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 Consider the motion of a material point in a plane in the case where there exists a force function 

U (x, y). As one knows, the determination of the trajectories that correspond to the same value h 

of the vis viva constant comes down to the search for a complete integral of the partial differential 

equation: 

 

(1)      
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x y

    
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    
= 2 (U + h) . 

 

 Set z = x + i y, Z = X + i Y, and let z = F (Z) be an analytic function of the complex variable Z. 

One infers from that relation that: 

 

(2)      x =  (X, Y) , y =  (X, Y) , 

 

in which  (X, Y),  (X, Y) are two functions of the real variables X and Y whose derivatives verify 

the conditions: 
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
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 If one makes the change of variables that is defined by formulas (2) in equation (1) then one 

will see immediately that it will become: 

 

(4)     
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2 2

X Y

      
+    
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. 

 

 The new equation has the same form as the first one, so one will be led to the following general 

proposition: 

 

 If one considers all of the trajectories that correspond to the force function U (x, y) and the 

value h of the vis viva constant, and one subjects those curves to the isogonal transformation (2) 

then the new curves will be the trajectories that correspond to a new force function: 
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{U [ (X, Y),  (X, Y)] + h} 

2 2

X Y

      
+    

      

 

and to the value zero for the vis viva constant. 

 

 Suppose, for example, that one has: 

 

U = 
2 2x y


+

+
, h = 0 , 

 

in which  and  are two arbitrary constants, and that one has performed the isogonal 

transformation: x = 2 2X Y− , y = 2 X Y . The new value of U will be: 

 

U = 
2 24 4 ( )X Y + +  . 

 

One then passes from the law of Newtonian attraction to the law of attraction that is proportional 

to distance. One immediately verifies, moreover, that a conic that has one focus at the origin will 

give a conic that is concentric to the origin under the preceding transformation. 

 The force function U will remain the same, as well as the isogonal transformation (2), if one 

varies the vis viva constant h, so the transformed curves will not be the trajectories of a moving 

body for the same force function, in general. Meanwhile, there is a very extensive case in which 

that it true. Suppose that U verifies the relation: 

 
2 2

2 2

log logU U

x y

 
+

 
 = 0 , 

 

or what amounts to the same thing, that it has the form U = f (x + i y) f0 (x – i y), in which f0 denotes 

the conjugate function to f. Further set: 

 

z0 = x – i y ,      Z0 = X – i Y ,      ( )f z dz  = Z ,      0 0 0( )f z dz = Z0 , 

 

and suppose that one has inferred: 

 

(5)      z =  (Z) , z0 = 0 (Z0) 

 

from the last two relations. 

 If one makes the transformation that is defined by formulas (5) on the equation: 

 
22

x y

    
+   

    
 = 2 [ f (x + i y) f0 (x – i y) + ] , 
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in which  and  are two arbitrary constants, then it will become: 

 
2

Y

 
 

 
 = 

2

Y

 
 

 
 = 0 02[ ( ) ( )]Z Z    +  . 

 

As a result, the trajectories that correspond to the force function: 

 

f (x + i y) f0 (x – i y) 

 

will give the trajectories that correspond to the force function 0( ) ( )X iY X iY  + − , and that will 

be true no matter what the vis viva constant is. 

 Upon taking f (z) = mz , one will be led to a result that includes the result that was pointed out 

above as a special case. If one considers a material point that is subject to the action of a central 

force that is proportional to the nth power of distance then the two systems of trajectories will 

correspond to the two values ,  of n that are deduced from each other by an isogonal 

transformation when ,  verify the relation: 

 

  + 3 ( + ) + 5 = 0 . 

 

(One must exclude the cases of  = − 1,  = − 3.) 

 The remarks above also apply to the motion of a material point in space, and in general to all 

problems in dynamics for which there exist a force function and in which the constraints are 

independent of time. If q1, q2, …, qn are the variables that fix the position of the system of the 

system and 2T is the homogeneous quadratic form in 1q , 2q , …, nq , which is equal to the total vis 

viva, then it will suffice to know a transformation such that T is reproduced up to a factor that 

depends upon only q1, q2, …, qn in order to get a theorem that is analogous to the one that was 

stated above. 

 

__________ 
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 Consider a material point that is subject to move on a surface whose linear element is defined 

by the formula: 

 

(1)  ds2 = 
2 22E du F du dv G dv+ + . 

 

 If it is subject to forces that admit a potential: 

 

(2)  U = F (u, v) 

 

then one will have the vis viva integral: 
2v  = 2 (U + h) , 

 

and from the principle of least action, the search for the trajectories of a moving body will reduce 

to the search for geodesics on a new surface whose linear element is determined by the formula: 

 
2ds  = 

2 2( ) ( 2 )U h E du F du dv G dv+ + +  . 

 

 If one replaces h with  / , in which  and  denote two constants, then one will replace the 

preceding expression for ds2 with the following one: 

 

ds2 = 
2 2( ) ( 2 )U E du F du dv G dv + + + , 

 

which is linear in  and . That implies the following consequence: 

 

 If one knows how to solve the proposed problem in mechanics for the surface that is defined 

by formula (1) and the force function (2) then one will also know how to solve it for the surface 

whose linear element is given by the formula: 

 

(3)  ds2 = 
2 2( 2 )U E du F du dv G dv+ + , 

 



Darboux – Remark on the preceding communication. 5 
 

when the force function is now: 

(4)   U  = 
1

U
 = 

1

( , )F u v
 . 

 

 For example, suppose that the original surface is planar. One can take: 

 

ds2 = 2 2dx dy+ , 

 

in which x, y are the rectangular coordinates of the moving body. 

 If one knows how to determine the motion of that moving body when the force function is: 

 

U = F (x, y) 

 

then one will also know how to determine the motion of the moving body when it is subject to 

remain on the surface whose linear element has the expression: 

 

ds2 = 
2 2( , ) ( )F x y dx dy+ , 

in which the force is now 1 / F . 

 If one desires that the new surface should be planar then one must take: 

 

F =  (x + i y)  (x – i y) , 

 

and one will then recover Goursat’s theorem (1). 

 The reader can easily attach the following remark to the preceding developments, which we 

shall be content to state: 

 

 Whenever one has the complete solution to a problem in mechanics on a surface that 

corresponds to a force function that is given, but arbitrary, one will know how to find the geodesic 

lines on that surface from that fact itself. 

 

__________ 

 

 

 
 (1) One can also obtain some interesting results by studying the case in which one of the two surfaces is planar and 

the other is spherical.  


