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On dual numbers and their application to geometry

By Josef Grinwald in Vienna
Translated by D. H. Delphenich

The present paper treats a topic whose essential vietivpas presented by the
author to the Naturforschertage in Merdh ih a talk: “Uber gewisse geometrische
Anwendungen der dualen Zahlen.” The fundamental idea wpoch the following
development rests consists ofnaap of what Study called the dual numbers to the
manifold of points of a second-ordesnein a three-dimensional projective space. From
the principle of reciprocity, one goes from this mapatoanalogous map of the dual
numbers to the manifold of tangent planes to a conic sedatiothree-dimensional
projective space. In particular, one can then substth& absolute circle at infinity of
Euclidian geometry for the aforementioned conic sectaad, in this way one will obtain
amap of the dual numbers to the manifold of so-called “minimal plane&uiciidian
space.

Insofar as the aforementioned minimal planes camrejpeesented in a one-to-one way
by their real carrier lines, when regarded with a wefiréel sense of traversal, that will
yield amap of the dual numbets the manifold of real, “oriented” lines, or — following a
terminology that was introduced By Study —the manifold obpearsin Euclidian space.

The mapping principle’) that will be described shortly in the following now leads
will be shown, in a direct and informal way to th&rieus geometric applications of the
dual numbers that have been made up to now: Namely, oonthénand, there are the
applications thatE. Study developed in his ground-breaking bo&eometrie der
Dynamen which was rich in new and fruitful ideas, and on thikeo hand, also the
applications thats. Scheffersgave to the International Congress of Nathematscatn
Heidelberg in 1904. The dual numbers prove themselves to batieglyenecessary
instrument for the geometry of spears, since they persimple representation of certain
finite and infinite (continuous) transformation groups he tmanifold of spears in
Euclidian space. The connection between the investigatlmatsreélate to this and
Ribacour’s theory of isotropic congruences, as well as therthef minimal surfaces,
seems to be of especial interest.

The concluding section of the present paper presensidevations that relate to the
geometry of real and imaginary oriented lines in Eudiidipace.

() On 27 Sept. 1905.

() Which was treated at the Naturforschertage; . pievious remark. In the discussion that followed
the presentation there, the remark was made by a vatlledgue that this mapping principle had already
been proposed and evaluatedkhyv. Weber in the Berichten der bayr. Akademie (sachs. Gesellschaf
resp.), as well as in these Monatsheften. That wamewus, since nothing at all was said about dual
numbers in the cited papers [Munchener Sitzungsber. (12@4}483, Leipziger Ber. (1903), 384-408.
Wiener Monatshefte (1905), 217-229].
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l. Map of the dual numbers to the number cone.

§ 1. The concept of dual numbers of the farm ve, where&® = 0, will be assumed
in what follows. As far as that is concerned, one ed@rtoE. Study's Geometrie der
Dynamen 8 23. For such a number, the quantiieand v mean ordinary complex
numbers;u will be referred to as thecalar part andve as thevectorial part of the dual
numberu + ve. The addition, subtraction, and multiplication of daaimbers results
from the known rules of calculation for ordinary tAmetic; in particular, the
commutative and associative laws are true for mutapion. By contrast, the law of
ordinary arithmetic that a product can equal zero only vamenof its factors vanishes is
no longer true for dual numbers. Moreover, the produduaf numbers is equal to zero
when the scalar part of at least two of the factargshes.

(See pp. 82 of the original article)
Figure 1.

For the clarification of the dual numbers and the udaton operations that one
carries out with them, it is now particularly usefiui one to map the dual numbers in the
following way to the points of a second-order conéhre¢-dimensional projective space:
One intersects such a cone, which is generally anpitvath a planeE that does not go
through the vertex and arbitrarily chooses three disgpoints on the plane that thus
arises that will be denoted Ipy, p1, andp. ; the vertex of the cone will be denoteddy

On the generator of the cone that goes thrguglone chooses a poipfi+y that is
arbitrary, but different fronp, andp.,. The four pointgo, p1, P», and pa+y shall be
called “fundamental points.” One now chooses a projective coordinate system in the
following way: Let the plan& be identical with the base plarg= 0 of the coordinate
system. Let the plane that is determineg®yp., p» be identical with the base plare
= 0 of the coordinate system. Finally, let the baaagax; = 0 andx, = 0 be defined by
the tangential planes to the cone along the gensrftop.] and oo pJ. The pointp+g
shall have the coordinatess = x; = X = X3 = 1. The coordinate system is obviously
determined completely by the conventions above. Thedowies of the fundamental
point and the vertex poimi, can be represented by the following table:

(1)

Xo X1 X2 X3
03] 0 1 0 0
P 0 1 1 1
oM 0 0 1 0
Pa+g 1 1 1 1
Pew 1 0 0 0

The equation of the cone reads:
(2) X1 X2 = %5 = 0.
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The coordinate system that was defined here, whichtesrdmed uniquely by the
fundamental pointgo, p1, P», P+g IN the manner that was set down above, may be
referred to as the coordinate system that belongs toafhementioned system of
fundamental points.

In order to now map the manifold of dual numbers to tlamifold of (real and

imaginary) points of the “number cong’x, — . = 0,0ne associates every dual number
w = u + ve with the point whose coordinates are determined by the proportion:

(3) XoiXi X iXs=V:i1l:iu?:u

A one-to-one relationship between the dual numbeasd the corresponding image
points (v) on the number cone is described by this proportion. Moyrtumbers whose
scalar parts agree map to the same generator of teeasgioints. The numbers 0, 1, and
1 + £ (the first two of which are regarded as dual numbers vathishing vectorial parts)
correspond, as a glimpse at Table (1) will teach u$, pviecisely the fundamental points
that are denoted I, p1, Pa+g -

§ 2. Introduction of dual numbers at infinity.

The images of the finite dual numbevs= u + ve — viz., the dual numbers for which
the coefficientss andv are finite quantities — do not cover the number cang — x; = 0

completely. As long as one only looks at points ofrthenber cone for whick, # 0O, the
proportion (3) generally determines finite values for thentjiesu andv, and therefore
also for the dual number+ ve that is associated with them, in any case. Things behave
differently for any point of the cone for whislh = 0. Since one also has= 0 for these
points according to equation (XX — X2 = 0, these points will fill up a generatQrof
the cone; indeed, with hindsight of Table (1), this geneinatobviously identical with
the line p. pJ. Now, for the points 0@ (sincex; = x3 = 0) certainly eithex, or X3 is
different from zero. In the former case, one ledram the formulax;/ x; = u? that one
can immediately infer from (3) that, at the veryskedhe quantityy cannot be finite; in
the latter case, the formuta/ x; = v teaches us analogously that the quantitgnnot be
finite.

If a point on the cone approaches the geneftilien at least one of the coefficients
u, v of the associated number ve will become infinitely large.

The fact that the image of the finite dual numberssduo® cover the number cone
completely, but leaves out the genera@pthen depends upon the fact that the manifold
of finite dual numbers does not define a closed continudtewever, one can now
extend the aforementioned manifold to a closed contingush that the various points
of the generato® of the cone correspond to various “infinitely large” dmambers that
one introduces. This extension of the number domains@lems preferable from another
standpoint, namely, when one starts with the caliculaiperation of the division of dual
numbers: Ifw = u + veis a dual number whose scalar padoes not vanish then there
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will be one and only one dual numberthat satisfies the equatiomv = 1 {); one can
regardw as the reciprocal value tand denote it by & orw™. One has:

u-—-ve

u2

(4) w = 1 =
w
By contrast, if the scalar partof the numbew equals zero then the equatiow/ = 1
cannot be solved fox as long as one restricts oneself to finite dual nusli@wever, it
is also in this case that one can make this equatioblsokhen one introduces various
infinitely-large dual numbers in the manner that was rilesd above.
Let a pointg, on the generatd® be established by the equation X, = — h, whereh
is initially a finite, non-zero, ordinary, complex nber. We now associate this pogt
with a well-defined, “infinitely-large” dual number, whicas we will likewise justify, we
would like to denote by:
hJ.

If a variable dual number = u' + V' & changes in such a way that its image poj (
approaches the poimng, without bound then the numbgd that belongs tay, shall be
referred to as the limiting value wf, so we will set:

limw =hJ

In this case, the ratik / Xo , and thus, from the proportion (3), also the ratfo/ v,
approaches the limiting value ki where the quantities' andVv' both become infinite.
This yields the following limiting values for the recipedwalue 1 W =w.

. u'-Ve
=lim —;
u

.1 .
lim = =lim — =
u'+ve

=—¢lim i,zzi (k.
u h

One simultaneously has the formulas:

Iimw =hJ and

lim W:EQ,
h

whenw andw are linked with each other by the relatiew/ = 1, so one can establish
that the dual numbers:

hJ and (k

o ol [T 55

have to be reciprocal values to each other, gpaiticular,J is regarded as the reciprocal
value toe in this sense'f:

() Cf., E. Study, Geometrie der Dynamepp. 197.
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J=£t
By the introduction of infinitely-large dual numbers bé¢ tformh Jthe equation:
ww =1

will also become soluble for the case in which:

and indeed will give only the solution:
w=hJ
for w.
We shall now examine what sort of modifications nerger in when the quantity
assumes the value infinity or zero.

1. h=o. In this case, the ratiy / Xo becomes infinitely large for a poin/{ that
approaches the poigt, without limit. Now, from (3), this ratio ='? / v, so it follows
that limu'? /v = e, so limv / u'? = 0, where at least the first of the quantitieandv’ is

u-ve

infinite. One then has lim 1w = lim —
u

= 0. Forh =, g, becomes identical with

the fundamental poirt. on our cone. We associate this point of the numbee evith
an infinitely large dual number that we shall denote kyusual sign:

The unbounded approach of the powt) (to the pointp., might then be represented by
the formula:

limw = oo.

One then simultaneously has the formulas:

limw = oo,
limw=0,

if wandw are coupled by the relatiomw = 1. In this sense, the numbers 0 andan
be regarded as reciprocal values.

2. h=0. Inthis case, the poigt becomes identical with the vertpx of the cone,
because here the ratig/ Xo, and thus also the coordina¢e assumes the value O for the

() The misgivings thaE. Study raised against the insufficiently motivated use of gmel®lJ = £* by
R. de Saussurg(cf., E. Study, Geom. d. Dyn pp. 208), in no way affect the present use of the symbo
here. Here, this symbol merely serves as a notégrotne various infinitely large dual numbers that were
introduced in a legitimate way.
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point ¢, , whereas without this — due tp being located on the generatQr — the
coordinates; andxs would vanish. [Cf., Table (1).] We now associate vhgexp,,
with a new infinitely-large number with the symhal

If the image point\/) of a variable dual numbeav approaches the poipt, without
limit then that situation shall be denoted by Wr= w The ratiox, / Xy for the point W),
and thus, the ratio’? / v, approaches the limit of zero here, so one convinceseif that
one simultaneously has the formulas:

imw =,

Iimw=aw,
if wandw are coupled by the relation:

ww = 1.

The image pointsw) and (V) on the number cone likewise return to the vepgx In
this sense, one can regard the numbas reciprocal to itself.

We neatly summarize the definition above of infilytlarge dual numbers:

These numbers correspond to the various points of theragerQ [p. p.] of the
cone in a one-to-one manner, and indeed:

the pointp., corresponds to the number

the pointp, “ “ w
and any pointj, of Q “ “ hJ

when it is established by the equationl xo = — h. These numbers may be characterized
arithmetically in the following way:

The numbero is to be regarded as the limiting value of a dual numberu' + ve
that grows infinitely large, and for which lim?* / v = o,

The numbery as the limiting value of a dual number that grows irdlgilarge, and
for which limu? /v =0,

The numbelh J, as the limiting value of a dual number that grows irdigitiarge,
and for which limu? /v =-h.

The manifold of dual numbers is extended to a closed continuum by the introducti
of these infinitely large dual numbe(f3, and indeed the latter seems to be related to the
points of the number cone in a uniquely-invertible way.

One defines the continuous change of a dual variable w as a change under which the
corresponding image poirftv) changes continuously on the number conethis sense,
as one easily recognizes, one has the following fasaul

IimhJ=w,
h=0

limhJ=co.
h=c0

() For this notion, cf., the discussionfin Study's Geometrie der DynameB 27 (pp. 247et seq.
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8§ 3. The fractional- linear transformations of a dual variable
and the associated collineations of the number cone intoai&

Wi =Ug+Vi &
and
Wo =Upx +Vo &
are arbitrary dual numbers, where the scalarypastnon-zero, then the equation:
wOw =w

will alwalys be soluble, and indeed in just one way, bgite dual numbew=u+v &
Itis ():

W:W1|:|i = (U +wvi 9 U2—2V2£ = u1u2+(V1U22_ %, W)E
W.

2 u2 u2

and the “quotient”:

is constructed most conveniently by multiplying themerator and denominator hy ¢+
Vs &):
— (Ul + Vlg)(uz - sz)
(U + VE) (U~ VE)

from which the result above will be inferred.
Let w = u + v £be a dual variable. One subjects it to a fractilinaar
transformation:

(5)

where the coefficients:

W = aw+b,
cw+d

a=a+a's, b=p+pf%,
c=y+ye, d=0+0¢

1) Cf. (4). The validity of the solution written downnche recognized immediately by a test. It is the
only one, because the existence of two equations:

{Wl]l\é=V\{ and}
W, = w

would have the equatiomv- w) w, = 0 as a consequence. Now, since the scalaupafiv, is non-zero,
by assumption, the latter product can vanish only whhemw = 0.
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are finite dual numbers for which the determinant ofsdadar parts:

ap

(6) D=y5,

: o . lab
or, what amounts to the same thing, the scalar panedfubstitution determlna(vt q ‘
c

shall be assumed to be non-zero:
(7) D #0.

We first examine the effect of the aforementioned tsuiisn on those finite values
of the variablesv=u + v &£ for which yu + d, namely, the scalar part of the denominator
cw + d of the fraction in (5) is non-zero. On the badishe statements above regarding
the quotients of dual numbers, that would imply that, fi(inw = u + V& would be
determined uniquely by, and indeed one would find that:

(a+a'e)(u+ve)+(B+PBe) _
(y+Ve)(u+ve) +(5+75€)
_(au+pB)+(av+a'u+ fB)e
T () +(pv+Yutd)e

w=u+ve=

and when one multiplies the numerator and denoirat

(Ww+d-Ww+yu+de

according to the rule above, that would furtherlintpat:

av+a'u+ S au+p
+ +J)+
@AW+ s s

w=u+ve= 5
(W+9)

and from this, by separating the scalar and vesdtparts:

U = au+p
(8) p+s
VvV = (ay)luz +[(0'5)1+(:85)1] u+(50) .t Dv
(yu+9)° !
if (a1, ..., is a self-explanatory abbreviation far' ¢/— a ).

According to (3), the coordinates, x , X,, x; of the image pointw{) of the number
W on the number cone are proportional to the questit, 1, u? U, just as the
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coordinates of the image point)(of the numbew are proportional to the quantitiesl,
2
us, u.
From (8), one immediately infers the connection betwamardinates of the image
points (v) and (v):

PXy = DX+ (B3) %+ (@) %+ [(ad) ,+(BY) ] %

(9) PX, = O X+ Y oxt 20 %,
X, = B x+ a® x+ 20 %,
PX; = BO x+ ay %+ (a0+pBy) X%

As a simple calculation shows, the determinant ofdyssem of equations is equal®d,
and therefore, on the basis of the assumption theuweaale in (7), non-zero. Thus, if one
next ignores the infinite values of=u + vg, as well as ones for whigu + o= 0, then
one can state the theorem:

Under the assumptiolf7) that D # O, the fractional-linear substitutior(5) will
transforms the number cone into itselbllinearly, and indeed, that collineation is
certainly not a degenerate collineation, due to the fact tHat @

As far as the excluded valueswhre concerned, we make the following remark: The
infinitely-large values ofv are mapped to the genera@rand the ones for whicu + o
= 0 are mapped to another generafar Now, letw = wy be a dual number whose image
aw+ b

cw+ d
is undefined, for the moment, but it can be determinedhdyallowing assignment:

point (W) lies on one of the two generat@s Q; the value of the functiow =

(10)

w=w, cw+ d

[aw+b} . aw+b
= lim
cw+d -y,

The justification for this definition comes from thiact that a continuous
transformation is produced on the number cone by theigulost (5), from which the
existence of the limiting values that were employed alfmvehe definition is established
beyond question. By thia posteriori definition, one will arrive at the fact that the
transformation @ # 0) that belongs to (5) isvell-defined in the entire number
continuum,uniquely invertible, andcontinuous

The collineations (8) produced on the number cone by th&tigitions of the form
(5), under the assumption tHatz 0, define agroup Gs of «° collineations of which
only three of the four dual constants that appear in &)asential, since one of these

four can be made equal to 1 by dividing the numeratordandminator in the fraction
(5) with precisely those constants.
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8 4. The groupGy of all collineations of the number cone into itself
and its representation by dual numbers.

Let C be an arbitrary, non-degenerate collineation of thebmr cone into itself. The
generators of the cone will be permuted projectively ragab themselves by it. In the
groupGg, one can certainly find a collineatiéhthat permutes the generators of the cone
amongst themselves in entirely the same way (andstill anore precisely-characterized
manner).

From (3), the dual numberg = u + v e for whichu has a well-defined valuey, =
const., belong to the points of a certain generatdh@fcone. One can regandas a
projective parameter of this generator of the numbee.cémy projective permutation of
these generators, which therefore also belondg3 toay be represented by a fractional-
linear transformation of this parameter, perhaps by:

(11) ur — alU+181 ,
yiu+o
al ﬁl .
where V3 # 0, anda, B, 4, & are ordinary real or complex numbers.
1 1

In order to now arrive at a non-degenerate colline&ionGs that produces the same
projective permutation of the generators of the cond Bs one needs only to define the
collineationR by the fractional-linear substitution:

(12) R ..w=dwWth
AR

and then, from (8), the variable=u + v £ will go to another on&/ =u' +V gunder this
substitution, for which one will have:
U _autp
yiu+9o,

in precise agreement with (11). The collineati®(f) that belongs to (12) thus produces
the same permutation of the generators of the condeasollineationC, since the
permutation of the generators that belong8 teill be represented by (11).
The collineatiorR™ that is inverse t&, which will be represented by the substitution
that is inverse to (12):
(13) R . w=-2""F
nw-a,

and, likeR, belongs to the grou@s, produces precisely the opposite permutation of the
generators as the collineati@h With that, the collineationR’* C) that is composed of

e collineatiol as the characteristic property wnicn Is easlly 10y calcu ation) that the
Y Th i ionR h he ch isti hich i ilyfieetrib Iculati h h
X2+(a1_51) X3

X

const. remain fixed under it.

planes of the pencif ~ Vs
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R™ andC will represent a transformation for which every gater remains at restR(*
C) will then be central collineation with centgy,, and it may be represented analytically
by a system of equations of the form:

PXo = AgXg FA X +A,%, +A X
(14) Rlo)... P87 %
pX, = X,

PXs = X

The determinant, of this system of equations is non-zero, since nefftnor C
degenerates, and as a resif" C) cannot be a degenerate collineation, either.

We now compare the central collineatid®’(C) with the central collineations that
are contained in the group¢G The latter define a subgroup T ok G Should the
collineation that belongs to (5) be central (with eept,), so the generators of the cone
are individually at rest, then, with hindsight of thestfiequation in (8), it will be
necessary and sufficient that:

£=0, y=0, and a=2a

With no loss of generality, one can set= 0 = 1. The system of equations (9) is
specialized by these assumptions, and goes to:

PX =% tBX VX% +Ha' =J) X%
PX = X

PXy = %,
PX = X

(15) T ... (subgroup 06) ...

This system (15) is the general expression for theneallions of the subgroups @
(*). One now determines a collineatiin this group by the assignment:

A —Vzi, a-o5 =2

SN p) 7

To will then be represented by:

() Geometrically, the collineations df can be characterized as central collineationsmoich the
“central planes” (viz., any planes that remain poirgdesixed) go through the centey,. The equation of
such a central plane rea@&x; — % + (@’—9") X3 = 0.
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PX = % +i>s+ﬁxz+£x3
AO AO AO ,

(16) To... § pPx= X

PXy = %,
PX = X

If one now compare®, with (R C), and thus, (16) with (14), then one will find thRE(
C) can be thought of as composedTgfand some collineatior, that is defined by the

system:

PXo = Ao
pX = X
(17) A 1D
v = %
PXg = Xs:
One will then have:
(18) R'0)=(To A,)

The collineationA, = transforms the number cone (&j,x. -x; =0, into itself, on the
other hand, as long as # 1, A, cannot be contained B, since in this case, as a central

collineation, it must belong to the subgrotipand the latter is impossible when one
compares (15) with (17).

It follows from (18) that:
(19) C=RToA,)

The most general’) collineation C that takes the number cone to itself may be
composed from a collineatiafiRTo) of the group G and a collineationA, of the one-

parameter group A:

QD
I

>

2

(20) A

LS X
I
P

QD
I
R

Xs-
The totality of all C thus defines a group & «’ collineations.

The question now arises of how the collineationsefgroupG; may be represented
in dual numbers. Since the collineations of the gr@4pcan be represented by an
equation of the form (5), it remains for us to represeatane-parameter groupin the
dual numbers. If one envisions the association of poihteeo number cone and the
associated dual numbers that is described by the propoBjicghgh one recognizes that

1 l.e., non-degenerate.
g
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the collineatior®, of the number cone into itself that acts by way20) (takes the image
point of a numbew = u + v £ to the image point of the numbet =u + A v & If one
defines a symbolic operation factdly by:

(21) Ar(u+vEy=u+tive

then the collineatio®, of the number cone can be expressed in terms of dudderaras
follows:
(22) Ay, ..., W :Q[,](W).

The most general (*) collineation C of the number cone into itself will then be
represented by:

(23) C ...w :%(

aw+ bj
cw+d)

In particular, ifA = 1 then (23) will go to (5), and the collineatiGnwill then belong to
the subgrouf@se .

As is easy to sed3s is an invariant subgroup. Sin€&; arises fromGs by the
addition of the group (eg. 20), the proof of this can be carried out simply:3leé any
collineation inGg, and letA, be any collineation of the grouy one then shows that the
transformation @' S A)) is again contained iGs. One can think 0% as represented by

aw+ b

cw+d
latter equation when one multiplies the vector partalbfiual numbers, namely, the
numbersy =U +vVegw=u+vga=mnt+tm Eb=L+Lhec=p+ped=0a+o &
with the same factot. Equation (5) is thus replaceable with:

a substitution of the form (5w =

Now, with hindsight of (8) [and (6)], the

_ 2@, (w) +2A, (D)
2, (C)2, (W) +21,(d)

(24) (W)
If one now sets:

(25) { 2,(w)=z and

A,(W) =2,
and further introduces the abbreviations:
A, = a, Q[,\(b)ZB,

then one will have the following relation betweeandz':

() (non-degenerate)
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y = 3Zth
cz+d

(26)

From (25), the transition from the image pomttp the image pointw) corresponds
to the collineationA;* of the groupA.

From (5), the transition from the image pom) (o the image pointw) corresponds
to a collineatiors of the groupGs .

From (25), the transition from the image poimt) (to the image pointz() corresponds
to the collineatioA, of the groupA.

One therefore goes frorg) (to the point £) by the collineation:
(A" S A);

on the other hand, from (26), the transition frozh to (Z) corresponds to a certain
collineation of the groufss, so (A,* S Ay) will belong toGs ; Q. E. D.

The groupG, of all central collineations in the gro@y that are represented by (14)
is an invariant subgroup @7, as immediately comes to light.

The groupT that is defined by (15), which takes the form of the gdetion of the
groupsGs andGy, thus defines a likewise invariant three-parameter subgrbGp .

It remains for us to show the manner by which any catine of the grouiss (G,
resp.) can be established geometrically by the as&otiat a number of corresponding
points.

Letty, t, tz andt,t,,t; be two point triples on the number cone, such thaplanes

[t1, to, t3] and [t; ,t;,t;] do not go through the vertexthere will then certainly exist one

and only one collineation S ingQGhat takes the points of the first triple to the
corresponding points of the second triple.

Proof: The projective permutation of the generatorghef cone by the desired
collineation is determined completely by the associatioooth point triples. Now, leR
be a collineation of the type represented by (12), throdgbhwthe same permutation of
the generators of the cone is effected. The pdints,, t3 will correspond to the
collineationR of three pointst, t,, t, that lie on the same generators as the points
t,t,t;.

If one now takes the desired collineati®m the form R P); i.e.:

S=RP,

thenP = (R 9 must be contained i8¢, sinceR™ andS belong to this groufss . P is
then determined by the fact that the poiftst,, t, correspond to the points,t;,t;,

which lie on the same generators, resp., so it isssacdy a central collineation; since it
must now also belong Gg, it must be contained in the groligeq. 15).
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However, there is one and only one collineatiof that takes the pointg , t,, t, to
the pointst, ,t;,t;. P, and therefor&= (R P) is thus determined uniquely.

A collineation of the groufs; can be established geometrically in the following way:
Let ty, to, t3 and t;,t,,t; be two point triples on the number cone, as abletes; be a

point of [p., t3] that is different from the verticgs, andts, and likewise lets;, be a point
of [pw t;]. There will then exist one and only collineatibrof the group Gthat takes
the quadrupleit ty, t3, S into the quadrupld; ,t; ,t;, S,.

The proof is connected with the preceding one: One agats the desired

collineation into the form R P. R shall again be a collineation of the gro@p that
takes the quadrupte, t,, t3, ssto the quadruplet, t,, t,, S,, and indeed, in such a way

that the points of the latter quadruple lie on the sgemerators ag,t, ,t;, s;.

P = (R %) belongs to the grou@; and is a central collineation, so it belongs to the
groupGs (eq. 14). Since the quadruplg, t,, t,, S, and the quadrupld; ,t;,t;, S, must
correspond atP, from (14), the collineatior?, and therefore als@, is determined
uniquely.

8§ 5. Coordinate transformation. Double ratio.

The opposite assignment of dual numbers and the assbpiates of the number
cone was defined in 8 1 by the proportion (3) after establishipgpjective coordinate
system by means of the so-called fundamental p@tp., P1, Pa+y, the last two of
which lie on a generator of the cone, while the pE&rleat is laid througlpo, p«, p1, does
not go through the vertegx. .

If one chooses the fundamental points in another-weyg.,po, Pe, P1, P+ — While

observing analogous conditions, and one again defines thectiwej coordinates
(%5, X , %, %) that belong to that system of fundamental pointsénsame way as in § 1,

and one then assigns the dual numider U' + V' £to those points whose coordinates in
the new system are(, X , X,, X;) by means of the proportion:

I

(3) X DX 1X X =V iliu?i,

which is analogous to (3), then one will obtain an ession of points on the number
cone and dual numbers that is different from the onelintlge former association will be
denoted by II, in contrast to the latter, which will denoted by I. The image point of
dual number under the assignment Il can be denoted by enctbsirdual number in
guestion in square brackets.

The question now arises thie manner in which the dual numbers:

w=u+ve and w=uU+V¢e
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that belong to the same point p of the cone according to the associatmasll are
connected with each otherOne finds that relationshipof precisely the same form as
(23):

23) w=2, (a"‘” bj

cw+d

exists between these numbens which the operatoR(, has the meaning that is

represented by (21):
(21) Arp(u+vEy =u+tAve.

Proof. A system of homogeneous, linear equations exists bettheecoordinates
(i=0, 1,2, 3) of a poirp in the original coordinate system and the coordinates the

same points in the new system. The equation of thé@uaone in the new system must
again have the form:

@) X%~ % =0,

One can now also regard the as the coordinates of a popit when referred to the

original coordinate system. If one chooge® be on the number cone then, fror),(2
the pointp’ must also lie on the number cone, and the relatioristipeerp andp’ will

be a collineatiorC of the number con€ to itself. It then follows from (3) and '(3that
the dual number \What belongs to p under the associatibns identical to the number
that belongs to the point pnder the association However, from 84, the latter is linked
with the numbem that belongs to the poiptunder the association | through an equation
of the form (23), which proves the assertion above.

One can infer a consequence of this proof: The giihas the same coordinates in
the original coordinate system that the pardid in the new coordinate system. Now,
the fundamental point®o, p», P, Pa+y have the same coordinates in the original
coordinate system that the fundamental papl$«, p1, pa+9 have in the new one; cf.,

Table (1). If one then shifts the pomto the pointgo, pe, P1, P1+e, IN SEqUENCE, thewh

will shift to the pointspo, P, P1, Pa+e, IN Sequence. Now, Singe corresponds to the
point p under the collineatio®, it will follow that the new fundamental poings, ... will

go to the old onegy, ... under the collineatio@. From 8§ 4, the collineatio@ will
already be determined completely with that.

If one represent8 in terms of dual numbers in the sense of the assatiatien that
must yield equation (2B precisely, so one can thebtain the connection between the
dual numbers w and 'vthat belong to the same point p of the number-aamder the
associationg and Il quite simply by determining that collineation Ctbe number-cone
that takes the new fundamental points to the okspand that collineation will then be
represented by dual numbers in the sense of tleeiasi®n |, andthe quantities w and'w
in the equation that then arisage interpreted as the dual numbers that belonghto
point p(underl andll).
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In particular, if the collineatiol© that takes the new fundamental points to the old
ones belongs to the gro@ then one can refer to the point-quadruples that are define
by the old and new fundamental pointseagiivalent relative to the groupsG In that
case, in place of equation (23), which represénts the sense of the association I, one
will find the simpler equation:

)

_aw+b
cw+d’

which represent the connection above between the ngnthat are associated with a
point p under the associations | and Il in the present spexsal. c

Letwa, Wy, Ws, Wy be four dual numbers, about which, one might initialsuase:

Conditiona): viz., that they are finite and that the scalar paftthe two differences
(ws —wp) and (vz —w4) are non-zero.

We understand thdouble ratio{ wi, We, Ws, Wy} to mean the expression:

g = (VW= w)
(W, = W) (W, = W)

(27) e, W, W,

which is well-defined and uniquely-determined, e basis of the assumption)( If
condition @) is not fulfiled then one can initially think ahe numbersw;, ... as
variable, and then let their given values becon®unded, in such a way that condition
(a) will indeed remain true during the limiting pr@se If the double ratio that is defined
by (27) tends to a definite limiting value under all suahiting processes then it will be
equal to the double ratio of the four numbe@ne will then have the definition:

(W, ~ W) (W~ W)
(W = W) (W, ~ W)

(28) fwa, W, Wa, Wa} = m

li
W

If the limiting processes above yield differemhiling values according to the way in
which they are present then the double ratio dteltegarded as indeterminate, and the
scope of its indeterminacy can be characterizedhey different values that can be
reached. — If the image points of the four numbegrall lie on a plane that goes through
the vertexp., of the number cone then the quadruple of thosgenpaints, and likewise
the quadruple of the four numbess, shall be calledpecial For non-special number-
guadruples, the double ratio is determined comptegad uniquely by the definitid@7),
(28) above.

If one transforms the four numbess, which we will assume do not define a special
aw+ b

cw+d
double ratio of those numbers will be preservedicvizan be proved in the usual way
that one uses for ordinary numbers.

If one maps then in a well-defined way onto the number cone (peshbp the
association 1) then one can also define doeble ratio of the four pointém) on the
number congin which one must, however, make reference to skecationl explicitly.

If one goes from the association | to another aation 1l whose fundamental points are

triple, into the numbersv by a fractional-linear substitution (8 = then the
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equivalent to those of | relative to the gra@p (cf., pp. 17) then the dual numbers that
belong to the four points of the number cone abovetvatisform by a fractional-linear
substitution of the form (5) = (B so the double ratio of the four points above wababe
the same for the new association Il as its wastherassociation I. However, if the
quadruple of the new fundamental points under the new associl is no longer
equivalent(relative to the groufss) to the original quadruple of fundamental points that
belongs to | then the; will transform according to formula (23of this paragraplv =
Q[{aw+ b

cw+d
(29) {W, W, W, Wt = R05{ W, Wa, W, Wi}

j, and one will determine the double ratio of the tramséxt numbers from:

That is, the double ratio of the four points of tume that belongs to the associatibn
emerges from the double ratio that belongd tay leaving its scalar part unchanged,
while multiplying the vectorial part with a factgrin which the factor | is independent of
the position of the four pointev) on the number coneand depends upon only the
relationship (23 that exists between the associations | and II.

If one chooses four points on the number cone in sugdyahat they do not define a
special quadruple and forms their double ratios relativdl fmoasible associations I, I,
... then the scalar part of the those double ratios wilthe same but the vectorial
component will change by a factérunder the transition from one association to another.
If the numbemw belongs to a point of the number cone under onecedism |, while the
numberw belongs to it under another Il, such thhaandw are connected by (23then
the factor/ that appears in that formula will specify precisely thetor that the vector
part ofany point-quadruple will take on under the transition frora llt Since the factor
A depends upoanly the associations | and Il, we would like to refer tastthemodulus
of the association Il relative to the associationiWe call the totality of all associations
that have the same modulus relative taclass of associations,K The double ratio of a
point-quadruple of the number cone has the same valueveetatall associations of the
same class under the transition from an associafitreclas¥, to an association of the
classK,, while the vectorial part of the double ratio changesety by the factog// A
for any point-quadruple.

The scalar part of the double ratio of a point-quadruple is the same for the
associations of all classes, so one finds the value:

(U —u)(u,—w)
(U3 —u)(u, — W)

for it, in which theu; are the scalar parts of the dual numbers thahgeio the points of
the quadruple. Now, since, from § 4, tlneare the projective parameters of the cone
generators that are determined by the individuaitpaf the quadruple, it follows that
the scalar part of the double ratio of four poiotdhe number cone islentical (for all
associations) with the ordinary projective doulaior of the associated cone generators.
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As far as thevectorial partof the double ratio is concerned, one can choosehbeto
arbitrary ¢), butnon-zerg for one quadruple of points that do not lie in a plane. In that
way, one determines a class of associations, and frone iwill then establish the double
ratio of all quadruples on the number coriEhe vectorial part of the double ratmf a
non-special point-quadruples the value zerib and only if its four points lien a plane.
(The proof is achieved by transforming the quadruple by a calloe ofGg in such a
way that three mutually-distinct points of it will lia the planeE = [p«, p1, poJ. The
double ratio of the transformed quadruple is a pure scaiantity if and only if the
fourth point also lies in the plafeafter the transformation.)

8 6. Synectic functions of dual variables.

In agreement with the terminology that was introducgé. Study (Geom. d. Dyn.
pp. 199) a dual variabl =u' + Vv &£ can be referred to as a synectic function of amothe
dual variablew = u + v g if and only ifu" andv' areanalytic functionf u andyv, in such
a way that thelifferential quotient®):

dV\/: du +¢dv
dw du+edv

is independent of the differentials that are foumdhe denominatofexcept for possible
exceptional points), and thus depends upon oialgdv:

dw _du+edv _

30 = = F(u, v).
(30) dw du+edv v

One finds that:

a—udu+a—u dv+£(a\/ du+a—v d%
dw _ ou ov ou ov
dw du+e&dv

ou’' ov ou oV

——t&_—|dut| —+&_—|dv

_ ou ou ov ov
du+ & dv ’

and sees from this that the differential quotint/ dwis independent of the differentials
du anddv that appear in the denominator if and only if:

() It is arbitrary because the vectorial part of troeible ratio proves to be different for the various
classes of associations.

() This differential quotient is initially defined onlwhen the differentialdu that appears in the
denominator is non-zero, so the scalar padvofmust be non-zero.
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ou oV _ (au’ au’j
—tEe—=&| —+&— |,
ov ov ou ov
SO
(31) {a_uzo and ﬂ:ﬂ}
ou ov adu

One finds from this, by integration:

(32) {u’ =p() and V=y Uy vaj—u¢ (u)},
that:
(33) wW=u+Vve=f(w) =f(u+vye

are equations that characterize synectic functions sfust v &
One can also define such a synectic function pgveer seriesn the dual variabless

with dual coefficientsy = ak + a, £ :

W=Yaw=X(a+a,e)u+ve
:Zakuk+£{z a ut+vD) kaku’l}

= 4(u) +e{w(u) VB B0 }

in which we have sep(u) = ¥ ax U and ((u) = Za,'( u*, and in whichw = f(w) is
shown to be a synectic functionwfin the previous sense. (Naturally, the convergexice
the powers series fa#(u) and¢(u) is assumed.)

A synectic function will induce a transformatiohtbe number cone into itself that
takes the points of a cone generator to the poingsgenerator’, so, from (32), it will
follow from u = const. that/ = const.

One can establish such a transformation by githegtiransformed points on the cone
that correspond to the points of an analytic cummethe cone, for which the type of
association of points must be mediated by anafsmnctions. Namely, from (32), the
functionsg(u) and ¢(u) will then be determined from the given assocriatio

In what follows, special use will be made of syietunctions that correspond to the
ordinary function of analysis — e.g., sin cosw, etc.,e", I(w) — by allowing dual values
for the argumentsv. One must think of those functions as being @efirby the
associated power series, such that one will hage, ®nw = sin U + Vv & = sin +£Vv cos
u, etc. (Cf.,E. Study, Geom. d. Dyn.8 23.)

() The two generators will be related to each othemeetively by the transformation.
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§ 7. Stereographic projection.

One obtains an especially simple kind of map of dualbmrmto the points of a
second-order cone by the following process:

One interprets the coefficienisandv of a dual numbew = u + v £ as the ordinary
rectangular coordinates of a point in a plane, descabeylinder of rotation of arbitrary
radius (say, 1) around theaxis U = 0) of the coordinate system, determines one of the
two points on the surface of the cylinder that projeetsangularly onto the chosew-
plane at the coordinate origix (u = 0,v = 0), and denotes it iy, . The point with the
coordinatesy, v in the chosen plane will then be regarded as projectethtigritom the
point p.. on the surface of the cylinder to a pomtand it can then be regarded as the
image point W) of the dual numbew=u +v ¢.

Figure 2.

We choos®np. to be the third axig of a spatial orthogonal coordinate systefvy,
{) that extends the previous one, and whésexd /7 axes coincide with tha, v axes,
resp., such that the equation of the cylinder reads:

F+i=1

One finds by calculation that the coordinatgss, ¢ of the pointp = (w) have the
proportions:

=v: 1 : U : u

{ n: 1-4¢): @+J{): 5}.
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One can now regard four quantities that are proportimng) 1 —¢, 1 + ¢, £ as the
homogeneous projective coordinates:

Xo, X1, X2, X3,

of the pointp = (wW). The association between the dual numer u + v £ and the
associated image poipt= (w) of the cylinder will then be mediated by the proportion:

3) Xo X1 iXeiXa=V:l:U%:u,

with which, it is established that th@esent map is a (metrically-specialized) special
case of the general map that was treatef in

The present map is completednalogous to the Riemann map of the ordinary
complex numbers to the number cone by means of stereographic projection.

II. Map of the dual numbers to the minimal planes in Eiclidian space,
and then to the “spears” in them.

§ 8. Principle of the map.

From the principle of reciprocity, one can go from thap of dual numbers to the
points of a second-order cone in Part | to an entaeblogous map of those numbers to
the tangent planes to a second class curve, namedynia section. One can choose the
latter to be, in particular, the sphere circle dinity — viz., the absolute circle of
Euclidian geometry — and thus arrive at a map of dual ncantee the manifold of
“minimal planes” in Euclidian space, each of which tanrepresented in a well-known
way by the real line that carries it when it is providathwa sense of traversal, and thus
by a “spear” }).

We now establish that map in a well-defined way. Weoshoa rectangular
coordinate system with origi®, andx, y, andz axes, and denote the coordinates of a
planeP in it by T, U, V, W (®). By analogy with (3), one can then assign the duitas
W = u + v £ as the image of that plane, whose coordinates are deterrby the
proportion:

(34) {(—T):(V+iU):(V—iU):(—iW)=v:1:LF:u}

i=-1,

then the quantities on the left of the equal sign dedwes — or even better, any quantities
that are proportional to them — can be regarded as honmgenarojective coordinates
of the planeP, by which, the analogy with (3) comes to light. Thepartion (34) will be
replaced with the following one:

() Cf., E. Study, “Uber Nicht-Euklidische und Liniengeometrie,” in the Jabeeicht der deutschen
Mathematikervereinigung (1902), pp. 319.
() -T/U,-T/V,-T/Ware the sections of that plane along the coordinate axe
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u*-1. u2+1.i
2 2

(35) T:U:V:W=-v:i

The planed(T, U, V, W) that belong to the various dual numbers accorthn(B5)
satisfy the equation:
(36) UZ+V2+W?=0,

and are thus minimal plane$he manifold of all minimal planes appears to batex to
the continuum of dual numbers (which, fr&m2, is closed) in a single-valued and
invertible way.

We now address the problem of constructing the@sed image plan® to any
given dual numbew =u +v ¢; i.e., of finding the associated spear. The timecof the
latter spear depends upon oalgnd can be found by the following construction:

usu+iu (i=4/-1),

in whichu' andu” mean ordinary real numbers. One determines tttarrgular system
of coordinates of the poinu’( u”, 0) in thexy-plane, and projects it stereographically
from M (& 1, {) onto the points, (0, 0,-1) on the spherg + y* + Z = 1. The radius
OM that belongs to the latter point of the sphere thén represent thdirection of the
desired spear.

Proof: One finds the following expression for the cooedes of the poir¥i:

U " _f2_ 2
a7) M[f: 2u 2u _1-d uj’

1+u12+u112’ ,7:1+u2+u12’ Z_1+u2+d2

and convinces oneself by calculation of the validit the equation:

(38) E(i ”22_1j+,7[“22+ 1} +Z(u) = 0,

from which, it will follow, when one recalls (3%hat:
¢U+nV+JW=0;

i.e., the real directio®M belongs to the minimal plarie(T, U, V, W) and thus gives the
direction of the spear that belongsht@").

If the vectorial part of a dual numbew = u + v £is equal to zero, se reduces ta,
then, from (35), the associated minimal plé&heand therefore, the associated spear, as
well, will go through the originO. The aforementioned spear is then determined

() The radiusOM’that is opposite t®M gives the direction of the spear that belongs to thennaini
plane P, which is conjugate-imaginary
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completely, since its direction would be given by justtt and will then be represented
by OM itself.

If the scalar parti of w is equal zero then, from (35), the associated miniraalepis
parallel to thez-axis and cuts out piecessrand 2 from thex andy axes. Let:

v=V +iV,

so the spear of that plane will pierce Kyeplane at the point(2v, 2v', 0) and have the
direction of the positive-axis, as one learns from the constructioi©® in the present
case.

We shall now determine the minimal plane that is @ased with a general, finite,
dual numbew =u +v £ (u# 0, v # 0) of finite magnitude, and therefore gigear. One
can then puw into the form:

w=ul[l+ei(f'+if”)],
such that one will have:
v=uilf'+if”).

From (35), the minimal plane that belongswauts out the piecd(+if”) =-v/ui
from thez-axis. One finds the associated spear in the following @aw first constructs
the spherical radiu®M, from the above, which will give the direction of tesired
spear, then displaces the pid¢eparallel to thez-axis to O;M1, and then rotate®;M;
around the axi©OM through a right angle in the positive sensét. , in which the
positive sense is to be regarded as the sense that rhakexddtion 0fOx coincide with
Oy relative to theDz axis. Finally, one displac&3:M;along the piecé’that is parallel to
thez-axis toOM’". O'M’will then represent the desired spear.

From (35), the dual numbes corresponds to a minimal plane whose spear will be
given by thenegative zaxis.

The dual infinitely-large numbers of the fohcorrespond to minimal planes whose
spears are parallel to the negatnaxis.

The dual, infinitely-large numbepcorresponds to the plane at infinity.

8 9. The transformation of the minimal planes that is reprsented
by a fractional-linear substitution of w.

One can think of a fractional-linear substitution of theal variablesw [cf. (5)] as
being represented by an equation of the form:

(39) ap(W —wW +a; 0 (WW—1) +a; {ww + 1) +az 0 (W+wW) =0
in which the:
(40) a=ak+ € k=0,1,2,23)

are finite dual real or imaginary numbers. Namely, eqund89) is equivalent to:
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_ (ag—azi)w+(a,i—a,)

(41) = — . :
(a i +a,)W+(asi+ap)

which is an equation that has the form:

_aw+b
cw+d’

(5)
in which the coefficients, b, c, d are given by:

42) {a=a0-—a3i, b=a1i-—a2,}
C=a,i+a, d=azi+a,

or theay are given by:

d=5(@+d), a,==(b+ 9,
(42) 2 _
a,=5(cb), a,= '—Z(a—d).

The scalar part of the determinant of the suliginu5), which was denoted Yy in
(6), has the value:

(43) D=al+al+a’+a}
here.

The fractional-linear substitutions for whidh # O correspond to nondegenerate
collinear transformations in the manifold of minimalanes. A calculation that is
analogous to the one that was presented in Pag B)(will yield the following
representation of the collineation that belong&®) in plane coordinateg U, V, W:

PT' = T+ aU+ a,vV+ a,W

(44) A= aU+ a,v+ aW
V' = a,Ut+ a,V+ a,W
PN = a,uU+ a,vV+ a;W

in which the coefficientsy are determined from:
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=y +ay +a,+a;,

a,=a,+a;-a;-a; |ag=2@atag)|a;=2@ g raq)
a,=0ota;+a,-as |ay=2@gtag) | aF20g9raq)
45) 1 ag=ag-ai-az+as |a,=2@arag) | a,m20q ragq ),
8y =2, B;—af,+a B -a.pby),

ay, =2 B -aftaf,~a By,

8 = 2@ B, —aBirafB-a ).

Equations (44), (45) are completely identicallie parametric representation of the
motions in Euclidian space that was presented b$tudy in Geom. d. Dyn.8 21, pp.
174, etc., by equations (3), pp. 175, and (10)),(pp. 176 there. In fact, the cited

3

equations seem to be coupled with the condit@mk,[a’k: 0 there; however, that
k=0
condition proved to be inessential in the citedkniar§ 25, pp. 120.

The transformations that are represented(89) then prove to belentical with the
motions in Euclidian spageand in fact,the real values of the parametets , [«
correspond to real motions.The six-parameter group that is defined by theions
corresponds to precisely the groGp of transformations of the number cone in Part |I.
Theak (40) shall be referred to as the homogeneous dual coordinates of the r(@fjon
[(39), resp.].

The transformation of the groupof Part | (20), which is expressed in terms ofldua
numbers by the operation (22 (W) =2, (U+Vv e =u + A v e will correspond to the

similarity transformation about the origin here.

pT' = AT

pU' = U

pV'= \%
PW' = wW

(46)

aw+ b
cw+d
similarity transformations of Euclidian spgohich is precisely analogous @y .

In what follows, as we did already, we will nowfee to the results in the
aforementioned ground-breaking bookEfStudy. In fact, the foregoing explanations
will give us the means to derive those results gingple, self-explanatory way, so in the
interests of brevity, we shall omit presenting them

The general transformation’ v %A, ( j[eq. (23)] represents thgroup of all
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8 10. The connection between the Plicker coordinates ofeal line and the dual
numbers that belong to the spears of that line.

Letl be a real line at infinity with Plicker coordinates:

Xo1, Xoz2, Xo3, X23, X31, X12

(the first three of which are not all zero), whigk assumed to be real.
FromE. Study, Geom. d. Dyn.8 23, pp. 200, etc., the “ray coordinatest,of;, X,
X3 are defined by:

(47) {o X1 =Xo1+ Xo3 & pXo=Xoz + Xz1 & p X = Xoz + X12 &,

in whichp= o+ re (o # 0) is a dual proportionality factor. Here,and r shall be
assumed to be ordinargal numbers.
One can think of a real motion with the screw dx&s being represented by four

homogeneousy (40), the last three of whiah, a», asz are proportional to the quantities

X1, X2, X3 that appear in (47). (CiStudy, Geom. d. Dyn.§8 25) The minimal planes that
go throughl remain fixed under such a motion. The dual numbers &landy to them
can then be found from (39), when one séts w in it, instead o1y, az, az (Xi, Xz, X3,

resp.), and solves the quadratic equation that it yields. One finds that:
(48) X1 O (WP — 1) +X, OW + 1) +X3 [T2wi) = 0.

The two rootg?) of that equation w and vare those dual numbers that are assigned
to the minimal plane that goes throughSolution gives:

X, +iX, _ X, F4 X2+ X2+ X2
X,/ X2+ X2+ X2 X, =iX, |

in which taking the square root will yield the following riaula:

Jm+nre = ﬁ 1+%£ = ﬁ(ﬂ%gj.

(49) w (W, resp.) =

() The existence of those roots is ensured by the fattwo minimal planes go through In general,
the case in which the lines parallel to the-axis demands special treatment. In that case, ther gpeats
X, +iX,

2X,
passage to the limit will show, when one recalls (H1¢, minimal planes that go throughwill then
correspond to the dual numbevsandw, = -1/ W, the first of which has a vanishing scalar part, from

the above, while the latter is infinitely large. Th#er number is to be regarded as the second root of (48)
in the present case.

of Xy andX; will vanish, and formula (49) will provide onlgne finiteroot wy = =v; & Asa
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In (49), the quantitieX, X, X3 are, by definition, free af an important relationship
between the rootw andw' can be inferred from that fact.

Let:
(50) w=u +iu", in which uw=u+ve and u"=u"+V' g

be such that' andu” are free of i, and thus “real-dual(*), and let:
(50) wW=u —-iu".
The other roowv is then given by:

(51) wo=- ,1. - =-
u —-lu

S

In this, one finds the solution to the problem of findihg two dual numbers that
belong to the minimal planes through any real linleat is given by it$luckerian line
(Study ray, resp.) coordinates.

We now turn to the inverse problemanfalytically determinindi.e., representing by
its coordinatesjhe real carrier line of the minimal plane that is associated witfiven
dual number w=u' +i u” (50), or what amounts to the same thiig, carrier line of the
spear that belongs to.w

From (51), one can determine from the numbiéhew whose spear belongs to the
same line asv, but has the opposite sense. One can pose the quadtaitor whose
roots arew and w and bring that equation into the form (48); the corresjmon
coefficients of the latter will then yield the ray cdmatesX;, Xz, Xz of the desired
carrier line. The following path leads to that goalrefaster: One substitutes=u' + i

u” in (49); by separating the real imaginary parts, onetlglh arrive at the equations:

xl [/ XZ

(49) u' = , u'= :
Xyt X2+ X2+ X2 Xyt X2+ X2+ X2

from which, the ratioX; : Xz : X3 can be calculated. That will yield the fact that wjpe

is understood to mean a proportionality factor that shbel taken to be real-dual (i.e.,
free ofi):

(52) o X =, p'Xe=", p'Xe=1l-u?-u"?

will be the representation of the desired line in ray coordinafés.order to obtain its
Pluckerian line coordinates, one must (cStudy, Geom. d. Dyn. 8 23, pp. 200)
substitute the valueX;, X,, X; that were found in (47) and then determine the dual
proportionality factoro that appears in it in such a ways that Xhdhat (47) implies will

() One should confer formulas (39cf., infra) for the dependency of the quantitiésandu” on Xy, X,,
X3.
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satisfy thePlucker relationXo; Xo3 + Xo2 X1 + Xosz X31 = 0. TheXj thus-calculated are
then the desireBlickerian line coordinates.]

Formulas (52) are initially derived only under the assumnptinatw is a finite dual
number with non-vanishing scalar parts. The generalityabd those formulas can be
established easily by a limiting argument.

8 11. Map of the spears to the “dual points” of a sphere.

It follows from (52) that:

o' X+ X2+ X2 =1+ u?+u"?

in which the sign on the left is taken to agree \thiig sign of the root in (49
If one introduces the notation:

(53) £ X2+ X2+ X2 =X
for the square roots that one obtains in)Y4@d (49) then one will get:
(54) 0’ Xo=1+u?+u"2
The four quantitieXo, X1, X2, Xsare then related by:
(55) X7+ X5+ XS =Xg,

and are connected witli andu” rationally by means of formulas (52) and (54) whose
solution in terms ofi'" andu” will yield the equations:

(56) u' = : u" = :

which are, in essence, identical to'§49

The four dual quantities<o, X;, Xz, Xz can be regarded as the homogeneous
coordinates of a “dual point,” in such a way that theradi Cartesian coordinates of the
latter relative to the coordinate syst@myzwill be given by the ratioX; / Xo, X2 / Xo,
X3/ Xo. Any dual number w i +i u, and therefore any spe&w), as well, belongs to a
“dual point” in this way[from (52) and (54)}s the image point. From (55), all of those
points are to be regarded as lying on a spHefaadius 1 abouD), which we would like
to call the “image sphere.” The spea) that belongs to the number lies on a line
whose Study ray coordinates ar&;, Xz, X3, and the direction of the spear will be
established by adjoining the root in (53); iX,. This kind of representation of a spear
is then one tha®tudy used as a basis in the book that we have cited repeé&tédy 23,
in particular). In it, it was shown that the metrglationships between spears are
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identical with the metric relationships between the fduaints” of a sphere. By a
corresponding definition of the dual angle between twarsp®ne will arrive at the fact
that this angle agrees with the angle (that is definethe usual analytical formula) that
determines the associated “dual points” on the sphengce $he identities upon which
the analytical treatment of spherical trigonometry based will not lose their validity
when the quantities in them are assumed to be dual ngndpdrerical trigopnometry can
be carried over to spherical triangles whose angles‘@ural points” with no further
assumptions, and therefore, to triples of spears, $ioce the above, the same metric
will be true for them that is true for spherical triéaggof the latter kind.

Since the concept of a dual angle should be emplogesinafter, this is probably the
place to briefly recall its definition. Létandm be two spears, and febe one of the two
spears that lie on the shortest transversalaimdm. Let & be the angle through which
one must rotatéaroundt in the positive sense, and it be the distance through which
one must displackin the positive sense alomdf one is to make overlap withm; © =
J+ & € will then be referred to as the dual angle between the spearmanthat angle
© = <« Im is then determined moduloz2vhen the direction of is fixed on the shortest
transversal td andm. If one leaves the latter direction undetermined thensign of®
will remain undetermined; i.e., one can consi@ers well as< ©) to be the value of the
angle < (I, m).

From the above, any two spears of a triple of sp@garms, n) will determine a dual
angle (after one subsequently establishes the sengedfah of the shortest transversals
I, m, A betweermandn, n andl, andl andm); we would like to call these three angles
(*) theanglesof the triple. Ifm is the spear that is opposite o then the dual angle
<« nm shall be referred to as tkemplementary angléGer. Beiwinkel)<c | = <« Imn of
the triple (, m, n), and the complementary anglesm and <« n are defined analogously
(®). The angle and complementary angle of a triple efasp are completely analogous
to the sides and angles of a spherical triangle arel connected with them by the same
equations. (Cf., Study, Geom. d. Dyn.8 24, pp. 209, 210.)

One can think of exhibiting the map that was developedealsom the speam) to

the “dual points” of a sphere by way of a stereographiegption: Ifw=u' +iu" (%) then
one projects (stereographically) the “dual poixt=', y =u", z= 0) from the pointX =
0,y =0,z=- 1) onto the sphen€ + y* + Z = 1; i.e., onto the sphere that is represented
by (55). As a simple calculation will imply, the “dupbint” thus-obtained will have
precisely the homogeneous coordina{gsXi, Xz, X3 that are defined by (52) and (54), so
it will be the “dual point” of the sphere above thalblogs to (v).
A fractional-linear transformation:
aw+ b

(5) = :

cw+d

() <<Im, < mn and<Cnl.

() The definitions in question are obtained by cyclic peatits of the symbol§, m, n; in the
definition of < |, the direction of the shortest transversahtand m is thought of as being fixed by the
speal itself.

() Cf., (50).
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in which one might hava =a; +i a, etc., and, a;, etc., represent real-dual numbers,
effects a transformation of the quantiti¥s, Xi, Xz, X3 that belong tow into the
corresponding quantitie,;, X;, X,, X;, resp. In fact, one expresses the latter as
homogeneous, linear function$ the latter withreal-dual coefficientsi.e., ones that are
free ofi; the transformation above will then representeal-dual collineationon the
sphere. One illuminates the fact that this is true rdasttly in the special case for
whichu', u", a3, ap, by, b, ... have no vectorial parts. In that case, the c@tine above
will be an ordinary real collineation that is repreaseinby a system of equations with
ordinary, real numbers for its coefficients, and thosefficients will be entire, rational,
real functions of they, ay, by, by, ... If one now allows real-dual valuesi6f u", a;, ap,

by, by, ... whose vectorial parts do not vanish then the coefiis will assume real-dual
values, although nothing will change in regard to the forthefequations that express
the X/ in terms of theX (*). The map of the speaw) to the dual points of the sphere in
guestion is, in a certain sense, an extended counterpii toap from the spear to the
tangential planes of the absolute circle, which wastising point of our considerations
about spears here. Both mapping principles seem to be dduplmeans of the dual
numberw, except that one of them prefers the decompositieru + v & while the other
one prefers the decomposition=u' +i u".

Remark: Along with those collineations of the imagéesp that correspond to a

w+ . .
a b, there is yet another family of real-dual
cw+d

W+b . o
axv b, if w=u"—1u"isthe dual number that
cw+d

iS conjugate-imaginary tav. The latter family is to be regarded as an extensidihe so-
called indirect circle conversions of the image sphar¢he dual domain, just as the
aw+b .
is
cw+d
regarded as an extension of the group of direct circle ceiovesrin the dual domain.

The real-dual collineations of the image sphere canbbkerferred to as direct (indirect,
resp.) real-dual circle conversions on the image sphérke transformation of the

fractional-linear substitutionw =

collineations that is represented Wy=

group of collineations of the image sphere to itself thelbngs tow =

. w+b . . . . .
minimal plane that belongs t@ = aw+ b Is an “anti-collinear” transformation, with the

cw+d
terminology ofSegre(?).
8§ 12. Defining a spear by two dual numbers.

Let s be any spear, and letbe the associated dual number. The sgealong with
the spears of the negatiyeaxis Oy’ and the positive-axis OZ, defines a triple of spears

() The argument that is employed corresponds t8tudy's transition principle Geom. d. Dyn.§ 25).
(®) Cf., say, Mathematische Annalen, Jahrgang 1892.
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(*). Let the complementary angle of that triple thalbngs tdOzbe® = ¢ + (¢, and let
the angle o6 with Ozbe® = & + p £; in this, these dual angles shall be chosen in such a
way that 0< ¢ < 277 0< 9< 77(®). Lett be a spear on the shortest transversal oo

s, in such a way that the rotation ©f in the direction ot (along the shortest path) will
possess the positive sense of rotation when one e&ragitht rotation from the side from
whicht points. The spedx will emerge fromOz andOy’ by the same construction that
gave the spearfrom Ozands. t can be obtained from the definition of the dual amgle
= ¢+ {cand® = Z+ p £in such a way that one rotates the sfigaaround thez axis

in the positive sense through an angland then displaces aloy in the positive sense
by the quantityl. s will be obtained when one rotates the sgeaaround thd axis in
the positive sense through the angland then displaces alohgn the positive sense by
the quantityo. When one is given the dual anglesand ®, the speas = (w) will be
determined uniquely in that way, and it will be easy tostmiat.

That raises the question bbw the angle® and ® are connected with the dual
number w that belongs to the spear 6v). In the special case where the vectorial parts
of @ and® vanish, so the stated angles reducé tmd ¢, the speas will go through the
origin O, and the construction that was given in 8§ 8 of the spaarbétlongs to a pure
scalar quantity will give the dual number that belongs tas the pure scalar value

tangew. From the oft-cited transition principle, one woukpect that in the general

case, thelual number w that belongs to s will be represented by the formula:
(57) W= tan% e”.

This formula can be verified easily as follows: Oniekh ofv as represented in the form:
w=ull+ei(f'+if”)]

and constructs the associated spedgr £ s from 8 8. It is easy to infer from the
construction that the angl€&and® that belong t® have the values:

O=¢g+f'g O=F—-f"sind k.

If one develops ta® / 2 in aTaylor series then one will get:

= tan—+; (-f”sind) ¢

Zco§é
2

tang :tanﬁ—(f sing)e 4
2 2

since the higher powers efgive zero, and furthermore:

() The spears m, nin § 11 areDz Oy, s, resp., in the present case. The shortest tramésérsand
m in § 11 correspond to the spe@sandt, here (see below).
(®) © corresponds to the angtenl in § 11, andp, to the complementary angtel.
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tan 9: tané— f”tané E= tané a-f"e.
2 2 2 2

Analogously, one finds by an applicationTa@ylor’s theorem:
P =gl el i = (1L +f€l).

It follows further that:
@ q)i —_ 79 ¢I ” 4 1 — 1 4 1 ” -_—
tanEe —tanEe QA-Af"gg@A+fei)=ul+ei(f"+if")]=w,

which was to be proved.

w is assumed to be a finite dual number whose scalanspadn-zero in the proof.
The general validity of formula (57) is proved by passinth&limit.

If one subjects a spear= (w) to a screwing motion around tleaxis, when one
rotates it aroun@®z in the positive sense through the angénd likewise displaces along
Ozin the positive sense through the quangtythen one will multiply the associated dual
numberw from (57) by the factoe’', wherel' = y+ 1 & If one then subjects two spears
s= (w) ands; = (w) to such a screwing motion then the ratio w, = g of the associated
dual numbers will remain unchanged. Conversely, if orenscthe speas= (w) around
Oz as axis in any way then the spear that belongs touh#gergw = wi;, whenq is a
constant (dual) quantity, will move in such a way thaaitticipates in the screwing ef
aroundOzas if it were rigidly coupled with.

8 13. Infinitesimal spear triples.

One might now understandw;’ and dw; to mean two infinitely-small dual numbers
(*); the associated speass and s, differ infinitely little from the spear that the ptige
Z-axis represents, which will be denoted Ky, and together with it, they define an
infinitesimal triple of spearés;, s, s,).

The dual angle® and® might have the value®;, ®; for s’; correspondingly, one

might get the value®,, ®;, for s). The quantitie®, and ®, (but not®; and ®,) are
then infinitely small in any event, and if one recalig)(then:

oW, = O, oW, = 9, ot
2 2

SO

() The scalar parts Qb’wf, 5wf, and likewise those aw;, o, are assumed to be non-zero.
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5\N2D — G)2 e(q’z_q’l)i )
VA
ow,
oW

real-dual quantities — i.e., they are freeiof and in factR and ® are determined
completely when one assumes that the scalar p&ti®mnot negative, while the scalar

If

= g then the dual numbercan be put into the formp= R €”, whereR and® are

part of® is non-negative and smaller tharr 20ne hasR & = %e“"f“’m, which will
1

imply that ©,/0,= R, ®, — ®; = ® (mod 27. Now, ®, — ®; is nothing but the
complementary anglecs’ s’ § of the triple(s;, §', $); ®1 and®, are the anglescs’ g
a0
and « s} § of that triple ). One then has, moreove?:szTg =R, x5’y $ =@ (mod
LS
27). The complementary angles’s' s of the spear triple in question that belongs to
s, and the ratio of the angle that is subtendedsatare determined completely by the

W, _
_q_

quotient5
oW,

Now, letsy = (Wp) be an arbitrary spear, lset= (Wp + o) ands, = (W + dw,) be two
spears that differ from it infinitely little), which then defines an infinitesimal spear-
triple in general position, along with One can think of the latter tripley(si, &) as

being brought into its position in such a way that one stéaother triple(s;, 5, $)

for which s, coincides with the spedz (as above) to a real motion. Obviously, the
angle and complementary angle will not differ unders tinmotion, so they will
correspondingly be the same for both triples. wif, w,'+dw;, w;'+Jw; are the dual
numbers that belong tg), s’, s; (in which one must obviously hawe, = 0) then it

must follow from § 9 that the numbens w + dw;, w + W, that belong ta, 1, S, resp.
will emerge from those numbers by a fractional-lineangformation of the forrw =

awr b. The value of the differential quotiedtv / dw for w = 0 must now coincide with

cw+ d
oy | 6wy, on the one hand, anfiv, / dw5, on the otherd. The last two quotients will
then be equal. However, it follows immediately fré;lq\gviz oW, that oW, _ 5—W2D say,

N oW ow,  ow
=R &. One will then have:
€5%_¥5% _p
%8 <Y

() With corresponding orientations for the shortemsversals to the spears of the triple.
() This follows immediately from the fact that is a “synectic” function ofv (cf., § 6).
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[if one recalls the special position of the trigg, ', $)] and likewise:

L9 =X5'g S =0

One then also finds the ratio of the angle thatsubtended ats, and the
complementary angle, at s for an arbitrary infinitesimal spear-triplésy, S1, ) from

. OW, i
the quotlent5—2: R € in the same way as before.
W

8 14. Dual-conformal transformations of the spear space.
(An important infinite group of spear transformations)

If one dual variable depends upon another according to théaqua
(58) W =g (W),

in which ¢ (w) is a synectic function (cf., 8 6), then every sp&drwill be assigned to
another corresponding spe&’')( The transformation of spear space thus-defined might
be referred to as aynectic transformation. The synectic transformations define an
infinite group.

The transformations that we speak of possess the tamparharacteristic property of
being dually-conformal; i.eany infinitesimal spear-tripl€¢s, s1, ) (except for possible
exceptional ones)yill go to another(s,, 5, S) whose complementary angles are equal to
the corresponding angles of the former under a sfammation of that group, while its
angles will be equal to the corresponding anglegha former. The proportionality
factor is (in general) a dual number.

Proof: Let wp, Wo = dwi, W+ oW, be the dual numbers that belong to the sp®ass,
s of an infinitesimal triple, and lety), w,+Jw, w,+Jw, be the corresponding

numbers of the transformed trip, <, $(*). The value of the differential quotiedty /
dw for w = wp must then coincide witldw,/ ow,, on the one hand, and widw, / dw, ,

on the other. The last two quotients are then equathayields the relationé% :%
A W

directly. From § 13, that will imply coincident valules the complementary angless;

S and<«s g $, as well as for the ratios of the anglgssﬁ andi,s“’. The proof
%8 ¥93
is complete with that.

U

(l) The dual numbers that belongsps;, s, ands,, s/, s, can be assumed to be finite dual numbers,

because, if necessary, that can always be achievedahgioly the coordinate system. The scalar parts of
OW' and oW are assumed to be non-zero in the text. Except foipmsxceptions, the scalar partobf /

dwwill be non-zero, and therefore the scalar pdrtéwg and ow, will also be non-zero.
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The invariance of the complementary angle of amitgsimal spear-triple under a
synectic transformation can be formulated in the usratihology as follows: Le$ be
any spear, and letbe a spear that differs from it infinitely littleLet t be a spear along
the shortest transversal fragto s, where the direction dfis determined in such a way
that the sense of rotation sfto s will appear positive for an observer that looks in the
directiont. s, s might go tos;, s under the synectic transformation considered; let the

corresponding (to the above) oriented shortest trassv@om s, to s be t. If one

changes arbitrarily in such a way that the spear remains infinitéose tos, thens will
behave analogously, as opposedsjo The transversdlruns through the normal net of
S, andt runs through the normal net gf. Therefore, t and will now be coupled to
each other in such a way that the systems that are described insth@assd normal

nets will becongruent, so anyt can be made to overlap the correspondingy one and
the same real motion of spear space.

The invariance of the ratios of the angles, likeithariance of the complementary
angles, can also be translated into the usual terngmold.et the infinitely-small dual
angle thats defines withs; be © = & + p & such thats emerges frong, by a rotation
aroundt in the positive sense through the angland a displacement througtalongt in
the positive sense; one can also say staises froms, by a infinitesimal screws), S|
aboutt with angle$ and parametek = p/ . If the infinitely-small dual angle thag

makes withs is correspondingly@’ = & + p’¢ thens will emerge froms by an
infinitesimal screw f,, S] about the axi¢, and the angle of the screw will be given by

F’, while the parameter is given liy= p’/ §. From the above, the rat® / © will
. Q _ J@A+Ke) & _
remain unchanged wheachanges. Now, one has= ———= —[1 + (K — K 4];
O J@l+ks) F
the quantities?’/ & and k’— K will remain unchanged when spesathat is infinitely
close tos rotates arounds in any way, and the spear, which is correspondingly
infinitely close tos,. In other words: The infinitesimal screwss, [s] and [5,, s aboutt

(t, resp.) are related to each in such a way thaanigées:? and 9’ of those screws will
differ by only aconstant factgr while the parameters k and kvill differ by only an
additive constant.In that statement, “constant” means the same thin“independent of
the respective position of the speathat are infinitely close te .”

If one restricts one’s consideration to the spedra congruence and considers the
effect of a synectic transformation on just theentithe statements will be specialized in
the following way: The shortest transversalsom s to s will fill up a ruled surface,
which is known by the name ofcglindroid; the associated shortest transvergalsom
5, tos describe a cylindroid that is congruent to the albeve, and the screw parameters

that belong to the corresponding generators of botlndroids have a constant
difference.
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8 15. The “equi-long” transformations of G. Scheffers.

If a synectic transformation (58) permutes the speasspiane with each other then
one will obtain arequi-long transformatiowf the plane, in the sense®f Scheffers(®);
in that way, the equi-long transformations are included in the dual-conformal
transformations that were just considere¢h order to see that, it is only necessary to
apply the concept of the dual complementary arfjl®(an infinitesimal spear-triplesy
s, &) in the aforementioned plane. Here, the general idefinimplies the expression

%5 55 = PP, O for the dual complementary angtes; s, , if one understandg P,

to means the distance between those pé&in@sndP, that are cut out oy by s, ands,,
resp., and must be chosen to be positive or negativedangdo whether the sequence of
points P; andP, does or does not coincide with the sense of diredidhe speas, .
Now, the dual-conformal transformations that permutespiears of the plane with each
other leave the complementary angtes; S S unchanged; i.e., they leave the distance
between the points that are cut out of any spehy two infinitely-neighboring speass
and s, unchanged in length and direction. However, that isiggBcthe characteristic
property of the equi-long transformations.

It only remains to showhat the relationship is between the assignment of real-dual
numbers and spears in a plane that was given by G. Scheffers and the assajranal
numbers and spears in space that was established Heoethat end, we consider the
spears in thexyplane of our coordinate system. The angisand ® that were
introduced in § 12 have the values:

@:7_2-[+pg, CD:¢,

resp., for any spearin that plane. From § 12, the quantitizand ¢ have the following
meaning: Ift is a spear along the altitu@N that is dropped frora to O, in such a way
that the sequence of spedrands will correspond to a rotation in the positive sense
(through a right angle) when considered from the posttiaris, theng means the angle
betweert and the positive-axis Ox, while o means the length of the altitu@, which

will be positive or negative according to whetl@NK andt have the same or opposite
directions, respectively.

From formula (57) in § 12, the dual numivethat belongs ts will be w = tan% e’

If one develops tan?z tan (%+§£j according toraylor’s theorem then that will give

tan%: 1+p¢ so:
w=(1+pge = =e"""

and that will further imply that:

() Cf., the Verhandlungen des internationalen Mathematikgriesses zu Heidelberg (1894), 349-356,
as well as volume 60 of Mathematischen Annalen, 491-531.
() See above, pp. 30.
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lW)=gi+tpe=i(p-pie.

If one writes& In this, instead of + ¢, then this number will have the property that
£% =0, which is analogous to that ©f the formula above can be written:

(58) —ilwW=¢+p& =m.

Now, the number = ¢ + pZ is completely identical with Scheffer's number for the
spear, except thatg in the Scheffer number differs from the previousby the factor

(-i):
(583) F=-ic¢

The relationship between the number w that is assigned to the spearrsounde
association and Scheffer's numberis mediated by58), and thus, by a transcendental
equation. That is connected with the fact that underassociation, the spearand
numberw are in one-to-one correspondence with each other e wWielScheffer number
ro of the speas is determined only modulo72().

The association of spears in tkgplane and the numbems = u + v € has the
disadvantage that the coefficient@andv that appear inv are not real quantities. That
inconvenience can be avoided by going to another associatider which the spear
that belongs to the numbev under the original assignment will correspond to the
number:

(59) w= 1=t

i w+l

The new assignment belongs to the same “class” agiirab one, from the definition
of the concept of the class of an assignment thatgnas in § 5. If one recalls the
representationv = e?' *?¢ that was employed above, in which one can wigtein place
of & then that will yieldw = €**%) and:

1 i (p+pF) -1 2

il (g o) B o ppE +08)’
i e +1 1{6 e 2} co{¢ pfj

w=

so one will have:

(60) w=tan? 2 - Givr,

() If one regards equation (58) as the definition ofShkeffer numberv of the speas then one will

see that along witho = ¢ + p&, the numbers of the formg(+ X7) +p&] will also belong tos as
Scheffernumbers, wherk is any whole number.
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moreover, when one sels =tan¢ / 2,V = ;(p Oo. (G and v areordinary real
2c0S =
2
numbershen.)
. . e aw+ b . -
A fractional-linear substitutionW/ = i d’ for which the coefficients, b, c, d
cW

have the form:
a=ag+a'c, b=pB+pB€, etc,

in which a and a’, 5 and 3, etc., describe ordinary real numbers, will thennpute the
spears in thay-plane. One can show that under the group of dpaasformations of the
xy-plane thus-defined, the spears that contact aarit®d” circle will again go to another
such spear that contacts an oriented circle, aadgtbup in question will prove to be
identical to the group ofLaguerre circle conversionglLaguerre, Annales de
Mathématiques, 1882, 1883). THaal numberswill then play the same role for the
latter group thathe ordinary complex numbers do for the Mobius circle conversions.

A synectic transformatiow/ = z a (W-09“, inwhichax=ax+ a, €, c=y+ y'F,
k=1

and theax, a,, y y are ordinary real numbers, represetiits most general (real,
analytic) equi-long transformation of the xy-plane.

8 16. The isotropic congruences of Ribaucour.

The map of dual numbers to the minimal planes, thiet to the spears in space,
admits an especially simple representation in tevfriRibaucour’s theory of isotropic
congruences. [CfRibaucour, “Etude des Elassoides ou Surfaces & Courbure Nl
the Mémoires couronnées par I'Académie de Belgiyugl881).]

One can define an isotropic congruence wih real lines as follows: On
circumscribes any developaHle by the absolute circle of Euclidian geometty (The
real carrier lines of the general plane®osince the latter are obviously minimal planes,
then fill up an isotropic congruend@. If dual numbersy = u + v £ are assigned to
minimal planes according to (35) then (35) candmarded as a parametric representation
of the minimal planes by the parametarsand v. The developabledD is then
characterized analytically by an equation betwéerparametensg andv, such as:

(61) V=9 (u).

The minimal plane that corresponds to the numberu + v £ then belongs to the
developabld if and only ifu andv are coupled by the relation above. The spegrds
the real representative of the minimal plane, whkkn lie on a line of the isotropic
congruenceQ. Conversely, if the speaw(= u + v &) lies on a line of the isotropic

() The name of “minimal developable” has recently bezamseful for such a developable whose
generating planes are minimal planes.
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congruenceQ in such a way that the associated minimal planenigsldoD then the
above relation must exist betweemandv. Of the two spears of a lir@ of the isotropic
congruence, the only one that is referred to as belgrgithe congruence will always be
the one that represents the plandathat goes througls. With that assumption(61)
gives the necessary and sufficient condition for the sfearsu + v &) to be assigned to
the isotropic congruence in question.

From (61), one can think of any spearHv &) of the congruenc® as being derived
from the spearu + 0 ¢) (which is parallel to it and goes through the ori@inby means
of the synectic transformation’ = w + £¢ (w). If one then assigns any spear of the
congruence to the one throu@tthat is parallel to it as its correspondent thermf@15,
the congruence will be mapped dual-conformally to the speaadiéduhroughO in that
way. That sheds light upon the fact ttis shortest transversals between a spear s of the
congruence and spears that are infinitely-close to it will generallypeef pencil of rays
so the “limiting point” on ars of the congruence will coincide with the “center’®n

One will obtain an especially simple special cakthis when one takes the relation
(61) in the form:

v=A+Bu+C A

In this case, if one recalls (35), or even better (8®,coordinates of the minimal
plane T, U, V, W) that is coupled witkv =u + v £ will be coupled by:

~T=AV+iU)-BiW+C(V-iU)
or
T+i(A-QU+((A+C)V-Biw=0.

That is, the spears of the congruence in question represaimal planes that all go
through a fixed pointg, b, c) whose coordinates are:

azi(A-Q, b=(A+C), c=-Bi

Following E. v. Weber (*), the congruence shall be referred to agckeof spears. If
a=a’'+a'i,b=b +b"i,c=c +c"i (@) a", ..., real) then the real poimh( b, c') shall
be called thecenter of the cyclewe would like to use the terminologwcleus of the
cyclefor the imaginary pointa b, ¢) (%).

The special congruence considered is of great utilitytiier investigation of the
general isotropic congruences, as one can see from flmvifg fact: In the
neighborhood of any speap s (W) of the congruence ¥ ¢(u), the latter can be
replaced with a cycle that has a second-order contact with s

() Cf., the papers that were cited in the remark on pp. 1.

() One easily verifies that a cycle of speamnsists of the generators of a confocal family of
hyperboloids of rotatiothat are oriented in a certain way, and the orientatidthe generators is such that
the orthogonal projections of the oriented generatots the plane of the throat circle of the hyperboloid
will give tangents to the throat circihich are oriented in a consistent wg@f., E. v. Weber, loc. cit))
The center of the cycle is identical with the comneenter of the confocal family whose nucleus lies on
the common rotational axis of the confocal family.
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In fact, if one develops = ¢ (u) in powers of § — w) usingTaylor’s theorem then

2
when one set%gj =\, d—\zl =V, ..., that will give:
du =y, du b

V=Vo +V, (U—Ug) +1Vi(U—Uo)® + ...

If one now truncates the right-hand side at the $6mfu — ug)® then one will get the
equation of a cycle = v +Vv, (U—Ug) +3V; (U — Uo)? Of:

V= (Vo U+ 3 )+ (- wl) wi b

which agrees with the equation of the congruence¢ (u), up to (exclusively) third-
order infinitesimals iny — w).

That cycle shall be called thesculating cycleof the congruence for the spesr.
The coordinates of its nucleus (which shall be dethdy &, 70, {o) are provided by the
formula above fom, b, c when one setd =vo - U\, +3V, 8, B =V, -u\i, C=1v, on
its right-hand side:

&= (—1+30)ivy—uyivy+iv,

o= (3+40) 0=t %+ v,
Qo= + Uy iVh— iV,

If one setsp(u) = 2 F(u) for the function that appears in equation (6 Entlequation
of the congruence will assume the form:

(62) v =2 F(u),

and the coordinates of the nucleus of the oscglatycle that belongs to an arbitrary
spears= (W) = (U +V & can be expressed in terms of the funckfu and its derivatives
F’(u) andF ”(u) in the following way:

= (@A-Uu)F"(u) +2uF (U - 2F(u),
(63) n= i(1+u2)F"(u) —2uF'(u) +2F@u), ©
J= -20F"(u) +2 F(u).

One will obtain the coordinatesy, z of the center of the osculating cyclesimwhen
one takes the real parts of the complex quanifies ¢; thus:
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x= R{1-uw) F() +2uF(y -2 Ky}
(64) y= R{(L+V)F'(Y) -2iuF(y +2iF}, «)
z= ®{-2u F(y +2 F(yh.

The geometric locus of all nucleé (7, {) for the spears of the congruence in
guestion is themaginary curveZ that is represented b3). That curve is identical with

the edge of regression of the developable Bll generating minimal planes of the
developabléD that belong to the spears that are infinitely eltss will then go through
any point €, 77, {) of that curve. Naturally, sinagg is an edge of regression, it will be a

minimal curve.

The geometric locus of all centersy, z) of the osculating cycles that belong to the
congruenceQ is the real surface K that is represented K§4) (). The analytic
representation (64) of that surface is identicahwine Weierstrass representation of an
arbitrary minimal surface (cf, e.g., the Enzyklopadie der mathematischen
Wissenschaftenll, D5, R. v. Lilienthal, “Besondere Flachen,” pp. 312). The fact that
has the opposite value in théeierstrass formula to the one above (64) is inessential,
since a minimal plane will go to another minimadme under a reflection in thg-plane
of our coordinate systemlhe geometric locus K of the centers of all osculating cycles of
an isotropic congruence Q will then be a minimal surface.

8 17. lIsotropic congruences and minimal surfaces.

On closer examination, the theorem that was justtimned proves, to be basically
identical to the following theorem &ibaucour:

If one lays planes through the various rays obmagcuence that are perpendicular to
them, and which are the so-called “middle plandsthe rays in question, then all of the
middle planes will envelope a surface, namely, sbecalledmiddle envelopeof the
congruence.According to Ribaucour, the middle envelope of an isotropic congruence is
a minimal surface.(Cf., the article in th&nzklopadighat was cited above, pp. 330.)

It can be proved that the middle plane of any sge# the isotropic congruend@
contacts the middle envelope of the congrueQca precisely the centex,(y, 2) of the
osculating cycleg that belongs tes, and with that one likewise shows that theldle
envelope of Q is identical with the surface K of the preceding paragraph.

We present the following argument for the purpofsproving that: A cycle of spears
consists of the generators of a family of confdogderboloids of rotation of one sheet,
which are oriented in a certain w&y.( The middle planes of all spears of a cyclaall
through the common midpoint of the aforementiongdehnboloid, and thus through the
center of the cycle. If one determines the pofnhirsection of the middle planes to all
spears of) that are infinitely close ts, on the one hand, and then the intersection point
of the middle planes of all spearsgpthat are infinitely close ts, on the other hand, then

() Obviously, K can also be defined to be the geometric locus of thectbig points of the line
segments that connect the different pointé ofith the respective associated conjugate-image points.
() Cf., remark?) on pp. 40.
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it will follow from the fact that the osculating dgog has second-order contact wighat

s that the two points thus-obtained will be identicellowever, the first point is identical
with the point at which the middle planesx¢ontacts the middle envelope@fwhile the
second point is, from the above, identical with thetee(, y, z) of the osculating cycle
g. With that, the theorem is proved.

The way that the parametric representation (64) o$tinfaceK was derived seems to
be of interest for the fact that it demonstrates dbenectionthat exists between the
complex functionF(u) in the Weierstrass representation(64) of a minimal surface K
and the isotropic congruence A that belongs to K according to Ribaucour.

In fact, if any minimal surfacK is given in theWeierstrassrepresentation (64), and
if one would like to obtain an isotropic congruence for \whdcis the middle envelope
then one will need only to establish the relation:

v=2 F(u)

between the defining numbeusandv of a dual variablev =u + v £; the spears = (w)
then fill up an isotropic congruencethat has the desired relationship wtt(').

Following Ribaucour, there are, in generad® isotropic congruence€) whose
middle envelopes are identical with the given minimalaeeK, and one can find the
remaining ones from one of those congruen@eby a simple construction. If one
subjects the minimal planes that belong to the speair® to an imaginary translational
motion (a, i, i)) that consists of a translation iy parallel to the positive-axis, one by
i parallel to the positivg-axis, and one biyythat is parallel to the positiweaxis, where
a, S, yshould be real numbers then the developBbtd those minimal planes will go to
D, and the pointd, 7, ¢) of the edge of regressi@hof D will go to the point(&,7,{) of
the edge of regressioh of D insuchawaythaf =&+ia, 7 =n+iB ¢ ={+iy
However, the real partg,y,z of (&,7,7), resp., are obviously identical with the real
partsx, y, zof (& n, ), respectively.

The spears of the minimal planes of the developabledefine an isotropic
congruenceQ. SinceX =X, Y =Y, Z = z the centers of all osculating cycles of a
surface K that is identical with the corresponding surf&céor the original congruence
Q belong to that congruence as a geometric locus.

The middle envelope of the congruer@eis then identical with the middle envelope
of the congruenc®. Corresponding to the different values that the pashmeters, S,
ycan take on, one will obtain® isotropic congruence® that have the same relationship
to a given minimal surfadé from a congruencA haskK for its middle envelope.

It still remains for us to clarify the connectionweenQ and Q, first constructively,
and then also analytically.

() In particular,if the function Ku) that appears in the Weierstrass representa(if) of a minimal
surface K is an entire, quadratic function af k(u) = A, + Byu + C,u? then the associated isotropic
congruencer = 2 F(u) will be a cycle, the middle envelope of that congruesitiereduce to the center of
the cycle, andhe minimal surface K will then reduce to a single point.
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The minimal plane that is represented by an arbigpears and the dual numbewv
might go to another one that belongs to sgeand the dual numbey by the imaginary
translational motioni(a, i S, 1 )).

As one easily verifies, the spesircan be found from the speaiy the following
construction: One displacsedy the real vectord, S, )), with which, that spear will come
to a positions; that is parallel to the original one, and then rotatde s in the positive
sense through a right angle; the spear thus-arrivedighan be the desired. Due to
its simplicity and its repeated use, the construction lbighvthe speas that corresponds
to any speas by means of the vectoo( S, )) can be found deserves a special name: We
would like to refer to it as &teral displacement of the spear s by the vetors, )).

One then finds from any isotropic congruence Q whose middle envelope gs/¢he
minimal surface K the othes® isotropic congruence® that have the same relationship
to K quite simply when onsubjects the spears of Q to a lateral displacement through an
arbitrarily-given vector(a, S, )).

Let (T, U, V, W) be the coordinates of the minimal plane of the isgeand letw = u
+ v € be the associated number; that minimal plane will gthab of the speas by the
imaginary translationi (&, i S,1 )). The coordinates of the latter minimal plane are:

T=T—-iaU-igV-iyWw, U’'=U, V'=V, W=W,
from (35), the dual numbey = U +V £that is associated with it is determined from:

2

o Z+1 .
u’:u,\/':v+|{mu 1+,8u21+y1u]

The dual numbew of any spear ofQ depends upon the dual numberof the
corresponding spear @@ in that way {). If one recalls (62) then, from the above, the
relation:

12 _ 12
V = AF(W) +i {ai -~ 1ip 2+1+y1'u'}

exists between the defining numbefsandv of w. The characteristic condition for a
spear(w) = (U + v & (in which, the primes ow, u, v are now omittedjo belong to an
isotropic congruence& will then be given by:

() The numbersvandw are coupled to each other by a fractional-linear sutistitu In fact, the latter
can be represented by the bilinear equation:

(W—V\b—%i[ai(WW-l) +BwWw+1)+ydW+w)]

[which is a special case of (39)].
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2 _ 2
V=2 F(u) +i {ai”2 1+,3u2+1+y1'u}

or by:
v=2 F(u),
in which:
u?+

F(u)=F(u) + %{m ”22‘ Lip 22 L yiu}

On the grounds of the assumption that was made, theersmm, S, y are ordinary
real numbers, as we once more emphasize.

From what was said, the middle envelopeQofs identical with the middle envelope
of Q. The equation o isv = 2 F(u), while the equation of isv=2 F(u).
If one then replaces the functi&u) with the functionF (u) that was defined above

and contains three arbitrary real parameterg, y in equations (64), which give the
parametric representation of the middle enveldpaf Q, then those equations will still
representhe sameminimal surfaceX.

The functionF(u) that appears in th&/eierstrassrepresentation of the surface is not

determined completely by a given minimal surfakk® &ince one can still add arbitrary
uz _ 24
real multiples of the expressiomsz—, i

1, i uto such a function. (This state of

affairs is not strictly valid in the report in thEnzklopadie der Mathematischen
Wissenschaftethat was cited above. There [pp. 312, line 6 ftbenbottom], when it is
said that any analytic function belongs to a midimaface, and conversely, that would
give rise to the opinion that only one functiondrejs to a minimal surface, and, from the
above, that opinion would be incorrect.)

§ 18. Associated minimal surfaces.

If one replaces the functioR(u) in the Weierstrass representation of a minimal
surfaceK with € F(u), in which means a real constant, then one will obtain amahi
surface K that will be referred to aassociated withK; corresponding to the various
values ofy, one will obtain a simply-infinite family of minial surfaces that are
associated witlK, and likewise with each other. It is known thhede associated
surfaces are developable from each other, and citiér simple relationships exist
between them. Only the question that was treatet smlved byRibaucour will be
discussed here of the way by which the isotropingcoences that correspond to the
associated surfacd§ can be determined from an isotropic congruedgor which, K
is the middle envelope) that belongto

An isotropic congruencé that belongs tcK can be obtained when one establishes

the relation/ = 2 € F(u') between the defining numbarsndv of a dual numbew =
u +Vve The spears that belong tov then fill up an isotropic congruence whose



Grunwald — On dual numbers and their application to gegmetr 46

middle envelope (from § 16) is obviousl?/. Now, dual numberg/ = u + v efor which
the relationv = 2 F(u) exists between andv belong to the speassof Q. If one then
multiplies the vectorial part of the numberof a speas of Q by € then one will obtain

the dual number of a spear 5‘ If one then denotes the latter numbernbyand the
associated spear Isythen one will havev = 20,(w), in whichA = €¥, with the use of the

symbols that were introduced in formula (21).
The transformation that belongs t6 w2(,(w), which takes the spear=s(w) of Q to

a corresponding spear’' s= (W) of Q, can now be exhibited by a very simple
construction. If one recalls (35) then the minimal planes that bgltow will suffer a
central similarity transformation with centé and modulusl = €* . The spears of
those minimal planes will be transformed by the follgyvconstructionOne draws a
spear g through O and parallel to s, and then rotates s arousoh $he positive sense
through the anglgs, the spear thus-obtained is then the desirednswhich s goes to'w
= 20,(w) under the transformation.

The validity of this construction is deduced effodlgsfrom the solution to the
problem that was posed in 8§ 8 of ascertaining the assdcgiear to a given dual
number. The construction above by which one found @mestormed speas from s
shall be referred to briefly asstewingof the speas about the point O through the angle
M. Slewing about other points is defined analogously.

One obtains the isotropic congruence whose middle envelopes are the adsociate
surfaces of K from an isotropic congruence Q that belongs to K by slewimggh a
constant angle about @or about any other point of space, since the coordmdgen
can, of course, be changed arbitrarily).

8 19. Special finite groups of spear transformations.

aw+ b
cw+d
transformation of minimal planes that correspond tgenerally) complex motion in
space. These transformations depend upon six ess@mtiplex parameters (Cf., § 9.)
Likewise, since any minimal plane can be representedtsbgpears, the above
transformation will representraal transformation of the spears in spacéhe group of
those transformations containx& = 12real parameters (since a complex parameter is
equivalent to two real onegfiat group might be denoted by, (*).
The real motions of space, and therefore, the minptaales will again yield (real)
motions of the spears. The group of motions of speaespatains six real parameters,
and is a subgroups of I'15.

A fractional-linear substitution of a dual variable w =

represents a

() For that group, one can confeE. v. Weber, “Die komplexen Bewegungen,” Berichte der
sachsischen Gesellschaft der Wissenschaften (1903). droap belongs to thedual-conformal
transformationof § 14, which emerges immediately from the above.
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A certain three-parameter group of the transformatidihg, that are not contained in
' appears in 8 17, namely, the one that corresponds to pagsny translations of
space; it is defined by the so-callateral displacements.

Obviously, the double ratio of the dual numbers that belong to four sp@ansl
remain invariant under the transformationslof,, and one can regard that double ratio
as the double ratio of the four spears, but one mustwebteat the vectorial part of that
double ratio will be multiplied by a constant factor whame replaces the assignment
between dual numbers, on the one hand, and the miniamdgand spears, on the other,
that was established in 8 8 with another assignment, §Gf)

The totality of all spears that determine a pure scalar double ratio with three fixed
spearss;, &, Ss, no two of which are parallel, will be given by the sgeaaf the cycle that
is determined by, s, 3. (If there is only one such cycle that belongsi®, s; then
the minimal planes of;, 5, s3 will have a common point, and it will then be the eud
of the cycle.)

Any four spears of a cyclave goure scalardouble ratio.

Analogously, there are congruences of spears with thgepy thatany four spears
of such a congruence determines a double ratio that is real-deal;free ofi. Such a
congruence will be obtained when one screws a sp@und a fixed speag (that is not
parallel tos) in an arbitrary way. Such a congruence might be nedeio as aortex(?).
One can also define a vortex of spears as the totdlig}l spears that define the same
dual angle with a fixed spear. If one maps the speaspane to the dual points of the
number cone as in § 11 then the spears of a vortexavilkspond to a planar section of
the sphere with a “dual plane” and thus, to a “dual circle.

(However, the property of a vortex that any four efdpears must have a real-dual
double ratio is by no means true for all classes of @smts of spears and dual
numbers, since under the transition in (30) from a ahassignment to an assignment of
another class, the vectorial part of the double ratibb&imultiplied by a factor that can
even contain the imaginary unit in the general case.)

Another remarkable manifold of spears possesses the fyrtiperany four spears of
it have a pure real scalar double ratithe latter is then an ordinary real number. One
obtains such a manifold when one moves a spaaound a fixed speas in such a way
that one rotates it aroung in the positive sense through the angland likewise
displaces it parallel t& in the positive sense by (sint), in whicht is a variable
parameter, ant is a constant proportionality factor. This manifofcb’ spears shall be
referred to as ahain of spears.The special kind of motion arousglthat the speaswas
subjected to above can be given the name of “reversall’points in space describe
ellipses under that motion that project onto any pldna is perpendicular tg as
concentric circles whose centers lie aleng (These reversals represent limiting cases of

() In what follows, this will always be thought of as mavbeen chosen in such a way that the
associated double ratio possesses a well-defined value.

(® E. Study used the term “cyclic congruence” for the analogous streiéh non-Euclidian geometry.
[“Uber Nicht-Eucklidische und Liniengeometrie,” Jahreslgrider deutschen Mathematikervereinigung
(1902), pp. 333.] Here, we must avoid that terminology iBweeto prevent confusion.
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the generaDarboux-Mannheim motion, which is the most general motion under which
all points describe ellipses)

One immediately infers from the invariance of the double ratio ofdpears under
the groupl iz, that cycles will go to cycles, vortices to vortices, and ch&neshains
under the transformations of that group.

If one transforms a dual variabkeaccording to the equation:

— (aw+ bj
cw+d

then, from § 9, the minimal planes that belong to theowa w will be subjected
similarity transformations. The group that is defined Ibgwch transformations depends
upon seven complex parameters. The corresponding graegldfansformation of the
spear that belong to the various minimal planes coorelpgly contains 14 real
parameters, and let it be denotedly . In particular, there are also transformations
contained i 14 that were considered in § 18 and referred tsl@sings(through a well-
defined angle about a well-defined point). The double @tiany four spears (cf., 8 5)
will be modified by the groud is4 in such a way that its scalar part will remain
unchanged, while the vectorial part will be multiplied Iay constant factor.
Correspondingly, under the transformationslef, cycles will always go to cycles, and
chains to chains, but generally vortices do notgeortices. Rather, a vortex will go to
a congruence that can be generated by rotating a penudrallel spears about a fixed
axis, and in the absence of a more suitable naméalt Ise called aotation field of
spears(®).

The group$ 12 andl14 can be extended to mixed grolip and T ,, by adjoining the
transformationw = w, in which w is the number that is conjugate-imaginarywo
[which arises fronw when one switcheswith (- 1)].

Instead of the transformation that was chosen abmwe,can adjoin the one that is
represented bw = - 1/w, and from (51), any spear will be converted into the opposit
one on the same line. The behavior of the cyclesminshand vortices of spears under
I, andTl,, is completely analogous to their behavior uridgrandr 14.

() Cf., the Note byDarboux in Koenigs Lecons de Cinématiquéaris, 1897, pp. 352, as well As
Grunwald’s treatise “Die Mannheim-Darbouxsche Umschwungsbewegungs estarren Korpers,”
Zeitschrift fir Math. u. Physik (1906). One will obtalremost generaimotion of that kind by the inward
rolling of a right circular cylinder of diametaronto one that is twice as big (while allowing it tiols only
in the direction of the generators of the cylinder)ewla point that is rigidly bound to the first cylindsr i
forced to stay on a plane that is rigidly bound to thers@ylinder. The “reversal” in the text will then
correspond to the limiting caseaf O.

(® The closely-related term “whorl” of spears cannotused without reservations, if one recalls the
different use of that term Wy. Study.
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§ 20. Concluding remarks.

In the foregoing, the application of dual numbers togbemetry of spears in space
was treated in a rough outline, and by no means exhaustiv€lgrtain geometric
considerations lead one to ascend from the conceptspéar — i.e., a real, proper line
with a sense of traversal — to another general conegp@at of anoriented real or
imaginary line. Similar to spears, they can be represented by ordéhalynumbersv =
u+v ¢, and thus, by higher complex numbers of the fartbj + ce + d £j, in which
one hag? =-1, &€ = 0, anda, b, c, d are complex numbers. (These higher complex
numbers can be found in tBmzyklopadie der mathematischen Wissenschdftém, in
the report on “Ho6here komplexe Grossen,” pp. 167, asithginary-reducible type, with
the enumeration that is given there without a numb@nm) the other hand, the oriented
lines can be mapped to the points of a four-dimensionalifotdd M® in a four-
dimensional spacB™ in such a wa}/ that the spears (i.e., the real, @®iklnes) would
correspond to the real points Bf*, and groups of spear transformations that were

denoted by 12, 14, T,,, T, in § 19 would be mapped to collineationsvf’ to itself.

One will succeed in extending the manifold of orientedslittea closed continuum in
a suitable way by this map. Understandably, that comtinwill differ from both the
Plicker continuum of lines and tHstudy continuum of rays.

The metric relationships in the manifold of oriented linas be introduced by fixing
a certain “vortex” of imaginary, oriented lines, justrastric relationships are introduced
into projective point spaces when one distinguishes & @aaittion, namely, the absolute
spherical circle.

A more detailed discussion of these investigations dimllreserved for a later
occasion.



