with respect to the second one, Wis c a* / o”.
One deduces from (Dithat:

1

cu—+ctanh¢
ca'_ cusinhg+cu coslyp _

W= ,
at u'sinhg + u* coshp ctanhg U
1+ e,
c u
from which, it follows that:
+
(12) w= Y%
VO
1+-9
c

upon settingVp = ¢ tanh ¢, which is the velocity of the first frame with pesct to the
second one. That will imply the mechanical sigmifice of the parametegr and the law
of composition of collinear velocities in relatititsmechanics.

(Arrived at the Annales on 28 June 1952)




