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Theory of adiabatic invariants of general differential systens
By Harald Geppert in Giessen, currently in Rome (

Translated by D. H. Delphenich

Like so many mathematical problems, the question o&batic invariants of
mechanical systems can thank quantum theory for itsnprend the first theorem that
was proved in regard to them, namely, Sommerfeld’s tiheorethe adiabatic invariance
of the phase integraf)( was proved for their sake. The fact that this qorss also
important for the problems of classical mechanics, indégetly of the currents of
modern atomic theory, was first recognized only receatiyl one can thank Levi-Civita
() for a very elegant and thorough theory of the adiabatiariants of mechanical
systems that defines the basis for an incisive matheahdftieatment of the entire
complex. Levi-Civita’s theory is subject to two a#s@ restrictions: First of all, it is true
only for Hamiltonian differential systems, and secgndl assumes that the known
integrals of the latter are in involution (in the Lsense), and that naturally raises the
guestiona posterioriof the extent to which the results obtained are indiganof the
stated conditions. An examination of them will shawattthe concept of adiabatic
invariants goes much further than it did up to now, thamust be adapted to general
differential systems, and that a far-reaching matheadatheory of it that refers to
functional analysis can be developéfthat is rich in significant results. The following
article shall be devoted to that theory.

According to its nature, the theory to be developed tvas facets: viz., a
mathematical one and a physical one. In our treatmentyill place most of the weight
on the former without making contact with the physicathportant problems. That will
become especially noticeable in the questions thaterédattaking the mean and the
classification of systems by order of imprimitivity. t Arst, we shall deal with the
general concept of adiabatic invariant for an arbitrdifferential system. These
invariants will themselves be determined by a new difteaksystem whose integrability
conditions, which are not satisfied identically, defittee necessary and sufficient
assumptions for the existence of adiabatic invariaritss a noteworthy fact that the
invariants can be given directly for an extensive clalssases, and in that way, the
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Gibbs-Hertz theorem will be generalized. The theory tilitbe developed is rich in
applications to the mechanics of non-Hamiltonian systessvell.

8§ 1. The concept of adiabatic invariants

We start with a first-order differential system of them:

(1.1) ?T):: (%4, ey X |G, - BY) (i=1,..n

in the variables«, ..., X, . Let theX; be continuously-differentiable functions (in the
domain in question) that include certain paramedgrs.., a,, in addition to the quoted
variables. We will assume (although it will not beesttial in what follows) that they are
independent of. If the parametersy, ..., 8, are constant then the system will have
solutions that one can write out formally as:

(1.2) Xi=X (t—"to,Cy, ..., Co-1 |4, ..., Q) i=1,..,n),

in whichto, ¢, ..., ch-1 mean then integration constants. They are single-valued in the
small and therefore soluble in a certain region enftimm:

f %% 1an...8)= ¢,

(1.3) fo (XX |8,..,8 )=t §,

It would be preferable to interpret these relationdhendpacdR, of x4, ..., Xn. If we
interprett as time then the equations (1.2) will represent the @laghpointP that moves
in R, whose velocity components are given by (1.1) as funcbodrite position. We
would like to denote that trajectoryy integral curve into the future byg. The firstn —

1 of equations (1.3) represemt— 1 hypersurfaces iR, of dimensionsn — 1, and¥

appears as their one-dimensional curve of intersec#dlof that is true only in a region
of R, in which equations (1.2) are regular and uniquely-soluble.

Now, if the parametera,, ..., a, are no longer constant, but functionst,ofs well,
then one can indeed leave the solutions to the systéhne iform (1.2) [(1.3), resp.], in
general, but th&, ci, ..., ch-1 must also be regarded as functions thien, and indeed the
latter are determined from differential equations:

dc _ & of da, dt, _ & of, da, _
1.4 =N -\ =1,..,n-1),
(1.4) dt ;aav dt dt ;aav dt ( n-1

which are based in perturbation theory. In order to iategthem, it would be preferable
to substitute the relations (1.2) in place ofxhm of; / da, (i = 1, ...,n), and in that way,
we might find perhaps the equations:
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f .
(1.5) (%‘/: giv(t—1,Cy ..., G | B4, ..., 8Y) i=1,..n;v=1, ...p0.

The system (1.4) will then go to:

P P

(1.6) de =Yg, da,, do=->¢,da, (=1, ..,n-1),

v=1 v=1

in which only the variables to, ¢, ..., Cy, @, ..., 8, still occur. As is clear from (1.4),
these equations are integrable for giegrit), and thec, (t) then prove to bénctions de
ligne (i.e., functions along a curve) relative to the(t). In order for the latter to be
ordinary functions of the, , it is, on the other hand, necessary that equatibr® (
should be integrable without restriction for arbitraay, which will imply further
integrability conditions. The relations (1.6), togethéhw1.2), yield the trajectories of
the “perturbed” motion. If one starts from the cas$ecanstant parameters as one’s
foundation then one can see that they can be regardemteer form of equations (1.1).

In place of this differential system (1.6), whosesderation would give us nothing
new, we choose another differential system as ous loasvhat follows that will emerge
from (1.6) when one subjects the coefficieptsto a functional operation that related.to
Here, we would like to draw upon those operations, inqadati, that have the character
of taking a mean, but a treatment of the more gepeoblem of an arbitrary operation is
also practicable. Hence, 1&t= Ty, ..., T1 be an arbitrary, but fixed, interval of the
variablest over which we take the mean, andfelt — b, ¢y, ..., Ch-1 | &, ..., @) be the
distribution function of the latter, so in general wdl define the mean valueof a
quantitya that depends updn- ty, Cy, ..., Co-1 | &4, ..., @, t0 be:

to+Ty
Q.7) a= j at—t,Cy,....,Ch1]a, ..., 80 F(t—1o, Cy, ..., Cn-1 | &, ..., a8 dt
to+To
to+Ty
j F({t—-tcy,....,C1 &, ..., 8 dt,

th+Ty

naturally, under the assumption that the integrals dpgear are meaningful)( We
understand the integration in (1.7) to mean that it reteenly the argumertt— t that
appears explicitly inr andF, and thus treats the quantiti®scy, ..., Ch-1, &, ..., 8y as
constants.

An application of the operation (1.7) to the coefintgeof (1.6) will produce the new
n-term differential system:

(1.8) do=%7,da, do=-3g,da (=1 ..n—1)

() Up to now, in physics, one has considered only thelsshcase of defining a mean — namely 1
— but our viewpoint will not imply any complication thfat.
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that contain only the variablésg ci, ..., Cr-1, @1, ..., 8, and in which they, ..., a, play
the role of independent variables. That will definedbksential foundation for the theory
that follows. In the realm of physics, we pose the gpe®f the conditions under which
the system (1.6) can be replaced with (irBpractice That will always be the case
when the parameters change “infinitely-slowly” or “dshitically” in comparison to the
motion of the poinP in a way that shall be made more precf§e Naturally, we assume
the existence of thep,,, which will make it necessary fof to lie in the interval of

regularity of (1.2). We shall refer to (1.8) brieflyta@ mean system.

The mean system is not always completely-integraivid,we will have to discuss its
integrability conditions, which express restrictionstloa original system (1.1). We now
define:

Definition 1. — Any invariant of the mean system will be called an adiabatic
invariant.

The simultaneous existence of the followmdifferential equations:

< 0J 0J 0J
— o —— +—=0 v=1, ...,
> P e Pty ( P

(2.9)
is characteristic of an adiabatic invaridr(to, C1, ..., Ca-1 | &1, ..., 89). The systems (1.8)
and (1.9) say the same thing and possess the same integralniditions.

If we call a quantitynvariant in the meanvith respect to the system (1.1) when the
total derivative of the mean value that is defined by (1iif) Mespect td vanishes due to
(1.1) then we can also replace the definition abovk thi¢ following one:

Definition 2. — A function of the integration constants and the mpatars of the
system (1.1) that is invariant in the mean for all valoktheda, /dt (v=1, ...,p) is
called amadiabatic invariantof that system.

Namely, one needs only to observe that, from (1.6):

d_ &R0 J da,
) z{z — aa,}

and since) should not depend updrexplicitly, Definition 2 demands the validity of the
system of equations (1.9).

This second definition is the original conceptualizatioat the physicists assumed.
They then dealt with the process of finding quantitieg thould remain invariant under
arbitrary adiabatic changes of the parameters, in whieHinfinitely-weak” character of
the changes is made more precise by saying that invarilartbe mean must enter in
place of ordinary invariance. That has the practidabatage that with system (1.9), one
will arrive at equations that are much easier to integfrate the original relations (1.6).

() Cf., the note in Levi-Civita 3.
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As we will see, we will then be in a position to actyaive their integrals in a large
class of cases.

The mean values that are defined by (1.7) still depend yyporgeneral. However,
in what follows, we would like to confine ourselves exalaly to those cases in which
that is not true, namely, the ones in which the inlefvdoes not depend updg) and our
interest will be mainly concentrated upon the mednesmthat are taken over infinite
intervals, so one must set:

to+T

(1.10) a-= li[rl j at—t,cy,...,Chalag, ...,a) F(t—to, Ca, ..., Cre1 | @, ..., 3 dt
to

to+T

: j F (t-t,cCy...,C1 |, ...,a) dt,

to

because our theory will yield especially beautifesults in that case. One can then
address the problem of adiabatic invariants margety and restrict oneself to the search
for those invariants that are independentyofi.e., to those function$ (cy, ..., Ch-1 | &,

..., 8y) for which the equations:

SV
1.11 =g, +——=0 =1, ...,
(1.11) ;aq P, 23, (v o)

are satisfied identically.

Since any function of one or more adiabatic iraatis is also an adiabatic invariant,
in order to find the independent particular solsi@f (1.11), it will suffice to find what
the largest possible number for 1 would be. It will relate the quantities ..., C,-1 to
the parameters. Equations (1.11) assume the ecéstef the @,, and that, in turn,
assumes the unique solubility of (1.2) in the don@iT. Should that condition not be
fulfilled for a sequence of quantitieg,, the problem could nonetheless remain

meaningful when one assumes tha independent of the correspondoag Ultimately,
one infers the following trivial theorem from (1)11

Theorem 1.— Every integral f (X1, ..., X,) = ¢ of the original system that is free of
the parameters is an adiabatic invariant.
§ 2. — Two examples

Before we turn to the general theory, two exampbeght find their places here that
we will treat later on from a different viewpoint.

Example 1.The one-dimensional elastic motion can be reptedeas follows:
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dx _ dx,

—=X2, —=—a1 X,

dt dt

if &y means the elasticity constant. The integrals are:

fi= fxf+§x§ =c, fzzarctan\/afzt—to.

If one taked= =1, T = 0, or, what amounts to the same thing, one tdkiesbe equal to
the period2ﬂ/\/a of the motion, then one will have:

¢11: _%’
and (1.11) will read:
03,6 0) _
da, 4a0¢g
whose general solution is:
(2.1) J=f(ac);

i.e., under adiabatic variation, the elasticity stamts change the amplitude of the
oscillation in inverse proportion to the fourth ta@d the elasticity constants.

Example 2. The differential system:

dx _ > dx, 2
Xg—== , —s = ,
Va2 a
possesses the integrals:
a X,
fi=x*+2<x =c1, f=-—% =t-to,
a a

Jo

and the (elliptical) trajectory will be real onlyhent — § lies between the limits —

a a,
and £ If we take that interval to BE and takeF = 1 then the system (1.9) will read
a a,
as follows:

03,2603 _, 9 _2¢0J _

It is completely-integrable and possesses theisaltut
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(2.2) J=f [Z 2 toj

as an adiabatic invariant.
At this point, we would like to only refer to the examplethe damped oscillator,
which we will deal with later.

§ 3. — Two-dimensional systems.

Before we turn to the general problem, we will first Ide&h the case of two-
dimensional systems & 2), because they can be treated completely angreNide us
with a guide in the following considerations. We sHadin address the system:

d
(3.1) ‘3;;1 Xy (Xs, % | @, ..., BY), d? Xz (X0, X2 | B2 -0 @),

whose integral reads (we omit the index 1):

(3.2) f (X, X2 |ag, ...,a) =c,
which must then satisfy the equation:

(3.3) iX +6f X,=0.
ox, 0%

One infers from this relation that a quanfitynust exist such that:

of of
(3.4) = HXe, —THX.
0X%, 0X,

The integrability condition for (3.4) requires tmatmust be a solution to the equation:

a,u ou 0X, . 0X, )
3.5 —(uX + X,) = X, 0;
(3.5) (,U ) (,U 2) = 6x1+ 9%, ”(axi axzj

i.e., thaty must be a so-callethcobi multiplierof the system (3.1). However, first of all,
M is not an arbitrary multiplier, but only one ofettmultipliers that are established
uniquely by equations (3.4)is a function ok, X | ay, ..., a,.

We would like to assume that the traject@rig free of all singularities, in such a way

that, in particular, the two derivativé$ / dx; andof / dx, do not vanish simultaneously.
That says that as a result of (3.4)will vanish nowhere alon@, and therefore also in a

certain neighborhood &, due to continuity, if we assume th&t X, themselves behave
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regularly. @ will then have a well-defined sign in its domain ojuéarity along®. Due
to (3.1) and (3.4), the arc length elemenfafan be brought into the form:

(3.6) ds=,/ dx + d = dt O/ X; + X] = dt%/[afj +(ij :dtd_ﬂ,

0%, 0x, H
in which we have set:

o] 2]
0% 0%,

According our assumption§,;;» also vanishes nowhere alofigand can be assumed to

have the same sign as when the sense of the direction ®fis oriented towards
advancing.

The relation (3.6) puts us in a position to replace rtigan value ovet in our
definitions with spatial integral constructions that ase¢ended overf. Under this

transition, by means of (1.2), a spatial inteiSain ¥ for the variables will enter in place

of the intervalT for the variabld — . Furthermore, the distribution functién(t — t, ¢;
| as, ..., 8y) will be replaced with a single-valued, regular, disttibn functionF (X1, X |
ai, ..., &y by means of (1.3), such that the fundamental operéti@h will go to:

(38) a=[a(x,%la,...8)F(X,%]a. . 3 dsj Rx Xl a. ,,aﬁ

l

Here, we must add a remark abeut Previously,.z was a multiplier of (3.1) that was
determined uniquely by (3.4). Now, however, ong tie easily-proved theorem that the
quotient of two different multipliers is an invaniaof the original system; in other words:
The multipliers differ by only a constant factoomad) the trajectoryg. Since the latter

cancel out in (3.8) must then mean any arbitrary multiplier; i.e., anjution of (3.5).
If the system (3.1) is biouville system- i.e., its “divergence” vanishes:

(3.9) 9%, 9%, _ ),

0% 0%

then (3.5) will show that one has get= const., and thereforg can be dropped from
(3.8) and following relations. A special case lo¢ tLiouville systems are, in turn, the
Hamiltonian systemé).

As a result of (3.8), the defining equations (}.idr the adiabatic invariants will
assume the form:

(3.10) aJ ot ’uds+ [J'F— = V=1 ..0.

aa‘/ r12

() Another derivative of (3.8) for the latter can be foimtlevi-Civita, 1, pp. 335-337.
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The most important case to be considered is thatngdlsiaveragingF = 1. Before we
go on to the solution of those equations, we must irgadsti their integrability
conditions.

8§ 4. — The necessary integrability conditions.

The conditions for the complete integrability of gystem (1.11), or what amounts to
the same thing, the first— 1 equations (1.8) read:

d d 0 0 0 0
4.1 - = - +3, 25 -3. 25, =0
(4.1) da, Puc da, P 0a, P 0a, P * 0, acm P 60%

(KA=1, ...0

in our two-dimensional case. If we temporarily introdueenotation:

) _(of L u _
(4.2) g=| F=—ds, gy =|—F—=—ds (v=1,..,0
'i r12 Saav r12
then we can put (4.1) into the form:
g, _99, 99, , 99 09, , 99 |_ _
4.3 kK -2 14 K+ = |-g|Z+—=1=0 A=1,...,0),
(4.3) g[aa) aakj gﬂ(ac aqj gk[ac P & P

and our problem will now be to actually calculate thevdgives that appear in this.
The pieceS of the trajectory® to be considered might extend from the pdigt,

which corresponds to the valtie t = Ty, up toP; , which is assumed wher-tp =Ty,

in such a way thaf; — To = T means the averaging interval. If one takes the rogan
the entire, infinitely-long trajectory then the consat&n of the boundary point, P;

will become superfluous in what followd,, as well ad;, are functions of | a, ..., a.

It will then be preferable to introduce the so-callgdchronous trajectoridgf., (1.3)]:

(4.4) fo (X1, % |ay, ...,ay) =t —1 = const.,

which we would like to generally denote &y along with the family of curves (3.2) that
is defined by the trajectories, and we would like to regard each of the points under
consideration as the intersection ot avith (at least) on&. The boundary points will
be cut out off by the synchronous trajectories:

(4.5) fo (X1, X2 |ay, ...,a9) =To (T2, resp.).
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If we now change onlg by dc and leaven, ..., a, fixed then® will go over to a new
trajectoryT’ with the equation:

(46) f(X]_, x2|a1, ...,ap) =c+dc
and its boundary point8, B will be cut out by the synchronous trajectories:

4.7) f (X, X2 | &, ...,80) =To +% dc (T1 +% dc, resp.).

We associate each poiRtof T with the point on its normal that is the point of
intersection off with ', and call that poinP”. This association makes the poiRtP;,
resp.) correspond to two poinB (P, resp.), which will generally be different frof|
B'. In order to calculate the derivatives with resged that appear in (4.3), we must
extend the integra, along®' from R to B’ and then subtract the value that it assumes
along¥. We can then write:

wemdff ()

G BB

We call the first summands the (infinitesimbgundary termswhile the third one can be
easily calculated by means of our normal associd®ion P’ Namely, letdn be the
normal displacemerm®’ - P, and let its components béx;, d’x,, So:

4.9 d’'xy = ——d’n, d’ X =———d’n,
(4.9) ' I, 0X I, 0X,

and all quantities that relate ¥ might be indicated by a prime. One will then have
to second-order quantities:

1 9f d 1 9f d
d’s=,d(x +dx)*+ +dx)?=ds{l+———(d'x)————(d
s=d(x+dx)*+ d %+ dx) S{ o < (@%) Flzaxlds( &)}

' 2 2 2 2 2
4.10)  =ds{1+dN O ff Ot} 5 07 of of Loffof Il
3| 0x2 | 0x, X 0%, 0%0X 0%|0

1 1), dnotf(ot) o't of of af(ofY
r, Tl T3] 0x2|ax, OX0X,0X0 X%, 0X0 '
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On the other hand, it follows immediately from (4.6§ 4.9) that:

of of
—dx+—dx =l1,d’'n=dc,
0X A 0%, % 12
SO:
(4.12) dn=9% dx=1%4s dx=1Tq
12 r12 6x1 F12 6x2

and we will then be in a position to write down thegd summand in (4.8).
We shall now calculate the boundary terms. Fréml(, the coordinates ¢ are:

o4
X
+
R
2
o
9
+
o

11

while we can find those o, from the two equations (4.6) and (4.7). Namdlyoix,,

J”X2) means the vectd®, P, then we must have:

of of

—O'x +—0'%, =dc,

0%, % 0%, %

of, of oT,
20 +—2x =9 dc,
0X, % 0%, % oc

so when we temporarily set:

5o 3 o, _of o,

0x, 0% 0% 0%
we will have:
(4.12) yxl:d_c[ﬂ_ﬁﬂj | yxfd_c(_%ﬁ%j
§\0x, 0x dc J| §\ 0x 0x dc)|
From the equation that follows from (3.1):
(4.13) ix1+i X,=0, %Xﬁ% X,=1,
ox, 0% 0%,

it will follow that § # 0. The components ¢ P, will then be:

do) L[ 9 _0f 0T} 1 of do) L[ —0f  Of 9To ) 1 of
Slox, ox, 9c) T30x%]| " S ox ox ac) T0%]| "

and therefore, the length of that segment will be:
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7F = dc |2 0T, [of of, , of of,
ST, oc (0x0% 0%0%)||

=dc x2+x dT, ii ii
oc Ffz % 0% 0% 0X%,

One finds a corresponding expression for the otherdayrpoint, so the boundary
terms in the sum (4.8) will ultimately have the value:

o o XX {(ﬂm [af o, , ot o, m
rs,

H oc axlax1 6)(26x2

03, M,

K

We are finally in a position to summarize the egsion fordg, / dc then; from the
foregoing, we have:

dg, _ (of _ u|(0°f o°f af * ( of o’ of of
9 - [ g X AR I ds
dc  L0a TIL || 9X 0% 9% 0 %0 %0 X0 X%

+IF,U(62f of  of 0deS
s \0a 6><16x1 050%0%

(4.14) o[ L [ouot  ou oty
aa Mo\ 0x 0% 0X,0X
ﬂw@ﬂiii%
<03, 2, (0%, 0x, 0x,0X%,
L Of Fﬂ«/ X;+X5| 0T, 1 (of of, L of of,
0a, M, ac Fiz axlaxl 6x26x2

We shall now carry out the calculation of the datives ofg andg, with respect to
a, in the same way. M, goes toa, + da,, while the remaining quantities remain fixed,
then the curv&” with the equation:

(4.15) f (X, X &y, ...,aq+day, ...,a) =¢C
will enter in place off, and the boundary points will be cut out of itstbg synchronous
trajectories:

(4.16) fo (X, %o |ag, ...,an +day, ..., 8)) :To+§%da,4 [I'ﬁ%da,a , resp.] .
A A
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We denote them b, P”, while P”, P shall denote the points that lie normally3o
over Py, P1, resp. We associate every point®fwith its pointP" that lies along the
normal and let ‘n denote the vectd?P whose components are:

(4.17) dxl_iidn d% =29 4

12 axl r12 aXZ

A decomposition that corresponds to (4.8) will alsad to our goal here. However, it
follows from (4.15) and (4.17) that:

id X1+id X2=1od n——ida,a,
0X 0X, 0a,
SO
(4.18) d'n=- idﬁ d'x =- iziidaﬂ, d*xzz—iziid@.
oa, I, 5, 0x, 03, 5, 0X, 04,

The quantities that refer  shall be given an asterisk in what follows. Fr@hi0),
one will then have:

2 2 2 2
(4.19) d°n=ds d? of | 0°f 6f _26f iiJ, f i
M, 0a, ax1 ax2 0X0%0%x0% 0 0

_da,[of o't of o°f
2| ox,0x0a 0x0x08 ||

and by means of these formulas, we will be in aitjposto write down terms that
correspond to the third summand of (4.8).

It once more remains for us to determine the bapnterms. Due to (4.18)_?0D has
the coordinates:
B Xt - 12 of of a
5 0%, 6@

« 1 of of a
1 2____
. r2 ox,da,

0

By contrastP,’ might have the coordinates+ d "% |0, so it will follow from (4.15) and
(4.16) that:

of of
cFDx1 +— 0%, = ———da,
0% 0%, 0a,
2 5D)(1+ 5DX2:a(T0 B fz) day

0%, 0%, 0a,
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are valid atP,, and therefore:
. _ da, [_ of of _ia('lg—'l’)j

O X = — ——
S5 | 0x,0a, 0% 03a

(4.21)

_ da, [+af2 of , of o(T - fz)j

O = —2| +-2
§ \ ox0a 0x 03

The components of the vectBf' P will then be:

| 50 ox0a 0% ri,ox0g

1 of of of oT,—-T) 1 of of
daﬂ - - - + )
0x, 0a, 0% 08§

day

1(of, of of oT,—f)), 1 of of
F\ox 0a, 0x 03 r2,0x%0g |

and therefore the length of that vector will be:

PD r)D —
00 -S/ rlz

o(T,-T) 1 of (of of, of of
=day O X2+ X2| =2 +— T 242 70
N { da, T 08, [axlaxl 6><26X2H
and a corresponding expression will be true atther end point. Hence, for example,

the boundary term in the decompositiondgf/ da, that corresponds to the first two
summands in (4.8) be:

XX {6(% ) +i1[i%+iiﬂ

M, 0a, M2,0a,(0x 0% 0%0X,

da, {a(g—nrz ,of (af ot,  of afzm
0

0a, ' 0a(0x0x 0%0%

)
0

R

)
R

and analogously fadg, / da,, where only the factadf/ 0a, enters in.
If one combines everything then one will ultimgtéhd that:



(4.22)

and

(4.23)
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9g _of _ u (0%t a*t)\((at) (af )], , o°f of af
dg o pp ([ _OfY (O |3,
0a, ¢0a, T |(0x ax )|lax) (9x 90 %0 %0 %
2 2
(g AT ot o7 ot )
3, 0a,0x 0x 030dx0dX%

of -1 3 ou of , ou df )
r12

S oa,

6&6& 0% 0%,

J‘af A oF of L OF of ds+j Fa_,u+’u6_F L ogs
s0a, '3, 0x 0%, 0X,0X%, S

+Fﬂ./xf+x§{a(Tovl—fz)+ 1 of [af of, , o o, H

Mo oa, ri, oa, 6x16x1 3%0%,

og. _cof of _ u |(0%f o2t )(of ) (of )| . o%f of of
<= FL -2 || =] | =] [+ las
0a, 08 08 [, |(0xX 0% )\dx) (0% 0 %0 X0 %0 X
2
_afF;;[afaf afafjdS
s0a, [,\0a80x0x 030%0%

of 9°f of a’f  of
(Lt a4, I lds
<0a, [7,(0a0x0x 0g0dxo0X

oA L oud op )
<0a, da, [,\0x0dx 0x0X%
_i@f,u(aFaf aFafde

0a, 03, [}, 0% 0% 0%0%

S

2
[ uo | st [ 2 £ gs
s 08, 6% “oa, T, s0803 T,

LI Xf+><§{6(ro,l—fz)+ 1 of (af of, , of o, H

da M, 0q, [2,0a, | 9% 0% axzax2

K

This somewhat-lengthy formula puts us in a position titevefown the integrability
conditions (4.3)n extenso One first finds the simple equations from (4.14), (4.28y

(4.23):

(4.24)

9, 29, _ [ o duF) o )| 1 o
6a, Oa, |0a 03, 03 03 |Iy
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R

+Fﬂ«/xf+x§{af 0Ty, — f,)  of (T~ fz)}

P da, 0y da, 03 .
2 2 _ R

(4.25) % , 99 _ [OUF) 1 4o, pyu X{+X2[0(T,,= 1) of 0T,
Jc aak S aaK rlz rlz aak aa( oc .

In the following, we would like to restrict ourselvesclsively to the case in which
the boundary terms in these two equations that relaR tod P, vanish in their own
right, which represents a condition foy; T1 that must now be interpreted. The vanishing
that we require is obviously identical to the conditioattthe relations:

o(f, _TO,l): of 0Ty,
0a da, dc

K

(4.26)

must be true at the end poifg, P1. One then infers from (4.12) and (4.21) that:

Ix _ 0%
(4.27) T T

i.e., that the pointBo, P, and P, (P1, P, P", resp.) lie along a line. Conversely, if that
point-triple lies along a line then (4.27) musttbeée, and one will infer the validity of
(4.26) from (4.12), (4.21), as we have already r&sd aboveg # 0. One can also

express that differently: Namely, if one assumest the boundary points lie along a
curved that is independent @, ..., a, and has the equation:

(428) I (X]_, X2) =0

then all boundary points with the same index mesbh the tangent té at Py (P4, resp.),
while it will, in fact, follow from (4.28) that:

Ix _ 0% __on or

Fx, O%  0x, 0X on

so (4.26) must be true. Conversely, if the boungbaints lie along a line then they will
be cut out of a curve whose equation does notdedy ..., a, (e.g., just that line). Our
demand in regard to the vanishing of the boundarysg is then equivalent to the
assumption:

Requirement: The averaging interval S either extends over thimite length of the
trajectories or it will be cut out of it by a fixedurve that does not include the
parameters.
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We have then combindxbth curves that cut ol®, andP; into a single one, which is
always allowed.

If that postulate is fulfilled then (4.3), (4.24), and2@). will ultimately give the
integrability conditions:

jFids[j{ of a(uF) of 6(,L1F)}ids+ji e M dqa(yF)i g
S r12 S aa}( aa/l aa/l aq r12 Sa% r12 S a@ r12

(4.29)
of U o(uF) u -

[ L g A gsf L) o= 0 KA=1,...0).

~£6a il ( P)

K r 12 S a‘/1 12

If we employ the notation (3.8) then we can givihd following, very transparent, form:

(4.30) of dloguF of L@Iog,uF: of dloguF  of L«;‘)Iog,uF K A=1,
da, 03, da 03 da, Oa, da, 038

K

i),

which requires a certain permutability of taking thhean and multiplication.
We conclude this paragraph with the:

Theorem 2. — The necessary and sufficient conditions for thestemce of the
adiabatic invariants of a two-dimensional systera expressed byt.30).

8§ 5. — Sufficient conditions for existence.

We shall now turn to the interpretation and eviaduaof what we found. Along,

we can express the quantiti%ag—, al?}L’w:as functions of the parameter § . If we
aK aK

temporarily set:
of dlog uF
N -, L9 _p k=1, ....0
0a, 0a,

then we can perform a decomposition:

(5.1) i:a',ﬁh,((t—to), dlog pF
0a, 0a

K K

=Bt (t—1),

in which h, j, denote functions of their arguments whose meamegalwhen taken over
the intervalT, vanish. The condition (4.30) will then take die form:

(5.2) h i, =N, ], (A=1,...0.
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One can clarify what that means in the case of @gersolution in whichh, andj, will
be Fourier series. However, we would not like to treat in full generality, but choose
three special cases that are amenable to deeper analysis

Case L. All:
he(t—1)=0 «=1,..0,

i.e.,of / 0a, are constant off, so one must have:

(5.3) %zcm(ﬂal, oy &) k=1, ....0.

Differentiating (3.3) with respect @, will then imply the equations:

of 3%, , 3 9%, _

(5.4)
Ox 0a, O0x 038

k=1,...0);

i.e.,fis not only an integral of original system (3.1), bsbabf thep following ones:

dx _ 0X, dx, _ 90X,
dt da ' dt o9a

K K

(5.5)

which says that is a stationary integral with respect to the pararset@&he functional
operation vanished in equations (1.8), but here it wilbleatical with (1.6); i.e., with:

dc= i idav
v=1 aav .

Furthermore, (3.3) and (5.4) will imply the proportions:

x1:x2:%:% k=1, ..,0,
da, o0a,

i ﬁ =0
da | X, ’

from which, it will follow that along the trajectof¥, the direction factor:

a _ X
dx X,
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is a function of onlyx;, X2 . One can then choose the family of cur#ego be
independent of the parameters and find an intégpal x2) of (3.1) that does not include

the parameters at all and for whickvill then be an adiabatic invariant, from Theorem 1.
That case has then been dealt with.
Case Il. For a well-defined multiplier, one will have:

jx(t-1)=0 k=1, ....,0

dlog uF

in (5.1), so will be constant along@, and therefore:

K

dlog uF
0a

K

(5.6)

=W, (flay, ..., a) k=1, ...,0.

This condition is fulfilled, in particular, whenedlp equations are true:

dlog uF _
0a

K

(5.7)

0 «=1,....0),

so uF does not depend upon the parameters at all, arghaleaddress that case in detall
shortly. The relations (5.6) admit a simple intetption when the distribution function is
F=1. Namely, if:

(58) N = %-{-%

0% 0%

denotes the divergence of the system (3.1) thercameavrite (3.5) as:

(5.9) dlogu s ,OI0GK y L py=0
0%, 0%

and when (5.6) is true witlk = 1, differentiation with respect &, will give:

dlog i 9X, +alog,u 0X, +6A0 _

(5.10) =
0x, da 0% 03 04§
which says thap/ is also a multiplier of the system (5.5), or ilet words, a stationary
multiplier with respect to the parameters. Itdals from (5.9) and (5.10) that all three-
rowed determinants in the matrix:
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xl x2 A0
0X, 0X, O0A, k=1, ...p
da, da,0Ja

must vanish. (5.7) is fulfilled, in particular, whén= 1 andy = const. so the system
(3.1) is a Liouville system. With that, the followitigeorem, which goes back to Gibbs
and HertzY), is proved as a special case of our investigations:

Theorem 3. — A two-dimensional Hamiltonian differential system possesses an
adiabatic invariant under simple averaging.

Case Il
Jx (t—1to) = consth, (t —t) k=1, ...,0),

in which the constant is the same for all It will then follow from (5.1) that one must

have:

(5.11) M
0a

K

=p(fla, ...,a) +qc (f|ay, ...,a) (k=1, ...,0).

If one then determines a functign(f | a, ..., ay) in such a way that one has:

dlogg(f |a,....,a,)
of

=p(flay, ...,a)
then (5.11) will give:
dlog(uF :9) _ _1o¢

+0=W(flay, ..., a k=1, ...,0),
oa 530 U= Yrlana) 2

and sinceu : ¢ is also a multiplier of (3.1), along wifla we come back to Case II.
We summarize our results in:

Theorem 4.— Sufficient conditions for the existence of adiabatvariants of a two-
dimensional system are:

a) The stationarity of an integral

b) The stationarity of a multiplier with respect toetlparameters under simple
averaging.

() Cf., Gibbs 1, Hertz 1, pp. 534-535.
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8 6. — The invariants of the generalized Liouville system.

In (5.7), we have already singled out the case in whiahultiplier can be given, in
such a way thgt/ F is independent of the parameters..., a,. We will then refer to the
system (3.1) as @eneralized Liouville systeran grounds that will become clear later on.
An adiabatic invariant must exist for it. Equations (4.24).25) simplify (while
preserving the demand o#%to:

(6.1) 99, 99, 99,09, _ K A=1,...0),
da, O0a da, 0c

K K

and one must then be capable of finding a func¥ida| ay, ..., a,) such that:

v _ v _

6.2 ~~=q, il
(62) oc oa,

_gK_

Equations (3.10) then show that is the desired adiabatic invariant of our two-
dimensional system.
We can easily givev explicitly. Namely, if € denotes a fixed curve that is

independent ofy, ..., a,, and which, from our requirement, cuts out the averaging
interval Salong¥ (an arbitrary fixed curve, resp., whé&r= «), and ifB is the region in

thex, xo-plane that is bounded ldyandSthen one will have:
(6.3) J:v:jijdxlobg,
S

assuming that this integral is meaningful. The proof {(6a2) is fulfilled is easy to
complete by means of the developments4n 8
The variation of onlyc will, in fact, leavey F and € unchanged, while only the

trajectoryT goes to¥'. The normal displacement of the poftto P’ will then be
characterized by (4.11), and one will then have:

ov 7
—= Fdsdn:dc=|F-—ds=qg.
oc J;ﬂ J; r g

12

One easily convinces oneself that the difference betvRéerP, (R, P, resp.) for the
calculation of these derivatives is irrelevant whes triangleP, P B, (P P'P, resp.) is
infinitely-small of order two. [Indeed, it is obvious th& cannot contac® at Py, P,

since otherwise, from (4.12), one would need to ve 0.] When onlya, is varied,
from the assumption (5.73, will likewise remain unperturbed, afidwill go to T by the

normal displacement “n, such that due to (4.18), it will follow that:
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oV of _ u
—=|uFdsd’n:da,=-|—F—ds=- g,
0a J;ﬂ X J;aa M, J

as we have stated. We have then found the followiagrém:

Theorem 5. — The adiabatic invariant of a two-dimensional gerieed Liouville
system is V 5[ 4/ F dx, dx .
B

If T is periodic, in particular, andl is equal to infinity or the period then one will be
able to takeB to be the region that is included insidesof If one is dealing with a simple

averagingF = 1 then the Liouville system\ = O, ¢ = const.) will fall within the class
considered. In the two-dimensional case (but only &t ttase), that class can be
transformed into the class of Hamiltonian systefsahd Theorem 5 will then coincide
with the statement of the Gibbs-Hertz theoréfy famely, that thehase volume:

szjd)gd)g

is an adiabatic invariant. Equation (5.7) then demaratgtmust be independent of the
parameters, and a theorem is true for such systemsvéhatill prove forn dimensions
later on, but in the meantime, we would only like toestat

Theorem 6.—If y is independent of the parameters then there \eilalcoordinate
transformation that is free of the parameters ahdtttakes the original system to a
Liouville system, and conversely.

Such transformations that do not include the paramatersasurally permissible, and
will have no effect on the calculation of the adiab invariants and one will then see that
the aforementioned class of systems essentiallycicieia with the class of Liouville
systems, and that will explain the terminology thas waroduced at the beginning of
this paragraph.

§ 7. — Examples. The damped oscillator.

The two examples of 8 can be dealt with directly by means of the foregoing
theorems.

1. Example.— One haf\, = 0, £ = const. = 1. Due to periodicity, we taBeo be
the interior of the ellipse:

() Cf., Levi-Civita 1, pp. 336.
(*% Cf., Gibbs 1, Hertz 1, pp. 534-535, Levi-Civita 1, pp. 3392-34



Geppert — Theory of adiabatic invariants of general diffeéal systems 23

1 2 2
X =% =c,
a
such that:
J=V= J'J'dxl dx = m/a &,
B
which agrees with (2.1).

2. Example.— One has:

2%
2

Do=—-—a —, U=X1,
X

so we have the case ob®efore us. Therefore, an adiabatic invariant shoukt.eXVe
take the axix; = 0 to be the curveé that determines the end points, and then Bateebe

the right (or left) part of the ellipse:
2

that is bounded by the-axis, such that it will follow from Theorem 5 that:
J= 'led)i dx = Eicf’/z,
8 3a

which is in harmony with (2.2).

3. Example.— Finally, we would like to address the damped oscilladag to its
physical interest; the harmonic oscillator falls wittie classical example$'. Leta;
and a, denote the frequency and damping constant, resp., of thi&atos. Its motion
will then be given by the differential equations:

— =X, =—2a, % -a’ X,

(7.1) ox _ (L
dt dt

whose integrals read:
X1 =c e 2" cosy(t — 1),
(7.2)
X =—c e {a, cosy(t—t) + ysiny(t - b)},

y=a-a.

When these equations are resolved, they will read:

in which we have set:

(Y Cf., Born 1, Levi-Civita 1, pp. 345; 2, pp. 13-14. We daank Levi-Civita for the suggestion to
treat this example.
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a, %+ X,
- aretani2 Bt %

f(Xl,lea]_,az)— \/yle +(a2 X1+ Xz) e’ ¥x =c

f2 (Xl, Xo |a1, az) yarctanu— -b,

1201

such that one finds that:

%:% —%C{ 2(t—t0)+sin2y(t—to)+%/5in21/([_to)} ,

%:% 2L{Zaly(t to)+ (25— &)sin Y t—t, )+ 28,y cosP (-t })
(7.3) 5 a 1

é: )y = 7{(t—to)+z/sm2y([—to)},

%:@2: i{az(t—to)—coszy(r—tmﬁsin2y¢—to)}-

da, y 2y

The trajectory is a spiral that winds ever tighdeound the origin. We take thg
axis to be the end point of the cuehat determines the averaging interval, choose:

To=T TP S /4

2y’ 2y y

and then find the mean value (assuming Enatl):

__ac __ac(n+hr
¢11_ 2y3{a2 ﬂ(n+1)+”! @2 2}/3 )

such that the adiabatic invariant must be deterdniram the two equations (1.11), i.e.:

S—JEhzc{azﬂ(n+ 1)+y}—6—‘]DZy =0,
0a,

aJ aJ
—Oac(n+ 1) + — @y =0.
3 ay ¢ ( ) %8, y®

However, one sees directly that the integrabilandition (4.1) is not fulfilled here, since
its left-hand side assumes the value:



Geppert — Theory of adiabatic invariants of general diffeéal systems 25

aa,c
v

The left-hand side of (4.29) will yield the same value wioge observes that the
quantity:
—ﬁarctanm

u=e’

is a multiplier of the system (7.1).

There is therefore no adiabatic invariant in the absolute seinse;no quantity that
will remain invariant under aarbitrary adiabatic change &, a, . By the way, that
serves as the proof that our existence conditions (4@0hot trivial. The same thing
will be truea fortiori for T = c, since the mean value that pertains to that case abes n
even exist.

However, another question that one can pose will ileasbme remarkable results.
We ask: Can one give a functidn(a;, ay) such that an adiabatic invariant exigis an
absolutely constad? The adiabatic changesan a, will no longer be arbitrary then,
but they will be restricted by the constancyAfand such an invariant will have the
character of aelative adiabatic invariant.We will introduce two functiong (a;, az) and
A (a1, @), in place ofa, a, and observe that:

of _of da  of da, of _of da, of da,

0k 03, 0Kk aa2 oK’ 04 aa1 04 aa2 01

There is only one equation for the adiabatic invarieft(.9)]:

(7.4) 9ot 03 of, 03_4
oc 0k O0t, dk 0K

from which, the equation that relatesAarops out, by our assumption. For the sake of
simplicity, we choos@ = . k; A is then chosen in such that at least one of the mean
values in (7.4) exists — i.e., the ternt i, drops out of eithedf / dx ordf, / dk — so we

will have:

(7.5) P P

03, . 082
=0.
a26/(+aia/(

or -
a— oK az
It we establish that perhaps one should have:

d(k,A) _
d(a,, &)

then the first equation (7.5) will give the value:
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2

_ _ &
(7.6) k=1a?, A=22,
a

N

and the second one will give the transformation:

_E a3 —02_72 =2
(7.7) K_4Ina1+a2’ A=a —a =y~

In the case of (7.6), we will get the equation:

- C£+4K (1—)I2)Ga£: 0,
Jc 0K

= o[ acctd)
J=f(@c™)=flagc *

from (7.4). That will then be the invariant of the damped datr when the ratio a/ a;
remains absolutely constantn the case of (7.7), the equation:

Cos ZKDa—J—ﬂa—J= 0
ot, 0K

will then lead to the invariant:

J=f {to +i6m2/(j =f (2)° to—a),

207

which is true as such when the reduced frequemieynains constant.

I.
8 8. — Classification of then-dimensional systems.

We now turn from the arguments that were constdigh the foregoing to the
treatment oh-dimensional differential systems of type (1.1)d ave will first carry out a
classification of the problems that present thewesel An initial subdivision will come
from the fact that the averaging intervals either finite or infinitely large, so one can
use the definition (1.7) [(1.10), resp.] as a badiamely, the essential component of our
considerations will be the integrals (1.3) of thaystems that arise from solving the
single-valued relations (1.2). However, singledealness, as well as solubility, are
properties in the small that are each true for @nihgstricted interval of the variables
to, and therefore for the trajectory. However, tledirdtions of the mean that were
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established in (1.7) [(1.10), resp.] demand more; they regnowledge of the integrdi
in the large, namely, in the entire interMabr «o. As long asT is finite and thex; are
regular in that interval, that distinction is iness&nsince it corresponds to a finite piece
S of the trajectory¥ that we would like to assume to be singularity-freé eat will be

covered by a finite number of the aforementioned donafirssngle-valuedness. Along
that one-dimensional pat8 the f; are either single-valued or at most finitely multi-
valued, and one can interpr@tas a finite piece of the line of intersection oé th— 1
hypersurfaces iR, :

(8.1) fi (X1, ..., X0 @1, ...,8) =Ci i=1,..,n=-1).

Under projection onto thes(, X)) coordinate plane$ will go to a finite path segment in
thex x« -plane. We will have to consider precisely that ptageclater on, so it would be
natural for us to adapt the demand that was madetim §egard to the two-dimensional
case that the end points of the averaging intervat#reut of a fixed curve that does not
include the parameters to the new case. When back+{aoR, , that will say that the
end points o must lie on a parameter-free hypersurface:

® (X, ..., %) = 0.
We then summarize the first case as follows:

A. T is finite, and likewise S, and theadfre finitely multi-valued along S. The
endpoints of S lie on a parameter-free hypersurface.

That case then corresponds to the considerations mpatpon the whole. We shall
assume, secondly, that=c. As was pointed out above, we come to the behavitreo
fi in the large, and that is not very well-known up t® pnesent day. Our knowledge of it
is essentially restricted to the Poincaré-Carathodsurrence theorem, which is stated
as follows: If the trajectory of (1.1) lies in a connectegionG of R, of finite measure
(at least, for the values of the constants and parasnétat come under consideration),
and if one can find a multipliew that is positive iG and vanishes at most in a null set
then almost all trajectories will return arbitrartjose to each of their points infinitely
often ¢%). That is closely related to the assumption thahigcase either the trajectories
are closed, and thus periodic, or almost all trajezgofill up a certain manifoldb
densely. The integrals (1.3) that determine those tomjest then split into two
irreducible groups (possibly after being previously combined), fitg¢ of which
encompasses of them that are single-valued or finitely multi-vadualong the entire
trajectory¥:

(8.2) fa(Xe, ..., X0 |@1, ..., 80 =C) A=1,..m),

and the second of which includes the infinitely multina integrals alon@, which are
then irrelevant in practice. Equations (8.2) determina ammdimensional manifoldb

(*3 Cf., Poincaré 1, chap. 26. Carathéodory 1. Whae littht is known about the subject has been
organized by Smekal 1, pp. 179-181; Levi-Civita 1, pp. 331.
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in R,, and we will address only those systems that satisfysb-calledquasi-ergodic
hypothesis: Almost all trajectories fill up the manifdddiensely. Quasi-ergodic systems
exist (). We would like to assume th@tdefines a closed manifold Ry, .

We shall refer to the number, which defines a characteristic constant of the syste
as itsorder of imprimitivity(**). The trajectories of a primitive system thenill part of
R, densely and possess no single-valued integrals at atgrsihem the question of
adiabatic invariants will obviously make no sense. mdold imprimitive systems, one
will seek those invariants that define a relationshipvbet then constantk;, ..., ¢y and
the parameteray, ..., a,, and therefore, from a remark at the conclusio® hfconsider
only those terms in equations (1.11) that relate to thae largest valuen =n — 1 will
be assumed when all integrals of the system are fimtelti-valued. ® will then reduce
to the one-dimensional section of the hypersurfaces {8.&), toT — and thus the quasi-

ergodic hypothesis will be trivial in that case. We marize:

B. T is finite. The system has order of imprimitivity m aiid ip a closed n — m-
dimensional manifold quasi-ergodically.

We will break this up into three sub-cases:

B1. m=1, so the system is simply-imprimitive.
B2. 1<m<n-1, so the systemms-fold imprimitive.
B3. m=n - 1, so all integrald; are finitely multi-valued, andb = ¥ is one-

dimensional.

Finally, we offer as a last possibility that theteys might posses no quasi-periodicity
at all, which can be the case when singularities appegaarticular. Such systems will
not enter into our treatment, to the extent that camot proceed in the same way that
we did in cases A and B based upon one’s knowledge of thWWm.must then exclude
them from what follows.

C. Tisinfinite. The system then possesses no quasi-ergodicity.
Now that we have this classification, we will turm the problem of adiabatic
invariants.
8 9. — Problem statement for the simply-imprimitive system.
The topological assumptions in regard to the trajegahat were discussed in the
foregoing have only the one goal of converting the funatioperation that was defined

overt in (1.10) into a spatial operation that relate®tm a manner that is similar to how
we could accomplish that for two-dimensional system&i8). The true generalizations

(*® Examples are included in Cherry 1, Levi-Civita 1, pp. 328-3
(Y We will then adopt the terminology of Levi-Civita Ip. 830, while in Levi-Civita 2, it is shifted by
one unit.



Geppert — Theory of adiabatic invariants of general diffeéal systems 29

of two-dimensional systems are the simply-imprimitovees. We can ascribe all of the
remaining cases to two-dimensional or simply-imprimigsystems by reducing by means
of the known integrals.

Let the system (1.1) be simply-imprimitive, and lgtassess the finitely multi-valued
integral:
(9.1) f (X, ... X a1, ...,89) =¢,

by means of which, the closed— 1-dimensional hypersurface is characterized. For
the moment, we would like to assume that the distobutiinctionF is constant. We
would then like to arrive at a point where an averagieg, @n integration) ovep enters

in place of the definition (1.10), which is possible as sulteof the quasi-ergodic
distribution of the trajectories ovér. We must then ask only: What distribution function
must be assigned to that averaging, or rather, whheisingle-valued densitythat we
have to multiply each surface elemedt by?

x must fulfill a certain invariance property, namely, nitust be “carried by the
trajectories”; i.e., ifd®, d®; are two elements ob that emerge from each other as a
result of equations (1.1) (in the sense that when attpoifd® are assigned the value
to, d®; will represent the totality of points that belong te ttorresponding trajectories
for the value =t;) then one must have:

(92) KdD = k3 dP; .

That follows from the fact that the mean value (1.10pihbe independent &f — i.e., of
the starting elemem®.

We now show that there is essentiahly onefunction that satisfies that invariance.
If the same thing were for a different single-valuedsitgrdistributionA then « d®, A
d®d, and thereforec : A, as well, would have to be invariant under (1.1), so akterl
guantity would have to be an integral of the system (1H9wever, by assumption, it
possesses only a finitely multi-valued integral (nanf@yso we must have:

K A=W (X, ..., % a1, ..., ),

so that ratio will be constant ah. However, there is no proportionality factor for the
density, so there is essentially only one density funati¢”).

One can easily extend the € 1)-dimensional surface elemexi®, d®; into space
elementdr, dr; in R, that emerge from each other as a result of (1.1@rdar to do that,
along with the surface (9.1), we consider the hypersaiffaavith the equations:

(9.3) f (X, ... % |a1, ...,8) =c+dc.
We associate each poiatof @ with the point of®’ that lies on its normal and denote the

vectorPP’byd’n. Since we have assumed tHais closed and free of singularities, that
association will be everywhere one-to-one. Thectima cosines of the normal are:

(*® Cf., Levi-Civita 1, pp. 337t seq.
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2
1 of , 5 ( of
(9.4) _— i=1,...,n), rz = {—j ,
M1y 0% " =2 0%
and therefore, the componentsddh will be:
d’x = L d'n
M, O
On the other hand, it follows from (91.), (9.3)dg@.4) that:
zid x =l d’n=dg,
i=1 a)ﬁ
SO
(9.5) dn=3C. dx=— g
rln rln aXI

We now letd7r = d® d’ n denote the space element of the layer that liesdesn®
and®’ overd®, so as a result of equations (1.1), it will gdhe layer elemerdr; = dd;
d’ ny, since the trajectories that begin in the layer saver leave it and will fill it up
everywhere densely. It will then follow from (9 Rgt:

kdd dc= kT, dr= ki dd;dc= (Krln)l dn,
so the quantity:
(9.6) HU=KI1n
must satisfy the relation:
Mdr =y dn

i.e., in modern terminologyf  dris an integral invariant of the systefh.1). Now, one
has the easily-proved theoreff)(that if that quantity is an integral invarianeththe
factor ¢ will be a Jacobi multiplier of (1.1); i.e., theffdrential equation:

5 ou 20X,
9.7 X +uy —
61 2o ¥ 2oy

must be fulfilled, and conversely, every multipliaust give an integral invariant. It then
follows from (9.6):
U
9.8 K=—,
( ) rln

in which ¢ can mean any arbitrary single-valued (finitely taualued, resp.) multiplier
of (1.1). There is essentially only one such rpli#r 4, since the quotient of two such

(*®) Cf., Poincaré 1, pp. 4t seq.
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things will be a finitely multi-valued integral (1.1), bg assumption, it will be a function
of justf, and therefore it will be constant dn

In what follows, we will assume that there is a finitely medtited solutionu of (9.7)
and thaty does not vanish o — except for finitely-many pointsand thus, it will have
a definite sign, which we can choose to be positiwe shall see later (81) that this
assumption is equivalent to the statement: The fumetig ..., f,-; that define the
trajectory in the small shall possess no singulariileng it. The averaging (1.10) will
then be replaced by the definition (while still assuntimg F = 1):

(9.9 a= ja(xl,...,)g|al,...,ap)rﬁdib:jri ab.

If F = 1 then the finitely multi-valued distribution fuimen F (X, ..., % | &1, ..., 8y) that
is transformed by (1.3) will enter inside the imagign here such that:

a= ja(xl,...,xn|al,...,ap)F(>g,...,)g la,.. ,g)ﬂ @ j F(X,.. , x| a.. ,p?_ﬁ @ .

rln (0] 1n

With that, we shall now go into the differentiafuations (1.11) of adiabatic
invariants and consider only the differentiationattrelate tac anda, . This differential
system then reads:

(9.11) 0J 1 of Fidma_J[jFridq::o V=1, ....0),
(0]

% CDE rln a@ In

which defines the obvious generalization of (3.18Ye will investigate its integrability
conditions and its solution later.

8 10. — Problem statement fom-fold imprimitive systems.

If the system (1.1) isn-fold imprimitive, i.e., it admitsm finitely multiple-valued
integrals:
(10.1) fa(Xe, ..., X |@1, ..., 80 =Cy A=1,...m

that determine the closed— mdimensional manifoldp, then arguments that are similar
to the ones above will lead to our objective. dkasity functiork must again satisfy the
invariance property (9.2) and will then be deterediron® up to a constant factor, since
the quotient of two such densities will be a fiyitenulti-valued integral of the system,
and must then be a functibn ..., fm .

We once more extend®, d®; to space element &, and proceed from there as
follows: Along with®, we introduce the manifold’ that is defined by the equations:

(10.2) fa(Xe, ..., % |@1, ..., 89 =Cy +dc; A=1,...m
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and together witl®, it will define a layer that is filled up densely wittajectories that do
not leave it. The normals to the hypersurfaces (1&g the direction cosines:

2
(10.3) %: Z[%j (i=1,..n;2=1,..m),
0%\ =\ 0%
and they will naturally be perpendicular to any vechait is contained . We further
determinen — m more functionsy; (X¢, ..., Xa | @, ..., 8y in such a way that the
hypersurfaces:
(10.4) U (X1, .., Xn |81, ..., 89) = ¢ 6§=1,....n—m

intersect all of the surfaces (10.1) orthogonally amd@athogonal to each other — i.e.,
that:

n, du; of,
(10.5) (=1,...n—mA=1,....m),
.Z::‘ax 5>$
(106 $MMog  frk=1,..n-n
. 2 ox o R :

Such a choice of functions; is always possible. As a result of (10.5), the normal
directions of (10.4) contact the manifaidand thus define the — mdimensional tangent
manifold at a point. If we consider not only the sugfa€l10.4), but also the following
ones:

(20.7) U (X1, ..., Xn @1, ..., 89) = ¢ +dg 6§=1,....n—m,

then, from (9.5), for any pair of associated surfaces (Ehd)10.7), the normal segment
that lies between them will possess the length:

. au 2 -1/2
d'nj = {zl(a—x:j } dCJ '

By definition, the elemend® is equal to that of its tangent manifold, and as atredul
the orthogonality of thd’n, its magnitude will be, in turn, equal to:

-1/2
n-m n-m n (JuU. 2
= ==\ 0K

The intersection of then2surfaces (10.1), (10.2), (10.4), and (10.7) defines a space
elemend7 in R,. The linear independence of the functibnsy; allows one to introduce
these new quantities as new coordinateRand to then set:
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-1
(10.9) dt:dxl...dxq:{a(fl" o fily ’”*m)} dc; ... dGm dey ... denam.

0(%;--+s %)

On the other side, one infers from (10.5), (10n&):t

et - [ 2 e

2
= pery ¥ {M}
, kA = ox 0)§ 0(X,..., %)

in which:

means the square of the matrix that was just wriget. (10.9), in conjunction with
(10.8), will then give:
(10.10) dr=do Mg ... dcy

as the expression for the space element of the thgelies betwee® andd'.
(9.2) then implies that:

kdd Mg ...den=kTTmpdr=x dd;1 dg ... dGn= (K Tmp1d7,
from which, one concludes, as i®§that the quantity:
(10.11) U=Tmnk
must be a multiplier of the given system, and cosely that any multiplieys that is

finitely multi-valued on® (which will then be established up to a constantdr by that
demand) will give a valid density function:

k=t
r

The functional operation that one applies in plaic€l.10) will then read:

__ U . U
10.12 a=|aF—d®o: | F—do
(10.12) j - |

m,n ® mn

in that case, and the differential equations of @kdeabatic invariants, which will be
treated later, will be:

.~ 0J A H 0J H - -
(10.13) Z qaa,Fr dCD+aq/F£FrmndCD—0 V=1, ...,0).

i=1 C/]
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§ 11. «(n— 1)fold imprimitive systems.

The cases A and B3 of the classification i@ &ill remain to be discussed, and they
are independent of all topological assumptions and thei-gugodic hypothesis. One
knows the integral:

(11.1) fi (X1, ..., X0 @1, ...,8) =Ci i=1,..n-1)
and the identities:
& of.
(11.2) —X,=0 i=1,..,n-1)
2 o

imply the relations:

(11.3) x = (1 -
B0,y Xy Kag s X)) M

in which iz means a proportionality factor, and we have set:

CICTIRNS S WP 9 )

Since theg; are not mutually independent,must satisfy an equation that is easy to find;
namely, it is:

" 9
Za(ﬂ ) Z( 1)—

i=1

n-1 i-|

:i g O 00 T fr o)
= 0% 0% O( Xy Xogs Xearoe s Ko %oamee X)

[y

i=1l k=

3

-1

i( et 0T 0 iy g fi)
p=ier 0% 0% O( Xy Xogs Xearoe s Xgs Kogmee X)

o ﬁM:

as one will see upon switchingand| in the second sum.y will then satisfy the
differential equation:

" 9 o, 0%,
11.4 - X il
(11.4) g WX) = 25 XML

so it will then be a Jacobi multiplier of the syst€l.1). If we introduce the divergence:

(11.5) Do = %
iz 0%

then we can also put (11.4) into the form:
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(11.6) 3X, dlogp , p =0,
i=1 0x

Here, as in the foregoing paragraphs, we would l#te to pose the requirement that
L should not vanish on the trajectory (except fosgialy a finite number of points). if
were zero alon@ then, from (11.3), since we have assumed thakKtlaee each regular,

that would say that alf; would vanish alongf, and that, in turn, would say that
equations (11.2) are linearly-dependent, so perhapfation:

o . w2 of
—n=2 = a, —=« (i:]., ..e,N)
0% ; 0x

with constanta, exists. Geometrically, this says that the integuaface:
n-2
fa= D a, f, = const,
=1

of the system (1.1) is singular aloig Our assumption then demarttiat no possible

integral surface possesses the trajectories asusamdines The same argument is also
valid in the context of the foregoing paragraphsept that there it will be trum the
small.

Moreover, one infers from (1.1) and (11.3) that:

(11.7)

in whichdsdenotes the arc length element of the trajectoiryR, and one has set:

2

n n a(f,,f_)
(118) ri_ n: 312: 1 n-1 .
72 B St K )

As a result of a known identity,,-1,, coincides with the expression that emerges from
the quantityl m, that was defined in the previous paragraph winenn — 1. One can
attribute a geometric meaning to it by way of temark that:
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are the direction cosines of the tangent3to On the basis of (11.7), the averaging
process:

(11.9) a=[aF

J'F H_ ds,

n-1,n S n-1,n

enters in place of (1.7), in whichdenotes the segment of the trajectory that cooretp
to the intervalT of t (the total length of the latter foF = o, resp.). The differential
equations of the differential invariants will thexad:

20J ¢ 0J 7, 6J 7,

(11.10) — F ds+ F ds=0 wv=1, ..p0
; 6C ['iaa/ rn—l,n [j n-1,n

in this case.

8 12. — The invariants of a simply-imprimitive system.

Now that the differential equations of adiabatigariants have been presented in all
cases, we would next like to investigate their gnéility conditions and possible
solutions for simply-imprimitive systems. |f wetiaduce the notations:

U U
(12.1) g=|F--do, F2 do,
&[ rln J'aal/ rln

in analogy to (4.2), then the integrability conalits for the system (9.11) will read just as
they did in (4.3). In order to get them in an éiplform, we let 884, 6 lead us to a
gimmick.

Let a continuous function of positi@ (X1, ..., % | a1, ..., 8y be given in the interior
of ®. We then consider the integral:

(12.2) H :jG(xl, o Xalan, .., ap) dx ... dX,,

in which the integration should be extended overéhtire interior ofb, and we would
like to calculate its derivatives. In order todigH / dc, along with®, we must consider
the hypersurfaced’ that is defined by (9.3), and we have, with théations of that
equation:

H o
(12.3) o J'GdCan dc= J'Gr—dCD

In

as would follow from (9.5). By contrast, in orderascertai®wH / da, , along with®, we
introduce the surfac®” whose equation reads:

(12.4) f(X, ... % |aa, ..., av+d a,...,ay) =c,
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and whose po*intSP* we think of as arising from those & on ® by the normal
displacemend n whose direction cosines are given by (9.4), and whose@oamts
then read:

d'x = 1 idD
[ 0%

On the other hand, (12.4) gives us:

zid X=Tind n——idav

i=1 a)ﬁ aav
SO
(12.5) d*n:—i 1 da, , d*xi:—i 1
da, I}, da, I},

In the calculation 0dH / da, , one should observe that not only villvary when the,
are varied, but also the functi@in the interior of®, such that one will have:

H 3G
— = |Gddd'n:dg+|— dx-- d
. l 3 Jaav X dx
(12.6)

(el o+ a—:dg dx .

208, T,

If one compares these formulas with the integgalg, then that will suggest that one
might introduce the integral:

(12.7) V:'[F,udxl...dxq
which is extended over the interior@f Namely, from (12.3) and (12.6), one has:

oV oV JG(F,U) i .. dx

12.8 =— v =
(12.8) 9= 3o 9="% ) oa

from which, it will follow, when one appeals to (B2 and (12.6) again, that:

09, _09, _ ) of o(Fu) _of o(Fu) R
da, Oda. g |0a, Oda 03 Odg I,
(12.9)

99 +69K:_16(Fu)id¢.
da, OcC » Oda, [

K

As a result, the integrability conditions (4.3)Iwhen read explicitly:
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f e X o [ﬁ{af O(Fu) _ of a(F,u)}idq)
o I'n 0a, da, 03 0Jg I,

(12.10) +jiFid¢ind¢
a r1n ) aaﬂ r1n

K

_j qa(Fﬂ) 1 qo=o0 K A=1,...p).
aaﬂ r1n ) aak rln

With the use of the notation (9.10), we can themtdate the theorem:

Theorem 7. — The necessary and sufficient conditions for the existence of an
adiabatic invariant for a simply-imprimitive system read:

of dloguF of L«;‘)Iog,uF= of dloguF of L«;‘)Iog,uF
da, 03, da 03 da, Oa, da, 038

K

(12.11)

(KA=1,...p).

A comparison with (4.30) will show that this hastsame form as in the two-
dimensional case, and therefore one can link ih wiatements that correspond to the
ones in that case.

The assumption tha& is closed inR, makes it possible for us to establish thaidgn
the coordinates, ..., X,-1 , as well as all functions of them, as well — @rtgular,

of dlog uF

and
0a o0a

K K

parameters. If we then set:

— can be developed into multiple Fourier seriesnin- 1 real

of dlog uF .
1212) L cgthe(xy x), L9 — gt X)) (k=1 .00,

0a, 0a,
in which:

a,(:i, ’[),Kzalog,uF
0a, 0a,
mean the constant terms in the Fourier seriest%an— and FM, resp., then the
aK K

h« , j« will be functions whose mean value o¥ewanishes, and one can give (12.11) the
form:

(12.13) he b, =0y e

which can also be written as a relation betweemniEpoonstants.
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Three special cases appear with those &6f 8The developments are the same as
before, so we shall only state the result:

Case I: he (X1, ..., %) =0 k=1, ...0.

The functional operation vanishes from equations (1.8)t sallibe identical with
(1.6). f is an integral that is stationary with respect @ parameters — i.e., it is not only
an integral of the system (1.1), but also greystems:

dx _ 0X,
12.14 —=— k=1, ..p0),
( ) dt  a, ( P

for which it will be necessary that alrowed determinants in the matrix:

X, o X
oxX, 00X, k=1, ...p
0a, oa,

must vanish.
Case IlI: For a well-defined multiplier, one has:

jx (X1, ..., %) =0 k=1, ....,0),
SO

(12.15) a";ﬁ: W, (f|a ....a) «k=1,...p.
a

K

ForF =1, it will follow that 1 is a stationary multiplier; i.e., it is also sughhing for the
system (12.14). For that to be true, it is neagstat all ( + 1)-rowed determinants
must vanish in the matrix:

X, o XA,
ox, X, o, (=1,
da, da 04

That is the case for Liouville system’, (= 0), and especially Hamiltonian systems, in
particular.

Case Il Jx (X1, ..., Xq) = consth, (Xg, ..., %) k=1, ...,0

can lead back to the foregoing case, just asbin 8§
In summary, along with Theorem 4, one also hasalewing one:

Theorem 8.— Sufficient conditions for the existence of the bdtic invariants of a
simply-imprimitive system are:
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a) The stationarity of the finitely multi-valued integrals.
b) The stationarity of a multiplier with respect to the parameters urdsmple
averaging process.
8 13. — The generalized Liouville system.

(12.15) includes the particular possibility that one has:

(13.1) 6,u_F:0 «=1,...0).
0a,

We would then like to refer to such a system gereeralized Liouville system.
It follows from (12.8), on the one hand, and (9.11), orother, that the equations of
the adiabatic invariants assume the form:

9oV _0Jov_, V=1, ...0,
ocda, 0a oOcC

ie..

(13.2) J=V:'[F,udx1...d><n

is the adiabatic invariant of our system. TheoremIbtiaen be related to the following
one:

Theorem 9: — The adiabatic invariant of a simply-primitive geakzed Liouville
system:

V= jF,udxl o b A

If one is dealing with a simple averaging £ 1) then the class of systems under
consideration will include the Liouville systems, in partar, for whichdy, = 0, i =
const. For them, the invariant will reduce on theuwtd inR, that is enclosed bgp.
Once again those Hamiltonian systems that possess @wofioitely multi-valued integral
beyond the energy integral are included in that as &plart possibility, and for them,
our theorem will coincide with the statement of tBibbs-Hertz theorem'{) that the
phase volume of the energy surface is an adiabaticiamtar More generally, under
simple averaging, (13.1) will encompass the systems tihaiit s&a multiplier that is
independent of the parameters, and as we stated in Théptkay can be converted into
Liouville systems by a transformation that is free obpaeters, and therefore allowed.

We shall now prove Theorem 6. We first introduce neardinatesé, ..., & in
place of thexs, ..., Xxo, which are regular, invertible functions xf ..., X, that do not

(") Cf., Levi-Civita 1, pp. 339-342.
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include the parametems, ..., a,, so the system (1.1) will be transformed into a new
system:

0¢, 0¢,

i=H =) 2 X 1=1,..,n).

ot Z{@xK ¢ )

We demand that this transformed system should be a Ueuype, so its divergence
must vanish:

" OH; _ & 0H, 0x,
— = —_1771=0
;a : ;m 0X, 0&
or
AR R, EF S M4 N < oX axaf
13.3 — 2 X+ A
(13.3) zzax ox, 9& " 226 .zlaf o0&,

On the other hand, one has the identities:

- 0X, 04 _
6XK ;65 0¢,

/‘K!

from which, one will infer:

0% P(Sy---s 5)_( 1) 0(&y- 3615610260 )
0& 0(X,.... %) 0% s Xy Xy %)

and (13.3) will then take on the form:

% by i+ 625 6(511'"’5'—1'5411' 5) 6(51 —
X _1 [} | | =
Zl Z;;( ) 3%, 0%, (%, %1 Xorr X) 0(>£ Z

or finally:

(13.4) Z ai {XK Dg((il """ m}go

k=1

(13.5)

must be a multiplier of the system (1.1). By asstiom, the left-hand side is independent
of the parameters, and the same thing must thémuédor one of the possible multipliers
of (1.1).

Conversely, if there is a multiplier of (1.1) (wbkall call itx) that is independent of
ai, ..., 8o then one can always find a transformation ofxieato the & whose functional
determinant (13.5) is equal @ and which is free of the parameters. As a resuthe
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equations above, that will then convert the system (It one with a Liouville
character. Theorem 6 is then proved with that.

8 14. — The reduction of imprimitive systems.

We shall now turn to a treatment of the generddld imprimitive systems, so when
one uses the terminology of the classification By ghe cases A, B2, and B3, for which,
the differential systems (10.13) and (11.10) will charatetheir invariants. We then
know them independent integrals of (1.1):

(14.1) fi(Xt, ..., X0 |1, ...,8) =G, i=1,...msn-1),

which determine the closed manifaflin R, . The next thing to consider would then be
to make use of one’s knowledge of these integrals deroto lower the rank of the
original differential system, so that it will go tosamply-imprimitive or two-dimensional
system.

That leads to the following process: We take the integra

(14.2) f1, o, oo fiety Faoy ooy T
and solve them fom — 1 of thex;, ..., X, , which is always possible, due to the
independence of the latter. Let those variables, whosieec can naturally depend upon

K, be denoted by, ..., Xn1. The solution id will then imply the existence ah— 1
relations of the type:

(14.3) X =the X, ..o X @2, ...,@9C1, ooty Cer, Catty ooy Cm) (=1, ... ,m—1),

which satisfy the following equations identically:

(14.4) f2 (G -y Wi, Xy oo Xa l@a, .. @) =Ca
A=1,...,k—1Lk+1, .. m).

Since the quantities (14.2) are integrals of (1.1), thé&dundentities will follow:

%: n% = . ': _
(14.5) & er; ~ X, =X (i=1,...m-1),

J

which one must naturally write in terms of the variablgs ..., X, , and on the other
hand, a system af — m+ 1 differential equations will remain:

dx.
(14.6) d—>f[’=xj 7/ PR // SIS A ol - I -V G=m, ....,n),
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which, from our assumptions, admits a single knownteiini multi-valued integral,
namely:

(14.7) fo (Wiky ooy Wheik s Xy ooy X0) = Cx,

so it will be simply-imprimitive or two-dimensional, respthenm=n — 1.

That integral is nothing but the relation that emefge® (14.1) upon eliminating the
X1, ..., Xm1, i.€., geometrically-speaking, it represents the priojged” of the manifold
® in theR, of x¢, ..., X, onto then — m+1-dimensional coordinate spaReof thexn, ...,
X,. That illuminates the fact that this closed manifldis invariant under the choice of
index «, assuming that the variables that one solves forirethe same in that way.
According to our topological assumptior, will be covered quasi-ergodically by the
trajectories of the system (14.6) [coincide with thenthe &1, ..., X))-plane, resp.].
We will now examine this reduced system (14.6), insteadeobtiginal system (1.1), and
we will first look for the adiabatic invariants of tketer and then look for the conditions
under which they are also invariants of the originalesys

It would be convenient for that to first present somatiais that relate to the system
(14.6). All quantities can appear in out calculationswo different forms: First, as
functions of thexy, ..., %, a1, ..., &y that are free of the, ..., cm, and then as functions
ofthexy, ..., X, @1, ..., & | C1, ..., Ck-1, Cks1, ..., Cm . When they are written in the latter
form, in which they also represent the projection ddtove would like to provide them
with an asterisk. Moreover, the matrix:

(14.8) DE[%---@?(: j i=1,..m

will play a role in what we shall do. We would like tondée the determinants that
emerge from deleting rows g, r, ... and columngl, 4, ... by:

D/”,,.“

p.q,ry--

We shall next determine the divergence of (14.6); it is:

(14.9) A,(:Zn:—jz . Z

On the other hand, (14.4) implies the equations:

%%+ ot o, _al/’m_l,,( =— o
ox, 0X 0X., OX ox;

]

whose solution will yield:
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—l k-1
(14.10) %ﬂ: {z( 1)/1 afa D;K z 1y M of, D;Im}
XJ A=k+1 X|
SO
m-1 n . af n ax
1 9 1y — DI 1 LS D! —.
g S R Eev oo v o35
However, thd;, ..., f, are integrals of (1.1); i.e., one has the idesgiti
(14.11) %Xj =0 (=1,..m),
=1 0X;

and upon differentiating this with respect¢oone will find that:

n, of, 0X, wiof, 0X

92
— A ) = I/ I _
=1 0X; 0 = 0X; 0% ;axa

such that ultimately one will have:

R DI {Z 80D, -3 () ”D'}
Ak KA
D 0X )g

K i=1 j=1 =1 X A=k+1

13 = 9°f, 9*f, o, oX.
+ X ( 1)|+/1 J ( )M D| . ( 1)+/1 D + N
D, ,Z_l‘ ; =1 0% 0% ’ /l;rl axox | &

or, whenA, means the divergence of the original system:

(14.12) = Do + Zx 9logD,
0%

It is important to remark thdD, cannot vanish in this derivation, since we have
assumed the solubility of the quantities (14.2)tfex; , ..., Xm-1 . In passing, we infer
from the formula (14.2) the fact that the divergeraf the reduced system will be
identical to the original one whdby is an integral of (1.1), and in particular, we lwil
have:

Theorem 10.— If the original system has Liouville type then the same thing will be
true for the reduced system if and only ifiB®an integral of the first one.
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We are now in a position to find the multipljgf of the reduced system (14.6), whose
differential equation reads:

n 0
ijﬂgﬂ+yEAE: 0
e Xj
or
Zzaﬂ;( 6¢’.Kx a:u;( xi +:uKAK:0’

i

jml—la)(| ax, Jma)s

and with the use of (14.10) and the identity:

which follows from (14.11), that will assume the form:

m-1
S L 0K, z( 782, -3 17 Te, [+ 3 % x 4 pa=o,
= D, 0% 7= 0x; A=x+1 0% 1= 0X
or
(14.13) Zaﬂk X, + te A= 0.
i=1 6X|

In conjunction with (14.12), it will follow from tis that:

Z”:alog(#KDK)X FA=0:

i=1

e., if 4 denotes a multiplier of the original system then:

—_ 0
14.14 = Lo
(14.14) He= 5

K

will be a multiplier of the reduced system (14.6).

When we completely overlook its origin and consitldor its own sake, the system
(14.6) is a simply-imprimitiven — m+ 1-dimensional system whose right-hand side
includes the parametess, ...,a,|c1, ..., Ck-1, Ge+1, ..., Cm, and we can come to those
parameters in two different ways: First of allthkay, ..., a, were already included in
the X; then they would once more come to the fore insén@e way that did when we
performed the substitution (14.3). We would like eéxamine their appearance in the

integral f” and the multiplier . in more detail. First of all, it follows from the
identities (14.4) by differentiation with respeactd; that:



0x, 0c,
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+ afJ a¢Im—l,/(
0%ny  OC

from which, we will find by solution that:

(14.15)

ou (—1)””% when A<k
oc - : !
g (—1)'”*1% when A>«k.

K

It further follows that:

(14.16)

and

(14.17)

i}(mz m—l% oy, - (- l),(+/1+1&
oc, ‘= 0x dc, D

K

A# K

m-1
2( 7D, % when A<k

Oy _ §30u, 04, _ DK 0&
oc, 4= ox dc, L

K i=1

=J, G,A=1, ...,k=1,k+1, ..., m),

Z( 1)'”*1D' L« when A>k.
)ﬂ
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In a similar way, the differentiation of (14.4) witlespect toa, will give the

equations:

of o, , ., Of Wy, __Of,

- J

ox da, O, 03, da,

=1, ...k—Lk+1, .. mv=1 ..,0),

from which it will follow that:

(14.18)

al// - Z( 1)|+/] af/] Di]K Z ( 1)+/1 62/ Dl

0a,

K A=k+1

With that, one will have:

0a,
(14.19)

GfD:

Thof, 0y, < aDof & D, of,  of
(-D" (-1 —
S 0x 0a, 6 zl D, da, ;ﬂ D, 93, 0@

:1 da, D,

Incidentally, this, in conjunction with (14.16), iwmply the formulas:
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o, o, __ 3 of, ot

(14.20)
da, 0d3a, 4= 0a, dc,

in which the prime is intended to mean a sum that leawshe terms withl = «.
Ultimately, we have:

a/jKD z_laﬂK ale +
da, ‘T 0% 03, 087

& of) i+1+1 a,u i + a,u i a,U
14.21 -1 £D,, 1 <D, -,
( ) D, ; 0a, = Z( ) ;16@2( ) 6@

O

OH _OH, _ _ ”’0__
0a, 0a, ;

§ 15. — Existence conditions for the adiabatic invariants.

The system (14.6) with the parametays ..., a,, C1, ..., Ce-1, Ci+1, ..., Cm, and the
integral (14.7) can possess an adiabatic invarigntand according to (9.11), it will be
defined by the system of equations:

03, ¢ 0f. Lo pdo” GJDDIFD,UK do”

K D 5
oc, 2J.0C, r oc,

'k Y

(15.1)

[} [} [}
R B

'k Y

in whichl" means the analogue fdi~ of the quantityl 1, that is defined by (9.4)3” is

a function of only theas , ..., a,, €1, ..., cm. The integrals that appear here over the
projection®” can be easily converted into ones o®er One observes that from (10.10),
the space element B, will possess the magnitude:

dr=dx ... dx.= ri 4o df, df ... df,

mn

while on the other hand, from (9.5), the space etl@mfR will possess the expression:

dr’ =dxy... dx,= % do” df, ,
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from which the relations will follow:

de _ 1 do” #d_cb:ﬂ do®
r D, "’ °r “re

m,n m,n

(15.2)

[cf., (14.14)]. By projecting onto the manifotd, we can then give equations (15.1) the
form:

[} [}
e O g to yop s KDjF Fo qo=0, A=1... k-1k+1,.. m)
Jgc, g.0c I, g o Mo,
(15.3)
[} [}
9J, Djaf Fto dCD+a‘]KD FH qo=0 @=1...,0).
Jgc, g.0c I, 03 o I,

We introduced the reduced system in order to make itlpedsr us to calculate the
adiabatic invariants of the original system (1.1). Wareninclined to sag priori that
any adiabatic invariant of the reduced system would alsmlzdiabatic invariant of the
original system. However, we will see that this is not the ¢asiace certain conditions
must be fulfilled, moreover. Our question then readseik a solution of (15.3) also a

solution of (10.13)? Since one naturally ha3’/oc # 0, the elimination of the
derivatives ofJ” from (15.3) and (10.13) will give the conditions:

O
of, of, EHo 4o
:1 ° GCA rmyn 66\, an

(15.4)

of, K H
+ F2 dd F=2dd =0 v=1 .0,
o {66\, 6%} r 1

m,n ® mn

which will take on the simple form:

DA%—E% = =
(15.5) Zi( ){Dkaav D, aav} 0 (v=1,..p0

by means of (10.12), (14.16), and (14.19).

Theorem 11.— The necessary and sufficient conditions for an laalig invariant of
the reduced system to also be an adiabatic invaéthe original system read:

m D, of, D, of
B ) P P Rk’ e’ i B G~ o =1, ...,0).
;( ){DK da, D, 6%} v &
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For example, (15.5) is fulfilled when some of thare (in the terminology of §2)
stationary integrals, and the extend®d/ D, are constant o, and therefore functions
of f1, ...,fm. The case in whicdll of theof,/oa, (1 =1, ....m v=1, ...,p) are constant
on®, so all known integrals will be stationary withpest to the parameters, is trivial, so
the mean in (10.13) [(1.8), resp.] will vanishwill become theordinary invariant of
(1.6), and there will exist no analogue of the reductiamdimns (15.5) for it. Another
possibility for the fulfilment of (15.5) is that:

(15.6) %:w(fl, ool ..., a) A=1, .. k=1 k+1,..m;

K

this can also be interpreted. Namely, if one emptbgsfollowing integrald;, ..., f -1,
fis1, ..., fm for the reduction, instead of (14.2), and if those integrah be solved for the
same variables, ..., Xn-1 then, from (14.14) and (15.6), the multipliers(A = 1, ...,m)
of all mreduced systems will be identical to each other, upfactar that is constant on
®. In particular, from (14.13), this will happevhen the divergenc#, is the same for
all m reduced systems.

If (15.5) is fulfilled then we know that the adiabatigariants of the reduced systems
will also be adiabatic invariants of the original oaad we therefore need only to write
the existence conditions for the first one — i.eg, itltegrability conditions of (15.1). We
then appeal to Theorem 7 and obtain three groups of eoslit

@ of, dloguF~ _of, ologu/F” _of, dloguF~ _of, 0logyF"
da, 0a, 03, 03, dg, 03 03 0@
v, u=1,...,p),
(b) of, dlogu F~ _of  dloguF" _of dlogu F~_of,’ dlogu F"
(15.7) dc, 0a, dc, 0a dg 06 dag 0d¢
(A=1...k-1k+1,..m)
© of, dlogu F~ _of, dloguF" _of, dlogu F"_of, dloguF"
oc, ac, oc, a¢ 0¢ 0G d¢ 0¢
(,A=1... k—1k+1,..m)

in which, from the foregoing remarks, we can think of tlemmas being taken ov@ in

the sense of (10.12). By means of (14.16) to (14.20) and (it5c&) be brought into a
generally less obvious form in which the appearance of tdreed quantities will be
avoided. Iftheip(p—1) + m—1)p+ 3 (M- 1)(m - 2) conditions (15.7) are fulfilled,

as well asp equations (15.5) then we will know from the foregoingt tiiee reduced
system (14.6) possesses an adiabatic invariant and ihadtithe same time, an adiabatic
invariant of the original system. The totality of thesonditions is stronger than the
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integrability conditions of (10.13), which have a very ctiogted formin extenso(*®),

but offer the advantage of being clearer to deal with.
Two special cases in which the relations (15.7) arsfeastiare worthy of note:

0 0 [}
a'ggﬂk SA (0 o 10 ay ey, SO9AF
o} 0a,

J

=B, (f", ..., f &, ...,a)

(1

=1, ...k—Lk+1, .. mv=1, ..,0),
i.e., the left-hand sides are constantibn

0 O
ng SA(F5, . 0 e, ey O
c %,

J

=B, (f", ..., ., &, ..., 3.

(1)

The case of the proportionality of the left-hand site@), (I1) can be reduced to the two
possibilities that were just mentioned, as 28

Case. I. If F =1 theny, will be a stationary multiplier of the system (14.6hen
one uses the previous terminology. IfAlE 0 then one will have:

alog,uKDFD:

15.8
(15.8) %

0 (=1,...k—1,k+1, ..,m),

and from (14.17), if an equation that is similar to the tha¢ is also true fog, F"is true
then that will say that:

(15.9) 9K F

=0 =1, ... m-1
o a m-1)

must be true. (14.21) will then further give:

op F_op F

v=1, ...,
2a, oa, ( o)
such that one must have:
(15.10) 99K F g ¢, .. ) V=1, ...0
da,
If one also has that &, = 0 then one will have:
(15.11) 9F _y V=1, ...0,
0da,

(*® In regard to this, it should be mentioned that Fermiodgkt to present those conditions for
Hamiltonian systems. He proved their existence onaniexample.
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and in conjunction with (15.9), that will say thibé quantities:

e
KF—_F
H D

K

cannot depend upomnX..., Xm-1, &, ..., & . In the previous terminology, the system
(14.6) will be of generalized Liouville type. One mustl stdd the reduction condition

(15.5). If it has the special form (15.6) then all pdssiteduced systems will have
generalized Liouville type (whelD, # 0).

Case Il. - f” is a stationary integral of the differential syssei4.6), and from
equations (15.1), the functional operation will vanish. sTéase will come up, in
particular, when allA,, B, vanish; i.e., from (14.16) and (14.20), when:

(15.12) D,=0 Azk=1,...,m
and

O
(15.13) %:%z 0 v=1 ..,0;

i.e., when { depends upon eitheg,X.., Xm1 O &, ..., 8. Due to (15.12), the reduction
conditions (15.5) will be satisfied identically then.

If the aforementioned possibility of the simultaneeasdity of (15.9) and (15.11)
arises then Theorem 9 will give us the adiabatic inussiaf the reduced system directly
and therefore those of the original one:

0
J=J"= I,UEFDdxﬂ...d)gzj%FDdxn...d)g1
fo fo

K
K K

(15.14)

It is possible, at best, to calculateraltifferent invariants that couple tleg ..., ¢ with
theay, ..., 8, by performing them existing reductions in that way. Namely, that will be
the casewhen all reduced systems have generalized Liouwie with essentially
different multipliers. In cases A and B3, the classification & & applied in accordance
with Theorem 5. We summarize:

Theorem 12. — Other than the necessary reduction conditid’.15), there are
sufficient conditions for the existence of an adtabinvariant of an m-fold imprimitive
system:

a) Thatﬁ or
D

K
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b) fe

does not depend upom X.., Xm-1, &, ..., 8. In the first case:

_ (MF
J= [ gx .4
L D O %

will be an adiabatic invariant.

This theorem admits many applications; we would likenention only one special
case:

Theorem 13.—If the original system, like all m reduced systehas Liouville type,
and D, # 0 (k= 1, ...,m) then the spatial volume of the projection:

J= J'dxﬂ...d%
bee

will be adiabatically invariant under simple averiag.
All . will then be constant of?, and the same thing will be true fag, and then for
D«, and (15.5) will be fulfilled identically.
§ 16. — An example.

As an example that will illustrate the foregoing theave would like to treat planar
elliptical oscillations by means of the system:

dx dx, dx
16.1 —=ay Xo— , —== — X1, —ZarXg—axXs.
( ) at ) Xo —a3 X3 at as X3 1 X1 at I X1 —a2 X2

The system admits the two integrals:
fi=Exi+X +x3 =01, f=axX+aX+axX=c,

so we find ourselves in case B3. We take the simplenfieal andT = . There are
two paths that we can pursue in order to calculate tlabatic invariants:

1. The direct method in ® with the use of thg as functions of —t,, and

2. The process of 85 by means of reducing to a two-dimensional coordinate plane.

First path: If one sets:

W=aga+tapataa, K-oh-aaaza,
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to abbreviate, then the integration of (16.1) will give télations:

x1:%ﬁ{azcosh(t—to)+hsinh(t—to)}+ azr?;ci,
o= =K o cosh(t—to) - hsinh (-t} + 258
hz,/a1+a2 h?

X3=—h—12k a +a, cosh (t —to) +%.

In the notation of (1.5), one will then have:

$11=012=¢013=0

P,y = &%%q+ﬁ@+®} 9= &q%q+ﬁq+@

2h* 2h*

D= &q%q+ﬁq+%

2h*

The system of equations (1.11) must be constructed vathdahd one easily verifies that
its two integrals will read:

k2
(16.2) Ji=¢y, b= F

Second path: First of all, from Theorentijs an adiabatic invariant, so:
Ji=¢c.
In order to reduce, we empldy; i.e., we set:
X1 = ¢ho=C—X—X3,

such that (16.1) will reduce to the following system:

d
d)% X+ (u+ag) Xs—aic,

(16.3)

d
T)%=—(a1+ae,) Xop—&y Xg+a1Cp,

with the integral:
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(16.4) O =fl=(@+a) C+(@+ta) X —a ¢
—2a;C (X +X3) +6|1Cf -c=0.

If a1, ap, ag are positive then the trajectoryRa will be the intersection of the ellipsofig
with the fixed pland; , and therefore an ellipse&b’ is its projection onto the, xs-plane,
and thus another ellipse. The reduced system (16.3), likaxitheal one (16.1), has zero
divergence, so:

Ho = p = 1.

Due to the fact thadf; / 0a, = 0, the reduction condition (15.5) is fulfilled, and likees
the integrability conditions, from Theorem 12. The inamriis the area of the ellipge,
which is calculated to be:
k2
vJ2 = ITF

By contrast, the reduction by meandoéannot be applied.
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