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1. On the propagation of light in the theory of relativity.

By W. Gordon

Translation by D. H. Delphenich

In the first part of the work it will be shown thatet influence of matter on
electromagnetic phenomena is equivalent to the inflaeof a gravitational field with
potentialsk u, u, (k is the Fresnel transmission coefficieny, is the four-velocity).
Through this reduction to the vacuum, one immediately nbtdie principle of least
action and thus, in particular, the energy tensor oétbetromagnetic field in ponderable
bodies. On thus arrives at the tensor that was pesédy M. Abraham.

In the second part, the wave equations that are \aliarbitrary linear tensors will be
derived. Additional terms appear in the expressionsdbate from the special theory
(which, by the equivalence principle, will be valid in tii@us” gravitational fields that
arise from transformations), and which include the utregted and contracted curvature
tensors. Nevertheless, these expressions obeyléseofucalculation that one uses in the
special theory.

As will be shown in the third part, the field, the fgaatential, and the six-potential
(Hertz tensor) will therefore satisfy the generalinexve equation. The advantage of the
six-potential is the fact that it satisfies no extoaditions beyond the wave equation. It
has precisely the same relationship with the six-p@tor that the four-potential does
with the four-current.

In the fourth part, the assumptions under which onespaxak of light rays in the
context of geometrical optics will be specified. Therl lines of the rays are the null
geodetic lines in a gravitational field that includes thetbaeis actually present, as well
as the one that corresponds to the four-velocity ofrtater.

1.
Transformation of the electromagnetic equations.The equations of the
electromagnetic field, which define the foundations far $tudy of the propagation of
light, will ordinarily be written as:

oF, , 6Fk| LR,

(1) ax' X 6)&220'
(2) [a k(fH')-
(3) H=¢F,

(4) U Fa + ucFi +u Fie = 1 (U Hig + ucHi + u Hig)
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(5) s+u (Su)=0oF,
in which we have set:
(6) Fi=Fu U, Hi=H U,

to abbreviate.U' is the four-velocity of matter:

. dX
(7) U =———,
\J-ds
such that:
(8) gikUiUk:UiUi:—l.

(The line element has one positive and three negatimerdiions.) The meaning of the
remaining quantities is well-known. To these equationeg anust add the
inhomogeneous Einstein gravitational equations, in whichstlm of the elastic and
electromagnetic energy tensors is used. We will tigdatter equations later on.
Equations (3) and (4) collectively represent six mutuatiependent equations; they
thus express the fact that in a rest system (andofonal values o) one hasO = ¢ ¢,

B =u$H . We would like to solve them for thdy . Multiplication of (4) byui yields,
when one observes (3), (6), and (8):

“Fu+twF —u Fc=g(Ha+uH—u Hy)
=u{-Ha+ewFR—-uF)}
or.

9 UHk =Fi+ (-1 Fe—w F) .

Conversely, (3) and (4) also follow from (9). We charéfore replace (3) and (4)
with (9).

The four-velocity does not appear in the differentiplagions (1) and (2). We would
like to write the equations in such a way that the grawitat field will also be banished
to the additional equations. We replace (1) and (2) with:

oF, oF, OF
1! ik + I§I + i — 0 ,
(1) X oxXx oX
. 06" i
(2) oxX -°

and also make the substitution:

(10) o* = JgH*, s'=gs
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in the remaining terms. The electromagnetic fieldthiss characterized by:
(11) Fik , 9"

in which Fy is a linear tensor ang* is a linear tensor density. The gravitational field
is characterized by:

(12) Jik »

the electrical state of the matter by:

(13) & U, T 5,

in which &, 1, o are scalars and is a vector density. The mechanical state of thieema
is characterized by mechanical constants and the fusction

(14) X =X (ay, &y, as, 1),

that represent the world lines of the material pointsi¢h are distinguished from each

other by way ofa;, ay, as, while 7 gives the distance along the world line). Only the
derivatives of these functions appear in the electritraechanical equations. The four-
velocity is a combination of the defining objects (12) €i%):

ox
(15) u = oz .
[, o ox
" or ar
For the transformation so performed and the developthahtesults from it, it is crucial

that in the “dielectric” equation (9), which is definitifer the propagation of light in
transparent bodies, the quantities (12) and (15) appeaimathiy relation:

(16) P=g“—(eu—-1u .
In order to show this, we next write (9) in contrnaaat form:

9) UH =F*+ (eu—1) ( F* = F) .

ik .
From (10), the left-hand side—'Llls\/ﬁ_—; the first term on the right ig" ¢ Fis .
g

Furthermore, from (6), we have:

! In the terminology of H. Weyl, Raum, Zeit, Materié" ed., pp. 51 and 98.
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Fk — gks = ur - _ gks Fre ur , Fi — gir Fre us ,
such that we obtain for the right-hand side of:(9

Frs{ gil’ ng_ (glj_ l)(ul ur ng_I_ uk uS gil’)}.

If we now add the termg(u — 1Y’ u u“u" U, which vanishes due to the anti-symmetry of
Fic , inside the curly brackets then this bracket will beedgh — (s - 1) U' U) (g -

(e 11— 1) U W) or, according to (16) °. We can therefore put'jdnto the form:
(17) u9* =g y ¥°Fs.

Moreover, we introduce the quantitigs that are reciprocal to thg, and which are
uniquely determined by the requirement tfag = dx by way of:

1
(18) Wk = Oik +[1——j Ui Ux.
el

By analogy withg the negative determinant gf will be denoted by: The ratioy/ gis

an invariant (under transformation, the numerator andmerator are both multiplied by
the square of the functional determinant). We may thge bur calculations on the case
U; = W = g = 0 and obtain:

01  Ou 1
— =l e :—g—[l——jgg44u4u4,

1
O 944'*{1_5}[-]4“4

if — g " is the sub-determinant of the element (4, 4) endbterminant. From (8), one
hasg** us us = - 1. Thus:

(19) y="2
U

and therefore we obtain (17) in the form:
i € j
(20) f)k:\/gx/l_/ly J}SFrs,

from which our assertion is proved.
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We will therefore have to introduce, in place of tme elementds with the
coefficientsgk , a new line elemerdo with the coefficientsy that are given by (18).
We would like to identify indices that relate to thisméne element by parentheses.
(Only we will write g"®, gy , resp., where we have writtgh, i , resp., up to now.)
The defining objects (11) (13), (14) naturally remain unééedy this transformation,
and we have:

(21) Fiw =Fik, 90 =gk 0=y

We will therefore omit the parentheses for these tities1 The tensorsl”®, s¥ that are
associated with the densitigd®®, sV by (18) become, from the model of (10), and due

to (19):

_ (i)(k) ik : - -
@2) o =22 ﬁf@ﬁ _j@n, =l

By our definitions, the expressiofi ) Fis that appears in (20) can obviously be

written FO®, andﬁ— is HO® . (20) then takes on the symmetric form:
14

(23) Je FO® = \/; HO®

or, when one goes over to the covariant componelatisveeto the metrig :
(23) J# oo =€ Hoo -

If one replacesi®® in (23) with,/gu H* then one obtains the equatiBi® = 1 H* , and
equating this with (9 shows that the transformation formula:

(24) FOW = F* + (gu- 1)U F*-uF) .
is valid for F’® | (3) and (4) go into each other when one exchaagesl iz with their

reciprocal values and likewide with H . Under this exchange, equation (9), which is
equivalent to (3) and (4), becomes:

i: Hi + (i—lj (Ui Hyx — Uk Hi) .
M &u

If one equates this with (23 in which one observes that from (21), one Rag) = Fi,
then one obtains the transformation formula:
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(25) Haw :\/a|:Hik —(1—$j (U H, —uH, )}

for H(i)(k) .
For the line elemertowe generally find, from (18), that:

do?® = g, dx dX +(1—ij( y d¥’
U

(26)

- ¢ +(1—ij (Y d%2.
el

ds

For the world direction of matter, one = u'v/-ds? , and thus, due to (&d* = "

One thus has:

i dx i
(27) U():W:U@.

The covariant componentig) = i u” become, when one again considers (8):

u
(28) Ug) =,

Jeu

From (2%) and (27), we have:

(29) Fo = Fow uY = Fu e =Fi Jeu,

and, from (16):

(30) FO =y Fg = @ - (gu— DU U) FeJau=F Jeu,
so one ha§; U = 0. In a completely analogous way, one recagnihat:
(31) HY=H,  Hg=H.

We are now in a position to also write Ohm’s lay {& the new line element. The
contravariant components of the left-hand sidebpife, from (22, (27), and (28) equal

to%(s“) + uV(ug s¥)), and, from (30), the contravariant form of tlight-hand side
&1l

oF

Jeu

is . Thus:
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(32) O+ u(i)(u(k) ) = gF0 |
or, written covariantly(relative tgy):
(32) s0 + Up(u¥ ) = o Fgy -

For thes; that appear, one obtains, from (18) and)22

(33) s0= 4 & = o {s (%%J y(u $’}'

In summary, we can therefore state the followingtém:
If one transforms the gravitational fieldcgnto yi by means of the transformation
formula:

1
Mk = Ok ‘{1——} U Uk,
EU

i.e., if one constructs the components of the differential equatidhe fifndamental field
quantities k& , $*, s' relative to this metricthen the additional equations assume the

form:

Je Fow = Vi How, si) + Ug(u® sp) = o F .

The four-velocity drops out of the dielectric equation, whereas Olawsretains its
form.

For non-conducting(o = 0), uncharged(u* sc = 0), homogeneouss, i constant
media the differential equations for the field F are identical with ¢hot the pure
vacuum with a gravitational fielgk .

In the latter case, we can give our theorem theuviatig two physical interpretations:

1. Electromagnetic phenomena in ponderable bodidb@same as in a vacuum that

is governed by a field with the potentiaE —ij U Uc in addition to the existing
EH

gravitational field. In the special theory, by restointto quantities of first order:

1 )\v 1
Yap=1, Voo = — (1——j—” Yaa = ——,
U

and the line elemento becomes:

2
(34) dd? = dx, dx¥ - 2(1—ij Vo ¥ dt— S di2 |

0, 0,
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The velocity of light in a given direction will be det@ned (as we will show in part
four) by dd® = 0. If the light velocity and the velocity of thedy are parallel to each
other then the well-known formula:

(35) %:L{l_ijv,

dt /ey u

follows from (34), or, to the same degree of precision:

(35) —=

(385) can thus be interpreted by saying that light pggpes as if it were in a medium with
an index of refraction/gu —(s,u—l)x. Our interpretation of the transformation theorem
C

is a generalization of this interpretation. We daas it were, a “rest transformation”
before us.

In pre-relativistic physics, the te(m—ijv in (35) was spoken of as the “dragging
el
of the ether.” We can give our theorem an analegoterpretation.

2. We decompose the world displacemet into the co-moving componeiP
that is parallel to the four-velocity:

@) 1 _
36 -|1-—— |U' u dX,
o o
P, Q and the ether componeQ:
Pr P . 1 i
dé =dX + | 1-—— |u u dX.
Jeu
P
For the distanc®' Q relative tothe actual existing metric
Fig. 1 this yields:

g A€ d& = gy dX dX + (l—ij (u; dX)?.

Jeu

Hence, from (26), it is equal to the dista@ according to the metrigik . If PQis a
light ray in the body then one hds? = 0, from which it follows thagy d& d& =0, i.e.,
P'Q is a light ray in vacuo (for the actually existiggavitational fieldgik). The two differ
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by the co-moving term (36). L& be the orthogonal projection §fin the directioru,

such that PP :(1—ij PP;. The analogues in the Hertzian theory were the

T

decompositiorPP;, P1Q, which would correspond to an infinitely large wam velocity
of light in the rest system (in whidh andQ are equal), which is entirely consistent with
the Galileian principle of relativity that this gy was founded on. One can thus think

of the facto{l—ij as the “relativistic” drag coefficient)

NET

From the comparison with the vacuum field equatjeve can immediately derive the
principle of least actiorand thus, from the results of the general thedmglativity, the
energy tensor. We omit Ohm'’s law and regard as a property that is inherent to the

material, likee and i [cf., (13)]. From now on, we then have the addiél equation
(20), which we can also write as:

(20) H :\/E\/J_, O
U

from the postulates that we encountered. (20))(26sp.) differs from the additional
equation to (9 and (2) that occurs in vacuo for the gravitational figidonly by the fact

that the factoy i\/;_/ stands in place Qf;_/ Thus, by this substitution we obtain, with no
u

further assumptions, the electrical action den&fty of the action principle for the
vacuum (given the gravitational fiejgl):

(37) W9 =g, [LdS=0, @dS=dxt dx’ dxC dx,
(38) L = 3 yF FO0 ~s'g,,
in which the four-potentiad; is connected with the field by the equation:

=99 _99,
(39) v

The electrical action density in the absence otenad:

(40) o=t \/% SR g

! The first interpretation is: if one would like to equisite circumstances for moving bodies with those at
rest, which is obviously appropriate to the spirit efativity theory, then, instead of the ether being
associated with a property of matter, namely, a velpdty the contrary, matter is associated with a
gravitational field, hence, a property of the ether.
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or, from (20):

(40) LO = 1F_§"-s'g,
if only the four-potential is to be varied (which we imiled by the use of the notatioy).
These v?riations shall vanish at the boundary of themexyer which the integral in (37)
is taken.’)

In order to obtain the equations for the materialhaee add the mechanical action
W™ to the electrical on#?. Only the functions (14) are to be varied in theatinal
equation:

(41) I WO+ g, W™ =0 |

(This is intended by the notatiak,, and we letd, = 0 on the boundary.) Thus the four-
velocity (15) experiences the local change:

_ i i _ 0
(42) ou - OoX u —a—uau + qu,m u+1 Uﬁ

T o o oy Utilgy dtox

(Naturally, this quantity is a vector. In order foatho also be the case in the present
representation, one must only replace the ordinary demsatwith the covariant
derivatives, which will be clarified in part twd).) The deformation of the material,
which is characterized bgk', will also carry along with it the electrical corplescthat
are included in it. One easily obtains the variafjpaf £ and i (bound electrons) and

(free electrons) that is induced by the variat®h from the transformation character of
these quantitiess( i/ are scalars;' is a contravariant tensor density):

o€ __ou

(43)% o E= ——OX, On U= ox' .
ox' ox'
Y . s
44 55=599% _ 9 (iswy=2 (5% -o%4)-22 5%
(44) n® =8 o o G OX) T (0%s )%

1) The principle (37), (4Dhas been presented by E. Henschke, Berlin diss. 1912.d APhys42, pp.
887, 1913.

2) Onehasg,U=uD, K —& D, U +U u, UD, &*.
%) H. Weyl., loc. cit., pp. 212.

*) We thus omit the deformation state of the matémimh the variability ofs andy.



On the propagation of light and the theory of relativity. 11

From the second form af, s', one sees that, s' is a vector density (cf., eq. (98) and

(99)). If we assume the conservation law for ele¢yr%ir—: 0 that is given by (2 the

(44) simplifies to:
(44) s = ir(éx‘sr -oX4d).
0x

The vectoru' will therefore not be affected by the variatidkl because the metric
remains fixed, but the distance between two materialesipae points generally varies.
(Cft., footnote 1, pp. 12.)

The action density.™ that is associated with™ is dependent upon the first
derivative of the functions (14) and tge )

The energy theorem follows from the electrical emumst (37) and the mechanical
equations (41). One shows this without making use of thiicéexpression fot® and
L™ as is well-knowrf), by considering a variation for which all quantities, intthg the
gravitational field, are affected. Then, due to the iavae ofW® and W™ it follows
identically:

(45) 5 W + G WO+ WO =0,
(46) G WP + GWM =0,

in which g, refers to the change in thg . We set:

47 GLO =T ", &L =4 <

Tk and My are the electrical and mechanical energy tensor dessitind, , one must
replacedy™ with:

i . 00x" aox og*
48 ik — ir + o _
48) B =959 oy Tax

(One recognizes the tensor charactedy)f when we replace the ordinary derivatives
with covariant ones, as above.) Integration by paetsis:

oX .

r af ]
9 sWo= | G rin, B ovas

and an analogous formula (#%or & W™ . From (45), (46), (49), and (49it follows
that:

1) G. Herglots, Ann. d. Phys36, pp. 493, 1911; G. Nordstrém. Versl. An28, pp. 836, 1916.

2) H. Weyl, loc. cit, § 28.
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r af ]
(50) 3 W + &y WO + g, WM = | [666; +%6aﬂa§Tj ox ds,
X

in which G is the sum of the two energy tensor densities. Equati®f)sand (41) thus
have, in fact, the energy-impulse theorem:

r ap
06, 116 og

Y — =0
ax 27 X

(60)

as a consequence.
We can easily derive the electrical energy tensdrdabaes from (44) on the basis of
our analogous theorem for the vacuum. In vacuo, fogtaetational fieldy, one has:

(61) G L® =1 Th0 G,

(62) ‘I(i)(k) - \/J_/(Fir FR@ _ Fre FNE dk)

Here, we must once again simply replg@ewith f\/;_/ and obtain, when we again
\/ Y7
consider (20:

(63) oW =Fr 9 - 1Fs 9" 3~

In order to define the relationship betwegf and T, we must expressy* in
terms ofdy®. From (15), one has:

(64)% qGu=id v duw=-1duu ",
and thus:
(65) W =Rg* ~(gu-)ud} =od (eul) Uy ys ¢ .

1) If one replacesy* with the value (48) here then one has:

d=—-du 0ox U +L U 09" U, U, & =—u u 0ox U -1y 09, Ul
u 2 u " 2
ox’ ox’ ox’ ox’
Thus, the last term in (42) will compensate:
(42) ou =g, +gu =29 - 90U 5
ox’ ox’

In fact, this is the local variation af due solely to the shif .
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If we substitute this in (61) and equate the result wifh)(then we find that:
(66) Tik = Tiyw + (G — 1) Ui U T U U7

This yields the mixed components when one multipliesleft-hand side and the second
term on the right bg*' and the first term on the right b + (gu - 1) u' u*:

(66) T =T + (= DEpm U+ UTw W W) U

In the rest system (and for normal values ofgidethe factor of & — 1) U' has the values
L@, 0 (@=1, 2, 3). Thus:

(67) =TV + (gu- D@t +uT U .
and thus, according to (63):

(67) T =R HY 16, H &/ — (gu— 1) Qi U,
in which we have introduced the “rest ray”:

(68) Qi=—(T' U +u T, " u).

a

If &% is the energy currentr(= 1, 2, 3), then one hdg® = —%, and in the rest system:

(68) Q=—, Q*=0 @=1,2,3).
If one substitutes (Byinto (68) then one finds, becau®euy, = 0 :
(69) Q=FRH-FHU=uwFRHY+H Y +H ).

Theenergy tensor of M. Abrahaimdetermined by means of formulas'jéahd (69)2)

L' w. Pauli, Jr., Enz. d. math. Wiss. 28, formula (303). From (50) and (60), one also has the it
principle:

(A) W+ 3 WO+ g, W0 =0, ®)

in which J; means that the four-potential is varied. The figldwill then be varied, as welbut not the
field H, , because the' experiences the variation (42), and not the one if),(&btnote 1, pp. 12 (if the
metric field remains unchanged). I. Ishiwara, AnnPlys.42, pp. 986, 1913, started with the principle
(A), but he concluded (loc. cit., equation (15a)) tHawill be affected by the variation. The same thing
would then follow ford, i.e., one bases the variatidi on the assumption (42 which does not agree
with (42) for constanty, . However, if one substitutes the variation'Y4& the identity (45) forg, W"
then one must vary thg in 4, W" only to the extent that they do not occur in theOne then hagy* =
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2.

The wave expressiond-or the sake of simplicity, in what follows we wdtcupy
ourselves with propagation of light in (uncharged) homogeneamlsted bodies. For
these, as we will see, the equations of the vacuurthégravitational fields are valid.
For the time being, we will also omit the parenthesesirad the indices (and also write
O for p).

For optical questions, in place of the field equatione employs the wave equations
that are derived from them. In the special theoryettivity, the wavelike propagation
of a quantityA is given by an equation of the form:

2
OA= aA 9°A 6A6AO_

0x; 6><2 0% 0x

This sum of second differential quotients is the (founahsional) Laplace operator
applied toA. Next, we would like to present the corresponding aipes for the general
theory. This is easily achieved when we replace tlnary differentiation with so-
called covariant differentiatior)

If we letp be a scalarg;, be a vector, and@lix be a tensor then the covariant differential
guotients look like:

0
(70) Dip=p=2,
0x
0 ik
(71) Dk ¢ = fi ——¢ { | }¢| ,
ik Kkl
(72) Di 7k = T = ale _{I }ka _{ }Tim’
0X, m m
and for a general tensor:
(73) D.T... =T = Ty, _ Jlum T _Jm T
m iliz"'is - i1i 2"ism - axm n niZ"'is"' n l"is—ln '

The fact that we denoted differentiation by an indexpgrapriate due to the following
rules that we define:

%, and, from (61), one arrives at the tensor density, (@8ich leads to the energy tensor that was given
by Minkowski (W. Pauli, loc. cit., formula (301)), asghin fact, also emerges in the explicit calculations
of I. Ishiwara.

1) This comes from E. B. Christoffel. The givenesill to 4 were presented by G. Ricci and T. Levi-
Civita, Math. Ann.54, pp. 135, 1901. For the proof of the tensor charactéreofovariant derivatives, cf.,
e.g., M. v. Laue, Relativitatsprinzip 11, § 19.
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Rule 1. The contravariant derivative will be obtained frdme tovariant one by the
usual transition from covariant to contravariant congus;, i.e.:

(74) DT, .. =T, "=g™

i i, |h2|r :

Rule 2. One goes from the derivative of covariant componedotsthat of
contravariant ones in the same way; i.e.:

(75) DTy, 1, = 9 G G D Ty -

On the basis of these two rules, one can therafs® or lower corresponding
indices in an equation that includes these general tieasaregardless of whether the
index refers to a component or a derivative.

With the help of the identity:

ag'k_ ni nl
(76) Foain { } g {k}

one can treat the corresponding mixed components on thehagt side of (75) in the
same way as the ones on the left. For example, ff@nand (75), one has:

i i isaT is sl is ki
DITk=0°Tsw=g a—ﬁk—g { }ka—g{ }-I;m
X m m

and for the first term on the right, one can, frof@)( write:

a I(gls sk)_ag Tsk aTI ds{ }Tsk g { } sk

such that the formula:
' nli kil .
6x i n

results. In general, one has:
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0
kol - koo k
Dl M, S hers 1o,
Ny hm ok
; p Tl"'i/l—lpi/Hl”'is Irln
77
( ) ! pm Kok Ky K
+Z T . Q-1 P Kyaa -
= k/‘ hels 1" 'n
n
_z{lﬂ m}T ek
lelg 1 a-P e
=l P

Rule 3. The rules of ordinary differentiation are valid foetdifferentiation of sums
and products.

This follows from the fact that in a geodetic coordnalystem— in which the
derivative of thegik vanishes, and therefore the three-index symbols, as-wéle
covariant derivatives coincide with the ordinary ones.

Rule 4. Changing the order of differentiation is generédisbidden, since otherwise,
the result is:

(78) Pk—pPi =0,
(79) B — Pk = R o,
(80) Tiam = Tikmi = Rii Thic + Rlam Tin

and generally:
(81) Toigm =T = Rqillm | I FQ m i p

o e

is the Riemann-Christoffel curvature tensor. Onelgaginfirms (81) in a geodetic
coordinate system. In such a system, one has:

0T . & a |i,l
T o=—dts N 2 S
ip--idm aXIaXm /]Z:;- [FREEFP= | PYSTIE IS axm{ n }

s a [i,m o [il
T  -T . .= T . . | — - :
ip--idm iy gl e [FRRE P S [JYPLEE N {axl { n } ox" { n }j

Furthermore, we set:
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)| _Jik]
- (6],

in which, according to the abbreviation that was preseintggart one, the three-index
symbols with the bracketed indices are constructedbtlte )« in precisely the same
way that the ordinary symbols are constructed frongthe If one substitutes, e.g., (83)
in (72) then one immediately finds that:

(84) D) Tk =Di T ="t Tok—P"ki Tim

in which one recognizes that tlpeare tensors. By going to a geodetic system, one
confirms the following:

1
(85) P = ((Kucw)i + (KU w— (ku ), k= 1
In the same way:
(86) RY%mm = Riam + Di Pkm— Dm P + P'in Pk = Prn Pk -

Rule 5. One obtains the covariant derivatives that coraenfthe i from the ones
that come from thei by replacing the ordinary derivatives with the aoant ones (that
come fromgi) and the three-index symbols with the quantipiesThe curvature tensor
RV is obtained fromRyy, by adding a term that one arrives at by the same
substitution.

With these preparations, we are in a positiontitevdown the Laplacian expressions.
They are:

(87) Op=p,
(88) O¢= g%,
(89) aT= Tikll , etc.

One sees that these expressions have, at the saeydlte same tensor character as the
guantities to which the operator is applied. Fi@®) and (71), only the first derivatives
of the gix appear for a scalgn. Thus, the wave expressions for a scalar in géner
relativity will also agree with the Laplacian exgs®n. If we employ the general
notationW for a wave expression and introduce the notations:

(90) Gragdp = a—?
ox
(91) Dive = ¢,

then we have, for a scalar:



On the propagation of light and the theory of relativity. 18

(92) DivGrado=Wp.

The expressions (83), (84), etc., involve the second atess ofgy . They will
therefore represent wave expressions only in the cootéte special theory of relativity
or gravitational fields with vanishing curvature tensorthe general case, further terms
will appear in which this tensor figures. We would likedietermine these extra terms.

We arrive at them when we seek to generalize reldf8) to tensors. In the special
theory, this generalization is well-known. For @tee one has the formufy

(93) Div Gradg = Grad Divg —-W ¢,
in which the wave expressio is identical witid. The operators Rot and Div also exist

in the general theory. If we let @i, Fik , Sk , Likm , €tc., denoténear tensors of rank O
(scalar), 1, 2, 3, 4, etc., then the rotations armeleby:

(94) Rotp _g_xp

(95) Rotk ¢ :%—% ;

(96) Rok F _‘ZF, + 95 ‘;;'

(97) ROkim S-aaskfm - ‘ﬁ"' aaj'k 3){? etc.,
and the divergences by:

(98) Div¢—Tak(f¢)

(99) DiV F = J_ (f F*)

(100) DIV S= — J_ (( sy,

(101) DIV L _——(f LKm) | etc.

Jg ox

Ordinarily, in place of relation (94), the Gradtlwas defined in (90) is used. The
tensors that result from these operations are ageeé linear. The justification for the
use of the terms “rotations” and “divergences” desiin the fact that the generalized
theorems of Stokes and Gauss are valid for tAem These representations of the

1 M. v. Laue, Relativitatstheorie I, formula (115).
2 W. Pauli, Jr., loc. cit, pp. 606. For the one-dimemai “relation,” Stokes theorem takes the

formj: Rot p o%X = P2 —Pu.
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rotations are valid only for covariant components, assthe divergences are only valid
for contravariant components. However, if we repldte ordinary derivatives with the
covariant derivatives in (94) to (97) then we obtainfdrenulas:

(94) Rotp=pi,

(95") Rok ¢ = ¢ — dix

(96") Rota F =Fix + Fui + Fii ,

(97) Rofkim S= Sami = Smik + Smiki — Skim , €tC.,

in which, from Rules 1 and 2, we may henceforth use time sadices on both sides as
we did above. If we proceed by analogy with (98) and (1@1ywhich we observe that

the covariant derivative Q/E vanishes, then we obtain the formulas:

(98) Divg =g (cf., 91),
(99) DiV F = F¥,

(100" DIV S=384,

(101") DIV L = LM™, etc.

We obtain the covariant components by lowering thécéasd The tensors (94) to
(101) are identical with the tensors (94") to (101"), reésgrause they agree with each
other in a geodetic system.

From the representations (94°) to (101"), it followat thot only the geometric, but
also theformal definition of rotation and divergence can be carried digm ordinary
vector analysis into a more general form. It is Iwalown that whenl is the

0 0 0 .
operatof —,—,— |anda is a vector then:
P (axl e 6x3j ¢
(102) rota = [0 a] (exterior product)
(103) diva = Oa (inner product).

The operatoD appears in place &f. The exterior products of a vector (first rankekr
tensor)A with the linear tensorg;, Fi, S, resp., of rank 1, 2, 3, resp., are:

(104) A dlik=A ¢—A @,
(105) A Fia =A Fa + AcFi + A Fig,
(106) A Jikim = A Sim — A« Smi + A Snik— Am Sii , etc.

If the vectorA is a displacemenf, in particular, and the linear tensor of raatkat one
exterior multiplies it with is as-dimensional space tensor that one constructsfabes
displacements) , g3, ..., és+1), then the exterior product is afl-dimensional space
tensor that is constructed out of thel displacementséy , &p) ..., sty
Correspondingly, one defines the exterior produtttveo arbitrary tensors) and

! The exterior product d&; andB,, will thus be given by developing the determinant
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generally the exterior product of two tensors whoseceslthat are to be multiplied are
completely anti-symmetric (which does not have to be dase for the remaining
indices). For example, Ak is anti-symmetric in andk, andB,m is anti-symmetric irh
andm then we would like to indicate the exterior produéitree to these indices by:

(107) Aodinti B -

With these clarifications, the general formal deim for the rotation of a linear
tensorM reads like:

(108) RotM = [D M] .

As is well known, the interior multiplication (oflatrary, not necessarily linear, tensors)
occurs in the process of lowering the multiplied indic€se then has:

(109) DivM =D M,
in which the multiplication is to be performed on thst index oM.

Corresponding to formulas (92) and (93), combined with (84)generally define
thewave expression W for an arbitrary linear tensobllmeans of:

(110) Div RotM = Rot DivM + W M,

in which the upper or lower sign applies whdns of even or odd rank, resp.
For a tensoy; of first rank, we have, from (88), (957), (99):

Divi Rot¢ = ¢kik - ¢ikk = ¢kik -Og.
From the fourth rule, formula (79) is:
#i = ¢ + R = #% + R" ¢,
in which— R\« = RS is the contracted curvature tensor. By noting (94d) (88") one

will thus have:
Div; Rot¢ = Rot Diy ¢ - O ¢ - R" ¢,

ai ak al am
[ABlwm=|8 B B B,
v o on m
9 o 9 o,
in the sub-determinants of the first two columns in wiode putsja; a| = Ay, |¥ Va|= By in this
B B g9 4,

development. One immediately sees that the exterior prathanges its sign under the exchange of
factors only when both factors are of odd rank.
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and equating this with (110) teaches us that:

(111) Wg=0¢ +R"¢n.

It is remarkable that the additional term here only ime® the contracted curvature
tenT:%rr. a tensor of second raRk , one has, from (96") and (100°):

(112) Diw RotF = |:ik|I + Fknl + Flikl .

From (89), the first term ig], F , and the other two collectively of the fol — Ki , if
we mean thakKi = Fi' . From rule 4, formula (80) is:

Kik = Fi'k + R Fin + R Fi
such that, from definition (957), the rotation is:
K — Ki = Rotx Div F + R" Fri— R Fri + (R'' — R') Fi .

As a result of the symmetry propertiesRym , we finally have thaRui — Rik = Rikni ,
and therefore (112) goes over into (110)Nbe F:

(113) Wi F =0, F + R" Frk—R(" Fri + R Fy .
From (104), one can, with these conventions, also Wé&eotation (107) as:
(113) Wi F =0, F + Ry" Fryg + R Fir .
In exactly the same way, one deduces for a tefgaf third rank:
(114) WyS=0,4 St R+ RSt RSt w RS Ry "RS
which, from (105), can be further written:
(114°) Wia S= 00, S+ R S + R Sy -

The generalformula for the wave expressioN of a linear tensavl;
reads like:

. of rank s

(115) W M=0. M+ R "My * Ry M -
From formulas (94) to (101), the rotations and divergefadlsv immediately:

(116) Div DivM = Rot RotM = 0 .
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Since the rank of a tensor is changed by one upon takihgeegence or a rotation, (110)
gives, when applied to DM and RotM:

Div Rot RotM = FWDivM , Rot Div RotW=+W RotM .
One thus has:
(117) DivW M=WDivM , RotW M=W RotM .

The wave expression commutes \RttandDiv.
For two linear tensorsl andN of equal rank (say, second), one has, from rule 3 and
consideration of (98) and (98"), for the interior proddct N:

MK 0o, N = MK N = (M* Ni) = M5 NS
=1 9 (JgM*N,) - MEN,',
Jg ox
and therefore:

(118) MON-NOM :ii{@(l\/lik N, = MEN}-

Jg ox

One can replada@with W in this; the additional term then arises, as @wgnizes from
(111), (113), (114), and the general formula (1Xhk)e to the symmetry dRx (Rim,
resp.) in the indices k (in the index pairik), (Im), resp.). If we integrate (118) over a

closed four-dimensional space (volume eIemnEnt\/E dxt dx¢ dx¢ dx’) then we obtain,
from Gauss'’s theoren):

(119) JMWN=NW M= =] (M N,— N M, dS.
(dSis the hypersurface element for the boundary saréadn is thecovariantderivative
with respect to the external normalgreen’s theorem is valid for the wave expressions
(and Laplacian operators).
3.

Field, four-potential, Hertz tensorThe differential equations of the fiekl may be
written (again, when one omits the brackets onitidéices) when one introduces the
definitions (96) and (99) as:

(120) RotF=0, DivF=0.

L W. Pauli, Jr., loc. cit., formula (139a).

2The densitie§/§|:| , \/EWthus represent self-adjoint differential expressions.
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From (110), it then follows that:
(121) W F=0.
W F is the expression (113) (in which rule 5 is to be ol The field then
propagates in a wavelike mannerOne proves the converse with the help of the
commutation theorem (117) in a manner that is completelogous to the classical
theory'): A solution of the wave equation (121) that satisfl20§ at one point in time,
always does so.

One can weaken or completely omit the uncomforteddection to the initial values,
in the former case, by the introduction of fleair-potential ¢, and in the latter, by the

introduction of thesix-potential Z which we would also like to call thidertz tensor.
(We will likewise justify these names.) As in (39), sed:

(122) F = Rotd,

in which, from (116), the first equation of (120) will beisg#d. From (93), it then
follows that:

(123) DivF = Div Rot ¢ = Grad Divg —-W ¢ ,
such that the second equation of (120) will be satisfie&nwhis subject to the wave
equation:

(124) W ¢=0¢+R" ¢, =0,

with the condition:
(125) Divg=0.

From (116), one can finally free oneself from this ctiadiby the Ansatz:
(126) ¢=DivZ.

From the commutation rule (117), one has:

(127) W¢=WDivZ=DivW Z,

such that (124) will be satisfied through the equation:

(128) WZ=0.

From (122) and (126), one obtains the representation fofigloein terms of the six-
potential:

(129) F = Rot DivZ,

1 Cf. E. Cohn, Das elektromagnetishe Feld, pp. 410-412.
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or, on account of (110) and (128):
(129" F = Div RotZ .

The four-potential and the six-potential both satisfy the wave equation

From special relativity (the rest of this sectiofolsnded on the electron theory of the
vacuum), a system of charged particles (called, moed\pra “molecule” in the sequel)
with total charges induces, in the first approximation, a four-potential:

(130)Y) ¢ =4 R=—(x —&) U

at a world-pointP (x!, 4 %2, X). (&, ur are the coordinates and four-velocity of the
molecule at the intersection of a world-line with foevard cone X, — &) (X — &) = 0 at

P.) Instead of the proper time we can, however, as in (14), choose an arbitrary
parameterr, through which the position of the molecule on its dwihe can be
determined. The root that appears in (15) disappears in (130 inumerator and
denominator, and we can then write:

’ —E% = - —
(130) ¢.—Rdr, R=-(-4&

dé
dr

If the total charge vanishes then the moleculeetectrodynamically polarizen which
the separation into electric and magnetic polarizataepends upon the polarization into
space and time). In this case, (1307) is not attaireedne must go a step further into the
approximation. From (126) is a differentiation step away frog. We will thus
suppose that, in analogy with (130the six-potential of an electromagnetic dipalél

be represented by the formula:

(131) Zi :m—Rk

(in the first approximation and in the case of a nonskang electromagnetic moment
m). If we split space and time according to the schema:

FiaFoaFaa, FozFaiFi2 =€, 9,

$1 $2 93 , @4 =2, @,
ZialonZzs,  Zp3Z31Z12 =-3,3,
M4 Mpga M4, Mp3M1My2 =-—p,m,

in which &, $ are the electric and magnetic field strengthsg are the vector and scalar
potential,3, p are polar spatial vectors, agd m are axial space vectors, then (126) and
(129), (129") decompose into the equations:

1 M. V. Laue. Relativitatstheorie I, formula (218); Waul, Jr., loc. cit., formula (238a).
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(126" A :%+rot3’, @ =-div 3,
(129" ¢ = rot rot3 -érotB’, 9 :érot3+ rotrot3'

(dot :ij .
ot

The usual wave equation f@g and 3° emerges from (128). However, when the

1 2 3
molecule is at re tdg = d< = de =0
dr dr dar

j (131) decomposes into:

(r = distance to molecule B).

o)
(131) 3=’

If 3 and therefor€y” are equal to zero then, as one recognizes fr@@(1(129"),
and (131),3 is equal to theHertz vectorfor an electrically polarized molecule of
momentp. *) Conversely, ifp = 3 = 0 then, from (126, (129"), in conjunction with
(131, one will be given the potential and fieldaomagneticallypolarized molecule of
momentm. 4 3  is the magnetic counterpart 3f The six-potential is the four-
dimensional summarization of the electric and magnetic Hertz vectors.

We would like to give the Hertz tensor for an &ndoly uncharged molecule, and thus
confirm formula (131), as well. Let:

(132) nr, & =81 +e&, =1

be the world-line of a charged particle of chasydet &(7) be the world-line of the
midpoint of the molecule, and let th& be functions ofr, hence, of the relative
coordinates of the particle. The formal introdotiof the factore serves, in a well-
known way, to facilitate the development in #¢ and their derivatives with respect#o
into a series ire. (From now ong is therefore to be set equal to 1.) From (130ig,

four-potential of the particle is:

r

e an, on
133 j =——2, R=—(x — ,
(133) P =Rar =5

in which 7, from the equation:

! Cf.,, e.g., M. Planck, Einfiihrung in die Theorie der Elekét und des Magnetismus, § 87, 88.

2H. A. Lorentz, Enz. d. math. Wiss., v. 14, no. 15.
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(134) & =) X —17)=0

of the null cone aP, is a given function of and the coordinateg, X%, x2, X* of P. The
right-hand sides of (133) (in which tigeare functions (132) of and 1), which originally
were functionsi(7, €, X, X2, 3, X*), come about by the substitution oin the functions

#i(e, X, %, 3, XY):

(135) U(T, €, X, 4, 3, X = gie, X, 3, X,
. .. 0p 0°¢@
In order to develop this i, we must construct the derlvatlvgg,,g, etc.

Differentiation of (134) and (135) immediately gives:
(136) ai:_xk—nk, Or _ X =m 9 __07T9n

0X R o€ R 0d¢ ox' o€
(136") 09, :61/4 +a¢/i o7 _ % 6¢|i :agzﬁ +a¢/i ai |

0s 0& O0r d¢ d¢ ox: ox° dr ox

from which, it follows that:

(137)

0¢ _0y, 0y, 01 0n" _ 0y, +(6¢/i _0g jalf
dc 0 Or 0X de 0 \oX OX ) ode

For the expressions that appear on the right here,lmaes, from (133):

oy, _e o’ _ edn |an, on' _ _,7)62/7‘
9e Roroe Ror|oe or O ™ orse

0y, 0n' _ e 0n, 0n, on'
ox" 0 R?O0r or oe

0¢ on' 0 on' 0 (on'
_4i: — - ¢i ,7 +¢i ,7 .
ox' o¢€ 0x o€ oxX | o¢

By summing these three expressions, the second tetine difst expression cancels the
right-hand side of the second expression. The last tdrthe first expression is, from

ox aroe T ox | oe
cancel the last term of the third expression. Fromfitke equation of (136) and the
a,7i a,7r B 62,7i az. a,7r B 62,7i
ag} 0r 0rdsdX or Ord€

2,1 r
(133) and the first equation in (1363¢. or 0 _ -, 9 [aij and will thus

, such that one

definition of R in (133), one ha%a—r(
X
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can write 9 [on « @' for the first term of the first expression,—glL ai# , due to
X'\ de ox' \ a¢
the vanishing divergence (125) of the four-potential. We tbezefltimately obtain:
o' _ 9 (onq' . _on"
138 = - :
(138) o€ axr(6£¢ 6£¢j

or, when we introduce the definition of the exteriardarct of two vectors:

(138" %z Div F—OI r} :
o€ o€

From the first equation in (136°), appliec{%%#} , one further has:

¢ _ 0 0 [074] oy 2 [27 5] -y A [27
(139) Fyoe DIV[ ¢}_DIV6£[6£¢}_DIVd£[6£w}’

in whichdn/og is first thought of as a function @fand thex, and finally, as a function of
gandr. From (138") and (139), one sees thatdixepotential of a polarized molecule
will be represented by:

2
(140) Z:z+£%+_1 d X+
2de  3!dée?

in which one replaces from (132), (133), and (138"), with:

=] g ] gl o S | oo & ¥ |

(140") r 2
R=~(x =) S —e 2 [x- )& +5 (& &),

(7is a function of andx that is given implicitly by (134)) and its differential quotients
are to be taken &= 0. One must sum over all particles in the makec
In order to construalz/ds, one observes that, from (132), (136), and (140°):

or _1 .
g——R[(Xr—fr)a?—fa_fr 55],
R__d q
e dr{(X’ 5)54"}+£dr(5<‘r5<"),
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such that:

R a(jo dR_0R_ dROr _Ra(arj
de o0¢ 6r6£ or

E_E o)’ e

One thus obtains, from (1407), with no further computatio

e LR (R Ea I
For &= 0, one has:

g bl
e tlde-oneg]

+£(x 5)55[55 ﬂ}
dfr

(141)

R=—(x - 5)

with the abbreviation:

(141) z:—("_Rj __dede o, e

or dr dr dr?

If we restrict ourselves in (140) to the first ttewms then it results that:

: _m e jd{f _ | se K1, <, i sr &
(140") Z‘?m{w((‘ £)os [55 aD* (5 -)E [55 d}}

with:

oy et

By neglecting the momeni& ¢ of second degree, one obtains, in fact, formula
(131). If we split into space and time, in whick whoose the variabl = c t for the
4
parameterr (which then makesdi— %: 1, Jé“ = - o0& = 0), then we arrive at the
T T
representations:
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(142) p= 2 es, m = [p%} +%Ze[s%}

for the electric and magnetic moments. Hermeans the position vector of the particle
from the midpoint of the molecule, its velocity, andu, the relative velocity of the

: , : ro.
particle. The sums are to be taken over the figurtheimolecule at the time——, in
c

whichr is the observer-molecule distance at this timer the two vector$ and3’, we
find, from (140", (143), and (141"):

p 1d 4
(143) 3= + A== es(rs)+——> es(rs),
r (1—ij ZrZ(l_Vrj ¢ dt r (1—ij
Cc C Cc
3= m + 1
e
c
(143"
1d
X B Rk [ Zvrjz{ﬁﬂ(”) |
rl-—=-
c
(143" Y J=1- V—2+ (© z) ,
¢ c

in whicht is the radius vector of the molecule-observearethe components af in this

direction, andv = %. (142) shows that aoving Hertzian oscillator possesses a

magnetic momerEmE] thus both the vectors3 and 3" are necessary for the
c

representation of its field.

If we setH = F — M then the field equations (2) take the form Biw s + DivM.
From (123), one then has, due to (128)¢ = - s —Div M. If we separate into two
piecesg; + ¢, in such a way thatV ¢;= - s, W ¢,=— Div M, and we setg, = Div Z, then
we get DivW Z= - Div M, which will be satisfied becaus¥ Z= - M. From this, we
conclude:The field F may be represented by a four-poteiatial a six-potential:

1 Cf., M. Abraham, Theorie der Elektrizitat 2! dd., formula (72c).
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(144) F = Rot¢ + Rot Divz, ¢:j$dv, z:jwdv,

(dV = spatial volume element)

T . .
([ ] means the value at the time-—), the first of which relates to the four-current and
o

the second of which to the six-polarizatiodrrom (143) and (143"), one obtains (by
neglecting the moments of second degree):

(144") PT=N2es, m:[m%}%NZe[sﬂ.

(N is the number of molecules in the volume elementhis is the well-known
representation of the field from electron thed)y. The magnetic effect of the Réntgen
current originates in the magnetic moment of the mopwigrized molecule above.

4.

Rays. The case that shall be determined in full detailghwen initial conditions of
the field does not correspond to the one in optics ofrgepee-existing circumstances.
There, on the contrary, one must know the velocitthe “rays” in order to assess the
motion and the interference effects that are evoketidgravitational field.

Throughout the preceding development we have arrivelaeaiotmal apparatus that
is employed in classical electromagnetic optics. cafetherefore cease with the classical
methods in our treatment of our present problem complébelAs we have seen, when
we choose the Hertzian tensor as the means of sgpag®n of the electromagnetic field,
we need only to concern ourselves with the wave equadiamh,need not consider any
further conditions. We make the Ansatz Zor

Z=AcosyYE-xAEsIn7E + g
0Z=2'-A'cosyE - 27A E sin7E — yAE'sin 7E— ¥* AE E cos7E + '
and therefore, from (92) and (113):
(146) WZ=-x*AEEcosy E- 21 (AE+1 AWBsinr E cowr B WA Wa (
One understands the term “rays” to mean lines thatboaind light complexes and

behave independently of each other, when one disregdifdscaon phenomena. In
order to ignore diffraction, the wavelength must balscompared to the dimensions of

L H. A. Lorentz, loc. cit.; W. Déllenbach, Ann. d. Ph§8, pp. 523, 1919.

2 Cf., e.g., J. Hadamard, Lecons sur la propagation migssp Paris 1902, pp. 331 et seq.; H.A. Lorentz,
Abh. tber theor. Physik, pp. 415.
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the apparatus. In order to formulate this assumptiorhenatically, we give the
parametery the dimension and order of magnitude of a reciprocal leagéh A. The
first derivatives ok then have the order of magnitude of direction cosimekindices of
refraction, hence, the order of magnitude 1. We wouldttikieirther assume the simpler
way of speaking thats (and thereforedg, as well) and the coordinates have the
dimensions of length. gk , g%, u , /%, are then dimensionless). We call a quantity
slowly varying') when its relative variation and its (ordinary) derives are small
compared to the length i.e., )I?P«l,%:? <« 1,etc., wherP, P’, P", etc. have the order
of magnitude of the quantities concerned and their derésat The assumption that we
must make in order to speak of rays then takes the #rgY, )« are slowly varying and

a is small compared tA. Furthermore, the coordinates may be chosen in sucly éhat

gk andu, are of order (at most) 1. (The same is then truafoandu'.) If yis this
magnitude then we have:

)ITA<<1, E'~1 AE'«1 y~1 AY«1

Ay

—<x1, ax A

(147)

The slowly varying character & and the smallness @ (which will be rapidly
varying) means the neglect of the edge effects, the asgumonE restricts the curvature
of the wave fronts (diffraction in the neighborhoodrofge points), the slowly varying
character ofyk means: the velocities and gravitational fields that moeluced by the
mechanics and weight effect (Schwerewirkung) of ligtttich are rapidly varying) are
so small that one can neglect their reaction orptbgagation of light, and by andu,
one has to understand only the externally excited @@Wlglvarying) quantities.

The order of magnitude of the first covariant derivatis;, from (73)P" + y P, that
of the second is thu®{+ y P) + y (P"+ y P) ~P" + y» P+ yP" + y? P (for a scalar,
one set$ = 0), that of the curvature is, from (83),+ ¥ thus, from (92), (113), (146),
and (147), that oWV Zis:

A 1l

?+;(A,+VA+AE)+(A"+y’A’+y'A+y’2A)+(a)

(146")

((a) is to be constructed by analogy with the previous exior®ssWhen we thus neglect
the second derivatives and the products of the first @léres of the slowly-varying

guantities, along with the diffraction teranthen we only have to consider the termgin
and ¥* in (146), which, as one can see from (147) and (146 )ofadéfferent order of

magnitude. For that reason, (146) decomposes into two eggiatio

L H. A. Lorentz, loc. cit.
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oE OE
148 EE=)y——=0,
(148) | ox ox
(149) AE=-1AWE.

(148) is the Jacobi differential equation of a “mechdhigaoblem with the

Hamiltonian functiorH :%V p P, In whichp :% Is the impulse. From the canonical
X

equations, one has:

(150) ﬁza—Hi: Yp=p=F, (r = parameter).
dr odp
dx dx
Thus,H =3y, — propr , such that the Lagrange equations that arise from thaticaal
r

problemd| H dr are the equations:

151
(151) dr? dr dr

d2x {kl} d¥ dx _
+
of geodetic lines) (for a manifold with a line elemenlo), and indeed, from (148) and
(150):
dX dX _

(152) "arar -
so one is dealing withull geodetic lines.

Due to the slowly-varying character of th& one can solve (148) in terms of
functions ofE with slowly-varying derivatives. If we substitute teelution in (149)
then, from (150) and recalling the definition (72) of ttwvariant derivative, we obtain
equations of the form:

(153) g—Az linear homogeneous function Af
T

i.e., ordinary linear homogeneous differential equationgtfe components &, whose
coefficients can be summarized in terms of the sl second derivatives & and
three-index symbols (constructed from §hg¢, are also known slowly-varying functions.
From (153), one can determine the variation in the ang@iA along null geodetic lines,
as long as the initial values are known for someThese initial values can be chosen
arbitrarily from null line to null line, under the restriction thhiey be slowly varying.
This is not to say that the amplitudes are completelgpendent of each other. Due to
the linearity and homogeneity of the equations (153)r tfaishing at one point has, as

L cft., e.g., W. Pauli, Jr., loc. cit., no. 15.
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a consequence, their vanishing on all of the null linas gl through that pointThus,
the world-domain of the null geodetic lines can be bounded, and outside of that domain
the amplitudes vanishrom (148) and (150), it follows, moreover, that:

(148") E =0,
dr

i.e., the phasg& remains constant on each null line.
We must now show that the last of the inequalitie®7] can be satisfied. Due to
(148) and (149), (146) reduces to:

(154) W a=-W AltosyE.

We thus have to solve the inhomogeneous wave equations sohition can be
arrived at by means of Green’s theorem (119) in essentladl same way as in the
classical theory. The solution will be representabkerms of integrals of the form:

a:j(GcostWALd%d%df,

in which G is a function that, as is the classical theorgolpees infinite in first order at
the reference point, and the indexrefers to the forward cone that originates at the
reference point. The theory of Fourier series temcisethata can be made arbitrarily
small by enlargingy, i.e., diminishing the wavelengtfh We have thus arrived at the
result thathe rays in moving bodies are represented by null geodetic lines in &ofdani
with a line element & = ji dX d¥. From (148°), the ray velocity is therefore equal to
the phase velocity along the ray.

Fromdd® = 0, it follows, from (26), thatls’ = —(1—ij (u dX)%. The world lines of
U

the rays therefore have a timelike direction &> 1. There thus exists ray four-
velocity, which, from (15) and (150) (when we again introduce thekieta around the
indices), equals:

. 0 o
(155) W= E EO =y a—Er.
0X

The validity of the theorem for the addition of velagstfollows from the existence of a
four-velocity. )

1 M. v. Laue, Berl. Ber., 1922, pp. 118.
2 Cf., e.g., M. Born, Dynamik der Kristalgitter, Appendix.

3 W. Pauli, Jr., loc. cit., no. 25.
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As an example of the propagation of light in a badthie presence of a gravitational
field, we take the case of a medium in which thereasrdrifugal force field (Harress (?)
experiment). By the use of polar coordinates and raetrito the plane, one has:

2
(156) d< = dxi? + X2 dx? _sz %12 d% dxg — [1—“’2—’2‘1j dx2,

(x1 is the radius vectok; is the polar anglewis the angular velocity). Where one finds

2
matter, one has' = u* = 0,u* =1/,/~g,, =1/,[1- afzg . The covariant components are:
c

w_
-“x 5
up =uz =0, U22924U4:C—, u4:g44dx4:— 1—0)2—;(1.
WX’ c
1-—
C
From (18), one finds that the are:
1 W%’
1- = 0 X )
ol c Jé?ic—uxf y:_il_afxl
“ 1- % ’ YTt T e )
CZ
The remainingy are equal to thgx. One will thus have:
1 WX’
g 20 1(, ax?
157 do? =dx?+ x?G—H_°  dx?-=% 2 dy dg-—| 1- dg.
(157) &xl_wzxiz (il R e B X
C2

By neglectinge, (156) and (157) reduce to:

(156") d< = dxe? + a2 do? — 27‘” %12 d dxg — dxe? |
2

(157) dd? = dx® + X% dx® — Exlz dx dxg 9%
ELC U

One derives the vacuum phenomena fidgn= 0 (Sagnac experiment). In this case,
4wk

there is a differencét = >
c

between the travel times for two rays that travel i

! p. Langevin, Compt. Rend. 173, 831, 1921; R. Orsay, Phigscifie 23, 176, 1922.



On the propagation of light and the theory of relativity. 35

opposite directiondHis the surface of motion (?)). If one now excharipes, in (156")
with xd@ and w with a)/@then one obtains (157°). By this exchange, however,
the formulas foAt go to each other. They are thus valid in a ponderabléumet)

Berlin, Institut fur theoretische Physik.

(Received 28 May 1923)

1 M. V. Laue, Relativitatstheorie I, § 24d.



