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 1. – One knows that it is not possible to carry out the reductions of the equations of motion of 

an incompressible viscous fluid that is not moving slowly in the general case by considering the 

velocity field at an instant (1). 

 It seems interesting to see whether such a principle can be obtained, not by imagining the fluid 

at one instant, but by following a certain mass  in its motion. 

 Having defined a set  of virtual motions of  between two instants t0 and t1, one will be 

tempted to construct a function  that is defined on  and is such that 
1

0

t

t
dt  is stationary for any 

element of  that verifies the indefinite equations of motion. 

 One likewise shows along that path that one will arrive at a negative result for the general case, 

at least if one is limited to a certain class of functions . 

 Furthermore, the method that is followed will lead us to express the Navier equations for a 

viscous incompressible fluid in terms of the Lagrange variables and point to a rapid method for 

obtaining those equations. 

 

 

 2. – Let a real motion of a mass  of the fluid between the moments t0 and t1 correspond to 

certain initial conditions and limits, and let it be under the action of external forces that depend 

upon a potential. Let t denote the domain that is occupied at the instant t, let t be its boundary 

(one can suppress the index t), while 0 and 0 denote 
0t
 and 

0t
 . In particular,  might or might 

not be the wall of a deformable vessel with a constant volume that contains the fluid. Suppose that 

the motion of  is given. Consider the set of virtual motions of  between t0 and t1 that are: 

 

 1. Compatible with the incompressibility condition. 

 

 
 (1) See H. VILLAT, Leçons sur les fluides visqueux, pp. 103.  



Gerber – Variational principle for a viscous, incompressible fluid.  2 

 

 2. Continuous, and if  is a wall that bounds the fluid then they will adhere to that wall. 

 

 3. Such that the positions and velocities of the fluid elements t0 and t1 are the same as they 

would be in the real motion. 

 

 More precisely, when space is referred to rectangular axes Ox1x2x3,  will be composed of 

continuous vectorial functions: 

 

(1)   OM = f (P, t) (P (a1, a2, a3)  0 + 0 ; M (x1, x2, x3)   +  ; t  [t0, t1]) 

 

that satisfy: 

 a)       1 2 3

1 2 3

( , , )

( , , )

D x x x

D a a a
 = 1 . 

 

(1) b) f reduces to a given function of P and t for: 

 

P  0 . 

 

 c) f and f / t reduce to given functions of P for t = t0 and t = t1 . 

 

 Let V (u1, u2, u3) denote the vector f / t. The xi are the Euler variables, and the ai are the 

Lagrange variables. 

 

 

 3. – By analogy with Hamilton’s principle, one lets  +  enter in place of , in which: 

 

 = 
0

21
02

V d   

( = density, which is a constant), and: 

 = 
0

1
02

U d   

 

(U is a given function of M that is a potential for the external force). 

 One knows the role that is played in the case of slow motions by the dissipation function  

that is defined in terms of Euler variables by: 

 

(3)   (V) = 

22

1
2

ji i

i i ji j i

uu u

x x x

   
+ +         

  . 
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 The integral 2 d    (in which  is the coefficient of viscosity) represents the heat that is 

dissipated per unit time and at the instant t by the effect of viscosity. One introduces the quantity: 

 

(4)  Q (t) = 
1

0

2
t

t
dt d     

 

into , which represents the heat that is dissipated in the mass  between t0 and t1, and which is 

homogeneous in the expression  + . 

 Finally, since the functions xi (a1, a2, a3, t) are coupled by (2.a), one can introduce the 

expression  into  by means of a multiplier  that is an undetermined function of the xi. 

 One will then take  to have the form: 

 

(5)   = ( )1

0 0
0

t

t
Q d dt  + + +    

 

( is a numerical factor) or: 

 

(6)   = ( )1 1

0 0 9

21
0 2

2
t t

t t
d dt V U dt     + +   . 

 

 

 4. – The function  that is defined by (3) in terms of Euler variables is supposed to be expressed 

in terms of Lagrange variables in that formula (6). In order to make that change of variables, one 

remarks that if g is a function of the xi or the ai [which are coupled by (1)] then one will have: 

 

1

g

x




= 2 3

1 2 3

( , , )

( , , )

D g x x

D x x x
 = 2 3

1 2 3

( , , )

( , , )

D g x x

D a a a
  (by virtue of the fact that 1 2 3

1 2 3

( , , )

( , , )

D x x x

D a a a
= 1), 

 

and the expressions that are obtained for: 

 

2

g

x




 and 

3

g

x




 

by circular permutation. 

 Hence: 

(7)    = 2 2 2 2 2 21
1 2 3 1 2 32

( )A A A B B B+ + + + + , 

with: 

  A1 = 1

1

u

x




 = 1 2 3

1 2 3

( / , , )

( , , )

D x t x x

D a a a

 
, 
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(8) 

B1 = 32

2 3

uu

x x


+

 
 = 1 3 31 2 2

1 2 3 1 2 3

( , / , )( , , / )

( , , ) ( , , )

D x x t xD x x x t

D a a a D a a a

  
+ , 

 

and the analogous expression for A2, B2, A3, B3 that are obtained by permutation. 

 Formulas (7) and (8) show that  is presented in terms of Lagrange variables as a function of 

the i

j

x

a




 and the 

2

i

j

x

t a



 
. It will then introduce the following expressions into the calculation of the 

variation: 

Xi = 
j j i

j

a x

a

 

  
    

 , Yi = 
2

j j i

j

a x

t a

 

  
     

 . 

 

 Let us make the calculation of Y1 explicit. We have: 

 

2

i

j

x

t a



 
     

 = 2 3 1 31 2
1 2 3

2 3 2 3 2 3

( , ) ( , )( , )
2

( , ) ( , ) ( , )

D x x D x xD x x
A B B

D a a D a a D a a
+ − , 

 

and the two equalities that are deduced from them by circular permutations of the ai on both sides. 

 One will then find that: 

 

Y1 = 1 2 3 3 1 32 1 2

1 2 3 1 2 3 1 2 3

( , , ) ( , , )( , , )
2

( , , ) ( , , ) ( , , )

D x x x D B x xD B x x

D a a a D a a a D a a a
+ −  

  = 31 2

1 3 2

2
BA B

x x x

 
+ +

  
, 

 

or when one recalls (8) and the i

i

u

x




  that translate the incompressibility condition: 

 

(10) Y1 = u1 

 

(viz., the Laplacian with respect to the xi). 

 One can likewise say that: 

 

(11) Yi = ui . 

 

 The calculation of the Xi presents no difficulty, but it leads to some very lengthy expressions. 

For example, without specifying the Jacobian explicitly: 
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(12) X1 = 2 3 1 3 3 11 2 1 2 2 2

1 2 1 2 1 2 1 3 1 3 1 2

( , ) ( , ) ( , )( , ) ( , ) ( , )
2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

D A u D B u D B uD A u D B u D B u

D x x D x x D x x D x x D x x D x x
+ + + + + . 

 

 

 5. – We now pass on to the calculation of the variation   that is due to a variation  f (x1, 

x2, x3). That variation  f verifies the boundary conditions: 

 

(13)   f  0    and f
t





  0 for t = t0 and t = t1 ;  f  0 for P  0 . 

 

If  is given by (5) then one will have: 

 

(14)     
1

0 0
0

t
i i

i i
t

i i i

x x U
d dt x x

t t x x


     

     
+ +  

    
   

  + 
1

0

2

2
2

t
i i

t
j j ji i

j j

x x
dt

a t ax x

a t a

   

 
 

       
+                                   

 , 

 

or after some integrations by parts and taking the relations (13) into account: 

 

(15)      
1

0 0 0

2

0 2
2 2

t t
i i

i i i i
t t

i i i

x YU
d dt Y x X x dt

t x x t


       

      
− + + + + − +    

       
   . 

 

Upon recalling the expression (11) for Yi in terms of Euler variables, one will confirm that when 

one makes  = − p,  = 1/2, the first parenthesis will represent the component along Oxi of the left-

hand side of the indefinite equation of motion of a viscous, incompressible fluid: 

 

−   + grad ( U – p) +  V = 0 . 

 

 Thus, for an element of  that verifies the indefinite equation of motion,   will reduce to: 

 

(16)    
1

0 0 0
0

t t
i

i i
t t

i

Y
d dt X x dt

t
  

 
− + 

 
   , 

 

in which the variations xi are annulled for P  0, and for t = t0 or t = t1 and are coupled by: 
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(17) 1 2 3

1 2 3

( , , )

( , , )

D x x x

D a a a
  = i

i i

x
x





   0 . 

 

 When one takes that relation (17) into account, along with the expressions (11) and (12) for 

the Xi and Yi, one can see that the form (16) for   shows that it must not be zero in the general 

case. 

 Therefore, one verifies that   is not annulled in the following example: the real, non-

permanent, planar motions with rectilinear trajectories that are given by: 

 

(18) u1 = 2x t
e

+ , u2 = 0    or x1 = 2 2

1

a t a
a e e

+
+ − , x2 = a2 . 

 

(The indefinite equations of motion are satisfied if  =  and p −  U = constant.) 

 Suppose that 0 is defined by: 0  a1  1, 0  a2  1, t0 = 0 and t1 = 1. 

 Take the variation  f (x1, x2), with: 

 

(19) x1 = 
2

1

1 2

( , )
(1 )

( , )

D x
t t

D a a


− , x2 = − 

2

2

1 2

( , )
(1 )

( , )

D x
t t

D a a


− , 

with 

 = a1 a2 (1 – a1) (1 – a2) , 

which satisfies (13) and (17). 

 When one takes the form of the ui into account, the only term that will enter into the integral 

(16) is − 1
1

Y
x

t





 = − 1

1

u
x

t






, and one is assured that this integral is non-zero. 

 Finally, one can annul   for only certain special motions. For example, if the Xi and 1Y

t




are 

identically zero, which will be the case for Poiseuille motion, then: 

 

u1  u1 (x1, x2) , u2  u3  0 . 

 

___________ 

 

 


