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With the application of polar coordinates:

Xy =1 Sin & cosg,
X2 =1 singsin @, (1)
X3 =T COS?,

the general differential equation of EINSTEIN's theardygravitation, with spherical
symmetry, will take on the form:

ds’ =L dif + 2V du dr+ N dP + O r? (d9? + sirf 9 dg ?), (2)
in which:
u =ct,

andds must be real for a time-like vector. In the statse,l, M, N, O depend upon
only r. The static one-body problem represents a speciat, sspherically-symmetric
case that is characterized by the fact that for areasing value of, equation (2) should
go to the one in the special theory of relativity, se oan set:

L:1+Z%, M:Z%,
N:—(1+Z%j, O:‘(HZ%) N

The solution that SCHWARZSCHILD and HILBERT found based upon the
assumption tha¥l = O, and is known to imply that:

L=1-
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It shall be shown here that when one applies rectan@artesian coordinates, the latter
will represent only one special solution to the state-body problem. In agreement
with EINSTEIN'’s gravitational equations, we shall then se

g=-1.

If one denotes the derivatives afr, J, ¢ with respect tes by u’, u”, ... then the
geodetic world-lines will be obtained from the condition

Jf F ds= 0,

in which:
F=Lu?+2Mr'u+Nr?+0 (97 +sifd ¢,

and variation will result in the four equations:

OF _doF_, OF _d oF _ doF _, doF_j,
or dsoar 09 dsod ’ '

dsog’ dsau

The derivatives oL, M, N, O with respect ta shall now be denoted ly, L” ...,
with which, one will have:
a _ L'r/,
ds

etc. Along with two equations that contain only secorakodifferential quotientg’

(&, resp.), differentiation will also yield two equations:

o'r?
2

N r.//_I_ M u//:%(LrUIZ_ Nrr12)+(or+ j(7912+sin279¢1 2),

M r//+Lu//:_M/r/2_L/r/,

from which, one eliminates”, and theru”, and one will get the coefficientsN — M
from these differential quotients. It shall be eliated by means of the equation of the
determinant:

O’ (LN=M?) +1=0.

—OZF'Z(MM [ _%j

After the term:

that appears in the equation fdy with an application of the equation:

O’ (LN+NL'-=2M M) —%:o, 4)
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has been put into the form:

_ 2 NO°L O
2 o)

the equations for the geodetic world-lines will have thenfo

2p 1 !
r”:_ L02 L uyz_ MOZerrur_( NOZZL _%j r.12_ LOZ[Or'*'O_ZIZ (79'2+Sin279¢’2),

2y !
u= L02 L NP LU 02( NM—%} 2+ MO{ 0r+o—2r2 (9 2+sin?94' 3,

gp’=-2cotd ¢’ 9 - (E+gjr'¢',
r O

9”=sindcosd ¢’% - (Z+gjr'¢'.
r O

The component8,, = R, of the contracted CHRISTOFFEL tensor shall now be
ascertained for the coordinate systgns 0, 4 = 77/ 2. In order to use them with the
simplification that comes about fog = - 1, we should emphasize that only
transformations with a substitution determinantrd& admissible, so from now on, we

shall introduce coordinates such thatx , x' shall denote their derivatives with respect
vV
tos. Since the{’u
o
resp.) must be taken in the equations %r(X;, resp.) Differentiating equations (1)
twice will yield:

} must be differentiated with respectdp, the first powers af; (xs,

Xf :r//_r(79/2+¢/ )’

n

x

I r

2
r

P AP =% (977 + @77,

n

X! = _XSrr -1 9= 2" —xs3'?,

and after eliminatingg andZ, while considering the fact that one has:

r’'= X1+—X2)(2:'X3)§’ ¢’:ﬁ—xz—2xl, 19':—§+X3)€

rr ror?’

with the prescribed approximation, one will get gupiations:
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Qo

i XX L _OX% %[, O(¥- %)
=t 2T 7o +r[xi+ o j

-

all of the {” g

} will be known. Furthermore, fay=- 1, one will have:
o

o= Tacl'o "2 o

g

In order to ascertaiR44 , one finds that the sum of the products contains oy th
terms:
14" (14 (4 42°
+2 + :
1 4] 1 4

The required quantities are then:
44 44| x, [44
1 3[ rl1f

44)  LOL 44) x
1 2 7 2
14] _ MO 14] _  NOPL 44)_ (14
1{~ 2 7 a(" 2 af 11/’

and that will imply that:
14° (13[4
2 +2
1 4|1 1

d [44) 2(44
== — -— +
s dr{l} r{l}
2L0°L

:—%[LOZL"+02|_'2+2|_OL'O+

- M*C L2+ LNCO LZJ.

The three terms that contdin? are collectively:
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OZ L'2
2

{1+0*(LN=M?}=0,

such that:

211 n
Rus = — LO L(L’LZO"LEJ’

2 L' O r
and after integrating this fd4 = O, it will result that:
r? O’ L’ = const. (5)

In order to ascertaiR14, one still needs the values:

11 2L '
_Nov_o 11:_02(NM,_MN)
1 2 O 4 2

R
EERHEARBAE

d (14] 2(14
Ria=-— -— +
dr{l} r{l}
NO? L 0}, LO'L.

=-1 MO?L"+ O’L'M'+2MOL O + - MG L -—
2 2 0] 2

2MO?L

(2 NM - MN)]

Since one haBy4 = 0:

211
MO?L”+2MOL’O’+ 2MOL _ 0,
r
and therefore:
21! U 1 1
Ryg= MOL (NOZL'—%+ LO? N)— CLM (1+ LNG).
Since the last term can be written in the form:
211!
_ MOL [PO*M M,

equation (4) will imply thaRy4 will vanish identically wheifiry4 = 0.
In order to geRy1, in addition to the values that were given alreadhe still needs:
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e Rl B-e)
R mna R R v i P b

] r 2 2
__d 1l NOLI' 40 (O _NOL) ’\FOL—MO“L'[NM' |\/|NJJr oz
dr r Or O 2 4 2 0

Now, MM’ andM 2 can be eliminated from the last two terms by mesrequation (4)
(the determinant equation, resp.), with which thél/assume the form:

O’L'N

—NOZL’{%Z(LN#NL’)—O,} (1+L N O,

and one will then get:

_d[11] NO'U CUN 40 307
Rii=-— - + + + > -
1 r 2 Or 20

Since one further has:

RS ]
d 11 _ NO L—NOL’O—OZLN+dO
dr r 2 dr O

with an application of the equati@®a, = O, one will then get:

R - 4+ .
" O 20 r

d 0 40 302 O(O" o 4j
dO Or 202 O

In order forRy; to vanish, one must have eitl@e= const. or:

r‘0’\/ -0 = const.

With consideration given to the equation (3) insjign, integration will yield:

O=- (1+ﬁ3j | ©6)

r
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and the former alternative is characterized in this #mudy saying that the integration
constantB assumes the value zero.
In order to ascertain the valueR#%, one still needs:

22:L02(9+9j+i, 22|_x(]22] 0 ]22|_x 22
1 r 2 r 2 r 1 O 3 r |1
and one has:
d|22] 2(22 O 1 2
= — —_ __+2
e dr{l} r{l} Or {j{ 1}
= - r_];(l +LO3) _% (O3L ‘4 3]_020/) _% (Lozo//_l_ LOOIZ + 02 L,O,).

With the abbreviation:

B _
Fei
equation (6) will imply that:
OP=-(1+87 0= (1+9,
r
2
007 = ——4; . Q0= —%(4 + 3,

from which, it will result that:
Re=— (L+rL'—1)+£5.
r r

L"is eliminated from this equation by means of emua(5), in which its integration
constant will be denoted lay It will then result that:

L=1-Z@+92°
r

and differentiation of this equation will, in tunmply equation (5).
It will then follow that the equations:

w3

o:—s(1+fj, L=1-—9 ?(LN-M?)+1=0 )
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representhe general solution of the one-body problefcan be chosen freely, white
is determined by NEWTON's theoryM or N can then be chosen freely, as long as one
observes the restriction that is established by equat{Bh In the latter case, the
freedom of choice is restricted by the fact thlatannot take on an imaginary valughe
one-body problem then has a two-fold infinitude of exact solutions.

In order to also introduce a cosmic term into the gerserution, let the initially-non-
zeroB,, be combined with the above:

211!

B44:—L OZL"+20L’O+20L =- L OI( O?L")

2 r 2r2dr

M
Bl4:T|:B44a

N g O 4 N
Bii=—B,+—| —+—+— | = —I[B r‘o’y -
HT (or 20 rj Lowt 40\/7d( ©)

822—833——(L ~1-1L'0,/-0) = {L 1+r\/%j.

One then gets:

L d 2Ar?
Baa—A Qua=— ——| r’O°L'+ ,
G 2r2dr( 3 j

and as a result:
3
r> O L’+—2/;r =a. (8)
Furthermore:

Bo,—A Cp2 = riz(L—l—r L'O\/ -0 —)IrZO),

and the elimination df “from these equations will yield:

/0 3/-0

Differentiating this equation will once more yiedduation (8). Since one further has:

L:1—(1+e)‘1’3{‘ry Ar® (1+3g)} L+Ar2{o+ij. (72)

M
Bia—A Qs = T (Bas—A Qua),
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Bii—Ath1=— (Bas—A Qug) + —— E—I—(r“O«/ 0),
11 O = ( 44 Oaa) O\/—
that illuminates the fact thathen one adds a cosmic terane will only need to replace
equation (7) with equation (7a).

In order to examine the precession of perihelion, crezls only the equations that
were quoted in the introduction:

d oF d oF

———=0, =0
dsoud

Lu?+2Mur’+Nr?+0r ¢ ?=F
dsag’

for 9= 1/ 2. The last two imply that:

Org’'=A Lu+Mr’'=B,

in which A andB are integration constants. If the first equation werdtiplied by L
then, after eliminating’, one would get:

B2—FL+(LN-M)r?+LOr%¢’?2=0,
and an application of the determinant equation would yield:

r'

g =B°-FL+LOr?¢"2

After introducing the notation:

= |k

pP=—,
one will obtain:
dp__ldr__ptr

dg  r2dg ¢

and therefore:

[d_pjzzozr'zzo B-F, apF _p°_ ap’
dg re A[-0 O of-0
9

_B’-F

— (1 + 8)8/3 apF
A?

L+9™" -1+’ +ap (L+9™

In order to make this exact expression more marmget can be developed into a series
of increasing powers gf :
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do —F , apF 8,8(82 F)
[d¢j A? A p”{ 3N } ' (10)

One set$ = 1 for a mass-point arfél= O for the motion of light. In the latter case,
u’, ... mean the derivatives with respect to an arbitrary ¢oatel, which will also be
applied after the variation. In EINSTEIN’s theoryplkanet is treated as a mass-point,
and one tacitly assumes that the Sun is at rest imafeeence system in which the
planetary orbits represent ellipses in the first apprakon.

The last term in equation (10), which is absent in NEWBQNheory, determines the
precession of the perihelion when the equation containstimer terms, and due to the
fact thatfs can be chosen freely, the equation will give the @apion that one can predict
an arbitrary precession of the perihelion in EINSTEINieory.

When | proposed this equation to my dear friend OSEENdisanguished authority
on the theory of relativity, he pointed out to me thih the transformation:

p'= —/—f)o =p(+BpY™"

from which, it will follow that:

z—d— (1+B0Y - Bp® (1 +Bp = (1 +BpY = =
P o)

one can give equation (9) the form:

2
do'\ _B*-1 ap ., _ .
[d¢j PO

for F = 1, with which, the precession of perihelion tancalculated in the usual way. In
order to not be forced to repeat all of the caloomes, | will refer to WEYL’s
presentation §, in which the equation:

déo

¢:,[ (] (] (] (]
\/0’(,0(') _,01;:02 _ pl_zpzcosgj

is deduced. Now, since:
= p(1+ B P},

it follows that forp = p;, one will also havep = o, so the planet can also be found to be

at perihelion in this calculation wheéth= 2nz  For that reason, WEYL obtained the angle
between two successive perihelia as:

() HERMANN WEYL, Raum, Zeit, Materie3® ed., Berlin 1920, pp. 22&t seq.
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$=2 G2

B

3a U U
G=1-=-(p+p) =1- [pl+pz—§(pf+p;‘)+~-]

Since one further has:

. 4 20+6"+€) 6K

AT amd) ATPRTT e ag-e)’
it will follow that:
G= 1—%(1 _BK+..)
and
¢:2n{1+%¥2)(1—m<)+...]

Since B can be chosen freely, this equation will implyttifathe precession of
perihelion has been calculated in the same wayt adways has been IEINSTEIN’s
theory then one can predict an arbitrary precessibperinelion with it. Whether or not
EINSTEIN’s theory of gravitation agrees with thesabvery of LEVERRIER will then
remain unknown until the influence of the curvataféhe universe on the astronomical
observations in question is taken into accounh@dalculations of perturbation theory,
and until it has therefore been shown that thegasion of perihelion that is found in that
way is independent @f. Namely, since the transformation affects ong thdius vector,
the true precession of perihelion must be indepetnalie5 no matter how large it gets.

Sincef is contained irL, the expected redshift of spectral lines in thevigational
field of the Sun will also depend upgh

By contrast, the bending of light in the gravibail field of the sun will not be
affected bygB. In order to see this, one needs only to appyttAnsformation that was
given above to the equation that EDDINGTONdeduced:

_a X2y
2R /X2+y2’

in which R represents the distance from the vertex of th&t lgath to the center of the
Sun, for infinitely-large values g¢f One has:

o= r)1+h] = o1

() A.S.EDDINGTON, Space, Time, Gravitatigi€ambridge 1921, pp. 207.
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Sincer is also infinitely large for infinitely-large values gf andx, and approaches the
value ofxs asymptotically, the directions of the asymptotes ofligig path will remain
unaffected bys.

If one setsB = 0 thenL will have the same value as before in EINSTEIN'othe
which is, as a result, also true for the redshift otapélines. In that way, the terms in
equation (10) that were not written down will also vangich that not only the redshift
of the spectral lines and the bending of light in thevitgeonal field of the Sun will take
on the values that EINSTEIN gave for them, but alse phecession of perihelion.
Therefore, there are still infinitely-many exact smlos to the one-body problem, and
among them, a two-fold infinitude that make space Ewslidas well. They will be
characterized by the equations:

N=0=-1, M:i\ﬁ,
r

and ifdo denotes the line element of space then one will get:

ds* = (1—%)du2 irg\/? du (xg dxq + %o d% + X3 dxg) —do? .

The calculations above teach us that the independéribe calculated precession of
perihelion is based upon the choice of solution to theagong = - 1. For 8= 0,0ne
can then describe space as Euclidian or non-Euatidn infinitely-many ways, and the
observed phenomena will be demanded exclusivelyebyon-Euclidian coupling of time
with space.

If one would like to go deeper into the question of wletBINSTEIN’s theory
agrees with the observed shift of the perihelion of Mer¢hen it would probably be
advisable to initially describe space as Euclidian, becansewould then have to deal
with only the curvature of the light rays in the astnmical observations. However,
since the precession of perihelion is treated as a eeidt remains after the influence of
perturbations has been calculated, one cannot overleodtetimand that the perturbations
should also be treated with EINSTEIN'’s theory, althotlghh mathematical means to do
that does not exist.



