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 § 1. Some simple experiments. – The media that give rise to the phenomenon of mirages are 

isotropic and inhomogeneous.  They then have properties that depend upon the coordinates, but 

not the direction, of the luminous trajectory.  Therefore, the rays in them appear to be curved in 

general, and only one of them will originate from a given point in a given direction. 

 However, crystals are homogeneous and anisotropic (other than the first system).  All of their 

points are equivalent, but different directions will usually have different properties.  Their 

trajectories are always rectilinear, and as a rule there are two of them in any direction that are 

characterized by different velocities. 

 The one category of media and the other have been the subject of infinite research.  However, 

it does not seem that the most general problem of the propagation of light in an anisotropic and 

inhomogeneous medium has been discussed up to now. 

 Nonetheless, it is easy to experimentally obtain a body that is endowed with those two 

properties at the same time.  A layer of gelatin that is put into contact with a solution (take zinc 

chloride, for example) will in fact appear almost immediately to be isotropic and inhomogeneous.  

However, a similar stratum that is subjected to mechanical actions will assume the optical 

characteristics of a crystal.  If the diffusion and deformation are made to act in succession then the 

specimen must be anisotropic and inhomogeneous as a result. 

 Indeed, experiments verify that prediction. 

 A stratum of pure gelatin in the form of an elongated right parallelepiped is placed between 

the two faces of a small screw vise.  The gelatin is then positioned between two Nicol prisms in 

such a way that the light traverses it normal to the lateral faces without compression. 

 If the Nicols are parallel and one turns the specimen until it reaches the position in which the 

colors assume their maximum vividness then the bright field will present, for example, the 

appearance that is illustrated in Figure 1 (see the table) (†). 

 If one then turns the analyzer Nicol through 90o then the colors will change, and the illuminated 

region will appear to be as in Figure 2. 

 In one case and the other, the field will then have a generally uniform color that changes only 

slowly in the parts of it that are closest to the faces of the vice.  The same point will present 

complementary colors in the two tests. 

 
 (†) Translator: The figures and tables were unavailable to me at the time of translation. 
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 If one takes another sample of gelatin of equal height and different thickness and one 

compresses it to the same degree then the phenomenon will not change in appearance, but the 

dominant colors will be modified.  For example, instead of one red and one green, one might have 

one yellow and one blue. 

 Now take a third parallelepiped of gelatin whose one lateral face is put into contact with a 

solution of zinc chloride at some point in time and, as before, it is compressed while placing the 

face that is used for diffusion in contact with one face of the vice. 

 The colors of chromatic polarization between parallel Nicols and between crossed Nicols (Fig. 

3 and 4) seem to be distributed in a way that is completely different from the preceding one.  

Indeed, colors change continuously in the illuminated field from one face to the other.  That is 

precisely because the specimen has a different thickness in different regions. 

 As for the isochromatic lines, they are naturally composed of the lines that are perpendicular 

to the common direction of diffusion and deformation. 

 

 

 § 1. A proposal for a theory. – When one acknowledges the experimental existence of 

anisotropic and inhomogeneous media, that presents an opportunity to subject them to calculation 

in order to make that characteristic less obvious.  To that end, let x, y, z be orthogonal Cartesian 

coordinates and let a layer S be bounded by two planes z = const. 

 Now suppose that S behaves like a uniaxial crystal at any point, that is to say, the ellipsoid of 

elasticity is an ellipsoid of rotation throughout. 

 Further suppose that: 

 

 a) The polar axes of the given ellipsoids are always parallel to the z-coordinate. 

 

 b) The lengths of the individual axes (polar or not) are functions of only z. 

 

 Now assume that in order to determine the propagation of light in S, one can: 

 

 a) Consider S to be the sum of n homogeneous layers Si that are pair-wise adjacent and 

bounded by planes z = const. 

 

 b) Calculate the propagation in that system of layers. 

 

 c) Pass to the limit of n = . 

 

 Finally, agree that the incident ray is formed of a system of plane waves, and choose the y-axis 

to be parallel to the plane of the wave, for simplicity.  The system of waves that is produced by the 

successive reflections and refractions will again be systems of plane waves with the plane of the 

wave being parallel to the y-axis. 

 Let i denote the angle that the normal to the plane of the wave in the ith layer makes with the 

z-axis, and let Vi denote the velocity of propagation for the corresponding system of waves in the 

sense that is normal to the plane of the wave. 
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 It is well-known that with those notations, one will have: 

 

(1)      
sin i

iV


 = h, 

 

in which h is a constant that depends upon only the initial data. 

 Now let 1 / ai , 1 / ci be the semi-axes of the elastic ellipsoid in the ith layer, and accordingly, 

let 1 / ci be the semi-axis that is parallel to the z-axis. 

 One will have: 

(2)      Vi = ai 

 

or 

  2

iV  = 2 2 2 2( )sini i i ia c a + − , 

(3) 

  = 2 2 2 2( )cosi i i ic a c + − . 

 

cos i is determined, up to sign, from (1).  Those equations will then imply two possible systems 

of waves, in each of which, the displacement will have the direction cosines: 

 

  − cos i  cos i , sin i ,  sin i  cos i , 

  cos i  cos i , sin i ,  sin i  cos i , 

respectively. 

 It is obvious that one will set: 

 

(4)   i = 0 

 

or 

(5)       i = 
2


 

 

according to whether one treats ordinary or extraordinary rays, resp. 

 The resulting displacements will then have the components: 

 

(6)    

cos cos sin cos cos sin ,

sin sin cos sin ,

sin cos sin sin cos sin ,

i i i i i i i i i

i i i i i i i

i i i i i i i i i

u A O B

v A O B

w A O B

   

 

   

= −   +   


=  +  
 =   +   

 

 

in which Ai and Bi are the lengths of the two partial displacements, and Oi and i are the 

corresponding phases, which are defined by equations of the type: 
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(7)   

sin cos cos
( ) ,

sin cos cos
( ) .

i i i
i i i

i i i

i i i
i i i

i i i

O x z t D hx t z D
V V V

x z t hx t z
V V V

  
  

  
  

    
= + − + = − + +    

    


   
 = − − +  = − + +    

   

 

 

 In (7),  is the constant 2, the unit of time is chosen to be the period of the individual 

vibrations, and Di and i are constants throughout each layer (1). 

 

 

 § 3. Ordinary rays. – One sets: 

 

  i = 0, Vi = ai , vi = 0, 

 

and it will result from (6) and (7) that: 

 

(8)     
cos ( ) sin ( ) ,

cos ( ) sin ( ) ,

i i i

i i i

u L hx t M hx t

w N hx t P hx t

 

 

= + + −


= − + −
 

with 

(9)     

cos ( sin sin ),

cos ( cos cos ),

sin ( sin sin ),

sin ( sin sin ),

i i i i i i

i i i i i i

i i i i i i

i i i i i i

L A C B

M A C B

N A C B

P A C B









= − − 


= − + 


= − 
 = − 

 

 

(10)     

cos
,

cos
.

i
i i

i

i
i i

i

C z D
V

z
V







  
= +  

  


 
 = +  

 

 

 

 From the laws of reflection and refraction, the ui and wi must be continuous in the planes that 

separate the layers.  If: 

z = zi−1 

 

is the plane that separates the (i – 1)th layer from the i th one then one will have: 

 

 
1 11( ) ( )

i ii z z i z zu u
− −= − =−  = 0, 

 
1 11( ) ( )

i ii z z i z zw w
− −= − =− = 0 . 

 
 (1) Kirchhoff, Mathematische Optik, 1891, page 219.  
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 In words, the increments that the u and w are subjected to when one takes: 

 

i , Di , i , and ai , 

instead of: 

i−1 , Di−1 , i−1 , and ai−1 , 

 

resp., and does not vary the z must be zero. 

 However, since that must happen for any value of x, the Li, Mi, Ni, and Pi will enjoy the same 

property.  In particular, one will have: 

1 11( ) ( )
i ii z z i z zL L
− −= − =− = 0, 

and therefore: 

11( ) ( )
i ii z z i z zL L

−= − =− = 
1

( ) ( )
i ii z z i z zL L

−= =− , 

 

or, upon neglecting the higher-order infinitesimals with respect to the thicknesses of the individual 

layers: 

  11

1

( ) ( )
i ii z z i z z

i i

L L

z z

−= − =

−

−

−
 = 1

1

( ) ( )
i ii z z i z z

i i

L L

z z

−= =

−

−

−
 

  = cos i (− Ai cos Ci – Bi cos i) 
cos i

iV


  

  = − 
2cos

sin

i
i

i i

P
V





. 

 

 When one passes to the limit, the L, M, N, and P will become functions of only z, and one will 

get: 

  
dL

dz
 = − 

2cos

sin

i

i i

P
V





, 

(11) 

   = − 
2 2

2

1 a h
P

a h


−
, 

and similarly: 

 

(11) 
dP

dz
 = h  L , 

 

(12) 
dP

dz
 = 

2 2

2

1 a h
N

a h


−
, 

 

(12) 
dN

dz
 = − h  M . 
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 However, it follows directly from (11) and (11), (12) and (12) that the N and P must satisfy: 

 

(13)     
2

2

d

dz


= −

2 2
2

2

1 a h

a
 

−
. 

 

 The study of ordinary rays is then reduced to the integration of (13). 

 If 1 and 2 denote two independent integrals of that equation and 1, 2, 1, 2 and denote 

four constants then one can certainly set: 

 

 N = 11 + 22 , 

 

 P = 1 1 + 2 2 , 

 

 L = 1 2
1 2

1 d d

h dz dz

 
 



 
+ 

 
, 

 

 M = − 1 2
1 2

1 d d

h dz dz

 
 



 
+ 

 
, 

and therefore: 

(I)  1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1
[( )cos ( ) ( )sin ( ) ],

( )cos ( ) ( )sin ( ) .

u hx t hx t
h

w hx t hx t

         


         


   = + − − + −


  = + − − + −

  

 

 In the present case, those equations define the system of waves that is the simplest 

generalization of the systems of ordinary plane waves in homogeneous media. 

 

 

 § 4. Extraordinary rays. – One sets: 

 

i = 
2


, 2

iV = 2 2 2 2( )cosi i i ic a c + − , ui , wi = 0 , 

 

and it will result from (6) and (7) that: 

 

(14)    vi = Qi cos (hx – t)  + Ri (hx – t)  , 

 

with 

(15)     
sin sin ,

cos cos .

i i i i i

i i i i i

Q A C B

R A C B

= − 


= + 
 

 It follows that: 
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(16)   2 i
i

v
a

z




= 

2 cos i
i

i

a
V


 [Ei cos (hx – t)  + Fi sin (hx – t) ], 

in which one sets: 

(17)     
cos cos ,

sin sin ,

i i i i i

i i i i i

E A C B

F A C B

= − 


= − − 
 

for ease of writing. 

 Upon recalling (1) that vi and 2 i
i

v
a

z




 must be continuous under the passage from one layer to 

the next, one will find that the same thing must happen for Qi , Ri ,
2 cos i
i

i

a
V


 Ei ,

2 cos i
i

i

a
V


 Fi .  If 

one then applies the preceding methods and passes to the limit then the result will be: 

 

(18)     
dQ

dz
 = 

cos
E

V


 , 

 

(18)     
2 cosd

a E
dz V

 
 
 

 = −
2

2

2

cos
a Q

V


 , 

 

(19)     
dQ

dz
 = 

cos
F

V


 , 

 

(19)     
2 cosd

a F
dz V

 
 
 

 = −
2

2

2

cos
a R

V


 . 

 

 However, it follows immediately from (18) and (18), (19) and (19) that the Q and R must 

satisfy: 
2

2 2 2

2

cosd d
a a

dz dz V

 
 

 
+ 

 
 = 0, 

or, from (1) and (3): 

(20) 
2 2 2 2(1 )

d d
a c h

dz dz


 

 
+ − 

 
= 0 , 

 

which plays the same role for extraordinary rays that (13) does in the case of ordinary rays. 

 If 1 and 2 denote two independent integrals of (20) and 1 , 2 , 1 , and 2  denote four 

constants then one can set: 

  Q = 1 1 + 2 2 , 

 

  R = 1 1 + 2 2 , 

 
 (1) KIRCHHOFF, loc. cit., page 231.  
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and therefore: 

 

(II)    v = (1 1 + 2 2) cos (hx – t)  + (1 1 + 2 2) sin (hx – t)  . 

 

 

 § 5. Theoretical considerations. – Among the many forms that one can give to the equations 

of optics, and which are all equivalent for homogeneous media, it is noteworthy that one of them 

continues to persist for inhomogeneous media, as well. 

 The form to which we allude that is valid for homogeneous and inhomogeneous bodies (at 

least when the ellipsoid of elasticity at any point is one of rotation with its axis parallel to the z-

axis) is the following one: 

(21) 

2

2

2

2

2

2

,

,

,

u Y Z

t z y

v Z X

t x z

w X Y

t y x

   
− = −

  

   

− = −
  

   
− = −

  

 

 

(22) 

2

2

2

,

,

.

v w
X a

z y

w u
Y a

x z

u v
Z a

x x

   
= −  

  
    

= −  
  

   
= −  

  

 

 

 It is, in fact, easy to verify that the u, v, and w that are defined by our formulas (I) and (II) will 

satisfy (21) and (22), while they will not satisfy the other systems, which are equivalent to them 

only in the case of homogeneous media. 
 

 [Set: 

(hx – t)  =  , 

  

and meanwhile when one substitutes the values (I) and (II) in the first of (21), it will result that: 

 
2

2

u Y Z

t z y

  
− − +

  
 =

2
2 2 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

cos
[( ) ( ) ( ) ( )

da
a h a h

h dz


                  


     + − + + + − +  

 +
2

1 1 2 2( )
da

dz
   


 + 



 

    − 
2

2 2 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

sin
[( ) ( ) ( ) ( )

da
a h a h

h dz


                  


     + − + + + − +  
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     + 
2

1 1 2 2( )
da

dz
   


 + 



 

 

    = 2 2 2 2 2 2 2 2

1 1 1 2 2 2

cos
[ (1 ) ] [ (1 ) ]

d d
a a h a a h

h dz dz


       



 
 + − + + − 

 
 

 

    − 2 2 2 2 2 2 2 2

1 1 1 2 2 2

sin
[ (1 ) ] [ (1 ) ]

d d
a a h a a h

h dz dz


       



 
 + − + + − 

 
 = 0, 

 

by virtue of equations (13).  In these formulas, one sets da2 / dz in place of d (a)2 / dz .] 

 

 Apart from any mechanical or electromagnetic interpretation, one should then see that the form 

described is the most natural and general form that one can give to the equations of optics.  

Moreover, the result of our study that was obtained assumes only the theory of optics in 

homogeneous media and then proceeds along a purely mathematical path that is not perhaps 

devoid of any interest, in its own right. 

 

 

 § 6. Fermat’s principle. – The equation 
sin i

iV


= h permits one to determine the form of rays 

in the media that were just studied.  Using the well-known formulas of optics, which couple the 

direction cosines of a ray to the cosines of the normal to the plane wave, one easily finds that 

equations (1) are also equivalent in the present case to the ones that when rays traverse the 

individual layers, they will follow the path that takes the least time to traverse it. 

 
 [For example, let us study extraordinary rays, and first suppose that the medium is 

homogeneous.  With the notations from what follows, the direction cosines of the ray will be 

proportional to: 

c2 sin , 0, a2 cos  . 

 

If we denote them by , , and , resp., then we will have: 

 

  

2

4 2 4 2

2

4 2 4 2

sin
,

cos sin

0,

sin
.

cos sin

c

a c

a

a c




 






 


=

+


=

 =
 +

 

 It will result from this that: 

  

4 2
2

4 2 4 2

4 2
2

4 2 4 2

sin ,

cos ,

a

a c

c

a c




 




 


=

+

 =
 +

 

and since: 

V 2 = a2 cos  + c2 sin  , 
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one will have directly that: 

() 
2

2

sin

V


= 

2 2

2 2 2 4 2

a

a c c



 +
. 

 

 Now consider an inhomogeneous medium that is composed of two homogeneous layers 

separated by the plane z = Z.  Let O1 be a point of the first layer, let O2 be a point of the second one, 

and the light that goes from O1 to O2 will pierce the plane z = Z at I.  Draw perpendiculars to that 

plane from O1 and O2 , and let P1 and P2 be their feet. 

 Set: 

 O1 P1 = e1 , O2 P2 = c2 , 

 P1 P2 = d , P1 I    = x , 

and one will meanwhile have: 

 O1 I =
2 2

1e x+ , 

 O2 I =
2 2

2 ( )e d x+ − . 

 

 It still remains for us to calculate the velocity D in the direction of the rays.  However, it is 

known (KIRCHHOFF, loc. cit., page 208, et seq.) that in general one has: 

 

 D2 = 
2 2 2 2 2

2

( )a c V a c

V

+ −
 

 = 
2 2

2 2 2 2

a c

a c +
, 

and therefore, for the first medium: 

D1 = 
2 2

1 1

22
2 2 1
1 12 2 2 2

1 1

a c

ex
a c

e x e x
+

+ +

, 

and for the second one: 

D2 = 
2 2

2 2

22
2 2 2
2 22 2 2 2

2 1

( )

( ) ( )

a c

ed x
a c

e d x e d x

−
+

+ − + −

, 

 

in which the subscripts 1 and 2 distinguish the quantities that relate to one or the other layer. 

 The equation: 

1 2

1 2

O I O I

x

 
+ 

  D D
 = 0 

will then take the form: 

1

2 2 2 4 2

1 1 2 1

a x

a c x c e+
 = 2

2 2 2 4 2

2 2 2 2

( )

( )

a d x

a c d x c e

−

− +
, 

 

which corresponds to (1), from ().] 

 

 It will then follow that even in our anisotropic and inhomogeneous medium, the equations of 

the rays will be obtained from: 
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(23) 
ds

d D
 = 0, 

 

in which ds is, as usual, the line element, and D is the velocity of propagation of a system of plane 

waves in the direction of the ray. 

 In other words: Fermat’s principle continues to be valid for the more general media that we 

have considered. 

 

 [Equation (23) can be easily put into a more explicit form.  Recall the value of D that is given 

by: 

D2 = 
2 2

2 2 2 2

a c

a c +
, 

and one will indeed have: 

 
ds

D
 = 

2 2 2 2a c
ds

a c

 +
 

 

= 
2 2 2 2 2( )a dx dy c dz

a c

+ +
, 

 

and therefore, in place of (23), one will have: 

 

2 2 2 2 2( )a dx dy c dz

a c

+ +
d  = 0 . 

 

 In words: The rays in our inhomogeneous and anisotropic media are the geodetics of the metric 

that is defined by the line element: 

 

ds2 = 
2 2 2 2 2

2 2

( )a dx dy c dz

a c

+ + . 

 

 Optics in our media then gives us a method that (one can say) serves, in a certain regard, to 

experimentally realize a geometry that is even more general than ordinary Euclidian or non-

Euclidian geometry.] 

 

__________ 

 


