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8 1. The ordered point-pair as element of plane geometry. atypes of continua of
such elements, the linear and quadratic ones.

One can introduce the point-pair into the geometnhefglane as an element. If the
two points9t andM, which together define the paliM and are then assumed to lie at

finite points, were distinguished as a “left” poiit and a “right” pointM then such a

point-pair could be called an “ordered” one. We shall lspgeonly such point-pairs,
here; accordingly, the point-pai?®&M andM9t (as long a9t andM do not coincide,
perhaps) shall be strictly distinguished from each otfidre point-pairs that are defined
by finite points in this way will be referred to as “fepbint-pairs.

The totality of allo* real point-pairs can be mapped to the linear manifojdoafts
in a four-dimensional space when one regards the rectantpordinates, y of 9t and
the rectangular coordinatesy of M as the rectangular coordinates of a point in four-
dimensional space.

At least as important as this obvious map is anotherlynehich the point-pahhiM

in the plane is mapped tocquadratic manifold of points in a five-dimensional linear
space. One adds(x” + > —x* —y?) to the four quantities v, x, y as the fifth coordinate,
and considers these five quantities, which are coupleddwadratic equation, to be the
rectangular coordinates of a point in a five-dimensigpake; this point is to be regarded
as the image point of the point-paitM.

For both maps, the image points of real point-pairtherpoint manifolds in question
do not, by any means, lie at finite points. The infinitéilstant points — in the projective
sense of the term — of the aforementioned manifolda@irenages of real point-pairs. In
order to extend the totality of real point-pairs in thenplto aclosedcontinuum, one can
choose one or the other of the maps above as orss ba

If one introduceso? different “imaginary” point-pairs in the plane by chimsthe
first map, which corresponds to the different infinitely-distant points in the four-
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dimensional image space, then the continuum of poins-pall be extended to a closed
continuum that is, without exception, in one-to-one egpondence with the points of the
four-dimensional linear space and thus has an essgfitiatr character.

If one chooses the second map as one’s basis thewithrietroduce > different
“imaginary” point-pairs in the plane (which are entirdigtinct from the previous ones),
corresponding to the® different infinitely-distant points of the quadratic peinanifold
in five-dimensional space; it will then seem that tbatmuum of point-pairs has been
extended to a closed continuum (that is different ftbenprevious one) that is in one-to-
one correspondence, without exception, with the poihtiseoquadratic manifold in five-
dimensions, and thus has an essent@ligdraticcharacter.

These two closed continua of point-pairs shall bergjsished from each other as the
“linear” and “quadratic” continuum, respectively.

The analytical representation of point-pairs in the tentinua demands the use of
homogeneous coordinates.

In order to represent a point-pair of the linear cantm, one introduces the system
of five homogeneous) quantities], corresponding to the proportion:

Qo:qi:qe:qgqs:qa=l:z:p:x:y.

Forqo # 0, any system of homogeneous quantiji@gll belong to a real point-pair of
the linear continuum, and f@r= 0, it will belong to an imaginary point-pair. There

to be regarded as homogeneous coordinates of the point-gagston.
In order to represent the point-pairs of the quadratnticuum analytically, one must
analogously regard the six homogeneous quantjtibat are defined by the proportion:

Qo:GL:C:Ge:Ga:Os=1:r:n:xX:y: 1(0*+9° =X -y’

as their homogeneous coordinates. dot 0, each system of homogeneous quantiies
will belong to a real point-pair in the quadratic contimiuand forgo = O, it will belong
to an imaginary point-pair. The six homogeneous coordiggaee coupled to each other
by the homogeneous, quadratic relation:

G+ - -2qq=0.

If one restricts oneself to the real point-pairsmtkeach of them, when regarded as an
element of the “linear” continuum, will belong to a t&ys of homogeneous coordinates
q, while, when one regards it as an element of the “gtialintinuum, it will belong

to a system of homogeneous coordinated hus:

Qo=Ado, G=Aq, G=4Aqg2, BB=Aq3, @=Adq,

() “Homogeneous” quantities shall always refer to thgsantities that are finite, not all zero, and
determined only up to a common proportionality factor.
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where A is a proportionality factor: The system of homogeneguantitiesq is then
determined from the system of homogeneous quanjitiasd conversely.

This changes immediately when one allows imaginaryntgmirs in the two
continua. The relationship between the homogengaursl the homogeneogswill no

longer prove to be properly one-to-one without exception.

If one seeks thq that correspond to the homogeneous coordinptésan imaginary
point-pair @o = 0) of the first (linear) continuum on the basislef allowed formulas that
were written down then one must distinguish betweendases, according to whether:

a) q; +q5-95-q; =0,
or
b) 0.

In both cases, one must have:
A (g2 +95-95-95) — 2190 g5 = 0,

from which, one can recognize that in case:
a) A andgs can be chosen to be completely arbitrary (but finudlile in case

b) One must havd = 0, whilegs is arbitrary.
Therefore, in casa), theqo = 0, q1, g2, g3, q4 are determined up to a proportionality
factor (that can also be zero), apdis arbitrary, so the chosen systemyo#ill belong,

not to one system of values of the homogeneous quangitieit toco® different ones.
In caseb), qo, q1, 92, g3, g4 are all zero, and onlys differs from zero. Corresponding

systems of quantitieg then belong to a single system of values for the honexges

guantities in all of thesk) cases.
Conversely, when a real point-paip = 0, g1, Gz, Gz, G4, Gs) IS given in the second
(i.e., quadratic) continuum, and one seeks the correspgpidnen one will first find that

go = 0 and then that in the casg:= ¢ = gz = s = 0, the homogeneous quantitigs gz,
qs, q4 Will be completely indeterminate, while in every otlvase, the latter system of

values will be completely determinate (naturally, up to abitrary proportionality
factor).

It emerges from these statements that the imagelamngents of the linear continuum
and those of the quadratic continuum are not in onetgayrespondence with each
other. This situation is entirely analogous to the benaf corresponding points under
the stereographic projection of a plane onto a spherén g@neral, the transition from
the five homogeneoug to the six homogeneous can be interpreted as a kind of

stereographic projection of a four-dimensional linear fo#&hionto a four-dimensional
guadratic one (in a five-dimensional linear space).

One defines the “continuous” change of a point-pair &f tinear (quadratic,
respectively) continuum to be one for which the assedihomogeneous coordinates q
(g, resp.) change continuously while they still remain lsimiand at least one of the
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guantities in question remains finite and non-zero. &nge in one of the two continua
can very well prove to be discontinuous without tha¢dneg to be the case for the
corresponding change in the other continuum. Two conimpassages to the limit in
one continuum that both have the same imaginary ekeofetihe continuum for their

limit element can lead to different imaginary elementshe other continuum as limit
elements when they are transferred to it.

8 2. Map of both continua of point-pairs of the plane
to analogous continua of oriented spheres in space.

The «* oriented spheres of the three-dimensional space defiamalogue to the*
point-pairs of the plane. An “oriented” sphere corabsut when, for a sphere of finite
radius and a center that lies at a finite point, on@two equal and opposite values that
the radius can assume is distinguished and is establishit@ aalue of the radius. A
sphere that is defined in this way is a called a “realgnted sphere. It is determined
completely by the givens of the rectangular coordintes ¢ of the center and the given
of the radiuso (including the choice of sign).

On the one hand, the* oriented spheres can be mapped to the linear manifold of
points in a four-dimensional space when one regards thetitg® ¢, 7, {, p as the
rectangular coordinates of a point in four-dimensionatsp On the other hand, they can
be mapped to a quadratic manifold of points in a five-dimeasiinear space when one
adds one-half power of the sphere in question relativehéocoordinate origin to the
aforementioned four quantities as a fifth quantity androsgehese five quantities, which
are coupled to each other by a quadratic equation, aset¢tengular coordinates of a
point in a five-dimensional space.

For both maps, the image points of the real, oriespderes do not at all lie on finite
points of the point-manifolds in question. The infiniteigtant points — in the projective
sense — are not images of real, oriented spheres.

In order to extend the totality of oriented spheres meettlimensional space to a
closed continuum, one can either base that upon athe other of the two maps above.

If one bases it upon the first map and introducgslifferent “imaginary,” oriented
spheres, corresponding to the® different infinitely-distant points of the four-
dimensional image space then the continuum of oriespéeéres will be extended to a
closedlinear continuum.

If one bases it upon the second map and introdutekfferent “imaginary” spheres
(which are entirely distinct from the previous ones)responding to thee® different
infinitely-different points of the quadratic point-maridan five-dimensional space then
that continuum of oriented spheres will seem to haenlextended to a closqdadratic
continuum (that is completely different from the poess one), which is, without
exception, in one-to-one correspondence with the pointse quadratic point-manifold
in five-dimensional space.

The elements of the linear continuum of oriented gghean be represented by the
five homogeneous coordinatgsaccording to the proportion:
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G G % G4 =1:817:0p,

analogous to the elements of the quadratic continuum, vdaiohbe represented by six
homogeneous coordinatgsaccording to the proportion:

GG G0 G =180 p (@ P+ -

The same thing is true of the relationship betweenwecbntinua that was stated
above for the relationship between the analogous eenthpoint-pairs in the plane.

The tangential planes to a real, oriented spherelikegvise oriented. If one
establishes that the distance from the center o$phere to one of its tangential planes,
including the sign, shall have the valpghen distance from each point in space to the
tangent plane in question, including the sign, will bedweined from it.

Analytically, the process of orienting a plane whesgiation, when written in the
running coordinateX, Y, Z reads:

Ug+Ui X+UY+U3Z=0,

represents the idea that of the two equal and oppoaiigess of the square root
JUZ+UZ+U2, one of them — say)” — will be distinguished; the five homogeneous
quantitiesUo, Uz, Uy, Us, U”, between which the homogeneous, quadratic relation exists
that:

UZ+UZ+UZ =U?,

are regarded as homogeneous coordinates of the plane tlerge’dr” Two oppositely
oriented, coincident planes will differ only by the sigfrtheir U'—coordinate.

Minimal planes (viz., tangential planes to the absdpteere-circle), for whick)™ =
0, cannot be distinguished by opposite orientations asiatie they will have only one
orientation, or — if one prefers — both orientatioril e the same one.

An imaginary sphereq, = 0) of the linear continuum determines a systenodf

oriented planes:
qU; +q,Uz+qU5 =q,U,

which are to be regarded as its tangent planes and wbithot the absolute sphere-
circle doubly. Each such system of oriented planes is to be regarded as a
representation of a certain imaginary, oriented spimetteei linear continuum.

The imaginary spheres of the quadratic continuum areseped in a completely
different way: Such an imaginary sphere, with the digemeous coordinates (g, = 0),

can be represented by the oriented plane with the cotedlbda= 0., U: = @, U> = G,,
Us = @, U = q,. Any imaginary, oriented sphere of the quadratic contmigito be
regarded as an oriented plane in this way, and conversely.
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The linear continuum of oriented spheres can be retat¢de linear continuum of
points pairs in the plane that was considered in § lomeato-one way by the proportion:

ao:a1:a2:as:a4:q0:ql:q2:iq3:q4 (Wherei:\/—_l),

which we will call map.

The quadratic continuum of oriented spheres can poé into one-to-one
correspondence with the quadratic continuum of tpoars in the plane that was
considered in 8 1 by the proportion:

i TG % 0 % =0oiGriGeiiGeiGuis (wherei=-1),

which we will call mapA.

The two map$gl andA are imaginary; one can replace them with real mdp=n one
suppresses the factbin the proportions above. The real maps wouldhave the same
uses then in the following development as the imay maps and A that were

introduced.

8 3. Map of the quadratic continuum of point-pairs in the pane to the (Plickerian —
i.e., understood in the projective sense) lines in theedimensional space.

If one extends the rectangular coordinate sy<tefi in the plane to a right-handed
spatial system by adding tHeaxis perpendicular to th€Y-plane then one can assign any
real point-paifi(x, h) M(x, y) to the line:

+
Kol

X:X —y__hz,

2

+ﬂz,
2

<
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=

Y =

as an image line, wher¥, Y, Z are the running coordinates of a point of the.line
Geometrically, this map can be exhibited as follows

Rotate the poinM through a right angle in the positive sense around the biséttor
of the point-paid)iM, and thus raise its new position that is so obtained-lyin the
sense of the positigaxis. The connecting line between the point thus-obtained and the
bisector H will give the desired image line

The image lines of the real point-pairs fill up @i the line space, with the exception
of the special linear complexes, whose guiding {ihés the infinitely-distant line in the

XY-plane. This complex, which shall be referred tefly as the complexX?, remains
free of lines that are images of real point-pamgite XY-plane).
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Two such intersecting lines that do not belong to theptex) are images of real
point-pairs?t;M; and9t,M, whose:

“left” distance 901,901, is equal to its “right” distancé,M,,

and conversely, such real point-pairs correspond to nhersecting lines that do not
belong to the compleR.

This important property of the map in question can be pravedpurely geometric
way with the help of the construction above that broadatut the map itself, when one
takes the connection, which is exhibited similarly, le®wthe coordinates of any point-
pair M and the Plickerian coordinafgsof its image lines to be the starting point.

If one introduces the latter coordinapgsin such a way that thax that belong to the
connecting line between two pointXi( Y1, Z1) and K, Y2, Z) is defined by the
proportion:

Po1 : Po2 i Po3 : P23 P31 P11
= (Xz—xl) . (XZ —X]_) . (X3—X1) . (Yl Zo—Y> Zl) . (Z]_ Xo—25 Xl) . (Xl Yo —Xo Yl)

then the Plickerian coordinatgg of the image line of a real point-pairNi(in the XY-
plane) will be expressed in terms of its homogeneouslewies] in the following way:

Po1 - Po2: Po3: P23 P31 P11

=- (=0 (=01 :200: (Q+0):—(O3+01) : — 0.

This proportion also associates the imaginary point-ditee quadratic continuum
(9o = 0,q1, O, O3, Ga, 0s) With well-defined image lines that belong to the sgemmanplex
£ in a one-to-one way. The entire quadratic continuumpoaft-pairs then seems to be

related to the (quadratic) continuum of lines in the fiieethsional image space in a
one-to-one way. This, exceptionless one-to-one maplshatferred to asiapB.

In place of the six homogeneopigit is useful for many purposes to introduce the six
homogeneous, which are indeed homogeneous-linearly connected with dwewording
to the proportions above, as the homogeneous line catediin space; to distinguish
them from thepi, they shall be referred to as tlecoordinatesin line space. The
guadratic relation between them reads:

G+ -GG —200s=0
in agreement with § 1.
By employing theQ-coordinates in line space, any point-pair of the quadratic
continuum of point-pairs of the plane will have the sammogeneous coordinatgss
the associated image line.
Intersecting lines belong to systems of values off@ordinates that are conjugate
relative to the quadratic form:
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G+~ —200s.
If one expresses this by the equation:
GGt ed- G4~ G- g4~ g¢=0

between th&-coordinates) andq’ of both lines then this equation will likewise give the
relation that exists between the associated point-patise XY-plane. If one introduces

the inhomogeneous coordinaie$, x, y andy’, b', X, y' of the two point-pairs, instead of
theq andq’, then equation that emerges from the equation aboveewtritten:

@ -0+ -h) =X -+ Y -y

which will also provide the analytical proof thatas is often remarked the “left” and
“right” distances between real point-pairs are equahd only if their image lines (under
mapB) intersect.

If one maps the point-pairs of the quadratic continuuth@fplane, once by the map
A (of 8§ 2) onto the quadratic continuum of the orientecesghin a three-dimensional
spaceX, and once by the map(this 8§ 3) onto the (quadratic) continuum of the linea in
three-dimensional spac& then the stated continua will be put into one-to-one
correspondence with each other.

Intersecting lines in the spa&escorrespond to contacting, oriented spheres, iand
conversely, whereby two red))( oriented spheres are regarded as contacting each other
if and only if the tangential planes at the contaminipthat belong to the two spheres
coincide, not only in position, but also in orientatiofhe relationship between the
spacesZ and S thus-obtained will then be identical with the celébdalie affinity
between the sphere and line spaces.

8 4. Representation of the point transformations of the plane
by image congruences in line space on the basis of the nipf § 3.

If one has any point-transformation in tk&plane then one can exhibit a point-pair
MM (several point pairs, resp., when the transformasomany-valued) by means of
any point 9t and the pointM that corresponds to it under the transformation (the
corresponding points, resp.). The image lines ofe¢heeal point-pairs thus-obtained —
together with a likewise given restriction — will flllfa certain line congruence in image
space, which can be regarded as the image of the paistdranation.

The restriction that was just mentioned relates ef#ct that, at first, no rays are
present in the image congruence that also belong tsgleial complex). Thus,

() The concept of “contact” must be defined speciallytiier imaginary, oriented spheres if anything
but the assertion above is to remain true, in generak definition is provided by the formulas.

E.g., two real, oriented planes, when regarded as fraagi oriented spheres are regarded as
“contacting” each other if and only if they are pieand oriented consistently.
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nothing stands in the way of subsequently adding theddasking rays by analytic
continuation and extending the image congruence to a aosgithuum, in this sense.

Now, it is typical of the importance of the m&pthat was introduced here that
precisely the simplest point transformations of the @laill again correspond to very
simple image congruences in line space.

1. Arigid motion in the plane, when regarded as a panisformation, corresponds
to a bundle of rays in the image space whose carriet goconsidered to be the image
point of the rigid motion.

If the rigid motion is a rotation around the paihthrough the anglg’then the image
point of this rotation will on a line that is perpendauto the center of rotatio@ at a
height of coty/ 2.

If the rigid motion is a translation then the imgm@Ent will be an infinitely-distant
point (in the sense of projective geometry) and simpleanstruct when one defines a
point-pair MM from an arbitrary poinfJt and any pointM to which9t goes under the
translation, determines the image line that belongkdqoint-pai))iM, from 8§ 3, and
looks for its infinitely-distant point. That will bine desired image point.

The image points of the rigid motions fill up the imapace, except for the two
conjugate-imaginary planes:

l1 (Z:+i) and I> (Z:—i),
which remain free.

2. A transfer in the plane (i.e., a point transformation that cdssisf the
composition of a rigid motion with a reflection in adiin the plane), which can always
be replaced with a reflection in a certain line in tlene — viz., the “transfer axis¢’— in
conjunction with a translation in the direction o€ ttransfer axis, corresponds to a ray
field in image space whose carrier plane is regardéceasage plane of the transfer.

The image plane goes through the transfer @aisd is simple to construct when one
chooses a poirit in the transfer axis arbitrarily and defines a point-paim any point

M (which also lies on the transfer axis) tB&tgoes to under the transfer, determines the

image line of this point-pair, as in § 3, and connects théotransfer axis with a plane.
This plane will be the desired image plane. Its angleith the XY-plane is thus
determined by:

cotiz/ = the magnitude of the translation paralletto

The image planes of the transfers in the planeufilthe space of planes, except for
the two bundles of planes that go through the absolule @oints:

ki (y=ix) and ks (y=-1x)

in theXY-plane. The latter plane bundle remains free of inmdaees.
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3. A direct similarity transformation in the plane ®sponds to a linear congruence
in image space whose skew guiding lines go thrdugndk,, and conversely, any such
congruence corresponds to a direct similarity transfoomati

4. An indirect similarity transformation in the p&ancorresponds to a linear
congruence in image space whose skew guiding lines lie ircdhgigate-imaginary
planed; andl,, and conversely.

5. An affine transformation in the plane correspondslimear congruence in image
space whose guiding lines lie in the special comglexand are therefore parallel to the

XY-plane.

6. A bifocal conversion of the kind that was consideredLbyBurmester in his
textbook on kinematics that has the focal polt$; andF, L, — i.e., any conversion
under which any poirdt will be assigned to two corresponding pdiftby the demand

that:

oM = E,m and Lon = Lo,

corresponds to a linear congruence in image space whosagglimis do not belong to
the special complex) (and thus, are not parallel to th€Y-plane), and will be

represented by the real point-pdird=, andL; L, , in the sense of the m&p

7. A direct Moebius circle conversion corresponds tmrgruence in image space
that consists of the common tangents to two (incdee of a real conjugate-imaginary
conversion) cones of second order whose verticet tiee pointk;, ko, resp., and which
contact the plands andly, resp.

8. An indirect Moebius circle conversion corresponds tcomgruence in image
space that consists of the common secants to twa sentions that lie in the planks
I, resp., and go through the two poikisk; .

Along with those congruences that can be regarded a®sdlge congruences of (non-
degenerate) point transformations, we still have tangistsh the ones for which that is
not the case. The? point-pairs®iM that belong to the rays of a congruence can have
the peculiarity that one of the two points of thér pgbound to a curve while the other
one correspondingly describes th& possible positions of the former' curves, or also
the peculiarity that one of the two points of ther pafixed while the other one can range
through the entirXY-plane (cf., 8 7). Furthermore, we point out here thegouences
that are contained in the special complexvhose rays do not belong to any real point-

pairs, at all.



Grunwald — A mapping principle that links plane geomatrg kinematics with spatial geometry. 11

§ 5. Representation of theo® lines of a special linear complex in image space by the
correspondingee® point-pairs in the XY-plane. Types of imaginary point-pairs in the
guadratic continuum.

If & is a line that is skew to the infinitely-distant litein the XY-plane then one can
represent theo® lines of the special linear complex that is associatéd & as its

guiding line by the corresponding’ point-pairs in the plane. The system that is defined
by them might likewise be referred as a “special liremanplex of point-pairs”; the (real)
point-pair M that corresponds to the lirg itself will be called the “guiding pair” of

the complex.
The system ofo® point-pairs®iM’ of the complex is determined from the guiding

pair 9tM in the simplest way: Define the family of concentiicles aroundit to be the

“left” family of circles and the analogous family of dies aroundv to be the “right”
family of circles, and if one calls these two fanslieongruent to each other when one
associates each circle of the left family with theele in the left family that is conjugate
to it then the two points of each point-p8it'M’ that belongs to the complex will lie

upon corresponding circles of the two congruently-reladedilies of circles, and indeed
each of the points will lie upon the circle of the fgmof circles that has the same name.
The perpendicular projection of the line® on theXY-plane is likewise symmetric

for the pointsi andM:; it includes thoseo' point-pairs of the complex whose left and

right points cover it, namely, the “covering pairs’tbé complex.
The complex is associated witht motions, and likewiseo' transfers, that take the
point Ot to the pointM, and thus each circle of the left family of circteshe congruent

circle of the right family of circles; the image ptsirof theseo® motions lie on®, while
the image planes of the' transfers go throug®.

If the guiding line® of a special linear complex in space cuts the infinitksyant
line 9 in the XY-plane then the corresponding congruence of point-pallsavilonger
have any real guiding pair; the guiding pair that corresptmdbe guiding line® is a

certainimaginary point-pairof the quadratic continuum. Each such point-pair can be
represented intuitively by the special linear complext tias it for a guiding pair.

In order to assess the various possible special dasd¢le time being, we shall start
with the equations:

Qo =0, G+ -g-g =0

between the coordinatgof the line® (and the corresponding imaginary point-pair).
The left point?Mi(x, h) and the right poinM(x, y) of the imaginary point-pair are
defined, as for real point-pairs, by the proportion:
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1:r:h=Co:01:0 (L:X:y=0o:0a:0a, resp.).

One must infer from this that the left point is congleindeterminate in the case of
the simultaneous vanishing ofi, g2 (0o is zero, anyway), while the right point is
completely indeterminate in the case of the simultanganshing ofgs, g4 (o IS zero,
anyway).

If the two aforementioned special cases are excludedhe moment, then the left
(and likewise the right) point of such an imaginary pgair will be a well-defined
infinitely-distant point)t. (M« , resp.).

However, the imaginary point-pair in question is in naywdetermined by the
aforementioned infinitely-distant points. Moreovdrere is an entire class of infinitely
many different imaginary points of the quadratic contindbat all have the stated points
for their left and right points; let this class be oteal by ., , M).

The relationg” + > — ¢ — ¢f = 0 teaches us that the poifits, andM., are either:

a) both different from the absolute circle poikisk, or

b) they both agree with the aforementioned circle goiahd indeed, either both
of them are at the same circle point or one at tleecocle point and the other
at the other.

When casd) is present, the imaginary point-pair in question wdlomg to one of
four classes:
(ku, k), (ka, ko), (K, ko), (ka, ka).

As far as the previously-excluded cases are concernedyhich the left or right
point is completely indeterminate, it follows from thedation of + ¢ — ¢ — ¢f = O that

the respective other point of the imaginary point-paim only be one of the two absolute
circle pointsk; andk;, if it is not perhaps also itself indeterminate. It tihietds:

(ki, 0), (2, 0)
for the completely-indeterminate classes of the nugmt, and
(01 kl)! (0! k2)

for the completely-indeterminate classes of the leiftitp

The left and right point of an imaginary point-pairtbé quadratic continuum can
likewise be indeterminate only when all of its coordinatgsto gs vanish. This
imaginary point-pair, whose image line is the infinitdigtant lineQ in the XY-plane,

shall be referred to as the point-pair (0).

The special linear complexes that are associated hathypes of imaginary point-
pairs that were just enumerated and which have the-pairg in question for their
guiding pairs will now be considered, which will yield aruitive representation for the
stated imaginary point-pairs:
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For the imaginary point-paif¥ whose left and right point9)t.. and M., resp., are

infinitely-distant and different from both of the saute circle pointsk; and k;, the
associated special linear complex of point-p8itM “ can be exhibited most simply by

means of certain congruence relation between the ‘beftitle of parallel rays in theY-
plane that are perpendicular to the directiin and the “right” bundle of parallel rays in
that plane that are perpendicular to khe: The left pointt’ and the right poin“of an
arbitrary point-pair that belongs to the complex wilays lie on corresponding rays (in
the congruence relation) of the left and right bundigsarallel rays.

Accordingly, the figure of two congruently-related blasdof parallel rays that are
perpendicular to the infinitely-distant poinf8t, and M., can serve as an intuitive

representation of such an imaginary point-gair
If the imaginary point-pai(l belongs to one of the classes:

(ki, k1), (ko, k2), (K, ko), (ka, ki)

then, instead of the two congruently-related bundles @llparays above, one will get
similarly-related minimal bundles of rays, such tthegt carrier points of the left and right
minimal bundles of rays can be regarded as the Igftt(resp.) point of the class symbol
in question. One can regard the figure of the two angirelated minimal bundles of
rays as an intuitive representation of such a pointgpai

For imaginary point-pairs that belong to one of tlasss:
(Meo, M), (Ka, k1), (ko, ko),

wheredt. M. mean any two infinitely-distant points that are diéietr fromk; andk;, the
congruence or (in the last two cases) similarity ti@ta between the left and right
associated bundles of parallel rays will be exhibited hwardbitrary motion of a certain
bundle ofe® motions. The image points of thesé motions trace out the image line of
the imaginary point-pair, which (corresponding to the¢henumerated classes) meets
the infinitely-distant lineQ in the XY-plane atk;, kz, or a point that is different frorky

andky, and lies either in the plamgor in the plané; .

For imaginary point-pairs that belong to one of tlasges P, M.), (ki, k2), (ko, ki),
the congruence or (in the last two cases) similaatgtion between the two bundles of
parallel rays can be exhibited by an arbitrary transfer oértain bundle ob* transfers.
The image planes of thes€ transfers go through the image line of the imaginary point
pair that (corresponding to the three enumeratedetddelongs to the plaheor to the
planel,, or neither of the two planés |, , and goes through neither of the poktand
ko .

The image lines of the imaginary point-pair that wassatered up to now, which
possess certain left and right points, trace out geial linear compleX) with the

exclusion of the four ray bundles:
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(k1 11), (ko 12): (Left pair of ray bundles in image space),
(kp 12), (ko 17): (Right pair of ray bundles in image space).

In particular, the imaginary point-pairs with the sles
(ki ka), (ke ko), (ke ko), (k2 ku)

belong to lines in image space that belong to the ragllekn or k; or to the ray field
or the fieldl .

It remains for us to consider those imaginary pointspfr which the left or right
point remains indeterminate, and thus, point-pairs of omleedfour classes:

{ (k., 0), (kz,O)}
(0.k), (O.k;).

Any such imaginary point-paff is the guiding pair of a special linear complex of
point-pairs?i'M’,
If 2 belongs to one of the classés, 0), e, 0) thendt’ will be linked to a certain

minimal line throughk; (kz, resp.), whileM’” will remain completely indeterminate; the
aforementioned minimal line, which is regarded as the laéube left points, can be

regarded as an intuitive representatiof(of

If 24 belongs to one of the classes Kf), (0, ko) thenM” will be linked to a certain
minimal line throughk; (kz, resp.), whiledt" will remain completely indeterminate; the
aforementioned minimal line, which is regarded as the lofuke right points, can be
regarded as an intuitive representatiof(of

The image line of an imaginary point-p&ir which is represented by a minimal line

. left line, i.e., the locus of left point
that is regarded as a

. ) _, lies perpendicular to the
right line, i.e., the locus of right pais

left 1), (kI
minimal line in question of a ray bundle of the ra\y-bundle-pair(|<1 (ks 2).
right (K15).(k,1)
The linef in image space is the image line of the point-gaat was denoted by)
above, whose associated special complex consigteedbtality of all imaginary point-
pairs.

Remark. The special linear complex that belongs to argimay point-pair A with

class ki, ko) as a guiding pair contains a “congruence®bfreal point-pairs of a certain
direct similarity transformation that belongs te tongruence of real lines that meet the

image line® of 9 (and the line® that is conjugate-imaginary t&) as image
congruence.

® goes through;, projects perpendicular to thér-plane onto that line that connects
the center of the similarity tia, and has the altitude:
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cot (a—in k),

if a denotes the angle of rotation arddenotes the dilatation factor of the similarity
transformation.

The special linear complex that belongs to an imagipaint-pair2l with class ko,
ki) as its guiding pair contains a “congruence”odf point-pairs of a certain indirect
similarity transformation that belongs to the congreeotreal lines that meet the image
line & of 2 (and the line® that is conjugate-imaginary ). & lies inl; and projects

perpendicularly to th&XY-plane onto a line that goes through the similarityteeand
subtends the angle:

La-ilnK

with the X-axis, if the indirect similarity transformation céde composed of a dilatation
with modulusk from the center and a reflection in a line that gbesugh the center and
is inclined to theX-axis by an angle af / 2.

8 6. General remarks about complexes and ruled surfacesimage space regarding
their representation by point-pairs in the plane.

A complex of lines in image space, or the complex ppaits that corresponds to it,
can be defined by a homogeneous equa@¢, 01, dz, ds, G4, 0s) = O, according to
whether the six homogeneogsre interpreted as the coordinates of a line in spatteor
coordinates of the corresponding point-pair inXfeplane.

Here, we might consider an example of those (tlheamplexes of points-pairs that
do not correspond to special linear complexes of raynage space.

If the infinitely-distant lineQ in the XY-plane is not contained in the spatial complex

then it will be conjugate to a lin® (which is skew to it) relative to the complex. Itlwi
correspond to a real point-paiRM in the XY-plane. The real point-paift'M’ of the
complex in theXY-plane can then be represented by a relation betweedisbances
MM’ and MM’ that takes the form:

9)29)2’2 - MM’2 = constz 0.

(The value zero of the constant that appears heredwmrrespond to a special
complex.)

By contrast, if the line} is contained in the spatial complex then — if one tenppra
overlooks a specialization that will be mentioned ele the associated complex of
point-pairs in theXY-plane can be generated by a certain affine relationsipeen two
bundles of parallel rays in th€Y-plane, one of which is left and the other of which is
right: The points9t" and M’ of the real point-pairs of the complex will lie on

corresponding rays of the two affinely-related bundlegsaoéllel rays.
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S(klll)’(kZIZ)
(ki1p), (k,1y)

except for the lineQ, then the corresponding complex of point-pairsl Wéve an

left
If all lines of theright pair of ray bundle are contained in the complex,

right
especially simple property: It will then consistadf point-pairs?m'M'whosele(‘;]t point
is linked to a certain line in theY-plane (that lies at finite points), while the atlome-

left .
viz., the right point — will remain completely arbitrary. (The dinn question can go

through eithek; or k;, since otherwise the complex would be special.)

Under the maB in the XY-plane, the lines of a ruled surface in image spaitle
correspond to two point-wise related curves, inhsaavay that any poinidt of the first

curve will define a paifitM with the associated point (or the associated ppiiton the

second curve whose image line is a generator ofuleel surface. Thus, a fixed point
can also appear in place of a curve that is toobgbmed into a point-pair with any point
of the other curve.

Developable ruled surfaces are distinguished utiteemap by the fact that under the
point-wise relationship between the two curves abowresponding arc elements of the
two curves will have equal length, and conversedyen that latter condition is present,
the image lines of the point-pairs of the systeat tonsists of corresponding points of
the two curves will define the generators of a tigvable ruled surface.

In regard to the skew second-order ruled surfames,must decide whether they do
or do not contain the infinitely-distant ling in theXY-plane.

In the first case, the two aforementioned curvésbe straight lines, and the point-
wise relationship between them will be mediated dy affine transformation; in
particular, it can happen that a single point appeaplace of a line, which is then to be
combined with any point o the other line. If theotaffine point-sequences on the two
lines are congruent then they will be associatetlwith a skew ruled surface in image
space, but with a planar ray bundle in space.

In the second case, we shall next make the restrithat the skew ruled surface in
guestion belongs to a second-order surface tisgnmnetric with respect to the€y-plane.
The two aforementioned curves will be confocal cosections pt] and M] here; the
point-wise relationship between them will be onetloé (four, for the center conic
sections, two, for parabolas) affinities that vedl exhibited betwee®)] and M] by the

other conic section of the confocal family. Theek of the other ruled family of the skew
ruled surface will be represented by point-p&tis, for which:

the conic section9] that is described bt covers M,
1] 1] [ N] {3 “ N 1] [N]’
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and the affine relation between these conic relatiohggree with the one above.
Since their image lines (in space) will intersecty &awo point-pairstM of the first

andiN of the second family must have equal left and rightdsts:

M = MN,

which says nothing but the well-known theorem of Ivonyconfocal conic sections. The
two conic sections that appear here can degenerate intoaivgoof lines in thXY-plane
that have common symmetry lines (corresponding to the deggnef both ruled
families of the surface into two pairs of ray bundlest lie on a hyperboloid). They can,
moreover, also be concentric circles that are mlédeeach other point-wise by their
diameters; therefore, a point can also appear in glhome of the two circles, namely,
the center of the other circle.

From now on, the restriction above shall be dropped, & general second-order
ruled surface that is not symmetric with respect Xk -plane will be considered that
does not contain the infinitely-distant lin@ of the XY-plane. The figure of the two
families ofeo! point-pairs that correspond to the two ruled familieshefsurface can be
described most simply when one starts with the figuréhefcase that was considered
above (the symmetric position of the surface relativéhe XY-plane). If one thinks of
the o' point-pairsMM (9N, resp.) that correspond to the lines of one and ther oth
family in the case of the previously-considered symmesucface position, then
establishes the left poifilt (91, resp.) and the right poiM (N, resp.), and subjects them

to a well-defined rigid motion (that is the same dtirpoints) by which one arrives &t’
(N, resp.) then the image lines of the point-pairs:

MM’ and DIN’

will represent the two line families of a second-ondded surface of general case that is
considered here. The poiritd’ (N’, resp.) will describe conic sectiond | ([N, resp.)
that are congruent to the conic sectiofg ([971], resp.). For any two point-paifgiM’

and9tN’ of one and the other family, the right and left dists will be, in turn, equal to:
MmN = M'N".

With that, the representation of the two ruled faesilof a skew ruled surface is dealt
with in terms of point-pairs in th€Y-plane.

The general figure in théY-plane that one arrives at has especial interestanss it
contains a solution of the following “singular problem”:

Four points?t, M/, 91, N’ shall move on each of four curves (in the plandlose

determination is the objective of the problem, amteed, in such a way that the points in
their motions that are denoted by the same symiepend on each other according to
laws whose determination is the objective of theblgm, while the motion of the point-
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pair MM’ is completely independent of the motion of the point<gair. It will now be

specified that the four curves and the two dependencies that existheheegour points
must be so arranged that the distances between the pgbtAtsand M’ N’ always

remains equal to each other.

Thegeneral solutionto this problem is found immediately with the help of thap
B. Namely, if one maps the' point-pairs0iM’ and 9IN’, which shall satisfy the
problem, then two families of lines will correspond terththat consist of those' lines
such that every line of one family cuts every line @f tither family. However, two such
families of lines will be either:

Identical with the two ruled families of a skew, set:@mnder ruled surface (whose
ruled families can possibly degenerate into two pairsagfbundles that lie on two
hyperboloids, in which case, line-pairs with common symmi@igs will enter in place
of confocal hyperbolas in the corresponding figure). Thied surface cannot contain
the linex, since otherwise the points of the one system of gazims would not be finite.
The two systems @b* point-pairs that correspond to such a ruled surfadewis give a
solution to the problem that we spoke of.

Or:

The two ruled families will belong to one and the samedte of rays (planar ray
field, resp.). In this case, the poifits and9t will describe any two completely arbitrary

curves in an arbitrary way, while the corresponding gdvhtandN’ will emerge from
M andD by one and the same (arbitrarily-chosen) motion. Ttter case thus yields

only a trivial solution to the problem.
With that, all possibilities for solving the problem apsdhausted.

8 7. Left (right, resp.) paratactic point-pairs in the plare, left and right paratactic
lines in space, resp. Paratactic congruences and ruledrfaces.

left - left
Two point-pairs in the plane shall be called paratactic (*) when their
right — right
left
points agree, or at least, when trri]ght point of one of the point-pairs is undetermined.
The stated relationship shall also be valid for the@ated image lines in space.

M
The? point-pairs in the plane that have one and theesaeil-defined pOintM for

. left . _ . ,
their ht point fill up a “congruence” of point-pairs thatrea all mutually
rig

() Following an analogous terminology of E. Study in hisitiBge zur nichteuklidischen Geometrie,”
in the American Journal of Mathematics, vol. XXIX, 20pp. 131.
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left -

ot paratactic. Such a congruence, and likewise, the assdaongruence of lines in
right -

left m
image space, shall be referred to ﬁaht paratactic If the point M is finite then the

congruence will be called “non-special,” and otherwigaecial,” when that point is an

left -
infinitely-distant point that is different froka andk, . The righ paratactic congruences
[

right I k1
in image space contain tr|1§t pairs of ray bundleé|<1 2) and( =)

(k1) (k1)

om e : .
If the point M is finite then the associated, ht paratactic congruence will have
right -

S(klll) (k1)
(k,15) (k,1,)
project perpendicularly onto th€Y-plane as the minimal line that goes through the point
m

M

, and are linear.

left
the two lines of ther'ght pair of ray bundle for its guiding lines, which
[

m
If the point M lies on the line at infinity of th&Y-plane, without coinciding witlky

left -
or ky, then both of the guiding lines of the associated sp%%iﬁt paratactic congruence

will coincide with the infinitely-distant line) in the XY-plane; the congruence will then
consists of infinitely many bundles of rays whoseieapoint that is incident witk and
carrier planes correspond to each other projectivedyai a way that the poirks andk,

: — |, andl,
will be projectively related to the plancleé a. resp.
1 2

Aside from the special and non-special paratactic congasethat were considered,
there are four more degenerate paratactic congruences:

1. The left-paratactic congruences that are assdcwdth the pointk; as left point,
which decompose into the ray buni&jeand the ray field; .

2. The analogous right-paratactic congruences thassoeiated with the poik as
right point, which decompose into the ray buridland the ray field. .

3. The left-paratactic congruences that are assdcveth the pointk; as left point,
which decompose into the ray buniljeand the ray field, .

4. The right-paratactic congruences that are assdcwité the pointk; as right
point, which decompose into the ray bunkilend the ray field, .
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S left - . .
A ruled family in image space whose generators r?grﬁt paratactic, and is thus

) . left- _ _ left - _
contained in aright paratactic congruence, will be referred to a'?igah . paratactic

ruled family, and likewise the associated systerwopoint-pairs in theXY-plane. The

. . . left _ left - _
point-pairs of such a system will all have the same point. If the paratactic
right right -
congruence in which the ruled family is containedat special then the stated point will
be finite, while the other one will describe a @irguch a ruled family shall be called
left

non-special paratactic.
r -

ight
When the aforementioned congruence is special tinrenmuled family shall also be

. left- _
calledspecial . paratactic.
right -

The skew, second-order, ruled surfaces, one of sevhouled families is
left - _ . right - _ .
right paratactic, always contalnlg(‘;]t paratactic ruled family for the other one. Such
second-order ruled surfaces shall be callfford surfacesfollowing a terminology that
is used in non-Euclidian geometry. Such a surfaight or might not contain the

infinitely-distant lineQ of theXY-plane.
In the former case, the ruled family of the sueféltcat does not contain is special,
the one that containg is non-special, and the Clifford surface shalthbedleft- (right-

, resp.) special when the left- (right-, resp.) paratactic ruleanily of the surface is
special.

In the latter case, both ruled families of theffGid surface are non-special, and the
surface itself shall be callewn-special

The two systems ob' point-pairs, which correspond to the two ruled ifas of a
non-special Clifford surface in th€Y-plane, can be represented by the figure of two
congruent circlesNl] and Pi] whose centers afd andt, respectively. Thus, the left

point of the point-pair of the one system is fixa@d)t, while the other one describes the

circle [M] aroundN. For the other system, the right point is fixedNawhile the other
one describes the circl&t] aroundd.

left -
The non-special family of ?ight special Clifford surface corresponds to a system of

1 . right . . left
oo™ point-pairs whoseI & point is finite, while the other one — viz., thehtone -
e ng

describes a line.
(The special family corresponds to only imagingoynt-pairs.)
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8 8. The groupd s and I';7 of transformations in the domain of point-pairs in the
plane and the corresponding groups of collineations in image spac Families of
collineations and reciprocities.

If the real point-pair$)iM in the XY-plane are transformed in such a way that the
left
righ
the same- rigid transformation then this transformation ofrg-pairs will correspond to
a transformation of lines in image space, underctvimtersecting lines will again go to
other ones, ray bundles, to ray bundles, and plenafields, again to planar ray fields,
and thus, to a collineation in image space. ®iecollineations in image space thus

right
tpoints remain fixed while th(lee?t one is subjected to a well-definecand indeed,

)
obtained will define a grou%3 that is characterized by the fact that the caditimes that
3

S(k1|1) and k,!,)

(k,1,) and k,l, )
right I,) and k.|

invariant, while the lines of each of the tvi’égfjt bundles of rays(|<1 2) ) will

(k1) and k1,)

left
it contains leave each line of the ht pair of ray bundle individually

rg

be permuted projectively amongst themselves wittir bundle.
The two groups®s; and Gs; of collineations in image space, and likewise the

corresponding transformations of point-pairs inplene, shall be referred to as the group
of left-sided quasi-motion®s) and the group afght-sided quasi-motion&ss).

Any transformation o®; will commute with any transformation &; i.e., two such

transformations will always give the same resultingnsformation when they are
composed in an arbitrary sequence. The totalithe#® transformations (collineations
in image space) that are thus obtained by compasif a groupls, which will be
referred to as the group gfiasi-motiong[¢).

The collineations off s in image space leave each individual bundle of Gfythe two
distinguished pairs of ray bundlé&s 11, ko [2 ; ki Iz, ko 11 invariant, as a whole. This
property is not characteristic of the grdug but is peculiar to an enveloping groltjpof
o’ transformations that contaifig as an invariant subgroup.

If the point-paiMiM in the XY-plane is transformed in such a way that the lefhtp
I is subjected to a certain direct similarity tramafation and the right poiMd is also
subjected to a direct similarity transformation,damdeed of equal modulus (i.e.,
dilatation factor) then this transformations witircespond, in image space, to a collinear
transformation of the associated image lines, umdech, each of the four distinguished
bundles of rays above will remain invariant. Thgality of theco’ transformations (viz.,
collineations in image space) thus obtained wifirdea group - that shall be called the
group ofquasi-similarity transformationd 7).

Certain families of® (o, resp.) transformations are most closely linkethwie
groupls (I'7, resp.):
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If the point-pairs in th&XY-plane are transformed in such a way that the lefitpait

are all subjected to one and the same transfer, andgttt pointdv, also to one and the
same (different) transfer, then this transformatmatt correspond to a collineation in
image space that permutes the two left ray burdlésandk; I, amongst each other, and
likewise permutes the two right ray bundled, andk; I; amongst each other. Thé&
transformations thus obtained will define a farmily.

If one composes the transformations e{ K, resp.) with any simple transformation

for which the order of the two points of any point-paill Wwe simply inverted then the
family K¢ (Kg , resp.) will arise, which is represented in image spgea family of

5 planed, andl,

collineations. The collineations of° permute the amongst themselves,
Ksg pointsk, and,
pointsk, and,

while they leave the individually invariant. If one composes two

planed, andl,

transformations that belong to that family then agtfarmation ofl s will arise; if one
composes two transformations that belong to diffeoeets of the three familiek;, K;,

Kg then one will obtain a transformation of the tHiachily.
Certain familiesK’, K., K2 of ' collineations have the same relationshig o

that the aforementioned three families havd §o The former three families can be
obtained from the latter by composing with the transfttions of 7 .

left
If the right point of the two points of any point-pair is subjectedtoertain motion

right _ . -
and theI ?t one, to a certain transfer, then this transformatiwill correspond to a
e

reciprocal transformation in image space, under whichragsbundle will go to a plane

I
ray field, and conversely; it would permute the ray bukgleith the ray fieldll , and
2

I
the ray bundle&, with the ray field IZ' The«® transformations (viz., reciprocities in
1

image space) thus obtained will define a farhily(M;, resp.).

If one composes them with the transformation$ ofhen analogous families of’
transformation$1- ,M’ will arise.

Finally, one can derive the familieB, Mg (M3, M5, resp.), which likewise
represent families of® («’, resp.) reciprocities in image space, by composirey
families Mg , M (M7 ,MN7, resp.) with the simple transformation that calsse a mere
permutation of the left and right points for anymepair.
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8 9. Principal meaning of the foregoing developments for tharkematics
of a rigid plane that moves within itself.

There is a certain advantage to placing the left pointise point-pair considered in a
plane&,, and the right points in a plaig that both represent th€y-plane. If one thinks
of these planes as being made to move rigidly intfiplane then these moving planes
shall be denoted by (E, resp.), and the points that correspond to these movingopssi
of € (E, resp.) by?t (M , resp.), which will lie at the poiddt of the plane®, (the point
M of the planegy, resp.) in the starting position.

A certain relative position of the moving plagiecompared to the moving plaiie
will correspond to a certain congruence relation betwtsgoint-fields, under which, the
points Mt andM in the two planes that agree with each other wilklegpond. These
point-fields will remain congruent when they are broughthie starting position§, and
Eo, and theo? point-pairs that are defined by the corresponding pdiitandM in the
XY-plane will define a ray bundle in image space under thp Brwhose carrier point
will be regarded as the image point of the relative mositi ¢ with respect td (4).

Under this map of the relative positions®fvith respect td to the points of space,
one must observe that a different choice of starfingition &, and E; would yield
different image points that are, however, equivalerthéoprevious ones relative to the
grouple .

If one has two systems of equally-many — say. positions of the plané& with
respect tcE then the case can arise in which the figure of all ottes in the plang
of an (asymmetric) triangle that is fixed & that corresponds to the first system of
positions is congruent to the analogous figure of the sogfie different triangle that is
fixed in & under the corresponding positions of the second systgrostions. In this
case, the two position systems shall be referred tecasl.”

If two triangles that are fixed i€ can be chosen such that the copies of the first
triangle under the first position system will definedmectly-similar figure with the
copies of the second triangle under the second posiystem then the two positions
systems will be calledirectly similar.

If one arrives at a situation in which the two systerhgopies define oppositely
congruent (indirectly simply, resp.) figures then the position systems shall be called
indirectly equal(indirectly similar, resp.).

If one can choose a triangle in the pl&such that corresponding copy in the plane
¢ for the first position systen?)( defines a figure that is congruent in the same or
opposite sense (directly or indirectly similar, redp.}Xhe figure that is defined by the

() In § 10, it will be shown how one can analogously regaedplanes in image space as images of
relative positions of the plan@s that are generated froghby transfers (which arise by rotatigigthrough

180 around its line).
() The supposed relationship between the two positiotersgsremains preserved when the first and
second position are exchanged with each other.
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copies inE of a triangle that is fixed i for the second position systef) then the two
positions systems will be calledirectly or indirectly inverse(directly or indirectly
inverse-similar, resp.).

One then has the fundamental theorem:

Two position systems @& with respect to E are equal (indirectly equal, inverse,

indirectly-inverse, resp.) if and only if the corresponding systefmisnage points in
space are equivalent relative to the grdup(the familyK;, K, K¢ , resp.).

Two position systems @f with respect to E are directly-similar (indirectly-similar,

inversely-similar, indirectly inversely-similar, respff the corresponding systems of
image points in space are equivalent relative to the gfoufihe family K;, K7, K7,

resp.).

The statement remains true when one is dealing, ndt avitliscrete number of
positions of¢ relative toE, but with a continuous sequencesdfpositions, and thus, to a

continuous motion o€ relative to the planE. One of them will be represented in image

space by a continuous sequencecbfoints, and thus, by a (spatial) curve, namely, the
image curve of the continuous motion.
The question of when two continuous motions¢ofvith respect toE are equal

(similar, etc., resp.) is equivalent to the questiowladt their associated image curves are
relative to the groups (I, etc., resp.).
All properties of a continuous motion @ with respect toE find an adequate

expression in the properties of the spatial image cuftbeomotion that are invariant
under the groups.

The kinematics of a rigid plane that moves in ft&elin this sense, equivalent to the
kinematics of a point that moves in three-dimensiepake.

This shall be the case from now on.

8 10. The metric in image space that is based upon the grolp. (An apparently
still-not-sufficiently noticed limiting case of non-Euclidan geometry.)

The two distinguished pairs of ray bundles — viz.,|éfieray-bundle-pair ks 11), (k2
I2) and the right onek{ 11), (k2 I2) — can be regarded as a degenerate case of the two ruled
families of a skew, second-order, ruled surface. Theiartdiat is based upon the group
s, under which the stated four ray bundles individually nanmavariant, will thus be
capable of being regarded as a limiting case of a non-Euclgpatial metric, upon
which such a skew, second-order, ruled surface will be @sadCayley metric surface.

In order to arrive at the new metric in image spédces simplest to start with the
representation of the structure of image space by sysiepwint-pairs in theXY-plane
under the map.
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In fact, it allows one to know the quantities of fflane figure thus obtained that are
invariant under the grouips with no further assumptions, and with that the invasiari
the spatial figure relative to the grolipare also found.

Two lines that are skew to the infinitely-distant lfdein the XY-plane determine two

invariants relative to the groups, namely, the “left” and “right” “distance between the
lines, corresponding to the left and right distancés/éen the two lines that correspond
to point-pairs in th&XY-plane under the map (cf., 8 3).

For intersecting lines and only for such lines the left and right distances will be
equal to each other, such that one can speak of a “dsthatwveen intersecting lines,
per se.

Two points that do not lie in the distinguished plaag 94, 12, when regarded in
some specific sequence, define an invariant uridethat is determined modulaz
including the sign, namely, the “angle” between the §soin

Thisangle between two spatial poirnitssdefined as one-half the angle of the rotation
that must be performed on the position¢that belongs to the first point in order to

obtain the position o€ that belongs to the second point. (Therefore, theippsense

of the rotation must be taken to be the one that appears counter-clockwise to an
observer that is found on the posit&<axis.)

Now, in order to also obtain the invariants of two patiet go through eithdg or
ko, one considers the? point-pairs9tM that belong to one of the two planes (as the

carrier of a planar ray field), in the sense of tha@pB, which exhibit an oppositely-
congruent relationship between the plaéigandE, (as the carrier plane of the poifis

andM). There then exists a certain position of the plénthat is generated by a flip of
the plane¢ (i.e., by rotating around one of its lines through®)8@th respect td&E for
which corresponding points of the two oppositely-congruefdted point-fields in&,
andEp coincide. Therefore, any plane in image space thas dot go througky or k;
belongs to a certain relative position of the (fligpeplane & relative to E, and
conversely, each such position belongs to a plane igarepace as image plane.

Theanglebetween two planes (which is understood in the sen$e afew metric) in
image space that do not go througtor k; (when taken in a specified order), which is
invariant underlg, is defined to be one-half the angle of the rotationt thast be
performed on the position of that belongs to the first plane in order to obtéia t
second position o€ that belongs to the second plane. (The positiveesehi shall be
taken to be the one that appears to be counter-clockaige observer that is found on
the negativeZ-axis.)

The angle between two planes is thus likewise detedmmedulo 7z including the
sign.
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Two positions 1 and 2 of the plade(relative toE) that are not derived from each
other by a translation will determine two image pointspace whose connecting line is
skew to the infinitely-distant lin€ in the XY-plane, and will be represented by a point-
pair — say2lA — in the sense of the m& The pointl, when regarded as a point &y,

and the poinfA, when regarded as a pointEy, will then come into coincidence for the
two positions 1 and 2 £ relative toE above (because they are corresponding points of

the congruently-related point-fields in tié-plane that belong to the first position, and
because they are likewise corresponding points irctiragruence relation that belongs to
the second position).

The two points2l and A are thus nothing but thpolesin & and E, resp.,that

correspond to the positions 1 and 2, resp., and indeedtipdb@éion that corresponds to
the starting positiong, andEy , resp., of these planes.

When the planeg and E are brought to the starting positioéis and Eo, resp., the
poles in¢ and E, resp., that correspond to the two positibasd 2, resp.,of & relative
to E will define a point-paiRlA in the XY-plane whose image line under the map B will
be identical with the connecting line of the image pointsarfd 2.

Analogously, one will have:

When the planeg and E are brought to the starting positioéis and Eo, resp., the

poles in¢ and E, resp., that belong to the positidnand 2, resp.,of the (transferred)
plane & will define a point-paifAA in the XY-plane whose image line under the map B is

identical with the intersecting lines of the image plane$ ahd 2.

Three positions 1, 2, 3 of the pladierelative toE, no two of which can be derived
from each other by a mere translation, will deieenthree polegli in & when one
combines any two of themandk, and three corresponding polsgin Eo . The triangle
in & that is constructed from tf¥g, will be the oppositely-congruent to the triangidsp
that corresponds &y . For the position of & with respect tde, the sideli, 2 of the
first triangle will coincide with the side&y, Ay of the second one. The image line of the
point-pairik Ak in the sense of the mawill be identical with the connecting line of
the image points of the positionandk. Any position4 of the (transferred) plané for
which the three point3i coincide with the corresponding poiitg will be represented
in image space by the connecting plane of the tinage points of the positions 1, 2, 3.

The position4 of & can be taken to each of the positions 1, 2, & dfy mere
reflections (i.e., by mere rotations through A& 0ound the respective coincident sides of
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the two polar triangles. In that sense, the positbrof € is symmetric with respect to
the three positions 1, 2, 3 éf

The problem of connecting three points in the iemapace with a plane (which
should be incident with either the pokator the pointk,) is equivalent to the problem of
finding the position4 of the transferred plame that is symmetric to each of the three
positions 1, 2, 3 of relative toE.

Two positions, one of which is a position of tHane & with respect td and one of

which is a position of the transferred plagiewith respect to#, are symmetric if and

only the associated image points are incident thighassociated image plane.

The “distances” and “angle,” in the sense of tee metric, that appear for a triangle
(= trigon) in space whose plane goes through ekther k, can, when one regards the
three vertices as the images of positions 1, 2f B plane& with respect tcE, be

chosen to be the distances and angles — in the sérike ordinary Euclidian metric —
that appear for the associated (oppositely-congyysertar triangle.

Analogously, the “distances” and “angles” that egopfor a trihedron in image space
whose planes either go through eitkeor k, can be chosen from the associated plane
figure when one regards the face-planes of theedrin as image planes of three
positions of the transferred plae with respect t& and determines the associated (i.e.,
congruent in the same sense) polar triangle.

When one combines any two of them, four positibng, 3, 4 of the plané with

respect toE, no two of which go to each other under a tramsiatwill determine six
pairs of corresponding pol&k in &, and Ak in Eo, in all. Under the map, the six

point-pairs2ix A will correspond to the edgésof the tetrahedron that is defined by the

image points of the four positions.

The four positions of the (transferred) pladethat are symmetric to three of the four
positions above — saiy,k, andl — have the face-plangsk, | of the stated tetrahedron for
their image planes. If one always connects onbsehpoints in each of the two polar
figures with lines that correspond to edges of tieahedron that meet then eight
triangles will arise in each of the two polar figay in all, of which, four of them — viz.,
the triangles of the “first kind” — will correspond the three-edged figures that appear on
the tetrahedron, while the other four — viz., thangles of the “second kind” — will
correspond to the three-sided figures that appe#netetrahedron.

The corresponding triangles “of the first kind't footh polar figures i€, andEg are
congruent in the same sense, because the poist-plaat are defined by their
corresponding points have image lines that alhgough one vertex of the tetrahedron.

The corresponding triangles “of the second kirat’tivo polar figures®, andE, are
oppositely-congruent, because the point-pairs #nat defined by their corresponding
vertices will be represented in image space byetiges of the tetrahedron that lie in one
face-plane.
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Each of the six polefik (A, resp.) is a vertex for three triangles of thet fikied,
corresponding to the two three-edged figures of the tadrain that contain the edge
and the two triangles of the second kind that correspotitetono three-sided figures of
the tetrahedron that contain the edge

The two angles that belong to the triangles offifs kind for such a pol&lik (A
resp.) will correspond to the “angle,” which is measuwrsithg the new metric, between
the vertices andk of the tetrahedron, and are thus equal.

The two triangles of the second kind that meet atpible ik (A resp.) as their
common vertex will have an angle there that corredpoto the “angle,” which is
measured in the sense of the new metric, betweendhegthat meet along the edige
of the tetrahedron. These angles will thus be likevequal to each other.

In that way, the spatial representation of the teresponding polar figures by the
tetrahedron makes it possible, to get a brief overvieall dhe essential properties of the
polar figures that are considered.

On these figures, cf., L. Burmesteghrbuch der Kinematjkpp. 610, Fig. 630.

8 11. Evaluation of the mapping principle for the examination of
real, continuous motions of a rigid plane& with respect toE.

If one allows the plan& to assume, not a discrete number, but an (in general)
continuous sequence of' positions with respect t& then ¢ will be perform a
continuous motion with respect Ey and the locus of the image points of ¢hepositions
of & (with respect td) will be a well-defined (spatial) curve, namely, theage curve of

the continuous motion.

This curve can possess separate real parts. Ifalgebraic then the continuous
motion can also be referred to as algebraic.

If one determines the two associated poles to any twutely-close positions of the

continuous motion in the plan&s andE denotes those positions that correspond to the
starting positionsg, and Eq by 2, A then the corresponding poirits A in each of the
planes&, and Ep will trace out a curve, namely, the tvpmle curves]d andP of the

continuous motion.
The image lines of the point-p&¥A that is composed of the corresponding pots

andA of the two pole curves under the mBywill define the image curve in the system
of ' tangents. Conversely, if one representssthéangents to the image curve (under
B) by point-pairAA in theXY-plane then:

Theoo! left points2l will trace out the polar curvis.
The ! right pointsA will trace out the polar cune.

In this, one must observe that the polar curve positibat correspond to the starting
positions&, and E are denoted b§3 andP; they will not contact each other at these
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places (in general), but merely at the places thataaseimed in the course of the
continuous motion.

The continuous motion can be generated in the well-kneay by letting the polar
curvesp that is fixed in€ roll without slipping on the polar cunithat is fixed inE.

The figure of the two polar curves that are relatedetch other by their
corresponding points is certainly not as clear as thegoonding figure in image space,
which will be defined by the developable ruled family dftahgents to the image curve
of the motion. An essential advantage of the mappingipie lies in this fact.

The differential-geometric concepts that appear ferrtew metric in image space,
when applied to the image curve of a continuous motio#é with respect t&, have a

simple connection with the curvature behavior of the tpalar curves at their
corresponding points:

An infinitely-small advance of the image point aldhg image curve will correspond
to a rolling of the two polar curves through an infinitetgesl angle.

The “angle,” when measured in the sense of the newicnbétween two infinitely-
close points of the image curve is equal to one-halfsthma of the contingency angles
that belong to the arc elements of the polar curvesrtton each other, when as
would happen ordinarily- the positive sense of this contingency angle is medsure
oppositely in the two plane® andE.

The “angle,” which is understood in the sense of the metvic, between the planes
of oscillation of the image curve at the two neighbgrpoints is equal to one-half the
difference between the contingency angles of thepalar curves.

The “distance,” which is measured in the sense of the metric, between the
tangents to the image curve at the two neighboring p@requal to the length of the arc
elements of the polar curves that roll on each other.

One will thus be led to define tliest curvatureof the image curve of the motion, in
the sense of the new metric, to be one-half the slthe curvatures of the two image
curves at their corresponding points and $eeond curvaturef the image curve to be
one-half the difference between the curvatures of tthe polar curves at the
corresponding points.

The behavior of the two “curvatures” (in the senséhefnew metric) differs by the
sign that stands before them, which depends upon wh#ibeimage curve can be
regarded asight-handor left-hand screwin the sense of the new metric, at the place in

guestion: Thus, two real lines in image space that dontetsect will be defined as

right-wound (left-wound resp.), according to whether their right distarscgreater than
their left distance, or conversely, and a space cuivdevdefined to beight-woundor
left-wound according to whether two infinitely-close tangente &aght or left-wound,
resp., at the place in question.

The “second curvature” of the image curve is zero atpamyt when the two polar
curves have curvature circles that lie symmetrically watspect to the common tangents

at the associated position &fwith respect tde.

If the second curvature is zero along the entirengéxdé the image curve then the
latter will be a plane curve, and the correspondingicootis motion can be generated by
the symmetric rolling of two symmetric polar curves farticular, two symmetric
circles, if the “first curvature” is constant throughout).
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The “first curvature” can be zero only at isolatedcpiaalong the image curv®;(
such planes will correspond to positiongfofvith respect tde for which the polar curves
osculateeach other.

If the “first” and “second” curvatures of the imagerve of the motion are constant
then the polar curves will be circles, for which a lirsm @ppear in place of one of the
two circles. Since the two “curvatures” will remaimstant for them, the image curves
of such “cycloidal” — or “trochoidal” — motions will beegarded abelices in the sense
of the new metric; when the constant “second curedtis zero, the image curve will
then be plane curves, which will be regardectiades in the sense of the new metric,
respectively.

[Any motion for which the two symmetric (ordinary)rades roll symmetrically
without slipping on each will belong to such “circles.”]

8§ 12. Derivation of the properties of (real) algebraic, plangrcontinuous motions
from the properties of their image curves that are invariarht under the group I's .

The character of the polar curvsandP (as well as also the relationship between

them that is exhibited by their corresponding points) musemwlg upon the properties of
the spatial image curve of the continuous motion tratrevariant under the group .
For algebraic motions, one has the theorem:

The order of the polar curve P at E is equal to the rank of the irage (i.e., the
order of its developable tangent surface) minus the number of tangentsttithage
curve of the motion that are contained in the “left” pair of ray-bundles,), (k 12).

The order of the polar cury at ¢ is equal to the rank of the image curve minus the

number of tangents to the image curve of the motion that are contained “ingtité
pair of ray-bundlegk; I1), (k2 12).

Thus, if any point of a polar curve is always assodiatith several — say — points
on the other polar curve as corresponding points therfotimer polar curve must be
fold counted.

P E
The multiplicity of the absolute circle poinks, ko on the polar curvem at @ IS
equal to one-half the number of tangents to the images dbiat are incident witky, ko,
left
I, I, minus one-half the number of tangents to it that coathin the ht pair of ray
rig

(ki1), (k,1 )
(k1) (k1)

bundles

() If the “first curvature” is zero along the entireext of the image curve then the latter will be a line,
and the continuous motion will be a continuous rotatromired a point that remains fixed.
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Any continuous motion of the rigid plare over E will raise the question of which

paths are distinguished by the points and lines in thelane.
Theorder of these point-paths)( and likewise thelassof these line-paths)( have
a simple relationship with the image curve of the contisu@ssumed algebraic) motion:
If one makes the image curve intersect dtideft-special Clifford surfaces then the
number of resulting moving intersection points (i.eeothat depend upon the respective
Clifford surfaces that are singled out) will provide:
1. The order of the point-paths in the pldhéhat are distinguished by fixed points
in &, and likewise:

2. The class of the line-paths in the planhthat are distinguished by planes that are

fixed inE.
Analogously, they will yield:
3. The order of the point-paths in the plahéhat are distinguished by fixed points

in E, and likewise:
4. The class of the line-paths in the pl&nt#hat are distinguished by planes that are
fixed in &

when one makes the image curve of the continuous metiorthe co*

Clifford surfaces and determines the number of moving itéion points.

The equations of all these point-paths and line-pathsbeapresented all at once
when the equation of the image curve of the continuousoman line coordinates is
given. If:

right-special

F[o, 01, 02, Ga, G4, O] = 0

is the equation of the image curve of the motion in @eoordinates, which were
introduced in 8§ 3, and are represented as homogeneous,flinedions of the ordinary
Pluckerian coordinatgsk, then one can obtain the equation of all point-paths fitwis

equation by certain substitutions. As we did before 3 I8t ¢, ) be the coordinates of

a point9t of the plane&, relative to a coordinate system on the pldrtbat agrees with
the coordinate syste@XY for the starting positio,, and analogously, lek(y) be the
coordinates of a poinM in the planeE relative to a coordinate system in the pl&he
that coincides with the coordinate syst&XY for the starting positioko; for fixedp, b,
the equation:

F[Lrbx,y2 62 +p° =X~ y)] =0

will then represent the point-path that is desctibeE by the pointi(x, h) in the plane
¢, while for fixed &, y) the pointM(x, y) in the planeE will describe a distinguished
point-pair in¢&.

Similarly, the equation of all line-paths:

() In general. The numbers that were given above caeceed for special positions of the points
(lines, resp.) that describe them.



Grunwald — A mapping principle that links plane geomatrg kinematics with spatial geometry. 32

can be written down immediately. Leix + uy + Up = O be the equation of a line that
lies InE (relative to the coordinate systemHrihat was just defined), and let:

u = Ju?+0u

be the square root whose adjunction brings about thatatien of the line in question.
The homogeneous quantities:

*

Up, Uz, Uz, U,

between which the homogeneous, quadratic relation exists:
u?+uw-u? =0,

are then to be regarded as the homogeneous coordinabesosiented linen in E that is
in question.
In an analogous sense, the homogeneous coordinatesarsieated linem in the

plane¢ (relative to the coordinate system that introduced dh&dbove) might be denoted
by:

*

Up, U1, Uz, U .
For fixedu, the equation:

U, u, U U, (U u
Flo—L 22 1 22/ %o _Ho || =
{ u’ 'y u? (UD umﬂ

will then represent the line-path i that is enveloped by the linas in the planeg,
while for fixedu, it will represent the line-path & that is distinguished by the linasin

the planeE.
In this, we must remark that the line-path will not alsvdne represented purely by
this equation, while the latter might possibly representain bundles of parallel rays.

In order to be able to evaluate the properties of td&idual point-paths with the
help of the spatial map, it is necessary to reprekentdrious points of the planésand

E by corresponding figures in image space.

m ¢ Mm
A point I\_/I in the planeE that has the positio?\/I in the XY-plane for the starting

¢ _ . le .
of e will determine a certain non-special ht paratactic congruence of
right -

position _°

left
point-pairs in theXY-plane that have them for theriirght points; the image lines in space

that correspond to the point-pairs of this congogemwill fill up a non-special
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left - left
) paratactic congruence whose guiding lines belong to the pair of ray bundles
right - right

1,), (kI . . . m .
(laly). (k, 2). This congruence is to be regarded as the image qictine = that is
(K15).(k,1) M
fixed in

¢ m
The properties of the point-path that is described irptare E by the pOintM in

¢
the planeE depend upon the properties of any spatial figure that is delfipeéhe image

congruence of the respective describing points and tagdrourve of the motion that are

invariant under the groups .
If one would like to assess, for example, whetherdtger (that was determined
above) of the point-path that is associated with cegasitions of the describing point

m
M is reduced (by omitting certain components of the poirttjgaen one will need only

left -
to see whether the number of moving intersection poiftise co? right special Clifford

surfaces such that the image congruence contains ﬂryettleqooth in question with
the image curve of the motion is less than the numberoving intersection points of an
. . left - . . . .
arbitrary variable right special Clifford surface with the stated image curve.
| -

The number that gives the reduction of this interseg@ant number will likewise be
the number by which the order of the special point-patjuastion is reduced from that
of the general case.

In order to be able to assess the properties of thedaal line-paths with the help of
the spatial map, it is convenient to represent the umtedebundle of parallel rays in the
planes¢ andE by corresponding figures in image space.

¢ m
Such a bundle of parallel rays E defines a certain infinitely-distant poinl\i;I“

—

00

m
whose direction is perpendicular to the directiothef bundle. IfM Is the position of

00

m ¢ M
I\_/I * in theXY-plane that corresponds to the starting posi%?:mf c then the pOintM

— 00

00

i _ left - _ . : o .
will define a right paratactic special congruence of point-pairs inkglane that has it
| -
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left
for their right point; the image line in space that corresponds to thd-pairs of this

left - _ . .
congruence trace out ?ight paratactic special congruence that is to be regardectas th

¢
image congruence of the bundle of parallel rays thatasen inE
The properties of line-paths that belong to the lineth@fundle of parallel rays that

¢
is chosen inE (describing lines) depend upon the properties of any spafiaefthat is

. € .
constructed from the image congruence of the paralldyuagle |nE in question and the

image curve of the motion.
If one would like to assess whether the class (asetefibove) of the line-path that is

associated with certain positions of the describing ImeE is reduced (omitting certain
components of the line-path) then one will need onlyheck whether the number of
o : . left - . . . .
moving intersection points of the” ht special Clifford surfaces that are contained in
right -

the image congruence of the parallel ray bundleithdetermined by the line in question
with the image curve of the motion is less thanrthmber of moving intersection points

left -
of an arbitrary, Variabl?ight special Clifford surface with the stated image eurv

The number that gives the reduction of this irgetisn point number will likewise be
the number by which the class of the special liahtronsidered is reduced from the
general case.

If one determines the ruled family in image sp#w the image congruence of a

m ¢
point I\_/I in the planeE has in common with the complex of secants to itiege curve,
and if the generators of this ruled family are espnted byo® point-pairs in theXY-

igh

_ right : o
plane, in the sense of the mBpthen thewo! left points of these point-pairs will trace
e

m . ¢
out the point-path that is described by the poi%s in £’ and indeed they will give the

0

place in this point-path that corresponds to thetisg position

E ¢
Similarly, the line-path inQE that is described by a Iin%r; in the planeE can be

obtained by means of that ruled family that the g'ena:on_gruence of the bundle of



Grunwald — A mapping principle that links plane geomatrg kinematics with spatial geometry. 35

. : m . :
parallel rays that is determined by has in common with the complex of secants of the
m

image curve. The generators of_this ruled family willépresented in th&Y-plane by
o' imaginary point-pairs.
Each of these are associated with the figure of tarmyently-related bundles of

_ left : : . mom .
parallel rays, one of which — namely, th'eht one — will contains the Ilnem(m is the
rg

position of — that corresponds to the starting p05|t||<E)Zn); the position in the respective
m

other (of thex?) bundles of parallel rays under the congruencaticel will belong to the
desired line-path. The orientations of the tangeatthe line-path thus-obtained (when
the describing tangents are oriented) will be aoiat@i by means of the congruence
relation of the bundle of parallel rays above.

8 13. Relationship between the point-paths and line-paths afcontinuous,
algebraic, planar motion to the circle points and the infiniely-distant line.
Examples.

The multiplicity of the absolute circle pointg and k; on the point-path that is

E m. ¢
described inqz by a point|\7I in £’ and the position of the tangents to the circlmgso

and thus the position of tﬁe associated exceptimaal points, can be deduced from the
associated spatial figure. One draws a bundldarfes through one of the two guiding

m
lines of the image congruence of the describin@mtl\b‘l/i and determines the number of

moving intersection points of a variable planeto$ toundle with the image curve of the
motion. The number that says by how much this rermgsmaller than the order (as was
determined in the previous § 11) of the point-patiguestion will give the desired
multiplicity of the circle pointd;, ko, on the point-path. Now, as far as the exceptional
focal points of the individual point-planes are cemed, this will show that two different
types of them must be distinguished, namely:

1. General e. 0. (viz., extraordinary) focal points. Thesee anes that are
independent of the position of the describing pwmints plane, and

2. Isolated e. o. focal points, which do depend upon that tosi and will be
different for different describing points in thdape.

If the image curve of the motion meets the plara a pointg that does not lie on the
infinitely-distant lineQ in the XY-plane then it will correspond to (each) ayenerale.

0. focal point, and indeed this will yield the pgasn of this focal point that corresponds
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E,

k
to the starting positione when one projects the Iin%ki onto theXY-plane from the
0

infinitely-distant point of th&Z-axis, and determines the real point of the projection.
M
The general e. o. focal points thus obtained of thet{paith that is described b&

are likewise also general e. o. focal points of the-path that is described by the_ lines

m

bundle of that plane®), for which, this focal point will not be an extraardiy focal
point, but an ordinary one. (In the latter case, lit@$ connect it to the absolute circle
pointski, ko will then bestationarytangents to the line-path in question.)

If the image curve of the motion has a branch thas ga®ughk; whose tangent lies
in eitherly or I, then this branch will correspond to an isolated e. calfpoint for each

of that same plane, for which, isolated lines will gaftg occur in each parallel ray

¢ E
point-path that is described by a po?l\ri% in the planeE in the other planee :

A direct similarity transformatiorexists between the respective describing poll\T/Ilts
. ¢ . . . . .
in the planeE and the associated isolated e. o. focal points of itd-path in the other

lane E
P ¢

The points in the two plane® andE that are associated with each other under this

transformation will define point-pairs in the starting iposas of these planes in thé€y-
plane whose image lines will cut the tangents to theg@maurve of the motion at the
pointk; and its conjugate-imaginary, at the pdnt

A remarkable reciprocity exists here, in that undercth@inuous motion in the plane
¢, the e. o. focal poinM of the point-path that is described by the pdint of the plane

¢ will describe a point-path i& with the e. o. focal poinf)t .

One must also distinguish two types of asymptotic dwastior the point-paths:

1. Generalones, which are independent of the position of the desgriimint in its
plane, and

2. lsolatedones, which vary with the position of the describing pwirits plane.

() In general, these lines will be imaginary. Ibisly for special directions of the describing linettha
they can be real.
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If the image curve of the motion has a branch thattbeténes], and which contacts

ight 1,), (K, |
no line of the, > pair of ray bundles(k1 2 (K,l)
left (k1) (o1 )

m
this branch of the point-path that is describedthwry pointsl\—/I will correspond to a

at its intersection point witf, then

generalasymptotic direction that is linked to the tangefithe branch of the image curve
at its intersection point witl quite simply.
Isolated (imaginary) asymptotic directions can appear fug points of the point-

E m ¢
paths ine that are distinguished by the poinlit/ls of the pIaneE, when the image curve

_ right .
of the motion possesses a branch throkgtihat contacts a line of thlt(ejjt pair of ray

bundles there that differs frofd, while the plane of oscillation i does not go through

Q.

If it is assumed that the branch considered ofithege curve ak; exhibits no
singularity (i.e., it possesses no stationary postationary tangent, or plane of
oscillation) then, relative to the asymptotic difees that are associated with the

m
individual pointsl\—/| of the point-paths, which correspond to the apgnaa a variable

point of the image curve to the polat the motion that we spoke of can be replaced by a
continuous motion of the simplest kind, which igtsuhat the same relationship exists
for the latter between the describing points amda$sociated asymptotic directions. The
cubic space curve, which osculates the image auirtlee continuous motion considered
atk; andk; , is the image curve of this simple motion:

The latter motion consists of an:

ordinary ellipsograph motion that is ierge to an ordinary ellipsograph motiot
or more briefly : an inverse ellipsograph motion

R ¢ K .
of € compared td for which a certain circleK in the planeE rolls on a circleﬁ in the
E . . . .
other planee that is twice as large at the point of contacthe Point-paths that are

M ¢
distinguished by the pointl\s;I in the planeE in the other plane by this motion are, as is

known, ellipses whose ir;aginary asymptotic direwtidhat correspond to different
positions of the describing points will be diffeten
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If the image curve of the motion has a branch thrdagif the kind considered then

¢ m E
the line-paths inE that are distinguished by the lines in the planeé will possess
m

isolated, extraordinary, focal pointand indeed, the dependency between the describing
lines and the respective associated extraordinary fmsats will be precisely the same

_ ordinary . _ . ,
as it was for theinverseyelllpsograph motion o€ relative toE that was applied already

(for which, however, the describing lines in thepective other of the two planes are
chosen to be the describing points in the caseegland thus not the ones in the plane
whose points trace out ellipses in the other plane)

ordinar
In fact, for the. y
inverse

ellipsograph motion o€ relative toE, isolated e. o. focal

¢ m
points will appear on the line-paths E that are distinguished by the lines in the
m

E
plane ¢’ namely, the centers of the line-paths, whichcreular here. They will trace

R
out the smaller of the two aforementioned polacles, namely, the circI% in the plane
¢
£
The same e. o. focal point belongs to paralleitjprs of the describing lines.
If the direction of the describing line changes s plane) then the center of the

circular enveloping path on the circllie, which is regarded as an e. o. focal point, will

change. Thus, the magnitude of the aforementi@hadge in direction will be equal to
R

the peripheral angle that arises from the arcé@ftircle K as described from the e. o.

focal point.

Precisely the same relationship between the dwecdf the describing lines and the
respective associated e. 0. focal points of iteelmng curve will exist for the general
motion that was considered earlier.

The line-paths are, in general, oriented curvegssghangents are oriented in a well-
defined way. What sense that the tangents toriteephth are oriented with will depend
upon the orientation of the describing lines. (€fl1, last paragraph.)

It is only for certain describing lines that theelpath can be an unoriented curve,
namely, when it is doubly-enveloped by the desogblines in the course of the
continuous motion, and indeed, with the oppositentations.
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The number of moving intersection points of the image ewfvthe motion with a
variable plane through the infinitely-distant linein the XY-plane gives the number of

oriented tangents to an arbitrary line-path that arellparain the same sense — to an
arbitrarily-oriented line.

Naturally, the number of oppositely-parallel tangeatshe line-path is just as large,
such that twice the number of moving intersection paahisve will give the number of
finite tangents to the line-path that will be drawn tdram any infinitely-distant point
that is different fronk; andk:

The value of the difference by which the stated doubledbeu is less than the class
of the line-path (as determined in § 12) will give theltiplicity of the infinitely-distant
line as a tangent to the line-path.

The foregoing serves to show how important the methatdwas employed here is
for a systematic treatment of plane kinematicsSome examples might now be
considered.

Examples.

Especially suitable for this purpose are the specialimoomis motions that were
considered by S. Roberty,(among others, which are defined when one demands that
two points in the one plane must describe two weliréef curves in the other plane, etc.

Here, only the case for which the curves in questiorciacées shall be considered.
Such a motion can always be obtained by connectingui@lanes® andE by two rigid

rods whose endpoints are each fixed in one of the tweegla
Two-bar motion = linked quadrangle motion.

In order to obtain the image curve of this motion, oeet imagines removing one
rod. The image points of the? positions of the plan& relative toE that are then
possible will trace out a non-special, skew, Clifford acefthat can be regarded as the
image of the stress that will be produced by the rod-atiome of the plane¢ in
guestion: viz., thatress surface

Analogously, another non-special Clifford surface wa#long to the other rod

connection as the secosttess surface.
The intersection curve of these two stress surfasethe image curve of the

continuous motion that is compatible with the two-codnection of the plane%sandE.
Naturally, the image curve of the motion is independ@ntof the way that the

starting posmonsEz are chosen. If one chooses this starting positioparticular, such

() S. Roberts, “On the motion of a plane under certainditions,” Proceedings of the London
Mathematical Society, 8 June 1871, vol. lll, pp. 286.

(® From the remark that was made at the beginning of § 9j¢piendency consists in the fact that for
any change in the starting position, an image curveapitear that is equivalent to the original one under
the groups .
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that it also belongs to one of the positions thatadicaved by the two-rod linkage then
both stress surfaces will contain the infinitely-digt point Z, of the Z-axis, in the
ordinary sense.

They are determined completely as follows:

If one defines a point-paiM from the starting point and endpoint of one of the two
rods in the starting position then the spatial image dihthis point-pair will meet four
lines:

L11, Loo, L2, L21

of the four distinguished ray bundles. A skew, secamgosurface (i.e., a Clifford
surface) will be determined by the spatial quadrilateia ihdefined by these lines and
the infinitely-distant pointZ. on the Z-axis, and it will be one *“stress surface.”
Analogously, the second “stress surface” will be providethbysecond rod. The image
curve of the two-rod motion will be the intersectiomeliof the two stress surfaces, and
thus afourth-order curve of the first kinthat contains the poird.. , and thus projects
(perpendicularly) from it onto a third-order curve X¥éplane, which is “circular,” since

it — just like the image curve of the motion itself — meentain the pointky, ko .

The points of this circular third-order curve are nothing the rotational centers
around which the plané& must be rotated from its starting positi&gin order to obtain
the o' positions that the plan® will assume in the course of its continuous motion when
E remains in the starting positid .

Therefore, the distance [measured in the sense ofrtfieaoy metric t)] from the
point of the image curve of the motion that lies perprrdr over the center of rotation
in question to th&XY-plane will yield the cotangent of one-half the angleavétion.

However, not any fourth-order curve of the first kinéttltontains the infinitely-
distant pointZ., on theZ-axis €) and the circle points in théY-plane can be regarded as
the image curve of a two-rod motion in the given wayorder for that to be true, it will
be, moreover, necessary (and also sufficient) tea2t2 points:

o1, W @2, Y

that the image curve possesses in the dlaaedl,, except fokk; andk; — i.e., outside of
£ — must have a special position relative to the tassgeithe image curve at the points

ki andk; , namely:

Any plane that links one of the two stated tangents with one of the ggigsmust
contain one of the two poings, ¢ (and conversely).

The rank of the image curve is 8. Since no tangeritgetonage curves are contained
in the four distinguished ray bundles, the order otw polar curves will likewise be 8.

() In the sense of the new metric, the “angle” betwée stated points of the image curve relative to
the stated center of rotation would be equal to simplyhaifethe rotational angle that was cited in the text.

() Naturally, whether this point lies in the curve @mmpletely inessential since that can always be
arranged by a transformation of the grdgcorresponding to an altered choice of starting positio
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Since two infinitesimally-following tangents to theage curve go through the point
ki, and likewise through the poihk, the polar curves will have two infinitesimally-
following points at the circle points andk;, and thus vertices.

The number of moving intersection points of the imagere with thex* left-special,
and likewise with theco* right-special Clifford surfaces, is six, because teight
intersection points are fixed &t andk, . If follows from this that all points of the one
plane will describe point-paths of order 6 in the otHan@, and all lines of the plane will
envelopline-paths of class B the other plane.

A reduction of the order of the point-paths occurs fog point-paths that are
described by the endpoints of the rods: They will be doubyited circles, and thus, of
order 4.

The general point-paths are tri-circular, because aayepbundle through a line in
one of the four distinguished ray bundles has threemgawmtersection points in common
with the image curve, and this number is 3 less thanrther of the general point-path.

One has two general and one isolated e. o. focal gomthe point-paths to
distinguish:

The two general e. o. focal points are the startingtpof the rods in the planes in
guestion. The isolated e. o. focal point is connected théhrespective describing point
of the other plane by a similarity transformation iknewn way.

Relative to the line-paths that, from what was said,cd class 6, one finds that two
parallel (in the same sense) tangents to a line-patindpétoevery oriented line, because
the plane bundle througd has two moving intersection points in common with the

image curve of the motion. Thusx2= 4 finite tangents to the line-path go through an
infinitely-distant point. Since this number is 2 lékan the class of the line-patthe
infinitely-distant line must beoubly-tangent to all line-paths. It is anideal double
tangent, because it contacts the line-paths at imagoeants.

As degenerateand limiting cases of the two-rod motion [i.e., crankcase motions
(Kurbelgetriebe¥q, we mention:

1. The case of the deltoid angle joint, for which thege curve of the motion
decomposes into a cubic space curve that goes throughdleepmintsk;, ko in the XY-

. ¢ .
plane and a one-point secant to them. For the clodic€ that was made above, this
image curve will project perpendicularly to tk&-plane onto a circle.

2. The case of an anti-parallelogram (parallelogramsyp.yeas a four-bar linkage.
Here, the image curve of the motion decomposes into bm@ sections that have two
points in common with each other, and one of which (ceaation) contains the points
ki, ko, while the other one has no points in common wighlitie Q.

The four-bar linkage will remain a parallelogram for the partial motion that
corresponds to the first conic section.

It will remain an anti- parallelogram for the partial motion that copesds to the
second conic section.
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3. The case of the thrust shaft moti@tliubkurbelbeweguhgfor which the stress
that is required to keep a point that is fixed in the @l&mn a line that is fixed ik will
appear in place of one of the two rods.

The image curve of the motion is a fourth-order curivthe first kind that has lines
of the left pair of ray bundles for its tangents la¢ pointsk; and k;, so the fourth
intersection point of the plane of oscillation atleaf these points with the image curve
will lie in the planel; (11, resp.).

4. The case that is inverse to the previous one —hesinverse thrust shaft motion —
is likewise of the fourth order and the first kind, and tiee same relationship to the right
pair of ray bundles as the previous one did to thepkaft

5. The ordinary ellipsograph motion. The image curiéhe motion is a cubic
curve that has lines of the left pair of ray bund@stdngents at; andk; .

6. The motion that is inverse to the latter motione-, ithe inverse ellipsograph
motion. Its image curve is a cubic curve that contéoes of the right pair of ray
bundles ak; andk; .

7. The motion of the (asymmetric) sliding with frani gearbox
(Scheifschiebergetriebegén the terminology of L. Burmester), for which:

A point of the plan& will be compelled to describe a line in &d likewise

A point in the plane E will be compelled to describe a lin@.in

The image curve of the motion will be a cubic cunad tuts the line) at two points
that are harmonically separated fr&tnandk, , so the tangents at these points will be
harmonically separated by the plahgandl; .

A degenerate case will occur here when the line thiatad in the plane® has the

same distance from the point that is fixed in it thatline that is fixed ife has from the
point that is fixed in it. The asymmetric motion wotlién give way to:

8. The motion of the symmetric sliding-with-frictigearbox.
The cubic curve above then decomposes into:
A line that cutsQ (which is the image of a continuous, rectilinear, trdisial

motion) and a conic section that ceisat one point whose plane (therefore) does not go
throughQ (which is the image of the interesting partial motiothis case).

The peculiarities of all these motions can be ddrifrem the properties of the
associated image curves that are invariant under the geaup

Without going into the detalils, let it be remarked thia¢ gets an insight in this way,
for example, into how for each of the motions thatevdefined in 4, 6, 7, e evolutes
of the? line-paths in the plane E are similar to each othend indeed they amata-
caustics of conic sectionmder parallel illumination perpendicular to the majorakre
resp.) axis of the conic section in question, soctheonic sections that appear in the
line-paths of such a motion can be obtained from tlggedd of them by rotation through
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an anglea around a focal point (that is identical with the pohmttis fixed inE) with a
simultaneous dilatation (viz., shortening) with a ratsa about the stated focal point.

Kinematics on the sphere can be treated similangemt that a group ofo®
collineations will appear in place of the grollg which can be regarded as motions in
the sense of ordinary elliptic, non-Euclidian geometry.

(There is no group that would correspond to the gfaup

One sees clearly, in this way, how ordinary, ellipten-Euclidian geometry in space
can be of service to kinematics on the sphere, andemognizes that the methods that
were proposed here are capable of even further develbpmen




