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 The present paper treats a topic whose essential viewpoint was presented by the 
author to the Naturforschertage in Meran (1) in a talk: “Über gewisse geometrische 
Anwendungen der dualen Zahlen.”  The fundamental idea upon which the following 
development rests consists of a map of what Study called the dual numbers to the 
manifold of points of a second-order cone in a three-dimensional projective space.  From 
the principle of reciprocity, one goes from this map to an analogous map of the dual 
numbers to the manifold of tangent planes to a conic section in three-dimensional 
projective space.  In particular, one can then substitute the absolute circle at infinity of 
Euclidian geometry for the aforementioned conic section, and in this way one will obtain 
a map of the dual numbers to the manifold of so-called “minimal planes” in Euclidian 
space. 
 Insofar as the aforementioned minimal planes can be represented in a one-to-one way 
by their real carrier lines, when regarded with a well-defined sense of traversal, that will 
yield a map of the dual numbers to the manifold of real, “oriented” lines, or – following a 
terminology that was introduced by E. Study – the manifold of spears in Euclidian space. 
 The mapping principle (2) that will be described shortly in the following now leads, as 
will be shown, in a direct and informal way to the various geometric applications of the 
dual numbers that have been made up to now: Namely, on the one hand, there are the 
applications that E. Study developed in his ground-breaking book Geometrie der 
Dynamen, which was rich in new and fruitful ideas, and on the other hand, also the 
applications that G. Scheffers gave to the International Congress of Nathematicians at 
Heidelberg in 1904.  The dual numbers prove themselves to be an entirely necessary 
instrument for the geometry of spears, since they permit a simple representation of certain 
finite and infinite (continuous) transformation groups in the manifold of spears in 
Euclidian space.  The connection between the investigations that relate to this and 
Ribacour’s theory of isotropic congruences, as well as the theory of minimal surfaces, 
seems to be of especial interest. 
 The concluding section of the present paper presents considerations that relate to the 
geometry of real and imaginary oriented lines in Euclidian space. 
 
                                                
 (1) On 27 Sept. 1905.  
 (2) Which was treated at the Naturforschertage; cf., the previous remark.  In the discussion that followed 
the presentation there, the remark was made by a valued colleague that this mapping principle had already 
been proposed and evaluated by E. v. Weber in the Berichten der bayr. Akademie (sächs. Gesellschaft, 
resp.), as well as in these Monatsheften.  That was erroneous, since nothing at all was said about dual 
numbers in the cited papers [Münchener Sitzungsber. (1904), 447-483, Leipziger Ber. (1903), 384-408.  
Wiener Monatshefte (1905), 217-229]. 
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I.  Map of the dual numbers to the number cone. 
 

 § 1.  The concept of dual numbers of the form u + vε, where ε2 = 0, will be assumed 
in what follows.  As far as that is concerned, one can refer to E. Study’s Geometrie der 
Dynamen, § 23.  For such a number, the quantities u and v mean ordinary complex 
numbers; u will be referred to as the scalar part and vε as the vectorial part of the dual 
number u + vε.  The addition, subtraction, and multiplication of dual numbers results 
from the known rules of calculation for ordinary arithmetic; in particular, the 
commutative and associative laws are true for multiplication.  By contrast, the law of 
ordinary arithmetic that a product can equal zero only when one of its factors vanishes is 
no longer true for dual numbers.  Moreover, the product of dual numbers is equal to zero 
when the scalar part of at least two of the factors vanishes. 

 
(See pp. 82 of the original article) 

 
Figure 1. 

 
 For the clarification of the dual numbers and the calculation operations that one 
carries out with them, it is now particularly useful for one to map the dual numbers in the 
following way to the points of a second-order cone in three-dimensional projective space: 
One intersects such a cone, which is generally arbitrary, with a plane E that does not go 
through the vertex and arbitrarily chooses three distinct points on the plane that thus 
arises that will be denoted by p0, p1, and p∞ ; the vertex of the cone will be denoted by pω 
.  On the generator of the cone that goes through p1, one chooses a point p(1+ε) that is 
arbitrary, but different from p1 and pω .  The four points p0, p1, p∞, and p(1+ε) shall be 
called “fundamental points.”  One now chooses a projective coordinate system in the 
following way: Let the plane E be identical with the base plane x0 = 0 of the coordinate 
system.  Let the plane that is determined by p0, p∞, pω be identical with the base plane x3 
= 0 of the coordinate system.  Finally, let the base planes x1 = 0 and x2 = 0 be defined by 
the tangential planes to the cone along the generators [p∞ pω] and [p0 pω].  The point p(1+ε) 
shall have the coordinates: x0 = x1 = x2 = x3 = 1.  The coordinate system is obviously 
determined completely by the conventions above.  The coordinates of the fundamental 
point and the vertex point pω can be represented by the following table: 
 
(1) 

 x0 x1 x2 x3 
   p0 0 1 0 0 
   p1 0 1 1 1 
   p∞ 0 0 1 0 
   p(1+ε) 1 1 1 1 

   pω 1 0 0 0 
 
 The equation of the cone reads: 
(2)     x1 x2 − 2

3x  = 0. 
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 The coordinate system that was defined here, which is determined uniquely by the 
fundamental points p0, p1, p∞, p(1+ε) in the manner that was set down above, may be 
referred to as the coordinate system that belongs to the aforementioned system of 
fundamental points. 
 In order to now map the manifold of dual numbers to the manifold of (real and 
imaginary) points of the “number cone” x1 x2 − 2

3x  = 0, one associates every dual number 

w = u + vε with the point whose coordinates are determined by the proportion: 
 
(3)     x0 : x1 : x2 : x3 = v : 1 : u2 : u. 
 
 A one-to-one relationship between the dual numbers w and the corresponding image 
points (w) on the number cone is described by this proportion.  Any two numbers whose 
scalar parts agree map to the same generator of the cone as points.  The numbers 0, 1, and 
1 + ε (the first two of which are regarded as dual numbers with vanishing vectorial parts) 
correspond, as a glimpse at Table (1) will teach us, with precisely the fundamental points 
that are denoted by p0, p1, p(1+ε) . 
 
 

§ 2.  Introduction of dual numbers at infinity. 
 

 The images of the finite dual numbers w = u + vε – viz., the dual numbers for which 
the coefficients u and v are finite quantities – do not cover the number cone x1 x2 − 2

3x  = 0 

completely.  As long as one only looks at points of the number cone for which x1 ≠ 0, the 
proportion (3) generally determines finite values for the quantities u and v, and therefore 
also for the dual number u + vε that is associated with them, in any case.  Things behave 
differently for any point of the cone for which x1 = 0.  Since one also has x3 = 0 for these 
points according to equation (2): x1 x2 − 2

3x  = 0, these points will fill up a generator Q of 

the cone; indeed, with hindsight of Table (1), this generator is obviously identical with 
the line [p∞ pω].  Now, for the points of Q (since x1 = x3 = 0) certainly either x2 or x3 is 
different from zero.  In the former case, one learns from the formula x2 / x1 = u2 that one 
can immediately infer from (3) that, at the very least, the quantity u cannot be finite; in 
the latter case, the formula x0 / x1 = v teaches us analogously that the quantity v cannot be 
finite. 
 If a point on the cone approaches the generator Q then at least one of the coefficients 
u, v of the associated number u + vε will become infinitely large. 
 The fact that the image of the finite dual numbers does not cover the number cone 
completely, but leaves out the generator Q, then depends upon the fact that the manifold 
of finite dual numbers does not define a closed continuum.  However, one can now 
extend the aforementioned manifold to a closed continuum, such that the various points 
of the generator Q of the cone correspond to various “infinitely large” dual numbers that 
one introduces.  This extension of the number domain also seems preferable from another 
standpoint, namely, when one starts with the calculation operation of the division of dual 
numbers: If w = u + vε is a dual number whose scalar part u does not vanish then there 
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will be one and only one dual number w′ that satisfies the equation ww′ = 1 (1); one can 
regard w′ as the reciprocal value to w and denote it by 1/w or w−1.  One has: 
 

(4)      w′ = 
1

w
= 

2

u v

u

ε−
. 

 
 By contrast, if the scalar part u of the number w equals zero then the equation ww′ = 1 
cannot be solved for w′ as long as one restricts oneself to finite dual numbers; however, it 
is also in this case that one can make this equation soluble when one introduces various 
infinitely-large dual numbers in the manner that was described above. 
 Let a point qh on the generator Q be established by the equation x2 / x0 = − h, where h 
is initially a finite, non-zero, ordinary, complex number.  We now associate this point qh 
with a well-defined, “infinitely-large” dual number, which, as we will likewise justify, we 
would like to denote by: 

hJ. 
 
If a variable dual number w′ = u′ + v′ε changes in such a way that its image point (w′) 
approaches the point qh without bound then the number hJ that belongs to qh shall be 
referred to as the limiting value of w′, so we will set: 
 

lim w′ = h J. 
 

 In this case, the ratio x2 / x0 , and thus, from the proportion (3), also the ratio u′2 / v′, 
approaches the limiting value – h, where the quantities u′ and v′ both become infinite.  
This yields the following limiting values for the reciprocal value 1 / w′ = w: 
 

lim 
1

w′
 = lim 

1

u vε′ ′+
 = lim 

2

u v

u

ε′ ′−
′

 = − ε lim 
2

v

u

′
′

= 
1

h
 ⋅⋅⋅⋅ ε. 

 
 One simultaneously has the formulas: 
 

lim and

1
lim ,

w hJ

w
h

ε

′ =

 = ⋅

 

 
when w and w′ are linked with each other by the relation ww′ = 1, so one can establish 
that the dual numbers: 

h J  and 
1

h
 ⋅⋅⋅⋅ ε 

 
have to be reciprocal values to each other, so, in particular, J is regarded as the reciprocal 
value to ε in this sense (1): 

                                                
 (1) Cf., E. Study, Geometrie der Dynamen, pp. 197.  
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J = ε−1. 
 

 By the introduction of infinitely-large dual numbers of the form h J the equation: 
 

ww′ = 1 
 
will also become soluble for the case in which: 
 

w = 
1

h
 ⋅⋅⋅⋅ ε, 

and indeed will give only the solution: 
w′ = h J 

for w′. 
 We shall now examine what sort of modifications must enter in when the quantity h 
assumes the value infinity or zero. 
 
 1. h = ∞.  In this case, the ratio x2 / x0 becomes infinitely large for a point (w′) that 
approaches the point qh without limit.  Now, from (3), this ratio = u′2 / v′, so it follows 
that lim u′2 / v′ = ∞, so lim v′ / u′2 = 0, where at least the first of the quantities u′ and v′ is 

infinite.  One then has lim 1 / w′ = lim 
2

u v

u

ε′ ′−
′

= 0.  For h = ∞, qh becomes identical with 

the fundamental point p∞ on our cone.  We associate this point of the number cone with 
an infinitely large dual number that we shall denote by the usual sign: 
 

∞. 
 

The unbounded approach of the point (w′) to the point p∞ might then be represented by 
the formula: 

lim w′ = ∞. 
 

One then simultaneously has the formulas: 
 

lim ,

lim 0,

w

w

′ = ∞
 =

 

 
if w and w′ are coupled by the relation ww′ = 1.  In this sense, the numbers 0 and ∞ can 
be regarded as reciprocal values. 
 
 2. h = 0. In this case, the point qh becomes identical with the vertex pω of the cone, 
because here the ratio x2 / x0 , and thus also the coordinate x2, assumes the value 0 for the 

                                                                                                                                            
 (1) The misgivings that E. Study raised against the insufficiently motivated use of the symbol J = ε−1 by 
R. de Saussure (cf., E. Study, Geom. d. Dyn., pp. 208), in no way affect the present use of the symbol 
here.  Here, this symbol merely serves as a notation for the various infinitely large dual numbers that were 
introduced in a legitimate way. 
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point qh , whereas without this – due to qh being located on the generator Q – the 
coordinates x1 and x3 would vanish.  [Cf., Table (1).]  We now associate the vertex pω 
with a new infinitely-large number with the symbol ω. 
 
 If the image point (w′) of a variable dual number w approaches the point pω without 
limit then that situation shall be denoted by lim w′ = ω.  The ratio x2 / x0 for the point (w′), 
and thus, the ratio u′2 / v′, approaches the limit of zero here, so one convinces oneself that 
one simultaneously has the formulas: 

lim ,

lim ,

w

w

ω
ω

′ =
 =

 

if w and w′ are coupled by the relation: 
ww′ = 1. 

 
The image points (w) and (w′) on the number cone likewise return to the vertex pω .  In 
this sense, one can regard the number ω as reciprocal to itself. 
 We neatly summarize the definition above of infinitely-large dual numbers: 
 These numbers correspond to the various points of the generator Q [p∞ pω] of the 
cone in a one-to-one manner, and indeed: 
 
   the point p∞ corresponds to the number ∞, 
   the point pω “ “ “     ω, 
and   any point qh of Q “ “     h J, 
 
when it is established by the equation x2 / x0 = − h.  These numbers may be characterized 
arithmetically in the following way: 
 
 The number ∞ is to be regarded as the limiting value of a dual number w′ = u′ + v′ε 
that grows infinitely large, and for which lim u′2 / v′ = ∞, 
 The number ω, as the limiting value of a dual number that grows infinitely large, and 
for which lim u′2 / v′ = 0, 
 The number h J, as the limiting value of a dual number that grows infinitely large, 
and for which lim u′2 / v′ = − h. 
 
 The manifold of dual numbers is extended to a closed continuum by the introduction 
of these infinitely large dual numbers (1), and indeed the latter seems to be related to the 
points of the number cone in a uniquely-invertible way. 
 One defines the continuous change of a dual variable w as a change under which the 
corresponding image point (w) changes continuously on the number cone.  In this sense, 
as one easily recognizes, one has the following formulas: 
 

0
lim ,

lim .
h

h

h J

h J

ω
=

=∞

=
 = ∞

 

                                                
 (1) For this notion, cf., the discussion in E. Study’s Geometrie der Dynamen, § 27 (pp. 247, et seq.). 
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§ 3.  The fractional- linear transformations of a dual variable  
and the associated collineations of the number cone into itself. 

 
 If: 

w1 = u1 + v1 ε 
and 

w2 = u2 + v2 ε 
 
are arbitrary dual numbers, where the scalar part u2 is non-zero, then the equation: 
 

w ⋅⋅⋅⋅ w2 = w1  
 

will always be soluble, and indeed in just one way, by a finite dual number w = u + v ε. 
 It is (1): 

w = w1 ⋅⋅⋅⋅ 
2

1

w
 = (u1 + v1 ε) 2 2

2
2

u v

u

ε−
 = 1 2 1 2 2 1

2
2

( )u u v u v u

u

ε+ −
 

 
and the “quotient”: 

w = 1

2

w

w
 = 1 1

2 2

u v

u v

ε
ε

+
+

 

 
is constructed most conveniently by multiplying the numerator and denominator by (u2 + 
v2 ε): 

w = 1 1 2 2

2 2 2 2

( )( )

( )( )

u v u v

u v u v

ε ε
ε ε

+ −
+ −

, 

 
from which the result above will be inferred. 
 Let w = u + v ε be a dual variable.  One subjects it to a fractional-linear 
transformation: 

(5)      w′ = 
aw b

cw d

+
+

, 

where the coefficients: 
, ,

,

a b

c d

α α ε β β ε
γ γ ε δ δ ε

′ ′= + = + 
 ′ ′= + = + 

 

 

                                                
 1) Cf. (4).  The validity of the solution written down can be recognized immediately by a test.  It is the 
only one, because the existence of two equations: 
 

2 1

2 1

andw w w

w w w

⋅ = 
 ′⋅ = 

 

 
would have the equation (w − w′) w2 = 0 as a consequence.  Now, since the scalar part u2 of w2 is non-zero, 
by assumption, the latter product can vanish only when w − w′ = 0. 
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are finite dual numbers for which the determinant of the scalar parts: 
 

(6)      D = 
α β
γ δ

, 

 

or, what amounts to the same thing, the scalar part of the substitution determinant 
a b

c d
, 

shall be assumed to be non-zero: 
(7)      D ≠ 0. 
 
 We first examine the effect of the aforementioned substitution on those finite values 
of the variables w = u + v ε for which γu + d, namely, the scalar part of the denominator 
cw + d of the fraction in (5) is non-zero.  On the basis of the statements above regarding 
the quotients of dual numbers, that would imply that, from (5), w′ = u′ + v′ε would be 
determined uniquely by w, and indeed one would find that: 
 

w′ = u′ + v′ε = 
( )( ) ( )

( )( ) ( )

u v

u v

α α ε ε β β ε
γ γ ε ε δ δ ε

′ ′+ + + +
′ ′+ + + +

 = 

= 
( ) ( )

( ) ( )

u v u

u v u

α β α α β ε
γ δ γ γ δ ε

′ ′+ + + +
′ ′+ + + +

, 

 
and when one multiplies the numerator and denominator by: 
 

(γu + δ) – (γv + γ′ u + δ) ε 
 

according to the rule above, that would further imply that: 
 

w′ = u′ + v′ε = 2

( )( )

( )

v u u
u u

v u u

u

α α β α β
α β γ δ ε

γ γ δ γ δ
γ δ

′ ′+ + +
+ + +

′ ′+ + +
+

, 

 
and from this, by separating the scalar and vectorial parts: 
 

(8)   
2

1 1 1 1
2

,

( ) [( ) ( ) ] ( )
,

( )

u
u

u

u u Dv
v

u

α β
γ δ
αγ αδ βδ βδ

γ δ

+ ′ = +
 + + + + ′ =
 +

 

 
if (αγ)1, …, is a self-explanatory abbreviation for (α′ γ − α γ′ ). 
 According to (3), the coordinates 0x′ , 1x′ , 2x′ , 3x′  of the image point (w′) of the number 

w′ on the number cone are proportional to the quantities v′, 1, u′2, u′, just as the 



Grünwald – On dual numbers and their application to geometry. 9 

coordinates of the image point (w) of the number w are proportional to the quantities v, 1, 
u2, u. 
 From (8), one immediately infers the connection between coordinates of the image 
points (w) and (w′): 
 

(9)   

0 0 1 1 1 2 1 1 3
2 2

1 1 2 3
2 2

2 1 2 3

3 1 2 3

( ) ( ) [( ) ( ) ] ,

2 ,

2 ,

( ) .

x Dx x x x

x x x x

x x x x

x x x x

ρ βδ αγ αδ βγ
ρ δ γ γδ
ρ β α αβ
ρ βδ αγ αδ βγ

′ = + + + + 
 ′ = + + 
 ′ = + + 
 ′ = + + + 

 

 
As a simple calculation shows, the determinant of this system of equations is equal to D3, 
and therefore, on the basis of the assumption that was made in (7), non-zero.  Thus, if one 
next ignores the infinite values of w = u + vε, as well as ones for which γu + δ = 0, then 
one can state the theorem: 
 
 Under the assumption (7) that D ≠ 0, the fractional-linear substitution (5) will 
transforms the number cone into itself collinearly, and indeed, that collineation is 
certainly not a degenerate collineation, due to the fact that D3 ≠ 0. 
 
 As far as the excluded values of w are concerned, we make the following remark: The 
infinitely-large values of w are mapped to the generator Q, and the ones for which γu + δ 
= 0 are mapped to another generator Q .  Now, let w = w0 be a dual number whose image 

point (w0) lies on one of the two generators Q, Q ; the value of the function w′ = 
aw b

cw d

+
+

 

is undefined, for the moment, but it can be determined by the following assignment: 
 

(10)    
0w w

aw b

cw d =

+ 
 + 

= 
0

lim
w w

aw b

cw d=

+
+

. 

 
 The justification for this definition comes from the fact that a continuous 
transformation is produced on the number cone by the substitution (5), from which the 
existence of the limiting values that were employed above for the definition is established 
beyond question.  By this a posteriori definition, one will arrive at the fact that the 
transformation (D ≠ 0) that belongs to (5) is well-defined in the entire number 
continuum, uniquely invertible, and continuous. 
 The collineations (8) produced on the number cone by the substitutions of the form 
(5), under the assumption that D ≠ 0, define a group G6 of  ∞6 collineations, of which 
only three of the four dual constants that appear in (5) are essential, since one of these 
four can be made equal to 1 by dividing the numerator and denominator in the fraction 
(5) with precisely those constants. 
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§ 4.  The group G7 of all collineations of the number cone into itself 
and its representation by dual numbers. 

 
 Let C be an arbitrary, non-degenerate collineation of the number cone into itself.  The 
generators of the cone will be permuted projectively amongst themselves by it.  In the 
group G6, one can certainly find a collineation R that permutes the generators of the cone 
amongst themselves in entirely the same way (and in a still more precisely-characterized 
manner). 
 From (3), the dual numbers w = u + v e for which u has a well-defined value, u = 
const., belong to the points of a certain generator of the cone.  One can regard u as a 
projective parameter of this generator of the number cone.  Any projective permutation of 
these generators, which therefore also belongs to C, may be represented by a fractional-
linear transformation of this parameter, perhaps by: 
 

(11)     u′ = 1 1

1 1

u

u

α β
γ δ

+
+

, 

where 1 1

1 1

α β
γ δ

 ≠ 0, and α1, β1, γ1, δ1 are ordinary real or complex numbers. 

 In order to now arrive at a non-degenerate collineation R in G6 that produces the same 
projective permutation of the generators of the cone as (11), one needs only to define the 
collineation R by the fractional-linear substitution: 
 

(12)    R, …, w′ = 1 1

1 1

w

w

α β
γ δ

+
+

, 

 
and then, from (8), the variable w = u + v ε will go to another one w′ = u′ + v′ ε under this 
substitution, for which one will have: 

u′ = 1 1

1 1

u

u

α β
γ δ

+
+

, 

 
in precise agreement with (11).  The collineation R (1) that belongs to (12) thus produces 
the same permutation of the generators of the cone as the collineation C, since the 
permutation of the generators that belongs to C will be represented by (11). 
 The collineation R−1 that is inverse to R, which will be represented by the substitution 
that is inverse to (12): 

(13)    R−1, …, w′ = − 1 1

1 1

w

w

δ β
γ α

−
−

, 

 
and, like R, belongs to the group G6, produces precisely the opposite permutation of the 
generators as the collineation C.  With that, the collineation (R−1 C) that is composed of 
                                                
 (1) The collineation R has the characteristic property (which is easily verified by calculation) that the 

planes of the pencil 1 1 1 2 1 1 3

0

( )x x x

x

β γ α δ− + − = const. remain fixed under it.  
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R−1 and C will represent a transformation for which every generator remains at rest.  (R−1 
C) will then be central collineation with center pω , and it may be represented analytically 
by a system of equations of the form: 
 

(14)    (R−1 C) … 

0 0 0 1 1 2 2 3 3

1 1

2 2

3 3

,

.

x x x x x

x x

x x

x x

ρ λ λ λ λ
ρ
ρ
ρ

′ = + + + 
 ′ = 
 ′ = 
 ′ = 

 

 
 The determinant λ0 of this system of equations is non-zero, since neither R−1 nor C 
degenerates, and as a result, (R−1 C) cannot be a degenerate collineation, either. 
 We now compare the central collineation (R−1 C) with the central collineations that 
are contained in the group G6 .  The latter define a subgroup T of G6 .  Should the 
collineation that belongs to (5) be central (with center pω), so the generators of the cone 
are individually at rest, then, with hindsight of the first equation in (8), it will be 
necessary and sufficient that: 

β = 0, γ = 0, and α = δ. 
 

With no loss of generality, one can set α = δ = 1.  The system of equations (9) is 
specialized by these assumptions, and goes to: 
 

(15)  T … (subgroup of G6) … 

0 0 1 2 3

1 1

2 2

3 3

( ) ,

.

x x x x x

x x

x x

x x

ρ β γ α δ
ρ
ρ
ρ

′ ′ ′ ′ ′= + − + − 
 ′ = 
 ′ = 
 ′ = 

 

 
 This system (15) is the general expression for the collineations of the subgroups in G6 
(1).  One now determines a collineation T0 in this group by the assignment: 
 

β′ = 1

0

λ
λ

, − γ′ = 2

0

λ
λ

, α′ − δ′  = 3

0

λ
λ

. 

 
T0 will then be represented by: 
 

                                                
 (1) Geometrically, the collineations of T can be characterized as central collineations for which the 
“central planes” (viz., any planes that remain point-wise fixed) go through the center pω .  The equation of 
such a central plane reads: β′ x1 – γ′ x2 + (α′ – δ′ ) x3 = 0. 
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(16)   T0 … 

31 2
0 0 1 2 3

0 0 0

1 1

2 2

3 3

,

.

x x x x x

x x

x x

x x

λλ λρ
λ λ λ

ρ
ρ
ρ

 ′ = + + + 
  ′ = 
 ′ =
 

′ =  

 

 
If one now compares T0 with (R−1 C), and thus, (16) with (14), then one will find that (R−1 
C) can be thought of as composed of T0 and some collineation 

0
Aλ  that is defined by the 

system: 

(17)   
0

Aλ  … 

0 0 0

1 1

2 2

3 3.

x x

x x

x x

x x

ρ λ
ρ
ρ
ρ

′ = 
 ′ = 
 ′ = 
 ′ = 

 

One will then have: 
(18)    (R−1 C) = (T0 

0
Aλ ). 

 
The collineation 

0
Aλ  transforms the number cone (2), x1 x2 − 2

3x  = 0, into itself; on the 

other hand, as long as λ0 ≠ 1, 
0

Aλ cannot be contained in G6, since in this case, as a central 

collineation, it must belong to the subgroup T, and the latter is impossible when one 
compares (15) with (17). 
 It follows from (18) that: 
(19)    C = (R T0 

0
Aλ ). 

 
 The most general (1) collineation C that takes the number cone to itself may be 
composed from a collineation (RT0) of the group G6 and a collineation 

0
Aλ of the one-

parameter group A: 

(20)   A … 

0 0 0

1 1

2 2

3 3.

x x

x x

x x

x x

ρ λ
ρ
ρ
ρ

′ = 
 ′ = 
 ′ = 
 ′ = 

 

 
The totality of all C thus defines a group G7 of ∞7 collineations. 
 
 The question now arises of how the collineations of the group G7 may be represented 
in dual numbers.  Since the collineations of the group G6 can be represented by an 
equation of the form (5), it remains for us to represent the one-parameter group A in the 
dual numbers.  If one envisions the association of points of the number cone and the 
associated dual numbers that is described by the proportion (3) then one recognizes that 

                                                
 (1) I.e., non-degenerate. 
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the collineation Aλ of the number cone into itself that acts by way of (20) takes the image 
point of a number w = u + v ε to the image point of the number w′ = u + λ v ε.  If one 
defines a symbolic operation factor Aλ by: 

 
(21)    Aλ (u + v ε) = u + λ v ε 
 
then the collineation Aλ of the number cone can be expressed in terms of dual numbers as 
follows: 
(22)    Aλ , …, w′ = Aλ(w). 

 
 The most general (1) collineation C of the number cone into itself will then be 
represented by: 

(23)    C, …, w′ = Aλ
aw b

cw d

+ 
 + 

. 

 
In particular, if λ = 1 then (23) will go to (5), and the collineation C will then belong to 
the subgroup G6 . 
 As is easy to see, G6 is an invariant subgroup.  Since G7 arises from G6 by the 
addition of the group A (eq. 20), the proof of this can be carried out simply: Let S be any 
collineation in G6, and let Aλ be any collineation of the group A; one then shows that the 
transformation ( 1Aλ

−  S Aλ) is again contained in G6 .  One can think of S as represented by 

a substitution of the form (5): w′ = 
aw b

cw d

+
+

.  Now, with hindsight of (8) [and (6)], the 

latter equation when one multiplies the vector parts of all dual numbers, namely, the 
numbers w′ = u′ + v′ε, w = u + v ε, a = α1 + α2 ε, b = β1 + β2 ε, c = γ1 + γ2 ε, d = δ1 + δ2 ε,  
with the same factor λ.  Equation (5) is thus replaceable with: 
 

(24)    Aλ(w′) = 
( ) ( ) ( )

( ) ( ) ( )

a w b

c w d
λ λ λ

λ λ λ

+
+

A A A

A A A
. 

If one now sets: 

(25)     
( ) and

( ) ,

w z

w z
λ

λ

=
 ′ ′=

A

A
 

 
and further introduces the abbreviations: 
 

Aλ(a) = a , Aλ(b) = b , … 

 
then one will have the following relation between z and z′: 
 

                                                
 (1) (non-degenerate)  
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(26)     z′ = 
az b

cz d

+
+

. 

 
 From (25), the transition from the image point (z) to the image point (w) corresponds 
to the collineation 1Aλ

−  of the group A. 

 From (5), the transition from the image point (w) to the image point (w′) corresponds 
to a collineation S of the group G6 . 
 From (25), the transition from the image point (w′) to the image point (z′) corresponds 
to the collineation Aλ of the group A. 
 
One therefore goes from (z) to the point (z′) by the collineation: 
 

( 1Aλ
−  S Aλ); 

 
on the other hand, from (26), the transition from (z) to (z′) corresponds to a certain 
collineation of the group G6, so ( 1Aλ

−  S Aλ) will belong to G6 ; Q. E. D. 

 
 The group G4 of all central collineations in the group G7 that are represented by (14) 
is an invariant subgroup in G7, as immediately comes to light. 
 The group T that is defined by (15), which takes the form of the intersection of the 
groups G6 and G4, thus defines a likewise invariant three-parameter subgroup of G7 . 
 It remains for us to show the manner by which any collineation of the group G6 (G7, 
resp.) can be established geometrically by the association of a number of corresponding 
points. 
 Let t1, t2, t3 and 1t′ , 2t′ , 3t′  be two point triples on the number cone, such that the planes 

[t1, t2, t3] and [ 1t′ , 2t′ , 3t′ ] do not go through the vertex.  There will then certainly exist one 

and only one collineation S in G6 that takes the points of the first triple to the 
corresponding points of the second triple. 
 
 Proof: The projective permutation of the generators of the cone by the desired 
collineation is determined completely by the association of both point triples.  Now, let R 
be a collineation of the type represented by (12), through which the same permutation of 
the generators of the cone is effected.  The points t1, t2, t3 will correspond to the 
collineation R of three points 1t , 2t , 3t  that lie on the same generators as the points 

1t′ , 2t′ , 3t′ . 
 If one now takes the desired collineation S in the form (R P); i.e.: 
 

S = (R P), 
 

then P = (R−1 S) must be contained in G6, since R−1 and S belong to this group G6 .  P is 
then determined by the fact that the points 1t , 2t , 3t  correspond to the points 1t′ , 2t′ , 3t′ , 
which lie on the same generators, resp., so it is necessarily a central collineation; since it 
must now also belong to G6, it must be contained in the group T (eq. 15). 
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 However, there is one and only one collineation in T that takes the points  1t , 2t , 3t  to 

the points 1t′ , 2t′ , 3t′ .  P, and therefore S = (R P) is thus determined uniquely. 

 A collineation of the group G7 can be established geometrically in the following way: 
Let t1, t2, t3 and 1t′ , 2t′ , 3t′  be two point triples on the number cone, as above, let s3 be a 

point of [pω, t3] that is different from the vertices pω and t3, and likewise let 3s′  be a point 

of [pω, 3t′ ].  There will then exist one and only collineation Σ of the group G7 that takes 

the quadruple t1, t2, t3 , s3  into the quadruple 1t′ , 2t′ , 3t′ , 3s′ . 

 The proof is connected with the preceding one: One again puts the desired 
collineation Σ into the form (R P).  R shall again be a collineation of the group G6 that 
takes the quadruple t1, t2, t3 , s3 to the quadruple  1t , 2t , 3t , 3s , and indeed, in such a way 

that the points of the latter quadruple lie on the same generators as 1t′ , 2t′ , 3t′ , 3s′ . 

 P = (R−1 Σ) belongs to the group G7 and is a central collineation, so it belongs to the 
group G4 (eq. 14).  Since the quadruple  1t , 2t , 3t , 3s  and the quadruple  1t′ , 2t′ , 3t′ , 3s′  must 

correspond at P, from (14), the collineation P, and therefore also Σ, is determined 
uniquely. 
 
 

§ 5.  Coordinate transformation.  Double ratio. 
 

 The opposite assignment of dual numbers and the associated points of the number 
cone was defined in § 1 by the proportion (3) after establishing a projective coordinate 
system by means of the so-called fundamental points p0, p∞, p1, p(1+ε), the last two of 
which lie on a generator of the cone, while the plane E that is laid through p0, p∞, p1, does 
not go through the vertex p∞ . 
 If one chooses the fundamental points in another way − e.g., p0, p∞, p1, p(1+ε) – while 

observing analogous conditions, and one again defines the projective coordinates 
( 0x′ , 1x′ , 2x′ , 3x′ ) that belong to that system of fundamental points in the same way as in § 1, 

and one then assigns the dual number w′ = u′ + v′ ε to those points whose coordinates in 
the new system are (0x′ , 1x′ , 2x′ , 3x′ ) by means of the proportion: 

 
(3′)     0x′  : 1x′  : 2x′  : 3x′  = v′ : 1 : u′2 : u′, 
 
which is analogous to (3), then one will obtain an association of points on the number 
cone and dual numbers that is different from the one in § 1; the former association will be 
denoted by II, in contrast to the latter, which will be denoted by I.  The image point of 
dual number under the assignment II can be denoted by enclosing the dual number in 
question in square brackets. 
 The question now arises of the manner in which the dual numbers: 
 

w = u + v ε and w′ = u′ + v′ ε 
 



Grünwald – On dual numbers and their application to geometry. 16 

that belong to the same point p of the cone according to the associations I and II are 
connected with each other.  One finds that a relationship of precisely the same form as 
(23): 

(23′)     w = Aλ 
aw b

cw d

+ 
 + 

  

  
exists between these numbers, in which the operator Aλ has the meaning that is 

represented by (21): 
(21)     Aλ (u + v ε) = u + λ v ε . 

 
 Proof:  A system of homogeneous, linear equations exists between the coordinates xi 
(i = 0, 1, 2, 3) of a point p in the original coordinate system and the coordinates ix′ of the 

same points in the new system.  The equation of the number cone in the new system must 
again have the form: 
(2′)      2

1 2 3x x x′ ′ ′−  = 0. 

 
 One can now also regard the ix′  as the coordinates of a point p′, when referred to the 

original coordinate system.  If one chooses p to be on the number cone then, from (2′), 
the point p′ must also lie on the number cone, and the relationship between p and p′ will 
be a collineation C of the number cone C to itself.  It then follows from (3) and (3′) that 
the dual number w′ that belongs to p under the association II is identical to the number 
that belongs to the point p′ under the association I.  However, from §4, the latter is linked 
with the number w that belongs to the point p under the association I through an equation 
of the form (23), which proves the assertion above. 
 
 One can infer a consequence of this proof: The point p′ has the same coordinates in 
the original coordinate system that the point p did in the new coordinate system.  Now, 
the fundamental points p0, p∞, p1, p(1+ε) have the same coordinates in the original 
coordinate system that the fundamental points p0, p∞, p1, p(1+ε) have in the new one; cf., 

Table (1).  If one then shifts the point p to the points p0, p∞, p1, p(1+ε), in sequence, then p′ 
will shift to the points p0, p∞, p1, p(1+ε), in sequence.  Now, since p′ corresponds to the 
point p under the collineation C, it will follow that the new fundamental points p0, … will 

go to the old ones p0, … under the collineation C.  From § 4, the collineation C will 
already be determined completely with that. 
 If one represents C in terms of dual numbers in the sense of the association I then that 
must yield equation (23′) precisely, so one can then obtain the connection between the 
dual numbers w and w′ that belong to the same point p of the number-cone under the 
associations I and II quite simply by determining that collineation C on the number-cone 
that takes the new fundamental points to the old ones, and that collineation will then be 
represented by dual numbers in the sense of the association I, and the quantities w and w′ 
in the equation that then arises are interpreted as the dual numbers that belong to the 
point p (under I and II). 
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 In particular, if the collineation C that takes the new fundamental points to the old 
ones belongs to the group G6 then one can refer to the point-quadruples that are defined 
by the old and new fundamental points as equivalent relative to the group G6 .  In that 
case, in place of equation (23), which represents C in the sense of the association I, one 
will find the simpler equation: 

(5′)      w′ = 
aw b

cw d

+
+

, 

 
which represent the connection above between the numbers that are associated with a 
point p under the associations I and II in the present special case. 
 Let w1, w2, w3, w4 be four dual numbers, about which, one might initially assume: 
 Condition α): viz., that they are finite and that the scalar parts of the two differences 
(w3 – w2) and (w4 – w1) are non-zero. 
 We understand the double ratio { w1, w2, w3, w4} to mean the expression: 
 

(27)    {w1, w2, w3, w4} = 3 1 4 2

3 2 4 2

( )( )

( )( )

w w w w

w w w w

− −
− −

, 

 
which is well-defined and uniquely-determined, on the basis of the assumption (α).  If 
condition (α) is not fulfilled then one can initially think of the numbers w1, … as 
variable, and then let their given values become unbounded, in such a way that condition 
(α) will indeed remain true during the limiting process.  If the double ratio that is defined 
by (27) tends to a definite limiting value under all such limiting processes then it will be 
equal to the double ratio of the four numbers.  One will then have the definition: 
 

(28)    {w1, w2, w3, w4} = 3 1 4 2

3 2 4 2

( )( )
lim

( )( )i iw w

w w w w

w w w w=

− −
− −

. 

 
 If the limiting processes above yield different limiting values according to the way in 
which they are present then the double ratio shall be regarded as indeterminate, and the 
scope of its indeterminacy can be characterized by the different values that can be 
reached. – If the image points of the four numbers wi all lie on a plane that goes through 
the vertex p∞ of the number cone then the quadruple of those image points, and likewise 
the quadruple of the four numbers wi , shall be called special.  For non-special number-
quadruples, the double ratio is determined completely and uniquely by the definition (27), 
(28) above. 
 If one transforms the four numbers wi , which we will assume do not define a special 

triple, into the numbers iw′  by a fractional-linear substitution (5) w′ = 
aw b

cw d

+
+

 then the 

double ratio of those numbers will be preserved, which can be proved in the usual way 
that one uses for ordinary numbers.  
 If one maps the wi in a well-defined way onto the number cone (perhaps by the 
association I) then one can also define the double ratio of the four points (wi) on the 
number cone, in which one must, however, make reference to the association I explicitly.  
If one goes from the association I to another association II whose fundamental points are 
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equivalent to those of I relative to the group G6 (cf., pp. 17) then the dual numbers that 
belong to the four points of the number cone above will transform by a fractional-linear 
substitution of the form (5) = (5′), so the double ratio of the four points above will also be 
the same for the new association II as its was for the association I.  However, if the 
quadruple of the new fundamental points under the new association II is no longer 
equivalent (relative to the group G6) to the original quadruple of fundamental points that 
belongs to I then the wi will transform according to formula (23′) of this paragraph w′ = 

Aλ
aw b

cw d

+ 
 + 

, and one will determine the double ratio of the transformed numbers from: 

(29)    1 2 3 4{ , , , }w w w w′ ′ ′ ′  = Aλ{ w1, w2, w3, w4}. 

 
That is, the double ratio of the four points of the cone that belongs to the association II 
emerges from the double ratio that belongs to I by leaving its scalar part unchanged, 
while multiplying the vectorial part with a factor l, in which the factor l is independent of 
the position of the four points (wi) on the number cone, and depends upon only the 
relationship (23′) that exists between the associations I and II. 
 If one chooses four points on the number cone in such a way that they do not define a 
special quadruple and forms their double ratios relative to all possible associations I, II, 
… then the scalar part of the those double ratios will be the same, but the vectorial 
component will change by a factor λ under the transition from one association to another.  
If the number w belongs to a point of the number cone under one association I, while the 
number w′ belongs to it under another II, such that w and w′ are connected by (23′) then 
the factor λ that appears in that formula will specify precisely the factor that the vector 
part of any point-quadruple will take on under the transition from I to II.  Since the factor 
λ depends upon only the associations I and II, we would like to refer to it as the modulus 
of the association II relative to the association I.  We call the totality of all associations 
that have the same modulus relative to I a class of associations Kλ .  The double ratio of a 
point-quadruple of the number cone has the same value relative to all associations of the 
same class under the transition from an association of the class Kλ to an association of the 
class Kµ , while the vectorial part of the double ratio changes merely by the factor µ / λ 
for any point-quadruple. 
 The scalar part of the double ratio of a point-quadruple is the same for the 
associations of all classes, so one finds the value: 
 

3 1 4 2

3 2 4 1

( )( )

( )( )

u u u u

u u u u

− −
− −

 

 
for it, in which the ui are the scalar parts of the dual numbers that belong to the points of 
the quadruple.  Now, since, from § 4, the ui are the projective parameters of the cone 
generators that are determined by the individual points of the quadruple, it follows that 
the scalar part of the double ratio of four points of the number cone is identical (for all 
associations) with the ordinary projective double ratio of the associated cone generators. 
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 As far as the vectorial part of the double ratio is concerned, one can choose it to be 
arbitrary (1), but non-zero, for one quadruple of points that do not lie in a plane.  In that 
way, one determines a class of associations, and from it one will then establish the double 
ratio of all quadruples on the number cone.  The vectorial part of the double ratio of a 
non-special point-quadruple has the value zero if and only if its four points lie in a plane. 
(The proof is achieved by transforming the quadruple by a collineation of G6 in such a 
way that three mutually-distinct points of it will lie in the plane E = [p∞, p1, p0].  The 
double ratio of the transformed quadruple is a pure scalar quantity if and only if the 
fourth point also lies in the plane E after the transformation.) 
 
 

§ 6.  Synectic functions of dual variables. 
 

 In agreement with the terminology that was introduced by E. Study (Geom. d. Dyn., 
pp. 199) a dual variable w′ = u′ + v′ ε can be referred to as a synectic function of another 
dual variable w = u + v ε if and only if u′ and v′ are analytic functions of u and v, in such 
a way that the differential quotient (2): 
 

dw

dw

′
= 

du dv

du dv

ε
ε

′ ′+
+

 

 
is independent of the differentials that are found in the denominator (except for possible 
exceptional points), and thus depends upon only u and v: 
 

(30)    
dw

dw

′
= 

du dv

du dv

ε
ε

′ ′+
+

= F(u, v). 

 One finds that: 

  
dw

dw

′
 = 

u u v v
du dv du dv

u v u v
du dv

ε

ε

′ ′ ′ ′∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 
+

 

 

    = 

u v u v
du dv

u u v v
du dv

ε ε

ε

′ ′ ′ ′∂ ∂ ∂ ∂   + + +   ∂ ∂ ∂ ∂   
+

, 

 
and sees from this that the differential quotient dw′ / dw is independent of the differentials 
du and dv that appear in the denominator if and only if: 
 

                                                
 (1) It is arbitrary because the vectorial part of the double ratio proves to be different for the various 
classes of associations.  
 (2) This differential quotient is initially defined only when the differential du that appears in the 
denominator is non-zero, so the scalar part of dw must be non-zero.  
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u v

v v
ε′ ′∂ ∂+

∂ ∂
= ε 

u u

u v
ε

′ ′∂ ∂ + ∂ ∂ 
, 

so 

(31)    0 and
u v u

u v u

′ ′ ′∂ ∂ ∂ = = ∂ ∂ ∂ 
. 

 
One finds from this, by integration: 
 

(32)   ( ) and ( ) ( )
d

u u v u v u
du

ϕ ψ ϕ ′ ′= = + ⋅ 
 

, 

that: 
(33)    w′ = u′ + v′ ε = f(w) = f(u + v ε) 
 
are equations that characterize synectic functions of w = u + v ε. 
 One can also define such a synectic function by a power series in the dual variables w 
with dual coefficients ak = αk + kα ε′  : 

 
 w′ = ∑ ak w

k = ∑ (αk + kα ε′ )(u + v ε) 

 = ∑ αk u
k + ε { }1k

k ku v k uα α −′ + ⋅∑ ∑  

 = ϕ(u)  + ε ( ) ( )
d

u v u
du

ψ ϕ + ⋅ 
 

, 

 
in which we have set ϕ(u) = ∑ αk u

k and ψ(u) = k
k uα ′∑ , and in which w′ = f(w) is 

shown to be a synectic function of w in the previous sense. (Naturally, the convergence of 
the powers series for ϕ(u) and ψ(u) is assumed.) 
 A synectic function will induce a transformation of the number cone into itself that 
takes the points of a cone generator to the points of a generator (1), so, from (32), it will 
follow from u = const. that u′ = const. 
 One can establish such a transformation by giving the transformed points on the cone 
that correspond to the points of an analytic curve on the cone, for which the type of 
association of points must be mediated by analytic functions.  Namely, from (32), the 
functions ϕ(u) and ψ(u) will then be determined from the given association. 
 In what follows, special use will be made of synectic functions that correspond to the 
ordinary function of analysis – e.g., sin w, cos w, etc., ew, l(w) – by allowing dual values 
for the arguments w.  One must think of those functions as being defined by the 
associated power series, such that one will have, e.g., sin w = sin (u + v ε) = sin + ε v cos 
u, etc. (Cf., E. Study, Geom. d. Dyn., § 23.) 
 
 
 
 

                                                
 (1) The two generators will be related to each other perspectively by the transformation.  
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§ 7.  Stereographic projection. 
 

 One obtains an especially simple kind of map of dual numbers to the points of a 
second-order cone by the following process: 
 One interprets the coefficients u and v of a dual number w = u + v ε as the ordinary 
rectangular coordinates of a point in a plane, describes a cylinder of rotation of arbitrary 
radius (say, 1) around the v-axis (u = 0) of the coordinate system, determines one of the 
two points on the surface of the cylinder that projects rectangularly onto the chosen uv-
plane at the coordinate origin O (u = 0, v = 0), and denotes it by p∞ .  The point with the 
coordinates u, v in the chosen plane will then be regarded as projected centrally from the 
point p∞ on the surface of the cylinder to a point p, and it can then be regarded as the 
image point (w) of the dual number w = u + v ε . 

 

ξ
�����

 

1 

O 

(u, v, 0) 

u
���������

 

v 

p 

p∞ 

ξ 

η 
ζ 

ζ 

η 

 
Figure 2. 

 
 We choose Op∞ to be the third axis ζ of a spatial orthogonal coordinate system (ξ, η, 
ζ) that extends the previous one, and whose ξ and η axes coincide with the u, v axes, 
resp., such that the equation of the cylinder reads: 
 

ξ 2 + ζ 2 = 1. 
 
One finds by calculation that the coordinates ξ, η, ζ of the point p = (w) have the 
proportions: 

2

: (1 ) : (1 ) :

: 1 : :v u u

η ζ ζ ξ− + 
 = 

. 
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 One can now regard four quantities that are proportional to η, 1 – ζ, 1 + ζ, ξ as the 
homogeneous projective coordinates: 
 

x0 ,   x1,   x2,   x3 , 
 

of the point p = (w).  The association between the dual number w = u + v ε and the 
associated image point p = (w) of the cylinder will then be mediated by the proportion: 
 
(3)     x0 : x1 : x2 : x3 = v : 1 : u2 : u, 
 
with which, it is established that the present map is a (metrically-specialized) special 
case of the general map that was treated in § 1. 
 The present map is completely analogous to the Riemann map of the ordinary 
complex numbers to the number cone by means of stereographic projection. 

 
 

II.  Map of the dual numbers to the minimal planes in Euclidian space,  
and then to the “spears” in them. 

 
§ 8.  Principle of the map. 

 
 From the principle of reciprocity, one can go from the map of dual numbers to the 
points of a second-order cone in Part I to an entirely analogous map of those numbers to 
the tangent planes to a second class curve, namely, a conic section.  One can choose the 
latter to be, in particular, the sphere circle at infinity – viz., the absolute circle of 
Euclidian geometry – and thus arrive at a map of dual numbers to the manifold of 
“minimal planes” in Euclidian space, each of which can be represented in a well-known 
way by the real line that carries it when it is provided with a sense of traversal, and thus 
by a “spear” (1). 
 We now establish that map in a well-defined way.  We choose a rectangular 
coordinate system with origin O, and x, y, and z axes, and denote the coordinates of a 
plane P in it by T, U, V, W (2).  By analogy with (3), one can then assign the dual number 
w = u + v ε as the image of that plane, whose coordinates are determined by the 
proportion: 

(34)   
2( ) : ( ) : ( ) : ( ) :1: :

1,

T V iU V iU iW v u u

i

 − + − − = 
 

= −  
 

 
then the quantities on the left of the equal sign themselves – or even better, any quantities 
that are proportional to them – can be regarded as homogeneous, projective coordinates 
of the plane P, by which, the analogy with (3) comes to light.  The proportion (34) will be 
replaced with the following one: 
 
                                                
 (1) Cf., E. Study, “Über Nicht-Euklidische und Liniengeometrie,” in the Jahresbericht der deutschen 
Mathematikervereinigung (1902), pp. 319. 
 (2) − T / U, − T / V, − T / W are the sections of that plane along the coordinate axes. 
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(35)   T : U : V : W = − v : i 
2 1

2

u −
: 

2 1

2

u +
: iu. 

 
 The planes P(T, U, V, W) that belong to the various dual numbers according to (35) 
satisfy the equation: 
(36)    U 2 + V 2 + W 2 = 0, 
 
and are thus minimal planes.  The manifold of all minimal planes appears to be related to 
the continuum of dual numbers (which, from § 2, is closed) in a single-valued and 
invertible way. 
 We now address the problem of constructing the associated image plane P to any 
given dual number w = u + v ε ; i.e., of finding the associated spear.  The direction of the 
latter spear depends upon only u and can be found by the following construction: 
 

u = u′ + i u″ (i = 1− ), 

 
in which u′ and u″ mean ordinary real numbers.  One determines the rectangular system 
of coordinates of the point (u′, u″, 0) in the xy-plane, and projects it stereographically 
from M (ξ, η, ζ) onto the points S0 (0, 0, −1) on the sphere x2 + y2 + z2 = 1.  The radius 
OM that belongs to the latter point of the sphere will then represent the direction of the 
desired spear. 
 
 Proof:  One finds the following expression for the coordinates of the point M: 
 

(37)  M 
2 2

2 2 2 2 2 2

2 2 1
, ,

1 1 1

u u u u

u u u u u u
ξ η ζ

′ ′′ ′ ′′ − −= = = ′ ′′ ′ ′′ ′ ′′+ + + + + + 
, 

 
and convinces oneself by calculation of the validity of the equation: 
 

(38)    
2 21 1

2 2

u u
iξ η   − ++   
   

 + ζ (iu) = 0, 

 
from which, it will follow, when one recalls (35), that: 
 

ξ U + η V + ζ W = 0 ; 
 
i.e., the real direction OM belongs to the minimal plane P (T, U, V, W) and thus gives the 
direction of the spear that belongs to P (1). 
 If the vectorial part v of a dual number w = u + v ε is equal to zero, so w reduces to u, 
then, from (35), the associated minimal plane P, and therefore, the associated spear, as 
well, will go through the origin O.  The aforementioned spear is then determined 

                                                
 (1) The radius OM′ that is opposite to OM gives the direction of the spear that belongs to the minimal 
plane P , which is conjugate-imaginary to P. 
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completely, since its direction would be given by just that, and will then be represented 
by OM itself. 
 If the scalar part u of w is equal zero then, from (35), the associated minimal plane is 
parallel to the z-axis and cuts out pieces 2iv and 2v from the x and y axes.  Let: 
 

v = v′ + i v″, 
 
so the spear of that plane will pierce the xy-plane at the point (− 2v′, 2v″, 0) and have the 
direction of the positive z-axis, as one learns from the construction of OM in the present 
case. 
 We shall now determine the minimal plane that is associated with a general, finite, 
dual number w = u + v ε (u ≠ 0, v ≠ 0) of finite magnitude, and therefore its spear.  One 
can then put w into the form: 

w = u [1 + ε i (f ′+ i f″ )], 
such that one will have: 

v = u i ⋅⋅⋅⋅ (f′ + i f″ ) . 
 
From (35), the minimal plane that belongs to w cuts out the piece (f′ + i f″ ) = − v / u i 
from the z-axis.  One finds the associated spear in the following way: One first constructs 
the spherical radius OM, from the above, which will give the direction of the desired 
spear, then displaces the piece f″ parallel to the z-axis to O1M1, and then rotates O1M1 
around the axis OM through a right angle in the positive sense to O2M2 , in which the 
positive sense is to be regarded as the sense that makes the rotation of Ox coincide with 
Oy relative to the Oz axis.  Finally, one displaces O2M2 along the piece f′ that is parallel to 
the z-axis to O′M′.  O′M′ will then represent the desired spear. 
 From (35), the dual number ∞ corresponds to a minimal plane whose spear will be 
given by the negative z-axis. 
 The dual infinitely-large numbers of the form hJ correspond to minimal planes whose 
spears are parallel to the negative z-axis. 
 The dual, infinitely-large number ω corresponds to the plane at infinity. 
 
 

§ 9.  The transformation of the minimal planes that is represented 
by a fractional-linear substitution of w. 

 
 One can think of a fractional-linear substitution of the dual variables w [cf. (5)] as 
being represented by an equation of the form: 
 
(39)  a0 (w′ – w) + a1 ⋅ i (ww′ – 1) + a2 ⋅ (ww′ + 1) + a3 ⋅ i (w + w′) = 0 

in which the: 
(40)    ak = αk + βk ε  (k = 0, 1, 2, 3) 

 
are finite dual real or imaginary numbers.  Namely, equation (39) is equivalent to: 
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(41)    w′ = 0 3 1 2

1 2 3 0

( ) ( )

( ) ( )

i w i

i w i

− + −
+ + +

a a a a

a a a a
, 

 
which is an equation that has the form: 
 

(5)      w′ = 
aw b

cw d

+
+

, 

 
in which the coefficients a, b, c, d are given by: 
 

(42)    0 3 1 2

1 3 3 0

, ,

, ,

a i b i

c i d i

= − = − 
 = = 

a a a a

a +a a +a
 

or the ak are given by: 

(42′)    
0 1

2 3

1
( ), ( ),

2 2
1

( ), ( ).
2 2

i
a d b c

i
c b a d

 = + = − +  
 
 = − = −
  

a a

a a

 

 
 The scalar part of the determinant of the substitution (5), which was denoted by D in 
(6), has the value: 
(43)     D = 2 2 2 2

0 1 2 3α α α α+ + +  

here. 
 The fractional-linear substitutions for which D ≠ 0 correspond to nondegenerate 
collinear transformations in the manifold of minimal planes.  A calculation that is 
analogous to the one that was presented in Part I (§ 3) will yield the following 
representation of the collineation that belongs to (39) in plane coordinates T, U, V, W: 
 

(44)    

00 01 02 03

11 12 13

21 22 23

31 32 33

,

,

,

,

T a T a U a V a W

U a U a V a W

V a U a V a W

W a U a V a W

ρ
ρ
ρ
ρ

′ = + + + 
 ′ = + + 
 ′ = + + 
 ′ = + + 

 

 
in which the coefficients ajk are determined from: 
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(45) 

2 2 2 2
00 0 1 2 3

2 2 2 2
11 0 1 2 3 11 2 3 0 1 32 2 3 0 1

2 2 2 2
22 0 1 2 3 31 3 1 0 2 13 3 1 0 2

2 2 2 2
33 0 1 2 3 12 1 2 0 3 21 1 2 0 3

01 2 3 3 2 0

,

, 2( ), 2( ),

, 2( ), 2( ),

, 2( ), 2( ),

2(

a

a a a

a a a

a a a

a

α α α α
α α α α α α α α α α α α
α α α α α α α α α α α α
α α α α α α α α α α α α

α β α β α

= + + +
= + − − = + = −
= + + − = + = −
= − − + = + = −

= − + 1 1 0

02 3 1 1 3 0 2 2 0

03 1 2 2 1 0 3 3 0

),

2( ),

2( ).

a

a

β α β
α β α β α β α β
α β α β α β α β

 
 
 
 
 
 
 −
 
 = − + −
 = − + − 

 

 
 Equations (44), (45) are completely identical to the parametric representation of the 
motions in Euclidian space that was presented by E. Study in Geom. d. Dyn., § 21, pp. 
174, etc., by equations (3), pp. 175, and (10), (11), pp. 176 there.  In fact, the cited 

equations seem to be coupled with the condition 
3

0
k k

k

α β
=
∑ = 0 there; however, that 

condition proved to be inessential in the cited work in § 25, pp. 120. 
 The transformations that are represented by (39) then prove to be identical with the 
motions in Euclidian space, and in fact, the real values of the parameters αk , βk 
correspond to real motions.  The six-parameter group that is defined by the motions 
corresponds to precisely the group G6 of transformations of the number cone in Part I.  
The ak (40) shall be referred to as the homogeneous dual coordinates of the motion (39) 

[(39), resp.]. 
 The transformation of the group A of Part I (20), which is expressed in terms of dual 
numbers by the operation (21) Aλ (w) = Aλ (u + v ε) = u + λ v ε, will correspond to the 

similarity transformation about the origin here. 
 

(46)    

T T

U U

V V

W W

ρ λ
ρ
ρ
ρ

′ = 
 ′ = 
 ′ = 
 ′ = 

. 

 

 The general transformation w′ = Aλ 
aw b

cw d

+ 
 + 

[eq. (23)] represents the group of all 

similarity transformations of Euclidian space, which is precisely analogous to G7 . 
 In what follows, as we did already, we will now refer to the results in the 
aforementioned ground-breaking book of E. Study.  In fact, the foregoing explanations 
will give us the means to derive those results in a simple, self-explanatory way, so in the 
interests of brevity, we shall omit presenting them. 
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§ 10.  The connection between the Plücker coordinates of a real line and the dual 
numbers that belong to the spears of that line. 

 
 Let l be a real line at infinity with Plücker coordinates: 
 

X01, X02, X03, X23, X31, X12 
 
(the first three of which are not all zero), which are assumed to be real. 
 From E. Study, Geom. d. Dyn., § 23, pp. 200, etc., the “ray coordinates” of l, X1, X2, 
X3 are defined by: 
 
(47)  {ρ X1 = X01 + X23 ε, ρ X2 = X02 + X31 ε, ρ X3 = X03 + X12 ε}, 
 
in which ρ = σ + τ ε (σ  ≠ 0) is a dual proportionality factor.  Here, σ and τ shall be 
assumed to be ordinary real numbers. 
 One can think of a real motion with the screw axis l as being represented by four 
homogeneous ak (40), the last three of which a1, a2, a3 are proportional to the quantities 

X1, X2, X3 that appear in (47). (Cf., Study, Geom. d. Dyn., § 25)  The minimal planes that 
go through l remain fixed under such a motion.  The dual numbers that belong to them 
can then be found from (39), when one sets w′ = w in it, instead of a1, a2, a3 (X1, X2, X3, 

resp.), and solves the quadratic equation in w that it yields.  One finds that: 
 
(48)   X1 ⋅⋅⋅⋅ i (w2 – 1) + X2 ⋅⋅⋅⋅ (w2 + 1) + X3 ⋅⋅⋅⋅ (2wi) = 0. 
 
 The two roots (1) of that equation w and w* are those dual numbers that are assigned 
to the minimal plane that goes through l.  Solution gives: 
 

(49)  w (w*, resp.) = 1 2

2 2 2
3 1 2 3

X iX

X X X X

+
± + +

= − 
2 2 2

3 1 2 3

1 2

X X X X

X iX

+ +
−

∓
, 

 
in which taking the square root will yield the following formula: 
 

m nε+  = 1
n

m
m

ε+  = 1
2

n
m

m
ε + 

 
. 

 

                                                
 (1) The existence of those roots is ensured by the fact that two minimal planes go through l.  In general, 
the case in which the line l is parallel to the z-axis demands special treatment.  In that case, the scalar parts 

of X1 and X2 will vanish, and formula (49) will provide only one finite root w1 = 1 2

32
X iX

X

+
= v1 ε.  As a 

passage to the limit will show, when one recalls (51), the minimal planes that go through l will then 

correspond to the dual numbers w1 and w2 = − 1 / 
1

w , the first of which has a vanishing scalar part, from 
the above, while the latter is infinitely large.  The latter number is to be regarded as the second root of (48) 
in the present case.  
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 In (49), the quantities X1, X2, X3 are, by definition, free of i; an important relationship 
between the roots w and w* can be inferred from that fact. 
 Let: 
(50)  w = u′ + i u″,  in which  u′ = u′ + v′ ε and u″ = u″ + v″ ε, 

 
be such that u′ and u″ are free of i, and thus “real-dual” (1), and let: 

 
(50′)     w  = u′ − i u″. 
 
 The other root w* is then given by: 
 

(51)    w* = − 
1

i′ ′′−u u
 = − 

1

w
. 

 
 In this, one finds the solution to the problem of finding the two dual numbers that 
belong to the minimal planes through any real line l that is given by its Plückerian line 
(Study ray, resp.) coordinates. 
 We now turn to the inverse problem of analytically determining (i.e., representing by 
its coordinates) the real carrier line of the minimal plane that is associated with a given 
dual number w = u′ + i u″ (50), or what amounts to the same thing, the carrier line of the 

spear that belongs to w. 
 From (51), one can determine from the number w the w* whose spear belongs to the 
same line as w, but has the opposite sense.  One can pose the quadratic equation whose 
roots are w and w* and bring that equation into the form (48); the corresponding 
coefficients of the latter will then yield the ray coordinates X1, X2, X3 of the desired 
carrier line.  The following path leads to that goal even faster: One substitutes w = u′ + i 

u″ in (49); by separating the real imaginary parts, one will then arrive at the equations: 

 

(49′)  u′ = 1

2 2 2
3 1 2 3

X

X X X X± + +
, u″ = 2

2 2 2
3 1 2 3

X

X X X X± + +
, 

 
from which, the ratios X1 : X2 : X3 can be calculated.  That will yield the fact that when ρ′ 
is understood to mean a proportionality factor that should be taken to be real-dual (i.e., 
free of i): 
(52)   ρ′ X1 = 2u′, ρ′ X2 = 2u″, ρ′ X3 = 1 − u′2 − u″2 

 
will be the representation of the desired line in ray coordinates.  [In order to obtain its 
Plückerian line coordinates, one must (cf., Study, Geom. d. Dyn., § 23, pp. 200) 
substitute the values X1, X2, X3 that were found in (47) and then determine the dual 
proportionality factor ρ that appears in it in such a ways that the Xik that (47) implies will 

                                                
 (1) One should confer formulas (49′) (cf., infra) for the dependency of the quantities u′ and u″ on X1, X2, 
X3 . 
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satisfy the Plücker relation X01 X23 + X02 X31 + X03 X31 = 0.  The Xik thus-calculated are 
then the desired Plückerian line coordinates.] 
 Formulas (52) are initially derived only under the assumption that w is a finite dual 
number with non-vanishing scalar parts.  The general validity of those formulas can be 
established easily by a limiting argument. 
 
 

§ 11.  Map of the spears to the “dual points” of a sphere. 
 

 It follows from (52) that: 
 

± ρ′ 2 2 2
1 2 3X X X+ + = 1 + u′2 + u″2, 

 
in which the sign on the left is taken to agree with the sign of the root in (49′). 
 If one introduces the notation: 

(53)     ± 2 2 2
1 2 3X X X+ + = X0 

 
for the square roots that one obtains in (49′) and (49) then one will get: 
 
(54)     ρ′ X0 = 1 + u′2 + u″2. 

 
 The four quantities X0 , X1, X2, X3 are then related by: 
 
(55)     2 2 2

1 2 3X X X+ +  = 2
0X , 

 
and are connected with u′ and u″ rationally by means of formulas (52) and (54) whose 

solution in terms of u′ and u″ will yield the equations: 

 

(56)    u′ = 1

3 0

X

X X+
,  u″ = 2

3 0

X

X X+
, 

 
which are, in essence, identical to (49′). 
 The four dual quantities X0, X1, X2, X3 can be regarded as the homogeneous 
coordinates of a “dual point,” in such a way that the ordinary Cartesian coordinates of the 
latter relative to the coordinate system Oxyz will be given by the ratios X1 / X0 , X2 / X0 , 
X3 / X0 .  Any dual number w = i + i u, and therefore any spear (w), as well, belongs to a 
“dual point” in this way [from (52) and (54)] as the image point. From (55), all of those 
points are to be regarded as lying on a sphere (of radius 1 about O), which we would like 
to call the “image sphere.”  The spear (w) that belongs to the number w lies on a line 
whose Study ray coordinates are X1, X2, X3 , and the direction of the spear will be 
established by adjoining the root in (53); i.e., X0 .  This kind of representation of a spear 
is then one that Study used as a basis in the book that we have cited repeatedly (cf., § 23, 
in particular).  In it, it was shown that the metric relationships between spears are 
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identical with the metric relationships between the “dual points” of a sphere.  By a 
corresponding definition of the dual angle between two spears, one will arrive at the fact 
that this angle agrees with the angle (that is defined by the usual analytical formula) that 
determines the associated “dual points” on the sphere.  Since the identities upon which 
the analytical treatment of spherical trigonometry are based will not lose their validity 
when the quantities in them are assumed to be dual numbers, spherical trigonometry can 
be carried over to spherical triangles whose angles are “dual points” with no further 
assumptions, and therefore, to triples of spears, since from the above, the same metric 
will be true for them that is true for spherical triangles of the latter kind. 
 Since the concept of a dual angle should be employed hereinafter, this is probably the 
place to briefly recall its definition.  Let l and m be two spears, and let t be one of the two 
spears that lie on the shortest transversal to l and m.  Let ϑ be the angle through which 
one must rotate l around t in the positive sense, and let ϑ1 be the distance through which 
one must displace l in the positive sense along t if one is to make l overlap with m; Θ = 
ϑ + ϑ1 ε will then be referred to as the dual angle between the spear l and m.  That angle 
Θ = ∢ lm is then determined modulo 2π when the direction of t is fixed on the shortest 
transversal to l and m.  If one leaves the latter direction undetermined then the sign of Θ 
will remain undetermined; i.e., one can consider Θ, as well as (− Θ) to be the value of the 
angle ∢ (l, m). 
 From the above, any two spears of a triple of spears (l, m, n) will determine a dual 
angle (after one subsequently establishes the sense of direction of the shortest transversals 
l , m , n  between m and n, n and l, and l and m); we would like to call these three angles 
(1) the angles of the triple.  If m is the spear that is opposite to m  then the dual angle 

n m∢  shall be referred to as the complementary angle (Ger. Beiwinkel) ∢ l = ∢ lmn of 
the triple (l, m, n), and the complementary angles ∢m and ∢ n are defined analogously 
(2).  The angle and complementary angle of a triple of spears are completely analogous 
to the sides and angles of a spherical triangle and are connected with them by the same 
equations.  (Cf., Study, Geom. d. Dyn., § 24, pp. 209, 210.) 
 One can think of exhibiting the map that was developed above from the spear (w) to 
the “dual points” of a sphere by way of a stereographic projection: If w = u′ + i u″ (3) then 

one projects (stereographically) the “dual point” (x = u′, y = u″, z = 0) from the point (x = 

0, y = 0, z = − 1) onto the sphere x2 + y2 + z2 = 1; i.e., onto the sphere that is represented 
by (55).  As a simple calculation will imply, the “dual point” thus-obtained will have 
precisely the homogeneous coordinates X0, X1, X2, X3 that are defined by (52) and (54), so 
it will be the “dual point” of the sphere above that belongs to (w). 
 A fractional-linear transformation: 

(5)      w′ = 
aw b

cw d

+
+

, 

 

                                                
 (1) ∢ lm, ∢mn, and ∢ nl.  
 (2) The definitions in question are obtained by cyclic permutations of the symbols l, m, n; in the 
definition of ∢ l, the direction of the shortest transversal to n  and m is thought of as being fixed by the 
spear l itself. 
 (3) Cf., (50).  
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in which one might have a = a1 + i a2 , etc., and a1, a2 , etc., represent real-dual numbers, 
effects a transformation of the quantities X0, X1, X2, X3 that belong to w into the 
corresponding quantities 0X ′ , 1X ′ , 2X ′ , 3X ′ , resp.  In fact, one expresses the latter as 

homogeneous, linear functions of the latter with real-dual coefficients; i.e., ones that are 
free of i; the transformation above will then represent a real-dual collineation on the 
sphere.  One illuminates the fact that this is true most directly in the special case for 
which u′, u″, a1, a2, b1, b2, … have no vectorial parts.  In that case, the collineation above 

will be an ordinary real collineation that is represented by a system of equations with 
ordinary, real numbers for its coefficients, and those coefficients will be entire, rational, 
real functions of the a1, a2, b1, b2, …  If one now allows real-dual values of u′, u″, a1, a2, 

b1, b2, … whose vectorial parts do not vanish then the coefficients will assume real-dual 
values, although nothing will change in regard to the form of the equations that express 
the iX ′  in terms of the Xi (

1).  The map of the spear (w) to the dual points of the sphere in 

question is, in a certain sense, an extended counterpart to the map from the spear to the 
tangential planes of the absolute circle, which was the starting point of our considerations 
about spears here.  Both mapping principles seem to be coupled by means of the dual 
number w, except that one of them prefers the decomposition w = u + v ε, while the other 
one prefers the decomposition w = u′ + i u″. 
 
 Remark: Along with those collineations of the image sphere that correspond to a 

fractional-linear substitution w′ = 
aw b

cw d

+
+

, there is yet another family of real-dual 

collineations that is represented by w′ = 
aw b

cw d

+
+

, if w  = u′ − i u″ is the dual number that 

is conjugate-imaginary to w.  The latter family is to be regarded as an extension of the so-
called indirect circle conversions of the image sphere in the dual domain, just as the 

group of collineations of the image sphere to itself that belongs to w′ = 
aw b

cw d

+
+

 is 

regarded as an extension of the group of direct circle conversions in the dual domain.  
The real-dual collineations of the image sphere can then be referred to as direct (indirect, 
resp.) real-dual circle conversions on the image sphere.  The transformation of the 

minimal plane that belongs to w′ = 
aw b

cw d

+
+

 is an “anti-collinear” transformation, with the 

terminology of Segre (2). 
 
 

§ 12.  Defining a spear by two dual numbers. 
 

 Let s be any spear, and let w be the associated dual number.  The spear s, along with 
the spears of the negative y-axis Oy′ and the positive z-axis Oz′, defines a triple of spears 

                                                
 (1) The argument that is employed corresponds to E. Study’s transition principle (Geom. d. Dyn., § 25). 
 (2) Cf., say, Mathematische Annalen, Jahrgang 1892.  
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(1).  Let the complementary angle of that triple that belongs to Oz be Φ = ϕ + ζ ε, and let 
the angle of s with Oz be Θ = ϑ + ρ ε ; in this, these dual angles shall be chosen in such a 
way that 0 ≤ ϕ < 2π, 0 ≤ ϑ ≤ π (2).  Let t be a spear on the shortest transversal from Oz to 
s, in such a way that the rotation of Oz in the direction of s (along the shortest path) will 
possess the positive sense of rotation when one considers that rotation from the side from 
which t points.  The spear Ox will emerge from Oz and Oy′ by the same construction that 
gave the spear t from Oz and s.  t can be obtained from the definition of the dual angle Φ 
= ϕ + ζ ε and Θ = ϑ + ρ ε in such a way that one rotates the spear Ox around the Oz axis 
in the positive sense through an angle ϕ and then displaces along Oz in the positive sense 
by the quantity ζ.  s will be obtained when one rotates the spear Oz around the t axis in 
the positive sense through the angle ϑ and then displaces along t in the positive sense by 
the quantity ρ.  When one is given the dual angles Θ and Φ, the spear s = (w) will be 
determined uniquely in that way, and it will be easy to construct. 
 That raises the question of how the angles Θ and Φ are connected with the dual 
number w that belongs to the spear s = (w).  In the special case where the vectorial parts 
of Θ and Φ vanish, so the stated angles reduce to ϑ and ϕ, the spear s will go through the 
origin O, and the construction that was given in § 8 of the spear that belongs to a pure 
scalar quantity will give the dual number that belongs to s as the pure scalar value 

tan
2

ieϕϑ
.  From the oft-cited transition principle, one would expect that in the general 

case, the dual number w that belongs to s will be represented by the formula: 
 

(57)     w = tan
2

ieΦΘ
. 

  
This formula can be verified easily as follows: One thinks of v as represented in the form: 
 

w = u [1 + ε i (f′ + i f″ )] 
 
and constructs the associated spear (w) = s from § 8.  It is easy to infer from the 
construction that the angles Θ and Φ that belong to s have the values: 
 

Φ = ϕ + f′ ε, Θ = ϑ – f″ sin ϑ ⋅⋅⋅⋅    ε . 
 

 If one develops tan Θ / 2 in a Taylor  series then one will get: 
 

tan 
2

Θ
 = tan 

( sin )

2

fϑ ϕ ε′′−
 = tan 

2

1

2 2cos
2

ϑ
ϑ+ (− f″ sin ϑ) ε, 

since the higher powers of ε give zero, and furthermore: 
 
                                                
 (1) The spears l, m, n in § 11 are Oz, Oy′, s, resp., in the present case.  The shortest transversals n  and 

m in § 11 correspond to the spears Ox and t, here (see below). 
 (2) Θ corresponds to the angle ∢nl in § 11, and Φ, to the complementary angle ∢ l. 
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tan 
2

Θ
= tan 

2

ϑ − f″ tan
2

ϑ ε = tan 
2

ϑ
(1 – f″ ε). 

 
 Analogously, one finds by an application of Taylor ’s theorem: 
 

eΦi = e(ϕ + f′ ε) i = eϕ i + eϕ i f′ ε i = eϕ i (1 + f′ ε i). 
 
It follows further that: 
 

tan 
2

Θ
eΦi = tan

2

ϑ
 eϕ i (1 – f″ ε) (1 + f′ ε i) = u [1 + ε i (f′ + i f″ )] = w, 

 
which was to be proved. 
 w is assumed to be a finite dual number whose scalar part is non-zero in the proof.  
The general validity of formula (57) is proved by passing to the limit. 
 If one subjects a spear s = (w) to a screwing motion around the Z-axis, when one 
rotates it around Oz in the positive sense through the angle γ and likewise displaces along 
Oz in the positive sense through the quantity γ1, then one will multiply the associated dual 
number w from (57) by the factor eΓi, where Γ = γ + γ1 ε.  If one then subjects two spears 
s = (w) and s1 = (w1) to such a screwing motion then the ratio w1 / w2 = q of the associated 
dual numbers will remain unchanged.  Conversely, if one screws the spear s = (w) around 
Oz as axis in any way then the spear that belongs to the number qw = w1, when q is a 
constant (dual) quantity, will move in such a way that it participates in the screwing of s 
around Oz as if it were rigidly coupled with s. 
 
 

§ 13.  Infinitesimal spear triples. 
 

 One might now understand 1wδ ∗  and 2wδ ∗  to mean two infinitely-small dual numbers 

(1); the associated spears 1s
∗  and 2s∗  differ infinitely little from the spear that the positive 

Z-axis represents, which will be denoted by 0s
∗ , and together with it, they define an 

infinitesimal triple of spears ( 0s
∗ , 1s

∗ , 2s∗ ). 

 The dual angles Θ and Φ might have the values Θ1, Φ1 for 1s
∗ ; correspondingly, one 

might get the values Θ2, Φ2 for 2s∗ .  The quantities Θ2 and Φ2 (but not Φ1 and Φ2) are 

then infinitely small in any event, and if one recalls (57) then: 
 

1wδ ∗  = 11

2
ieΦΘ
, 2wδ ∗  = 22

2
ieΦΘ
, 

so 

                                                
 (1) The scalar parts of 

1
wδ ∗ , 

2
wδ ∗ , and likewise those of δw1, δw2, are assumed to be non-zero. 
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2

1

w

w

δ
δ

∗

∗  = 2 1( )2

1

ie Φ −ΦΘ
Θ

. 

 

If 2

1

w

w

δ
δ

∗

∗ = q then the dual number q can be put into the form q = R eΦi, where R and Φ are 

real-dual quantities – i.e., they are free of i – and in fact R and Φ are determined 
completely when one assumes that the scalar part of R is not negative, while the scalar 

part of Φ is non-negative and smaller than 2π.  One has: R eΦi = 2 1( )2

1

ie Φ −ΦΘ
Θ

, which will 

imply that 2 1Θ Θ = R, Φ2 – Φ1 ≡ Φ (mod 2π).  Now, Φ2 – Φ1 is nothing but the 

complementary angle 1 0 2s s s∗ ∗ ∗
∢  of the triple 0 1 2( , , )s s s∗ ∗ ∗ ; Φ1 and Φ2 are the angles 1 0s s∗ ∗

∢  

and 2 0s s∗ ∗
∢  of that triple (1).  One then has, moreover: 2 0

0 1

s s

s s

∗ ∗

∗ ∗

∢

∢
 = R, 1 0 2s s s∗ ∗ ∗

∢  ≡ Φ (mod 

2π).  The complementary angle 1 0 2s s s∗ ∗ ∗
∢  of the spear triple in question that belongs to 

0s
∗  and the ratio of the angle that is subtended at 0s

∗  are determined completely by the 

quotient 2

1

w

w

δ
δ

∗

∗  = q. 

 Now, let s0 = (w0) be an arbitrary spear, let s1 = (w0 + δw1) and s2 = (w0 + δw2) be two 
spears that differ from it infinitely little (1), which then defines an infinitesimal spear-
triple in general position, along with s.  One can think of the latter triple (s0, s1, s2) as 
being brought into its position in such a way that one subjects another triple 0 1 2( , , )s s s∗ ∗ ∗  

for which 0s
∗  coincides with the spear Oz (as above) to a real motion.  Obviously, the 

angle and complementary angle will not differ under this motion, so they will 
correspondingly be the same for both triples.  If 0w∗ , 0 1w wδ∗ ∗+ , 0 2w wδ∗ ∗+  are the dual 

numbers that belong to 0s
∗ , 1s

∗ , 2s∗  (in which one must obviously have 0w∗  = 0) then it 

must follow from § 9 that the numbers w, w + δw1, w + δw2 that belong to s0, s1, s2, resp. 
will emerge from those numbers by a fractional-linear transformation of the form w′ = 
aw b

cw d

+
+

.  The value of the differential quotient dw′ / dw for w = 0 must now coincide with 

δw1 / 1wδ ∗ , on the one hand, and δw2 / 2wδ ∗ , on the other (2).  The last two quotients will 

then be equal.  However, it follows immediately from 1

1

w

w

δ
δ ∗ = 2

2

w

w

δ
δ ∗  that 2

1

w

w

δ
δ

= 2

1

w

w

δ
δ

∗

∗ , say, 

= R eΦi.  One will then have: 

2 0

0 1

s s

s s

∢

∢
= 2 0

0 1

s s

s s

∗ ∗

∗ ∗

∢

∢
 = R 

                                                
 (1) With corresponding orientations for the shortest transversals to the spears of the triple. 
 (2) This follows immediately from the fact that w′ is a “synectic” function of w (cf., § 6).  
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[if one recalls the special position of the triple 0 1 2( , , )s s s∗ ∗ ∗ ] and likewise: 

 
∢  s1 s0 s2 = 1 0 2s s s∗ ∗ ∗

∢  = Φ. 

 
 One then also finds the ratio of the angle that is subtended at s0 and the 
complementary angle s0 at s0 for an arbitrary infinitesimal spear-triple (s0, s1, s2) from 

the quotient 2

1

w

w

δ
δ

= R eΦi in the same way as before. 

 
 

§ 14.  Dual-conformal transformations of the spear space. 
(An important infinite group of spear transformations) 

 
 If one dual variable depends upon another according to the equation: 
 
(58)     w′ = ϕ (w), 
 
in which ϕ (w) is a synectic function (cf., § 6), then every spear (w) will be assigned to 
another corresponding spear (w′).  The transformation of spear space thus-defined might 
be referred to as a synectic transformation.  The synectic transformations define an 
infinite group. 
 The transformations that we speak of possess the important characteristic property of 
being dually-conformal; i.e., any infinitesimal spear-triple (s0, s1, s2) (except for possible 
exceptional ones) will go to another 0 1 2( , , )s s s′ ′ ′  whose complementary angles are equal to 

the corresponding angles of the former under a transformation of that group, while its 
angles will be equal to the corresponding angles in the former.  The proportionality 
factor is (in general) a dual number. 
 
 Proof: Let w0, w0 = δw1, w + δw2 be the dual numbers that belong to the spears s0, s1, 
s2 of an infinitesimal triple, and let 0w′ , 0 1w wδ′ ′+ , 0 2w wδ′ ′+  be the corresponding 

numbers of the transformed triple 0 1 2, ,s s s′ ′ ′ (1).  The value of the differential quotient dw′ / 
dw for w = w0 must then coincide with 1 1/w wδ δ′ , on the one hand, and with 2 2/w wδ δ′ , 

on the other.  The last two quotients are then equal, which yields the relation 2

1

w

w

δ
δ

′
′

 = 2

1

w

w

δ
δ

 

directly.  From § 13, that will imply coincident values for the complementary angles ∢ s1 

s0 s2 and 1 0 2s s s′ ′ ′∢ , as well as for the ratios of the angles 2 0

0 1

s s

s s

∢

∢
 and 2 0

0 1

s s

s s

′ ′
′ ′

∢

∢
.  The proof 

is complete with that. 
                                                
 (1) The dual numbers that belong to s0, s1, s2 and 

0
s′ , 

1
s′ , 

2
s′  can be assumed to be finite dual numbers, 

because, if necessary, that can always be achieved by changing the coordinate system.  The scalar parts of 
δw1 and δw2 are assumed to be non-zero in the text.  Except for possible exceptions, the scalar part of dw′ / 
dw will be non-zero, and therefore the scalar parts of 

1
wδ ′  and 

2
wδ ′  will also be non-zero. 
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 The invariance of the complementary angle of an infinitesimal spear-triple under a 
synectic transformation can be formulated in the usual terminology as follows: Let s0 be 
any spear, and let s be a spear that differs from it infinitely little.  Let t be a spear along 
the shortest transversal from s0 to s, where the direction of t is determined in such a way 
that the sense of rotation of s0 to s will appear positive for an observer that looks in the 
direction t.  s0, s might go to 0s′ , s′ under the synectic transformation considered; let the 

corresponding (to the above) oriented shortest transversal from 0s′  to 1s′  be t .  If one 

changes s arbitrarily in such a way that the spear remains infinitely close to s0 then s′ will 
behave analogously, as opposed to 0s′ .  The transversal t runs through the normal net of 

s0, and t  runs through the normal net of 0s′ .  Therefore, t and t  will now be coupled to 

each other in such a way that the systems that are described in the associated normal 
nets will be congruent, so any t can be made to overlap the corresponding t  by one and 
the same real motion of spear space. 

 The invariance of the ratios of the angles, like the invariance of the complementary 
angles, can also be translated into the usual terminology.  Let the infinitely-small dual 
angle that s defines with s0 be Θ = ϑ + ρ ε, such that s emerges from s0 by a rotation 
around t in the positive sense through the angle ϑ and a displacement through ρ along t in 
the positive sense; one can also say that s arises from s0 by a infinitesimal screw [s0, s] 
about t with angle ϑ and parameter k = ρ / ϑ.  If the infinitely-small dual angle that 0s′  

makes with s is correspondingly Θ′ = ϑ′ + ρ′ ε then s will emerge from s0 by an 
infinitesimal screw [ 0s′ , s′] about the axis t, and the angle of the screw will be given by 

ϑ′, while the parameter is given by k′ = ρ′ / ϑ′.  From the above, the ratio Θ′ / Θ will 

remain unchanged when s changes.  Now, one has 
′Θ

Θ
= 

(1 )

(1 )

k

k

ϑ ε
ϑ ε
′ ′+

+
= 

ϑ
ϑ

′
[1 + (k′ – k) ε]; 

the quantities ϑ′ / ϑ and (k′ – k) will remain unchanged when spear s that is infinitely 
close to s0 rotates around s in any way, and the spear s′, which is correspondingly 
infinitely close to 0s′ .  In other words: The infinitesimal screws [s0, s] and [ 0s′ , s] about t 

( t , resp.) are related to each in such a way that the angles ϑ and ϑ′ of those screws will 
differ by only a constant factor, while the parameters k and k′ will differ by only an 
additive constant.  In that statement, “constant” means the same thing as “independent of 
the respective position of the spears s that are infinitely close to s0 .” 
 If one restricts one’s consideration to the spears of a congruence and considers the 
effect of a synectic transformation on just them then the statements will be specialized in 
the following way: The shortest transversals t from s0 to s will fill up a ruled surface, 
which is known by the name of a cylindroid; the associated shortest transversals t  from 

0s′  to s′ describe a cylindroid that is congruent to the one above, and the screw parameters 
that belong to the corresponding generators of both cylindroids have a constant 
difference. 
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§ 15.  The “equi-long” transformations of G. Scheffers. 

 If a synectic transformation (58) permutes the spears of a plane with each other then 
one will obtain an equi-long transformation of the plane, in the sense of G. Scheffers (1); 
in that way, the equi-long transformations are included in the dual-conformal 
transformations that were just considered.  In order to see that, it is only necessary to 
apply the concept of the dual complementary angle (2) to an infinitesimal spear-triple (s0, 
s1, s2) in the aforementioned plane.  Here, the general definition implies the expression 

∢ s1 s0 s2 = 1 2PP ⋅⋅⋅⋅ ε for the dual complementary angle ∢ s1 s0 s2 , if one understands 1 2PP  

to means the distance between those points P1 and P2 that are cut out of s0 by s1 and s2, 
resp., and must be chosen to be positive or negative according to whether the sequence of 
points P1 and P2 does or does not coincide with the sense of direction of the spear s0 .  
Now, the dual-conformal transformations that permute the spears of the plane with each 
other leave the complementary angle ∢ s1 s0 s2 unchanged; i.e., they leave the distance 
between the points that are cut out of any spear s0 by two infinitely-neighboring spears s1 
and s2 unchanged in length and direction.  However, that is precisely the characteristic 
property of the equi-long transformations. 
 It only remains to show what the relationship is between the assignment of real-dual 
numbers and spears in a plane that was given by G. Scheffers and the assignment of dual 
numbers and spears in space that was established here.  To that end, we consider the 
spears in the xy-plane of our coordinate system.  The angles Θ and Φ that were 
introduced in § 12 have the values: 

Θ = 
2

π
 + ρ ε, Φ = ϕ, 

 
resp., for any spear s in that plane.  From § 12, the quantities ρ and ϕ have the following 
meaning: If t is a spear along the altitude ON that is dropped from s to O, in such a way 
that the sequence of spears t and s will correspond to a rotation in the positive sense 
(through a right angle) when considered from the positive z-axis, then ϕ means the angle 
between t and the positive x-axis Ox, while ρ means the length of the altitude ON, which 
will be positive or negative according to whether ON and t have the same or opposite 
directions, respectively. 

 From formula (57) in § 12, the dual number w that belongs to s will be w = tan
2

Θ
eϕ i.  

If one develops tan 
2

Θ
= tan 

4 2

π ρ ε + 
 

 according to Taylor ’s theorem then that will give 

tan
2

Θ
= 1 + ρ ε, so: 

w = (1 + ρ ε) eϕ i = eρε ⋅⋅⋅⋅ eϕ i = eϕ i + ρε,  
 
and that will further imply that: 

                                                
 (1) Cf., the Verhandlungen des internationalen Mathematikerkongresses zu Heidelberg (1894), 349-356, 
as well as volume 60 of Mathematischen Annalen, 491-531.  
 (2) See above, pp. 30. 
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l (w) = ϕ i + ρ ε = i (ϕ – ρ i ε). 
 

 If one writes ε  in this, instead of – i ε, then this number will have the property that 
2ε  = 0, which is analogous to that of ε ; the formula above can be written: 

 
(58)    − i l  (w) = ϕ +ρ ε  = w. 

 
 Now, the number w = ϕ + ρ ε  is completely identical with Scheffer’s number for the 

spear, except that ε  in the Scheffer number differs from the previous ε by the factor 
(−i): 
(58a)     ε  = − i ε. 
 
 The relationship between the number w that is assigned to the spear s under our 
association and Scheffer’s number w is mediated by (58), and thus, by a transcendental 

equation.  That is connected with the fact that under our association, the spear s and 
number w are in one-to-one correspondence with each other,  while the Scheffer number 
w of the spear s is determined only modulo 2π (1). 

 The association of spears in the xy-plane and the numbers w = u + v ε has the 
disadvantage that the coefficients u and v that appear in w are not real quantities.  That 
inconvenience can be avoided by going to another association, under which the spear s 
that belongs to the number w under the original assignment will correspond to the 
number: 

(59)     wɶ = 
1 1

1

w

i w

−⋅
+

. 

 
The new assignment belongs to the same “class” as the original one, from the definition 
of the concept of the class of an assignment that was given in § 5.  If one recalls the 
representation w = eϕ i + ρ ε that was employed above, in which one can write iε , in place 
of ε, then that will yield w = ( )ie ϕ ρ ε+ and: 
 

wɶ = 
( )

( )

1 1

1

i

i

e

i e

ϕ ρε

ϕ ρε

+

+

−⋅
+

 = 

2 2

2 2

1
2

1
2

i i

i i

e e
i

e e

ϕ ρε ϕ ρε

ϕ ρε ϕ ρε

+ −

+ −

 
− 

 
 

+ 
 

= 
sin

2

cos
2

ϕ ρε

ϕ ρε

+ 
 
 

+ 
 
 

, 

so one will have: 

(60)    wɶ  = tan 
2

ϕ ρε+
= u vε+ɶ ɶ , 

 

                                                
 (1) If one regards equation (58) as the definition of the Scheffer number w of the spear s then one will 

see that along with w = ϕ + ρ ε , the numbers of the form [(ϕ + 2kπ) + ρ ε ] will also belong to s as 
Scheffer numbers, where k is any whole number. 
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moreover, when one sets uɶ  = tan ϕ / 2, vɶ  = 
2

1

2cos
2

ϕ ⋅⋅⋅⋅ ρ .  (uɶ  and vɶ  are ordinary real 

numbers then.) 

 A fractional-linear substitution: w′ɶ  = 
aw b

cw d

+
+
ɶ

ɶ
, for which the coefficients a, b, c, d 

have the form: 
a = α +α ε′ , b = β +β ε′ , etc., 

 
in which α and α′, β and β′, etc., describe ordinary real numbers, will then permute the 
spears in the xy-plane.  One can show that under the group of spear transformations of the 
xy-plane thus-defined, the spears that contact an “oriented” circle will again go to another 
such spear that contacts an oriented circle, and the group in question will prove to be 
identical to the group of Laguerre circle conversions (Laguerre, Annales de 
Mathématiques, 1882, 1883).  The dual numbers will then play the same role for the 
latter group that the ordinary complex numbers do for the Möbius circle conversions. 

 A synectic transformation w′ɶ  = 
1

( )k
k

k

a w c
∞

=
−∑ ɶ , in which ak = αk + kα ε′ , c = γ + γ ε′ , 

and the αk , kα ′ , γ, γ′ are ordinary real numbers, represents the most general (real, 

analytic) equi-long transformation of the xy-plane. 
 
 

§ 16.  The isotropic congruences of Ribaucour. 
 

 The map of dual numbers to the minimal planes, and then to the spears in space, 
admits an especially simple representation in terms of Ribaucour’s theory of isotropic 
congruences. [Cf., Ribaucour, “Étude des Élassoides ou Surfaces à Courbure Nulle,” in 
the Mémoires couronnées par l’Académie de Belgique 44 (1881).] 
 One can define an isotropic congruence with ∞2 real lines as follows: On 
circumscribes any developable D by the absolute circle of Euclidian geometry (1).  The 
real carrier lines of the general planes of D, since the latter are obviously minimal planes, 
then fill up an isotropic congruence Q.  If dual numbers w = u + v ε are assigned to 
minimal planes according to (35) then (35) can be regarded as a parametric representation 
of the minimal planes by the parameters u and v.  The developable D is then 
characterized analytically by an equation between the parameters u and v, such as: 
 
(61)     v = ϕ (u). 
 
 The minimal plane that corresponds to the number w = u + v ε then belongs to the 
developable D if and only if u and v are coupled by the relation above.  The spear (w), as 
the real representative of the minimal plane, will then lie on a line of the isotropic 
congruence Q.  Conversely, if the spear (w = u + v ε) lies on a line of the isotropic 

                                                
 (1) The name of “minimal developable” has recently become useful for such a developable whose 
generating planes are minimal planes. 
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congruence Q in such a way that the associated minimal plane belongs to D then the 
above relation must exist between u and v.  Of the two spears of a line G of the isotropic 
congruence, the only one that is referred to as belonging to the congruence will always be 
the one that represents the plane of D that goes through G.  With that assumption, (61) 
gives the necessary and sufficient condition for the spears (w = u + v ε) to be assigned to 
the isotropic congruence in question. 
 From (61), one can think of any spear (u + v ε) of the congruence Q as being derived 
from the spear (u + 0 ε) (which is parallel to it and goes through the origin O) by means 
of the synectic transformation w′ = w + ε ϕ (w).  If one then assigns any spear of the 
congruence to the one through O that is parallel to it as its correspondent then, from § 15, 
the congruence will be mapped dual-conformally to the spear bundle through O in that 
way.  That sheds light upon the fact that the shortest transversals between a spear s of the 
congruence and spears that are infinitely-close to it will generally define a pencil of rays, 
so the “limiting point” on an s of the congruence will coincide with the “center” on s. 
 One will obtain an especially simple special case of this when one takes the relation 
(61) in the form: 

v = A + B u + C u2. 
 
 In this case, if one recalls (35), or even better (34), the coordinates of the minimal 
plane (T, U, V, W) that is coupled with w = u + v ε will be coupled by: 
 

− T = A (V + i U) – B i W + C (V − i U) 
or 

T + i (A – C) U + (A + C) V – B i W = 0. 
 

That is, the spears of the congruence in question represent minimal planes that all go 
through a fixed point (a, b, c) whose coordinates are: 
 

a = i (A – C), b = (A + C), c = − B i. 
 
 Following E. v. Weber (1), the congruence shall be referred to as a cycle of spears.  If 
a = a′ + a″i, b = b′ + b″i, c = c′ + c″i (a′, a″, …, real) then the real point (a′, b′, c′) shall 
be called the center of the cycle; we would like to use the terminology nucleus of the 
cycle for the imaginary point (a, b, c) (2). 
 The special congruence considered is of great utility for the investigation of the 
general isotropic congruences, as one can see from the following fact: In the 
neighborhood of any spear s0 = (w0) of the congruence v = ϕ(u), the latter can be 
replaced with a cycle that has a second-order contact with s0 . 

                                                
 (1) Cf., the papers that were cited in the remark on pp. 1.  
 (2) One easily verifies that a cycle of spears consists of the generators of a confocal family of 
hyperboloids of rotation that are oriented in a certain way, and the orientation of the generators is such that 
the orthogonal projections of the oriented generators onto the plane of the throat circle of the hyperboloid 
will give tangents to the throat circle, which are oriented in a consistent way. (Cf., E. v. Weber, loc. cit.) 
The center of the cycle is identical with the common center of the confocal family whose nucleus lies on 
the common rotational axis of the confocal family. 
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 In fact, if one develops v = ϕ (u) in powers of (u – u0) using Taylor ’s theorem then 

when one sets 
0u u

dv

du =

 
 
 

= 0v′ , 
0

2

2
u u

d v

du =

 
 
 

= 0v′′ , …, that will give: 

 
v = v0 + 0v′  (u – u0) + 1

02 v′′ (u – u0)
2 + … 

 
 If one now truncates the right-hand side at the terms in (u – u0)

2 then one will get the 
equation of a cycle v = v0 + 0v′  (u – u0) + 1

02 v′′ (u – u0)
2 or: 

 

v = ( )2 21 1
0 0 0 0 0 0 0 0 02 2( )v u v v u v u v u v u′ ′′ ′ ′′ ′′− + + − + , 

 
which agrees with the equation of the congruence v = ϕ (u), up to (exclusively) third-
order infinitesimals in (u – u0). 
 That cycle shall be called the osculating cycle of the congruence for the spear s0 .  
The coordinates of its nucleus (which shall be denoted by ξ0, η0, ζ0) are provided by the 
formula above for a, b, c when one sets A = v0 − 21

0 0 0 02u v v u′ ′′+ , B = 0 0 0v u v′ ′′− , C = 1
02 v′′  on 

its right-hand side: 

 ξ0 = ( )21 1
0 0 0 0 02 2 u i v u i v i v′′ ′− + − + , 

 

 η0 =    ( )21 1
0 0 0 0 02 2 u v u v v′′ ′+ ⋅ − + , 

 
 ζ0 =  + 0 0 0u i v iv′′ ′− . 

 
 If one sets ϕ(u) = 2i F(u) for the function that appears in equation (61) then equation 
of the congruence will assume the form: 
 
(62)     v = 2i F(u), 
 
and the coordinates of the nucleus of the osculating cycle that belongs to an arbitrary 
spear s = (w) = (u + v ε) can be expressed in terms of the function F(u) and its derivatives 
F′ (u) and F″ (u) in the following way: 
 

(63)   

2

2

(1 ) ( ) 2 ( ) 2 ( ),

(1 ) ( ) 2 ( ) 2 ( ),

2 ( ) 2 ( ).

u F u u F u F u

i u F u iu F u i F u

u F u F u

ξ
η
ζ

′′ ′ = − + −
′′ ′= + − + 
′′ ′= − + 

        (C) 

 
 One will obtain the coordinates x, y, z of the center of the osculating cycle in s when 
one takes the real parts of the complex quantities ξ, η, ζ; thus: 
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(64)   

2

2

{(1 ) ( ) 2 ( ) 2 ( )},

{ (1 ) ( ) 2 ( ) 2 ( )},

{ 2 ( ) 2 ( )}.

x u F u u F u F u

y i u F u iu F u i F u

z u F u F u

′′ ′ = − + −
′′ ′= + − + 
′′ ′= − + 

R

R

R

       (K) 

 
 The geometric locus of all nuclei (ξ, η, ζ) for the spear s of the congruence in 
question is the imaginary curve C that is represented by (63).  That curve is identical with 

the edge of regression of the developable D.  All generating minimal planes of the 
developable D that belong to the spears that are infinitely close to s will then go through 
any point (ξ, η, ζ) of that curve.  Naturally, since C is an edge of regression, it will be a 

minimal curve. 
   The geometric locus of all centers (x, y, z) of the osculating cycles that belong to the 
congruence Q is the real surface K that is represented by (64) (1).  The analytic 
representation (64) of that surface is identical with the Weierstrass representation of an 
arbitrary minimal surface (cf., e.g., the Enzyklopädie der mathematischen 
Wissenschaften, III, D5, R. v. Lilienthal , “Besondere Flächen,” pp. 312).  The fact that z 
has the opposite value in the Weierstrass formula to the one above (64) is inessential, 
since a minimal plane will go to another minimal plane under a reflection in the xy-plane 
of our coordinate system.  The geometric locus K of the centers of all osculating cycles of 
an isotropic congruence Q will then be a minimal surface. 
 
 

§ 17.  Isotropic congruences and minimal surfaces. 
 

 On closer examination, the theorem that was just mentioned proves, to be basically 
identical to the following theorem of Ribaucour: 
 If one lays planes through the various rays of a congruence that are perpendicular to 
them, and which are the so-called “middle planes” of the rays in question, then all of the 
middle planes will envelope a surface, namely, the so-called middle envelope of the 
congruence.  According to Ribaucour, the middle envelope of an isotropic congruence is 
a minimal surface.  (Cf., the article in the Enzklopädie that was cited above, pp. 330.) 
 It can be proved that the middle plane of any spear s of the isotropic congruence Q 
contacts the middle envelope of the congruence Q at precisely the center (x, y, z) of the 
osculating cycle q that belongs to s, and with that one likewise shows that the middle 
envelope of Q is identical with the surface K of the preceding paragraph. 
 We present the following argument for the purpose of proving that: A cycle of spears 
consists of the generators of a family of confocal hyperboloids of rotation of one sheet, 
which are oriented in a certain way (2).  The middle planes of all spears of a cycle all go 
through the common midpoint of the aforementioned hyperboloid, and thus through the 
center of the cycle.  If one determines the point of intersection of the middle planes to all 
spears of Q that are infinitely close to s, on the one hand, and then the intersection point 
of the middle planes of all spears of q that are infinitely close to s, on the other hand, then 

                                                
 (1) Obviously, K can also be defined to be the geometric locus of the bisecting points of the line 
segments that connect the different points of C with the respective associated conjugate-image points. 
 (2) Cf., remark (2) on pp. 40. 
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it will follow from the fact that the osculating cycle q has second-order contact with Q at 
s that the two points thus-obtained will be identical.  However, the first point is identical 
with the point at which the middle plane of s contacts the middle envelope of Q, while the 
second point is, from the above, identical with the center (x, y, z) of the osculating cycle 
q.  With that, the theorem is proved. 
 
 The way that the parametric representation (64) of the surface K was derived seems to 
be of interest for the fact that it demonstrates the connection that exists between the 
complex function F(u) in the Weierstrass representation (64) of a minimal surface K 
and the isotropic congruence A that belongs to K according to Ribaucour. 
 In fact, if any minimal surface K is given in the Weierstrass representation (64), and 
if one would like to obtain an isotropic congruence for which K is the middle envelope 
then one will need only to establish the relation: 
 

v = 2i F(u) 
 
between the defining numbers u and v of a dual variable w = u + v ε ; the spears s = (w) 
then fill up an isotropic congruence Q that has the desired relationship with K (1).  
 Following Ribaucour, there are, in general, ∞3 isotropic congruences Q  whose 
middle envelopes are identical with the given minimal surface K, and one can find the 
remaining ones from one of those congruences Q by a simple construction.  If one 
subjects the minimal planes that belong to the spears s of Q to an imaginary translational 
motion (iα, iβ, iγ) that consists of a translation by iα parallel to the positive x-axis, one by 
iβ parallel to the positive y-axis, and one by iγ that is parallel to the positive z-axis, where 
α, β, γ should be real numbers then the developable D of those minimal planes will go to 
D, and the point (ξ, η, ζ) of the edge of regression C of D will go to the point ( , , )ξ η ζ  of 

the edge of regression C  of D  in such a way that ξ = ξ + i α, η  = η + i β, ζ  = ζ + i γ.  

However, the real parts x , y , z  of ( , , )ξ η ζ , resp., are obviously identical with the real 

parts x, y, z of (ξ, η, ζ), respectively. 
 The spears of the minimal planes of the developable D  define an isotropic 
congruence Q .  Since x  = x, y  = y, z  = z, the centers of all osculating cycles of a 

surface K  that is identical with the corresponding surface K for the original congruence 
Q belong to that congruence as a geometric locus. 
 The middle envelope of the congruence Q  is then identical with the middle envelope 

of the congruence Q.  Corresponding to the different values that the real parameters α, β, 
γ can take on, one will obtain ∞3 isotropic congruences Q  that have the same relationship 
to a given minimal surface K from a congruence A has K for its middle envelope. 
 It still remains for us to clarify the connection between Q and Q , first constructively, 
and then also analytically. 

                                                
 (1) In particular, if the function F(u) that appears in the Weierstrass representation (64) of a minimal 
surface K is an entire, quadratic function of u: F(u) = A1 + B1u + C1u

2 then the associated isotropic 
congruence v = 2i F(u) will be a cycle, the middle envelope of that congruence will reduce to the center of 
the cycle, and the minimal surface K will then reduce to a single point. 
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 The minimal plane that is represented by an arbitrary spear s and the dual number w 
might go to another one that belongs to spear s′ and the dual number w′ by the imaginary 
translational motion (i α, i β, i γ). 
 As one easily verifies, the spear s′ can be found from the spear s by the following 
construction: One displaces s by the real vector (α, β, γ), with which, that spear will come 
to a position s1 that is parallel to the original one, and then rotates s1 to s in the positive 
sense through a right angle; the spear thus-arrived-at will then be the desired s′.  Due to 
its simplicity and its repeated use, the construction by which the spear s′ that corresponds 
to any spear s by means of the vector (α, β, γ) can be found deserves a special name: We 
would like to refer to it as a lateral displacement of the spear s by the vector (α, β, γ).  
One then finds from any isotropic congruence Q whose middle envelope is the given 
minimal surface K the other ∞3 isotropic congruences Q  that have the same relationship 
to K quite simply when one subjects the spears of Q to a lateral displacement through an 
arbitrarily-given vector (α, β, γ). 
 Let (T, U, V, W) be the coordinates of the minimal plane of the spear s, and let w = u 
+ v ε be the associated number; that minimal plane will go to that of the spear s′ by the 
imaginary translation (i α, i β, i γ).  The coordinates of the latter minimal plane are: 
 

T′ = T – i α U – i β V – i γ W,    U′ = U,    V′ = V,    W′ = W; 
 
from (35), the dual number w′ = u′ + v′ ε that is associated with it is determined from: 
 

u′ = u, v′ = v + i 
2 21 1

2 2

u u
i iuα β γ − ++ + 

 
. 

 
 The dual number w′ of any spear of Q  depends upon the dual number w of the 
corresponding spear in Q in that way (1).  If one recalls (62) then, from the above, the 
relation: 

v′ = 2i F(u′) + i 
2 21 1

2 2

u u
i iuα β γ

′ ′ − + ′+ + 
 

 

 
exists between the defining numbers u′ and v′ of w′.  The characteristic condition for a 
spear (w) = (u + v ε) (in which, the primes on w, u, v are now omitted) to belong to an 
isotropic congruence Q  will then be given by: 
 

                                                
 (1) The numbers w and w′ are coupled to each other by a fractional-linear substitution.   In fact, the latter 
can be represented by the bilinear equation: 
 

(w′ – w) – 
2
iε

[α i (w w′ − 1) + β (w w′ + 1) + γ ⋅⋅⋅⋅ i (w + w′ )] 

 
[which is a special case of (39)]. 
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v = 2i F(u) + i 
2 21 1

2 2

u u
i iuα β γ − ++ + 

 
, 

or by: 
v = 2i ( )F u , 

in which: 

( )F u = F(u) + 
2 21 1 1

2 2 2

u u
i iuα β γ − ++ + 

 
. 

 
 On the grounds of the assumption that was made, the numbers α, β, γ are ordinary 
real numbers, as we once more emphasize. 
 From what was said, the middle envelope of Q  is identical with the middle envelope 

of Q.  The equation of Q is v = 2i F(u), while the equation of Q  is v = 2i ( )F u . 

 If one then replaces the function F(u) with the function ( )F u  that was defined above 

and contains three arbitrary real parameters α, β, γ in equations (64), which give the 
parametric representation of the middle envelope K of Q, then those equations will still 
represent the same minimal surface K. 
 The function F(u) that appears in the Weierstrass representation of the surface is not 
determined completely by a given minimal surface (K), since one can still add arbitrary 

real multiples of the expressions 
2 1

2

u
i

−
, 

2 1

2

u
i

+
, i u to such a function.  (This state of 

affairs is not strictly valid in the report in the Enzklopädie der Mathematischen 
Wissenschaften that was cited above.  There [pp. 312, line 6 from the bottom], when it is 
said that any analytic function belongs to a minimal surface, and conversely, that would 
give rise to the opinion that only one function belongs to a minimal surface, and, from the 
above, that opinion would be incorrect.) 
 
 

§ 18.  Associated minimal surfaces. 
 

 If one replaces the function F(u) in the Weierstrass representation of a minimal 
surface K with eiµ F(u), in which µ means a real constant, then one will obtain a minimal 
surface K  that will be referred to as associated with K; corresponding to the various 
values of µ, one will obtain a simply-infinite family of minimal surfaces that are 
associated with K, and likewise with each other.  It is known that these associated 
surfaces are developable from each other, and still other simple relationships exist 
between them.  Only the question that was treated and solved by Ribaucour will be 
discussed here of the way by which the isotropic congruences that correspond to the 
associated surfaces K  can be determined from an isotropic congruence Q (for which, K 
is the middle envelope) that belongs to K. 

 An isotropic congruence Q  that belongs to K  can be obtained when one establishes 
the relation v′ = 2i eiµ F(u′)  between the defining numbers u and v of a dual number w′ = 
u′ + v′ε.  The spears s′ that belong to w′ then fill up an isotropic congruence whose 
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middle envelope (from § 16) is obviously K .  Now, dual numbers w = u + v e for which 
the relation v = 2i F(u) exists between u and v belong to the spears s of Q.  If one then 
multiplies the vectorial part of the number w of a spear s of Q by eiµ then one will obtain 

the dual number of a spear of Q .  If one then denotes the latter number by w′ and the 

associated spear by s then one will have w′ = Aλ(w), in which λ = eiµ, with the use of the 

symbols that were introduced in formula (21). 
 The transformation that belongs to w′ = Aλ(w), which takes the spear s = (w) of Q to 

a corresponding spear s′ = (w′) of Q , can now be exhibited by a very simple 
construction.  If one recalls (35) then the minimal planes that belong to w will suffer a 
central similarity transformation with center O and modulus λ = eiµ . The spears s of 
those minimal planes will be transformed by the following construction: One draws a 
spear s0 through O and parallel to s, and then rotates s around s0 in the positive sense 
through the angle µ; the spear thus-obtained is then the desired s′, in which s goes to w′ 
= Aλ(w) under the transformation. 

  The validity of this construction is deduced effortlessly from the solution to the 
problem that was posed in § 8 of ascertaining the associated spear to a given dual 
number.  The construction above by which one found the transformed spear s′ from s 
shall be referred to briefly as a slewing of the spear s about the point O through the angle 
µ.  Slewing about other points is defined analogously. 
 One obtains the isotropic congruence whose middle envelopes are the associated 
surfaces of K from an isotropic congruence Q that belongs to K by slewing through a 
constant angle about O (or about any other point of space, since the coordinate origin 
can, of course, be changed arbitrarily). 
 
 

§ 19.  Special finite groups of spear transformations. 
 

 A fractional-linear substitution of a dual variable w: w′ = 
aw b

cw d

+
+

  represents a 

transformation of minimal planes that correspond to a (generally) complex motion in 
space.  These transformations depend upon six essential complex parameters (Cf., § 9.) 
 Likewise, since any minimal plane can be represented by its spears, the above 
transformation will represent a real transformation of the spears in space.  The group of 
those transformations contains 6 × 2 = 12 real parameters (since a complex parameter is 
equivalent to two real ones); that group might be denoted by Γ12 (

1). 
 The real motions of space, and therefore, the minimal planes will again yield (real) 
motions of the spears.  The group of motions of spear-space contains six real parameters, 
and is a subgroup Γ6 of Γ12 . 

                                                
 (1) For that group, one can confer: E. v. Weber, “Die komplexen Bewegungen,” Berichte der 
sächsischen Gesellschaft der Wissenschaften (1903).  That group belongs to the dual-conformal 
transformations of § 14, which emerges immediately from the above. 
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 A certain three-parameter group of the transformations of Γ12 that are not contained in 
Γ6 appears in § 17, namely, the one that corresponds to pure-imaginary translations of 
space; it is defined by the so-called lateral displacements. 
 Obviously, the double ratio of the dual numbers that belong to four spears (1) will 
remain invariant under the transformations of Γ12 , and one can regard that double ratio 
as the double ratio of the four spears, but one must observe that the vectorial part of that 
double ratio will be multiplied by a constant factor when one replaces the assignment 
between dual numbers, on the one hand, and the minimal planes and spears, on the other, 
that was established in § 8 with another assignment.  (Cf., § 5.) 
 The totality of all spears s that determine a pure scalar double ratio with three fixed 
spears s1, s2, s3, no two of which are parallel, will be given by the spears of the cycle that 
is determined by s1, s2, s3 .  (If there is only one such cycle that belongs to s1, s2, s3 then 
the minimal planes of s1, s2, s3 will have a common point, and it will then be the nucleus 
of the cycle.) 
 Any four spears of a cycle have a pure scalar double ratio. 
 Analogously, there are congruences of spears with the property that any four spears 
of such a congruence determines a double ratio that is real-dual; i.e., free of i.  Such a 
congruence will be obtained when one screws a spear s around a fixed spear s0 (that is not 
parallel to s) in an arbitrary way.  Such a congruence might be referred to as a vortex (2).  
One can also define a vortex of spears as the totality of all spears that define the same 
dual angle with a fixed spear.  If one maps the spears in space to the dual points of the 
number cone as in § 11 then the spears of a vortex will correspond to a planar section of 
the sphere with a “dual plane” and thus, to a “dual circle.” 
 (However, the property of a vortex that any four of its spears must have a real-dual 
double ratio is by no means true for all classes of associations of spears and dual 
numbers, since under the transition in (30) from a chosen assignment to an assignment of 
another class, the vectorial part of the double ratio will be multiplied by a factor that can 
even contain the imaginary unit in the general case.) 
 Another remarkable manifold of spears possesses the property that any four spears of 
it have a pure real scalar double ratio; the latter is then an ordinary real number.  One 
obtains such a manifold when one moves a spear s around a fixed spear s0 in such a way 
that one rotates it around s0 in the positive sense through the angle t and likewise 
displaces it parallel to s0 in the positive sense by (b sin t), in which t is a variable 
parameter, and b is a constant proportionality factor.  This manifold of ∞1 spears shall be 
referred to as a chain of spears.  The special kind of motion around s0 that the spear s was 
subjected to above can be given the name of “reversal.”  All points in space describe 
ellipses under that motion that project onto any plane that is perpendicular to s0 as 
concentric circles whose centers lie along s0 .  (These reversals represent limiting cases of 

                                                
 (1) In what follows, this will always be thought of as having been chosen in such a way that the 
associated double ratio possesses a well-defined value. 
 (2) E. Study used the term “cyclic congruence” for the analogous structure in non-Euclidian geometry.  
[“Über Nicht-Eucklidische und Liniengeometrie,” Jahresbericht der deutschen Mathematikervereinigung 
(1902), pp. 333.]  Here, we must avoid that terminology if we are to prevent confusion. 
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the general Darboux-Mannheim motion, which is the most general motion under which 
all points describe ellipses. (1)) 
 One immediately infers from the invariance of the double ratio of four spears under 
the group Γ12, that cycles will go to cycles, vortices to vortices, and chains to chains 
under the transformations of that group. 
 If one transforms a dual variable w according to the equation: 
 

w′ = Aλ 
aw b

cw d

+ 
 + 

 

 
then, from § 9, the minimal planes that belong to the various w will be subjected 
similarity transformations.  The group that is defined by all such transformations depends 
upon seven complex parameters.  The corresponding group of real transformation of the 
spear that belong to the various minimal planes correspondingly contains 14 real 
parameters, and let it be denoted by Γ14 .  In particular, there are also transformations 
contained in Γ14 that were considered in § 18 and referred to as slewings (through a well-
defined angle about a well-defined point).  The double ratio of any four spears (cf., § 5) 
will be modified by the group Γ14 in such a way that its scalar part will remain 
unchanged, while the vectorial part will be multiplied by a constant factor.  
Correspondingly, under the transformations of Γ14 , cycles will always go to cycles, and 
chains to chains, but generally vortices do not go to vortices.  Rather, a vortex will go to 
a congruence that can be generated by rotating a pencil of parallel spears about a fixed 
axis, and in the absence of a more suitable name, it shall be called a rotation field of 
spears (2). 
 The groups Γ12 and Γ14 can be extended to mixed group 12Γ  and 14Γ  by adjoining the 

transformation w′ = w , in which w  is the number that is conjugate-imaginary to w 
[which arises from w when one switches i with (− i)]. 
 Instead of the transformation that was chosen above, one can adjoin the one that is 
represented by w′ = − 1/w , and from (51), any spear will be converted into the opposite 
one on the same line.  The behavior of the cycles, chains, and vortices of spears under  

12Γ  and 14Γ  is completely analogous to their behavior under Γ12 and Γ14 . 
  

 
 
 
 

                                                
 (1) Cf., the Note by Darboux in Koenigs Leçons de Cinématique, Paris, 1897, pp. 352, as well as A. 
Grünwald ’s treatise “Die Mannheim-Darbouxsche Umschwungsbewegung eines starren Körpers,” 
Zeitschrift für Math. u. Physik (1906).  One will obtain the most general motion of that kind by the inward 
rolling of a right circular cylinder of diameter a onto one that is twice as big (while allowing it to slide only 
in the direction of the generators of the cylinder), when a point that is rigidly bound to the first cylinder is 
forced to stay on a plane that is rigidly bound to the second cylinder.  The “reversal” in the text will then 
correspond to the limiting case of a = 0. 
 (2) The closely-related term “whorl” of spears cannot be used without reservations, if one recalls the 
different use of that term by E. Study. 
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§ 20.  Concluding remarks. 
 

 In the foregoing, the application of dual numbers to the geometry of spears in space 
was treated in a rough outline, and by no means exhaustively.  Certain geometric 
considerations lead one to ascend from the concept of a spear – i.e., a real, proper line 
with a sense of traversal – to another general concept – that of an oriented real or 
imaginary line.  Similar to spears, they can be represented by ordinary dual numbers w = 
u + v ε , and thus, by higher complex numbers of the form a + bj + cε + d ε j, in which 
one has j2 = − 1, ε2 = 0, and a, b, c, d are complex numbers.  (These higher complex 
numbers can be found in the Enzyklopädie der mathematischen Wissenschaften, II A 4, in 
the report on “Höhere komplexe Grössen,” pp. 167, as the imaginary-reducible type, with 
the enumeration that is given there without a number.)  On the other hand, the oriented 
lines can be mapped to the points of a four-dimensional manifold M(4) in a four-
dimensional space R(14) in such a way that the spears (i.e., the real, oriented lines) would 
correspond to the real points of M(4), and groups of spear transformations that were 
denoted by Γ12 , Γ14 , 12Γ , 14Γ  in § 19 would be mapped to collineations of M(4) to itself. 

 One will succeed in extending the manifold of oriented lines to a closed continuum in 
a suitable way by this map.  Understandably, that continuum will differ from both the 
Plücker continuum of lines and the Study continuum of rays. 
 The metric relationships in the manifold of oriented lines can be introduced by fixing 
a certain “vortex” of imaginary, oriented lines, just as metric relationships are introduced 
into projective point spaces when one distinguishes a conic section, namely, the absolute 
spherical circle. 
 A more detailed discussion of these investigations shall be reserved for a later 
occasion. 
 

_________ 
 


