HELMUT GUNTHER

ON THE NONLINEAR
CONTINUUM THEORY OF
MOVING DISLOCATIONS

With 1 Figure

Translated by D. H. Delphenich

AKADEMIE-VERLAG [BERLIN
1967



FOREWORD

Through the work of the school of K. KONDO, as wellas3. A. BILBY, R.
BULLOUGH, and E. SMITH, continuum mechanics has develojp¢o a theory with
far-reaching geometric interpretations. The advantagetbéory like the one here that
is, e.g., based upon differential-geometric conceptapye all, the fact that in addition
to general insights into the structure of the theding highly-developed and highly-
constructed differential-geometric formalism represensignificant practical tool for the
solution of the corresponding problems in physics. In thgard, for the continuum
mechanics of crystal defects, it yields far-reaching nm#teal, and in a certain sense,
also physical, analogies with the theory of relativitshich E. KRONER pointed out
especially. One can further say that A. EINSTEINI948) theory of teleparallelism,
which started from some questions in the general thebrglativity, finds a rigorous
physical application in that subject.

We shall present the general nonlinear equations afdhenuum theory of moving
dislocations on that basis when we associate a ttysitis permeated with moving
dislocations with a four-dimensional space with telafp@ism. In conjunction with that,
the mathematical similarities with and differencesnir special, as well as general,
relativity, shall be examined thoroughly. In contrastotber nonlinear equations of
physics, we will find here that the nonlinearity of thetsyn of equations will imply no
restriction on our freedom to specify the dislocatiand their currents. Any solution of
the linearized system can be extended to a solutiomeofigorous solution. That is also
true for the dynamical generalization of KRONER’sahewith foreign atoms and the
more general theory that is extended by the introductidnthe so-called
phenomenological matter tensor. That will be exmgloae an approximation procedure
for the solution of the field equations. At the sameetithe procedure will allow us to
give the stress field of a moving dislocation explcito an arbitrary degree of
approximation, up to numerical integration. Furthermare,shall investigate the non-
analytic solutions that are compatible with the equatiand in particular shockwaves in
media that propagate by moving dislocations under elagtistpesses.

| am thankful to Herrn Prof. Dr. habil H. TREDER fibre impetus to address those
guestions, as well as numerous discussions.

H. GUNTHER
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INTRODUCTION

The first era in the theory of dislocations and riné¢ stresses is naturally
characterized by the notion that elementary and detaitgdical arguments always
defined the starting point and the foundations of the rrestt of the most variegated
problems.

The start of that development, which is linked with iaenes of V. VOLTERRAT],

U. DEHLINGER [2], E. OROWAN ], M. POLANYI [4], G. I. TAYLOR [5], J. M.
BURGERS f], [7], et al, and was concerned, above all, with defining the conukeat
dislocation and probing its meaning in the context of tleest and elastic states of
crystals, whereby in that quest, as well as in latetrimutions, many authors put the
isolated dislocation in the foreground; cf., e.g., J. BHELBY [8], G. LEIBFRIED and

K. LUCKE [9], F. C. FRANK [10], and many others. Later on, an elementary continuum
theory of dislocations was created by E. KRONER][and E. KRONER and G.
RIEDER [12]; see also the review of E. KRONERXKontinuumstheorie der
Versetzungen und Eigenspannunggh3], in which one can also find a comprehensive
overview of the literature on the dislocation probleat thad appeared up to then.

An essential advance came about, as is known, whehdbey admitted a geometric
interpretation. That means, on the one hand, thatcan give the theory of dislocations
a unified and compact formulation using the highly-developedhenadtical apparatus of
differential geometry and tensor analysis, and on theerptthe first of the linear
equations that follow from elementary arguments would fiheir rigorous nonlinear
generalization in terms of the differential-geonetformulation. That direction of
research appeared perhaps simultaneously in Japan and .Eumglagan, it was through
the groundbreaking work of the school that was founded byK®NDO and his
collaborators of “the general differential-geometiieatment of engineering science”
(cf., on that, 14] and [15]), and in Europe, it was by way of B. A. BILBY, R.
BULLOUGH, and E. SMITH 16], [17], and was promoted by E. KRONERS and E.
KRONER and A. SEEGERI], especially.

In the static theory of dislocations, one finds fafrmathematical analogies with the
general theory of relativity, as E. KRONERS] stressed, in particular. In addition, it has
already been known for some time from elementagym@ents that the speed of sound in
the medium in question sets a definite limit on the aigtowvith which a dislocation can
move in a crystal. Work on that subject goes back tb FRENKEL and T. A.
KONTOROVA [20], [21], [22], as well as F. C. FRANKZ3]. Hence, there also exist
parallels with the special theory of relativity unddrieh the speed of light is replaced, so
to speak, with the speed of sound.

Now, it is an essential goal of the present work toudis thoroughly the analogies
and differences between the continuum theory of movisiga@htions and the special, as
well as general, theory of relativity, that are bagpdn the tensor calculus. In particular,
we will go into its relationship to EINSTEIN’s theory ofeleparallelism in
RIEMANNIAN spaces; see A. EINSTEIN].
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Although the problem of moving dislocations has alreagnbtreated many times —
cf., S. AMARI [25], E. F. HOLLANDER pg¢], [27], H. BROSS 28], A. M. KOSEVICH
[29], T. MURA [30], [31] (we shall come to speak of those papers later) — ai raxt
give a derivation of the basic equations of the dynamfalislocations here that implies
the most natural generalization of statics that issipess mathematically, as well as
physically. In that way, we will arrive, on the one tiaat a closed presentation of the
theory. In addition, we would like to construct the tlydarsuch a way that it will make
the discussion of the connection to the theory oftivétha that was mentioned in the
introduction more accessible.

The object of our considerations is an elastic continfuthat is embedded in our
real three-dimensional Euclidian spdeg. For the sake of simplicity, we shall employ
Cartesian coordinates (i = 1, 2, 3) inEz . For certain special problems, the conversion
of the problem into suitable curvilinear coordinates migitadvantageous, so we will
then simply have to replace the ordinary derivativatiénbasic equations with covariant
ones in the well-known way. Since the curvature ten$&g vanishes, that replacement
will also be possible for second derivatives in an ungudus way with no
complications. We shall also describe the positiba mass-point oK by its Cartesian
coordinates ifE;. We essentially characterigeby two properties:

1. At each point oK, there exists a set of quantitigs, ..., 4, ... that describes its
elastic propertiesK will also be characterized as an elastic body inwzt In general,
one will have to assume that the elastic quantitieduarctions of position and time, and
thereforeus = 14 (X, t). However, in many practical cases, they will bamy the elastic
constants of various orders.

2. At each point oK, there exist three unique non-coplanar directions, nartted
lattice directions of the crystaK will be characterized as a crystal in that wywill be
found to be permeated by dislocations when it is in @mstéd and stretched state.

We shall next sketch out the basic ideas of th&staf dislocations in order to arrive
at some viewpoint on the transition to dynamics. vdeat follows, we will then combine
the terminology by referring to a continudtthat is in a state where no sort of crystal
defect perturbs the lattice directions asi@arl crystal while in any perturbed state it
will be areal crystal For the sake of simplicity, we shall first confinergelves to the
case in which the lattice directions of the ideal cilyd¢dine an orthonormal system. We
will then show, by an additional consideration, tha¢ @an easily generalize to arbitrary
ideal crystals.

From the second property above, three distinguisheidelatectors are defined at
each point that therefore define a “dreibein.” We dbscitiby the quantities:

h, = h (X) with the inverses  h* = (X)), (1)
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which exist as a result of the fact that the assuno@ecoplanarity implies thak, Eh}( =
aj . (Lowercase Latin indicasj = 1, 2, 3 refer to tensor components, wHKild., ... = 1,

2, 3 are only numbers)( The lattice vectorsh, (X) come about as a result of the
distortion of the ideal crystal into a real crystal.one describes the lattice of the ideal
crystal by the vectork? = 2 (%) then when one denotes the distortion quantitieg\by
the connection between real and ideal lattices wiljiven by:

= ALK = A @

It is clear from (2) that the lattice vectors of thalrerystal already characterize the
distortion completely. Correspondingly, the relatio

dx¥ = A“dX, 3)
which describes the relaxation of two points in a tedywhose mutual separationdg

into their mutual positiomx” in the ideal crystal, will be described completely bg th
projections ofiX onto the lattice vectorg:

o = R, 3)

and we can express the distance between the twopuoags-in the real crystal by:

ds = dxX‘ dx & . (4)
If one substitutes (3) into (4) then:
ds = K h" g, dX* dx =g dX d¥, (5)
with:
g = W and inversely h, Y g = & . (6)

We have introduced a metrgy on K by way of (6), which then makes into a
RIEMANNian space. The physical meaning of that metoiesists of the fact that it is
immediately obvious from (5) (cf., e.g1§]) that:

& = 3(Jij—g) (7)

means the elastic deformation of the real crystal.

() An overview of the notations employed is compiled ameee in the Appendix.

(® We shall also operate with a Cartesian referensesyin an ideal crystal. The Greek index 1,
2, 3 appears here to characterize a three-dimensionak \ady to distinguish it from the case of a real
crystal; otherwise, Greek indices will be employed dahthe time-dependent case (icfira).
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Due to the crystalline structure (1), three congruenéesurves are defined in that
RIEMANNiIan space in a distinguished way, namely, #ttéde lines of the crystal. (The
RIEMANNian space is then “fibered.”) One can then intredacteleparallelism in an
invariant way when one establishes that a tensor isllglaranslated when the
projections of its components onto those curve congesemo not change. The
coefficients of the parallel displacement are theefftments of the integrable
displacement that EINSTEIN introduced into field theor

Ma= h}fk’ (8)
which satisfy the lemma:
hr||s = hrKs - hnK r.=o, (8a)
such that the RICCI lemma:
Oik=0Gj k=9~ g, Mg =0 (8b)

will also be fulfilled (with asymmetrid™{ # I'}}).

The essential traits of the real crystal are tmaxpped to that fibered RIEMANNian
space.

From (6), the curve congruences will define an orthonbeystem when they are
measured with the metr@; . Naturally, that means nothing but the fact thatlakttce
lines are orthonormal in the ordinary sense. Fumbeg, the metrigy; is defined by (5)
in precisely such a manner that those lines will beoodimal. Naturally, one will get
the actual comparison of angles and lengths of thedattectors using the metric of

Euclidian space); , and one will then havl, i J;, # & .

Due to the existence of a dreibein at each poit€,afne can now characterize any
tensor in two ways: namely, in one case, in the usaglby giving its tensor components
T I and in the other, by projecting those components oatodhgruences:

T = hhh T 9)

(9) defines what we would like to call tdeal spacedo K at every point oK. A quantity
T in that dual space is invariant under coordinate transtansax' = X'(X), but
will go to T,% = CX C- C™ C'R T under a linear transformatiodx = C"dx",
which would correspond to the transition to anothetesysof dreibein-congruences, as
one can conclude from the invariancelgf under the transformations in (9).

The two spaces then behave as if they were truly duaddh other: Tensors in the
dual space are invariants in the RIEMANNian sp&cand conversely (cf., e.g., G.
VRANCEANU [32)]).

The expressions (3) and (6), which characterize theeobion between quantities in
the ideal and real crystal precisely, are specialscab€). We can then see the physical

meaning of (9) for our case with tha¥'characterizes any physical quantity in the
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crystal. V" (V¢ = h“V", resp) is that quantity when it is referred to the (ieal, resp.)
crystal then.

From (4), the dual space will be a Euclidian space wi#séesian axis directions
can be identified with the lattice directions of tdeal crystal. Globally, the Euclidian
space is oriented and a complete image of the idedahtigsthat way. The dual space
reproduces that behavior point-wise and juxtaposes a &taall crystal with each point
of the real crystal, intuitively speaking.

In summary, we can make the following remarks, whiehwould like to apply to
dynamics (with some meaningful conversion of them):

The “fibered” RIEMANNIian space and the dual space thass®ciated with it point-
wise give geometric images of the real and ideal atystsp. The metric of the dual
space is equal to the metric on our Euclidian spacedidtsiguished directions are the
directions of the coordinate axes of the Cartesifereace system. The transition from
an ideal crystal to a real one consists of twisang stretching the lattice vectors. [In
that way, the presence of dislocations will be cti@r@zed precisely by the fact that the
law of the transition (3 is anholonomic.]

In the event that the lattice vectors of the idagbktal are not orthonormal, as we
have assumed up to now, so in the eventhfiat J; , we will alter our definition of the

distinguished dreibein (1) by replacing it with:
h"% = k; & = h" (X)), (1)

in which k. is the inverse ok”. The congruences of curves will then be determined by
the lattice of the real crystal as much as by thathefideal one. () can then be
regarded as a transformation of the congruences of cwitleshe matrixC. = k. d¢ ,
under whichh, will go to h*}, and k{ will go to J7, in such a way that all ratios will
remain unchanged when one replabgswith h*', .

In (8), we have defined the coefficients of the telalia displacement as EINSTEIN
did [24]. Due to the integrability condition of the displagent, the curvature tensor that

is defined byl",, must vanish:

RijkI :_ r;k,i _r'lk,j + rjrk rilr —[ rljr =0. (10)

def !

Equations (10) will become the true determining equationghiinternal stresses when
one decomposes theaffinity according to:

i I i i i
rkI :{k|}+Tkl +TkI+TIk’
with
TklI = F<,'(|>, (11)
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{kll } = CHRISTOFFEL affinity that is defined Iy ,

and the torsiorT, ' can be interpreted physically as the dislocation deasititreated as

a given quantity. In the statics of dislocationst thahe process that is used to derive the
field equations, which we would now like to apply to dynamicse we have formulated
dynamics in a manner that is suitable to our purposes.

We would like to arrive at the equations of dynamics aadour-dimensional
generalization of the three-dimensional static thedorgva. Since we shall stick to
classical mechanics, naturally, the speed of lightmatlcome under consideration for us
as a limiting velocity. In that way, there will be® true four-dimensional tensors, and
time will be forced into the role of a paramet® (We will also see that in the ultimate
form of the field equations. On the other hand, theeekaown effects in the theory of
moving dislocations that had previously been known only HGRENTZ-invariant
theories. A dislocation will be restricted by the egpedf sound just as a mass-point is
restricted by the speed of light in relativistic mechani€be stress field of a uniformly-
moving dislocation suffers a contraction in the dittof motion that is similar to the
way that the electromagnetic field of a uniformly-mayirelectron contracts in
LORENTZ-MAXWELL electrodynamics.

Since one will consider singular dislocations irt tvay, along with ones for which a
displacement vector field exists, that effect can beveleé using elementary methods.
However, certain complications will arise in the theof elasticity due to the fact that
one must generally deal with many speeds of sound (cthainJ. D. ESHELBY 33,

A. W. SAENZ [34], and J. WERTMAN 85]). Since those effects all relate to the context
of a particular mathematical theory — namely, the machioé special relativity — we
would like to incorporate the theory of moving dislocasian an entirely analogous
mathematical model that is naturally subject to a glaysnterpretation that is completely
distinct from special relativity.

We therefore extend our three-dimensional Euclidipacs to a four-dimensional
MINKOWSKI world in which the role of the speed of lighill be taken on by the speed
of sound in the medium in question. However, the exdans not unique, since the
elastic medium can have many speeds of sound, in cotdrést uniquely-determined
speed of light. When we restrict ourselves to the apatr case, we will have to
distinguish between only the transversal speed of sopadd the longitudinal one_ .
However, one knows from the treatment of moving singdisiocations that the actual
limiting speed is already given loy .

If one, in fact, considers, e.g., the expressions Th&¢fERTMAN [35] gave for the
stress fields of moving dislocations then they willgalto infinity when the speed of the
dislocationv reaches the transversal speed of saxnd When one exceeds one of the
speeds of sound, for physically-reasonable distributiortdistdcations, one will indeed
expect finite fields again (cf., H. GUNTHERIJ on that), but it is questionable on
energetic grounds whether a dislocation can actually exae@d, resp) for the infinite
configurations; see J. WERTMANB}]. As a consequence of our analogy with special

() The space-time pseudo-rotations of the “referendersyswill then have no physical sense here. In
fact, there is an absolute reference system thadliged by the crystal (cinfra).
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relativity, we will then work withcr from the outset. We will also justify the foreggin
later from the dynamical part of the field equationsrtbelves. We will then find that, in
addition to that transversal speed of sound, theresdsalongitudinal speed of souad
(cf., infra, Chap. Il), namely, the speed of propagation of longiaidivaves. We then
introduce:

X0 =crt

as the fourth coordinate of our “acoustic MINKOWSKI spacWe extend the Euclidian
space metri@y = dx to the MINKOWSKI metric:

aw=nw=(01,1,1-1) wv=0,1,2,3),
and our line element will take on the form:
ds = 17, d¥ dx. (12)

We shall discuss these expressions later in a brcadézxt.

If we now adapt the static phenomena to our four-dgiomal case by way of
analogy then we can regard that MINKOWSKI space asduedimensional image of
an ideal crystal in the large. The directions of thesareMINKOWSKI space are the
crystal directions. Naturally, the spatial coordinites once more represent the usual
ideal lattice in that. The physical meaning of the foedbrdinate axis — viz., the time
axis — will become clear when we consider that the lgdgaio the time axis can be
interpreted kinematically as the world-lines of massyiat rest. This “four-
dimensional ideal crystal’ then represents the hisbbry three-dimensional ideal crystal
at rest here. A four-dimensional real crystal willsarfrom a now-time-dependent
anholonomic deformation and twisting of the four-dimenalo lattice, which we
associate with a four-dimensional RIEMANNian space wathparallelism, in complete
analogy to statics, as follows:

The three spatial vectors of our ideal lattice fystto the deformed vectors:

h? = h? (X, xX°) with ho = 0.

It is clear that these actual lattice vectors cataicd on a temporal component under the
deformation; hence, the condition! = 0. The lattice vectors that are constantly

changing in time from the three-dimensional standpoifitthhen lead us to single out
three well-defined fixed congruences of curves in the fouedsional image. We will
get the fourth congruence in such a way that the lineseofmass-points at rest that are
parallel to the time axes will go to the world-linesnadving mass-points, which we can
describe by the equation: o

X =x ().

If X% is the parameter of that congruence of curves therwilleget the following
expressions for the components of that congruence:
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h? = h? (X, X°) with h=—, h =1,

in whichV =V (X, X°) means the velocity of the mass-point. We eadilgvinces
ourselves of the validity of that relation by refagito the following sketch:

X0

N I

X =% ()

|
|
X

ob——

The projection of a curve segment onto the axes, diviedxX’, will yield hy , from

which, the formula above will arise.
In that way, we have obtained a complete vierbeild,fizhich has the following
form:

=0

o5

ke
W=l V" o
hy c hy

with the inverse h; =

1

according to9):
i =o' and Hh=4"

The inversesh’ exist on the basis of the non-coplanarity of theeg¢hspatial lattice

vectors that was assumed initially. Due to thegectal form (13), the individual
reciprocity relations will then read:

hehe =4y (' hy = d5 , resp.)
and

;=R e+ R = kg =-hh (13)

Just as we do in statics, we can now introduceltia space when we characterize a
tensor by its tensor componeM$ in one case, or by projecting those components on
the vierbein:

Vi=n v, (14)

In analogy to statics, we set the metric of thel dpace equal to that of MINKOWSKI
space, so:
oA=na=(1,1,1-1),

(") Lowercase, as well as uppercase, Greek indizes, (... = tensor indiced;, A, ... = numbers) will
always range through the numbers 0, 1, 2, 3. (See Appendix)



I. — The field equations of moving dislocations. 9

and with the help of the equation:
Quv = h; ', (15)

we have endowed our four-dimensional, oriented continmidima metric, and thus made
it into a RIEMANNian space that was the image of tber-dimensional real crystal.
The dual space that is associated with it point-wisdrasts with the behavior of the
ideal crystal.

Due to the four distinguished congruences of curves thatefireed by the vierbeins,
we can once more define an EINSTEIN teleparallelisin [24]) and the coefficients of
the teleparallel displacement are given By (

Ffw = h h,ryﬂ with ;‘lﬂ =0, gwuﬁ= 0, (16)

so one will have, in particular:
rgﬂ: 0, (17)

whereas for all other displacement symbols, onegeiierally havd';ﬂ # 0, which one
can easily believe on the basis of (13). Along with (b6 can define the affinity:

ri=hHe (18)

solely on the basis of the_reciprocity relations #rast already between the three spatial
lattice vectorsh? = hT (X, x°) from (13). (The index “3” in [} refers to the three-

dimensional character of that quantity; cf., the Appehd

We then get not only equations (17) for the field equatanshoving dislocations
(which should give an invariant characterization of thebém field (13), geometrically-
speaking), but also the integrability conditions for the affinities (16) and (18), and
therefore:

—ro J K J K o _
a) Rpy =050 To st sl —FayFﬂK—O,

By ak
b) o,=0, (19)
| — | | r | r |-
C) 5ijk =Ejk,i_r3ik,j+r3jk rgir_raik rgjr =0.

However, not all of equations (19) are algebraically peaelent of each other, and
therefore they are useless in practice. We shallclawse an algebraically-independent
system, but we shall first make a few remarks abougé¢loenetric interpretation of (19).

With those vectors, (18) can be written in the form:

() For the meaning of the notatidin see the Appendix.
4
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roa =, + I, =
o = hG e (20)
a h(()) a’
We would now like to assume only that the conditions:
W =a (21)

are valid at some time-point and some well-defined looaand therefore that we also
have hf, = 52, from the reciprocity conditions, and that our vectmes analytic functions

of position and time, in addition. If we recall thevdlepment of the real crystal from an
ideal crystal then naturally that condition will alwaye fulfiled. We then immediately

read off of (26) that the conditions (21) will then be tewerywhere and for all times.
That means that the infinitesimal operators:

Xy = h

6x“

that one defines with just the three congruences of suryealready define a complete

system, which is well-known to be the necessary afficent condition for those three
congruences of curves to define a manifold. L% then the condition for a three-
dimensional submanifold to be distinguished in our four-dimo@as manifold, namely,
our ordinary Euclidian space (endowed with the medficresp.), which is the three-
dimensional RIEMANNian space of the statics of dialions. (1%) will then define a
teleparallelism in that RIEMANNian space with the hefpthose three lattice vectors,
and will therefore be identical with the equations (10fisfocation statics. They are
then preserved here, and they will be extended by onhaddé&ional equations (18).
and (19%) under the transition to dynamics. One differencaveen (10) and (16)
consists of the fact that (X9.is required to be true for all times, while (10) iferead to
only one time-point from the outset.

We will introduce special-relativistic behavior with tfgeed of sound as the limiting
velocity when we introduce a four-dimensional line edatrby way of:

ds’ = 77 dX¥ dX’ = g dX dX — @), (12)

and in that way, we will construct a theory of movinglaltations. We would now like
to make a few remarks about that construction.

In the special theory of relativity, the basis foe thtroduction ofds’ is the physical
equivalence of all inertial systems. The inertial systeemerge from each other by
LORENTZ transformations, andls is an invariant under the group of Lorentz
transformations. However, in our case, the demandhbaound should be produced by
a point-like source and propagate like a spherical walleestablish the state of motion
of the reference system uniquely; it is the systemhicivthe elastic medium is at rest.
The coordinate transformations that mix the space iam&l ¢oordinates with each other
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will be excluded then. If we then restrict the alliweacoordinate transformations to the
orthogonal group of space-space transformations andi¢héty transformation in time
then we will formally justify the condition of invariae ofds’, which is the centerpiece
of the theory of relativity, under this subgroup of “LOREZ transformations.” We will
have transferred the same mathematical relationshipscontinuum dynamics that we
find in the general theory of relativity by way of theEERIANNian space that is defined
by:

O =N, W' 17y (15)

and general relativity is also based upon a four-dimensiRiEAMANNian space.
The teleparallelism that is introduced by:

rju/: hli1 h/r,,u ’ ;uﬂ: 01 g,uvu/i = O (16)

corresponds completely to the field theory that EIESN introduced in 1928 (cf. 2f]).
The vierbeins that are defined at each world-point inttiexry, which are analogous to
our four-dimensional lattice, define local inertial syssenThe vierbein components of
tensors represent the tensors that are measuredse imertial systems by projection.
Just as in continuum dynamics, the dual spaces of tloeytlod gravitation carry the
metric of MINKOWSKI space. However, the vierbeins wer defined uniquely in
EINSTEIN’s theory of 1915. Furthermore, the general thexd relativity is invariant
under the four-dimensional rotations of those vierbeins\taat from point to point —
i.e., under local LORENTZ transformations — and accordind REDER B6)], that is
precisely the essence of the principle of generalivéjat Such a principle is not trus
priori in continuum dynamics, since the curve congruencesigtiegiiished uniquely by
the lattice structure in that case. The only invaeaincthat case is under global spatial
rotations.

What is the physical meaning of the four-dimensional imeiow? With the form
(13) for the vierbeins that is guaranteed by the field egost{19), one finds that one
has, in detail:

gik: hr h:\’7r/\: hG rLLéeL_k?O ff = hG h(l_aGL: gik'

The spatial components of the four-dimensional méten coincide with those of statics
and therefore characterize the deformations as tleeydwn the latter theory. It further
follows that:

¢ = ™=~ H+ B 0 = - ;

The contravariant space-time components of the ntégit determine the velocity of the
matter, and finally:

g =" = -+ o= p=-1;
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i.e., the contravariant zero-zero component is cohstad will always be set to minus
one. One finds the remaining components from the regignelations:

gaﬂgav:yﬂ, grigrk:dk,
4 4

and therefore, in summary, one will have:

O«= 9w gik: gik_ (j)i dk,

4 3 4 3

A 25
g = Cr, Ooi = G ) (25)
9°=-1 gyn=-1+g"g"g,.

The conditiorg® = - 1, or more generally, the process of fixing some comporznts
the metric to have definite values (restricting thieyndifferential conditions, resp.), is
well-known in the general theory of relativity. Dwedeneral covariance, in the general
relativity, one can always impose four arbitrary caodié on the metric that correspond
to an arbitrary choice of the four coordinates. In Heatse, we can now mathematically
interpret the requiremenf® = — 1, which comes about as a result of the peculiarities o
the RIEMANNian space that is defined here, converselg esordinate condition in a
general RIEMANNian space.

The three further coordinate conditions that are passdan also find their
counterparts in general relativity here. Namely, therdedtions are still not established
uniquely by (19). As is known, one must specify the exteoraes that act upon the
medium; i.e., one must extend (19) with the equilibreconditions, which one can write
in the form:

ri d - i
g’ pdt\/ f (26)

in the dynamical case, in whiah" means the stress tensprmeans the density of the
deformed medium, anti' means the volume forc&( Those equations will give three
differential conditions for the metric, which will alestablish the metrigy uniquely, as
in general relativity, when one adds a material law:

Ok = Ok (&s) = O (Ors)
and introducing the notation: _ _
vi=-crg”

Equations (26) can then be interpreted as the remaining tlwerdinate conditions.
Therefore, in contrast to the theory of relativithanges in thg.s that are produced by

() (26) is an equation in Euclidian space, for which we em@lastesian coordinates. The position of
the indices in (26) is therefore inessential.
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coordinate transformations will have an actual physiedmng here. We shall return to
that connection and some of its consequences later.

We would now like to choose an algebraically-independgsiiem of field equations
from (19). In order to do that, we proceed in such atlvalywe shall exhibit successive
equations that are obviously algebraically-independent of @en and with which, we
can go into the still-unconsidered equations and checketavsat new requirements that
they might then express. As we said, equations (19) heitlome true determining
equations for the metric when we decompose the afsnatoeording to:

_| H _| H

K K (27)
Ch= T +TH+T5 =<+ Rk
3I] IJ 3Ij 3IJ 3]I |J 3I

3 3

and therefore into the CHRISTOFFEL symbols and tirsidn part, and regards the
torsion as a physically-given quantityh,z” = h/ h[rm is therefore RICCI's rotation

tensor for the tensor fielt® (cf., J. A. SCHOUTENZ37], G. VRANCEANU [32)).
In order to perform that decomposition, we must firel & relation betweeﬂj ijk and

'g ii" and then interpret the torsion components with omaae zero indices physically.

We next point out that on the basis of the speoiahf(13) of our congruences of
curves, we will have:

rk=r .k (28)

which we can read off from (16) and (18). With the hefp(19b), the torsion
components with zero indices can all be brought backéoquantitiesT®, (vanish,

resp.). Inthat way, we will find the relations:

i kT k_ Tk
TG =9"T°, -[ rs _13- rs c;f.T’S ’
a) Taﬂo =0, b) Th=9"T°%, c) (29)
Tew=9"9" T, Tl g T

(These relations are derived in the Appendix.) b&fore, T “ can be interpreted as a
dislocation density, while onl§°,_ can be interpreted as new quantities in the egpusiti

We will see that they can describe the dislocatioment.
We shall consider what independent demands dteatitained in (1%). Due to
(29), we only need to consider the symmetric phitt 0
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0 K
rz(riﬂ = {aﬁ}+2TOaﬂ = Ego (gaK,ﬂ-I_gKﬂ,a_gﬂa,K) +T0aﬂ+TOﬁa:O.

We write out those equations in detail, in which we lem25) and get:

0
i +2T°
ik {I k} ik

= 3(Ok 0+ Ok g 07— 0™k Gg) + T% +T% =0,

o = 19" (Qoxi + Gkio—Gio,) +T%0+T%i=0

= qu{O}+T°iO+T°0. =0,
qi

rgo = %QOK (2 gOK,O - gOO,K) + 2T000: 0

0
= gongp{pq}+2Tooo =0.

If we employ (2%) then it will follow directly that:

rgi =g%r;

0 — ~O0p AO0Qq[-0
qi? rOO_ g rpq'

The only independent requirement that will remain inl{)L8:
r£ =0. (30)

Now, it is clear that equations (tPto (30) are algebraically independent. Along
with (30), we still have to fulfill:
Rijkl =0, (31)

3

and we still have to investigate which additional requéets must be added to (30) and
(31) through equations (). The number of those independent equations will be
determined from the number of algebraically-independenipoments of the curvature
tensor using (18). The number of independent components of the curvatesertes, in
turn, given by its symmetry properties. For the algeldentities in the curvature tensor
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that will be given in what follows, cf., e.g., J. ACBOUTEN [37] (). Next, with our
convention, we will have antisymmetry in the firsotmdices from the definition:

Rapys + Rpays = 0. (32)
However, the last two indices are also antisymmetric:
Rapys + Rapsy = 0. (33)

That is a consequence of the special form (27) of ouritgff (33) is the integrability
condition for the RICCI Lemma:

9a81y=9a8y= 9,57 s =9, 5 = 0. (34)

[Otherwise expressed, (34) is the once-integrated for(83)f] The general solution to
(34) is an affinity of the form:

a

Therefore, any curvature tensor that is defined by anitgffof the form (34a) will
satisfy (33) identically. Since the form of our affin(27) coincides (34), (33) will
then be fulfilled.

We shall now consider the part of the curvature tettsaris cyclically-symmetric in
the first three indices. We can write it in thenfo

R{aﬂy} 6=2 Uaﬂ% st Tﬂyd at Tyadﬂ +Ty,8Krla('6 +Tay/] rlzm + -rﬂa/(rl;d]

=2 I_Taﬂy; st Tﬁya; at TW‘F;'B-I-TH,BK(TVKJ'*' T5VK + -IZSKy)
* Ty (Tawo* Toaw + Toa) ¥ T (s ™ Tpue + Tl (35)

That is an expression that does not vanish identieaidl/which includes only the torsion
(i.e., physically speaking, the dislocations) in thedmapproximation. We will then
have:

Riagy’=0 (36)

as our new equations. Now, the cyclically-symmetric prt(31) is likewise an
expression that includes only the torsion in the linear agpadion (and is known to
express the closure condition for the dislocatioms)the Appendix, it will be shown that
of equations (36), only the conditions:

() In comparing the corresponding expressions, one mustvebagrich affinity that the covariant
differentiation is performed with.
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Roip“ =0 (37)

are algebraically independent of (30) and (31).
From the last of the symmetry properties that charaetéhe curvature tensor, from
formula (27), one will have:

Raps ~Ryeap= 3 [Rapy 6 + Riped y+ Roap o = Ryem 4 (38)

for the affinity, as one easily verifies. Howevence one already had&z,)° = 0, on the
basis of the field equations (31) and (37), one will als@gd have:

Raps —Ryeap= 0 . (39)

We have seen that the curvature tefiggyshas all of the symmetry properties of the
RIEMANN-CHRISTOFFEL curvature tensor, on the groundsariditions (36) and the
form of the affinity (27). We can then assume thosersgtry properties in our search
for other possible independent equations. If we employtripb/-covariant, singly-
contravariant form:

Ras’=0
Rag =0

due to the validity of (18). Here, we must consider the equations:

then we can restrict ourselves to:

I?ijkl =0, (40)
Roi=0, (41)
Roiot=0 (42)

separately. All other equations will then follow fro0)-(42) as a result of the
symmetry properties. However, we can show that eq&at{d0)-(42) imply no new

requirements. Moreover, our use of the expressionsf¢23he metric and (29) for the
form of the torsion components by itself will suffite require equations (30), (31), and
(37), so the system (40)-(42) will also be fulfilled. (Tet®culations are given in the
Appendix.) When we split off the extra cyclically-symnretpart of (31), we can then
write our system of equations for moving dislocationthefollowing form:

a) ;Rijkl =0, b BR{ijk}l =0,

c My=0, ¢ Rijg1 = 0.

(43)

It is possible to replace this system of equatioite one for which the analogy to the
equations of general relativity emerges very slygigge Appendix). In that way:
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Ronk & Ba’ &
and
I?ijkl (Ef Bijkl_ Bﬁjk}l ,» SO Rijk}l =0.
(434) is equivalent to:
R,=0. (43a0)

]

R. is then the RICCI tensor that is defined ?yl = R;°®, so Is?ij has just as many

3 0 def 350 '
algebraically-independent componentsl;% :

The explicit form of (43) is given by:
Mo =2(Ok 0= Ok a0~ 0™ i Gq= 9%k ga) + T % +T% =0, (43c)
while (43d) can be brought into the following form:

E}{Oij}k E-I; ijk,O_TOik,j +Tojki - g(x]_kr + d}j -Ii-jk_ di -’j_k - @k, J

3 '3
+T0ir E;k_Tojr E.L +2T(I)<r l—ij '=0. (43d)

(43d) can now serve as the basis for the physicalpnggation ofT % . In order to
see that, we consider the linearized equationsl)43.

Tik,0=T Oik,j -T Ojk,i . (44)

Now, the connection between the dislocation de§jtyand the plastic distortiod Pl is
well-known (cf., e.g., E. KRONERLB)):

Tik =2 (B ki~ B w.) -

Differentiating with respect to time will yield:
Tik, 0 =3 (8 k. 0i = B\ 0)) -
Furthermore, the dislocation migration tendjk is defined in the literature to be the
number ofay-dislocations per unit length that migrate in thérection perpendicular to
the line of motion of the dislocations and the diken of migration. According to
KRONER [13], its connection to plastic distortion is:
BT == &si Ny .

(b is the BURGERS vector in this, which is assumedéoconstant, for the sake of
simplicity.)
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Therefore, only the antisymmetric part of the fikgo tindices ofNj will come under
consideration for plastic distortion. One can cladl time derivative of this quantity the
dislocation current tensothat pertains to plastic distortion (cf., E. F. HGANDER
[26]). If one denotes that Hy then one will have:

,Bpij,o:—hj, (45)

Tig, 0= 2 (li,j = lik, i) - (46)

and one will have:

A comparison of (44), (45), and (46) will then suggest tha wmight relate the next
purely-geometrically-defined quantifly% to the dislocation current (time derivative of
the plastic distortion, resp.) according to:

2T Oik = Iy,
2T Oik =-p Pik,O’ (47)
‘gpik,o difﬁp(ik),o = _(T Oik +Toki)'

We can then regard (4B. as the nonlinear generalization of the elementary
connection between the dislocation current and time tlerivative of the dislocation
density. That also makes the physical meaning ofl{(4%ar. Those equations give the
connection between the dislocation curr@rfl. , the material velocity ', and the time
evolution of the elastic stragy, o .

We have therefore found interpretations for all ¢ tuantities that enter into our
basic equations (43) as three-dimensional tensﬁf&describes the dislocation density,
T° is the dislocation current is the elastic strain, amf is the material velocity. The
basic equations (43) will then become equations betweer-thmensional tensors in
which time once more plays the role of a paramet€hat must also be true on the
grounds of physical reality, as we mentioned already ginbeith. In what follows, we
will then work with only three-dimensional quantitie;dadrop the numeral 3 to
characterize the three-dimensional character ofjtfatity in question, so we will mean
that:

gik:gik, Ti;k:-l;r;s, etC
3

(If we would like to employ the four-dimensional navatagain specifically then we will
characterize it by putting a “4” under the symbol.)




. COMPARISON WITH THE LITERATURE

We shall now compare the field equations (43) with thkeeavork on the dynamics
of dislocations. To begin with, we shall go intbtide-known paper by AMARI 25]. To
our knowledge, it was the first (and up to now, dh&) treatment of moving dislocations
that appealed to a geometric procedure that was extendedrtalimensions for that
purpose. AMARI therefore deserves the credit for havidgpted the differential-
geometric methods that had proved so fruitful in stadahe dynamical problems. The
relationships that AMARI derived also contain the bagoiations (43) implicitly,
although they were not actually given in the latter forirhe author generally treated
small perturbations and material speeds that were smatimparison to the speed of
sound, such that many of his relationships could be regardedndy linear
approximations. However, that came about more on thengs of simplicity and should
not be regarded as an essential restriction here, $iaogeometric methods are exactly
the tool that is suited to the task of obtaining the rigsymonlinear equations.

A first example of such an approximation is that oé tbxpressions for the
components of the distortion that AMARI referred to bytj and (1.41), which will read

):
P;‘:{Jg:ﬁ@ ﬂ with Br <1, V' «1
v

in our notations, and the inverses will then be given by:

hr{én?w:i 0}

LA Ve 1

G — K n
Wlth ﬁn(; - 5r? 5m ﬁK’
Ve ==g°Vv™.
As one sees, those formulas correspond to the lipgaoximation of (13). The fact that
one finds the expressiofl' / cr here in place of" is based upon the fact that AMARI
choset to be the fourth coordinate, nott.
AMARI introduced a metric by way of equations (1.7), amdur notation, it was:

gw=h,h} g,. (1.7)

It differs from the metric that we defined by (15) onlylratigrn does not have the form
nra , butgra = (1, 1, 1,c), with a constant that is left undetermined)(and is not
connected with the speed of soumdriori, and can be negative, as well as positive.
However, that will not lead to any essential alteratd the theory, since we can again
eliminate the speed of sound from the basic equatiquussteriori

() AMARI chose a unit of time such that the speed of saumald have an order of magnitude of 1.
() In order to compare (I)7with (15), one must observe that we would have to chqﬁ\sc: (1,1,1,

- cf ), instead ofr, in our formalism if we were to chooséo be the fourth coordinate, insteadtet , as
AMARI did.
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We would not like to go further into that connectiortheg point. Namely, we mean
that distinguishing the MINKOWSKI signature (1, 1,-11) and using the transversal
speed of sound as the limiting speed is most likely to dacguso a four-dimensional
picture of the dynamics of dislocations (if one woulle ko employ such a thing, at all).
In order to do that, we consider our starting equatid®@s) in the linear approximation:
=0.

B apys
L

We will then regard, above all, the (four-dimensiorRIiCCI tensor as the components
that characterize the dynamical description of théesys In the linear approximation,
we can write:

RE/7I3 =0.
L

If we consider tha, k-components in this, in turn, then with the use of (2% the
relationT,,’ = 0, we will find that:

P~ Ok ap— Gapk *Giaks+ Okaid + T a*t T % a+ Tia%k+ Tca”i =0 (48)
1 [(= Girr = G i + G, ke + G ir) + 777 (= Gk, 00~ Gi 0,10 + G0, 0)]
== (T %0+ T % 0+ T+ Tk + Tirr ke + T, 1) - (48)
We now consider the linearized equilibrium conditions (@6)the force-free caséd (=

0):

Gt = o, %\: 0 (o = density in the stressed state), (49)

and with HOOKE's law for isotropic bodies:

Ok =2UE+ A O & . (50)
With:
gu:dk_zfiky ,00C$ =U, (51)
we can combine (49) and (50) into:
A 10V
Or,r +=— O i +—5—=0. (52)
2p c; ot

Equation (48) will now go to precisely the (inhoremgous) wave equation that
characterizes dynamical processes whn (

(% In order to do that, one must only take care that ose ha
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1. n=-1, 2. X=crt.

We will then haveg , = P ==V / c., and we can write (52) in the form:
L

A i
Or,r t*—0Orr,i — gO,O =0. (53)
2u

If we then substitute that into (48) then it wallbw that:
% [(_ Ok, rr — Orr, ik + Oir, kr + Okr, ir)

== (T %0+ T% 0+ Trik.r+ Tk + Tirrk + Ticrr, 1) = ~Ti. (54)
For & =0 —i.e., for shearing waves — we will get frtns that:

10%°g _
~ O, + Ea—tzk == T,
and thus, the correct description of transversalesa Forg, # 0, when we contract over
i andk, it will follow that:

1 9°
- Agi + 2 gzrr =—Tx
¢ 2u+A) ot
Y7
for longitudinal waves, or:
1 0°
—Agr + — atgzrr == T,
resp., with:
C.= 24 ,
y7;

and thus, the correct relationship betweeandc, . From that viewpoint, the signature
and limiting speed are established. However, déloethat one can also avoid such a way
of looking at things without having to decide upanwell-defined signature and a
distinguished limiting speed is based upon the faat equation (54) “degenerates” in
continuum mechanics; i.e., it decomposes into twmrsands that each vanish on the

2
0 10
o’ ot
Naturally, one can arrive at that by settiffg = — 1/cf, X’ =t or other corresponding combinations that are
less customary and lead to no new statements.
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basis of the field equations. Namely, if one obsetheslinearized form of equations
(434&) and (43) then one will have:

Bik:Bi _/700[&0:0, (55)
L

with
d R,=0, b Trg=0, (55)Bid]

such that7°® will then remain undetermined. However, the four-disiemal description
will be perturbed in that way, since (43. and (43c) are only three-dimensional
equations. If one looks closer at the basic equationstl48) it will be clear to begin
with that the speed of sound does not enter into equgadrsd p), since they are, in
fact, equations of statics. However, the speed of sdaed not enter into equatiorg (
and @) explicitly either. Namely, if one observes thdt=crt, g = -V /cr, and in
addition, that a factor of 1dr likewise enters into those quantities on the basidh@f
definition of T % in equations (45)-(47), then one will see that when omkipties (43c)
and (43d) by cr , the speed of sound will also drop out of those equatompletely.
That corresponds to the possibility of developing a varsib the theory of moving
dislocations that is free from the introduction of 8meed of sound, like the one that
AMARI gave. Furthermore, it is clear in this that theesic equations will also be true for
the general case of an inhomogeneous and time-varying medie shall now return to
AMARI’s work.

By introducing a four-dimensional teleparallelism, AMARewise arrived at the
equations that are referred to in @9.

Rag/= 8, —T 2 ,+T AT ~TEra =0.
However, since he did not make the distinction betweem-dimensional and three-
dimensional quantities that is suggested by formula (133)[@nd (1.41), resp.], he did

not directly link that with the requirements (&Sc) as further geometric conditions. He
treated (1) as the spatial part of (), and therefore, in our notation:

[—
Iflaijk =0.

However, upon restricting to linear quantities, that Wl identical to (1), as one can
infer from relations (3.11), (3.14) that are given in thgpéndix. AMARI obtained the
linearized equations (18). [more precisely, equations (53) (ahfra)] from an auxiliary
consideration that he inferred from a linear relationsi@oembining the equations (3.10)
and (3.11) that he gave:

%dsz = 47T, oY ot

%dszz 2 ay dX o = (?—t'”wk +vk'|j dx d
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will give (53) precisely: ! N . .
3@k o0=9 k=0 ) +T k+T w=0.

Naturally, the relationships between dislocation densamesdislocation currents that
AMARI obtained from linear considerations represent fite¢ approximation to (48),
and will then be identical to conditions (44):

_T0 0
Tik o =T%k;=T ki

which HOLLANDER [26] already gave [the compatibility conditions (@)0.that
KOSEVICH [27] presented, resp. (cinfra)].

We pointed out that in AMARI's relation (2.2) betweelislocation density,
dislocation current, and dislocation veloait{; which reads:

0o _.,,r
T k=V T

with our notation,V' will not change with the likewise-denoted particle véioc
Moreover, that relation is true only for the casecofstant dislocation speed (cf., the
discussion below of the similar problem in HOLLANDER).

AMARI did not split off an algebraically-independent systef equations, so some
of the relations that he gave are redundant. For gleamAMARI’'s separate
consideration of the components of the four-dimensionalature tensor in equations
(3.8) that have one zero index and two zero indices,habic

0
BOmlk — Tikmo — Tomkl + Tomik = 0,

0

E\)”O'O_ Toin,o —Tonio =0

in our notations, will imply no new statements, whisltlear from equations (3.9) in our
Appendix, when one considers (44).

E. F. HOLLANDER P6] undertook the search for a presentation of the linear
equations of dislocation dynamics in a series of papé&te meaning of those papers
consists of, above all, the fact that it was thst fiime that the mathematical analogies
between dislocation dynamics and special relativityewansulted in order to formula
the dynamics of dislocations, and indeed, in a four-dim@asiform. We point out that
one will already find the linear form of equations 3n those papers:

Tik,0 —Toik,j + T ki = 0. (44)
It is written in the form:
Rotl +29 = ¢ (49
ot

in those papers, in whickk means the dislocation density, andheans the dislocation
current tensor. However, in total, the equations Wee presented in them still do not
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lead to a closed physical theory of moving dislocatiovi&e would therefore not like to
go further into the detailed results. HOLLANDER himsatiphasized that fact in a later
paper R7], which we shall now discuss.

Nonlinear equations for moving dislocations were preseiotethe first time in that
paper. HOLLANDER even appealed to a geometric procedunelér to do that, but in
three-dimensional form, and time appeared as a parantdiemethods can be regarded
as a sort of generalization of the procedure that KRRMpplied to statics. In that way,
he found the following system of equations:

109,

1
E(Vl;k+Vk;|)+ET =1,=-2V"T, (56)

mkl ?

in which the notations are the ones that we defined,land the dislocation current
tensor. We compare (56) with (4B.

2 (9, 0 — O, r g =g kgr — 9”1 gu) = — (T % + T%).

If we consider thag™ =—v" /cr, X’ = cr t then we can write this in the form:
1 0
E(Vl;k Ve +%j =-C7 (T0k| +T0|k), (57)

as we can easily check. (56) and (57) [i.e.,dd3re therefore entirely identical in form,
but the right-hand sides do not agree, since we:hav

CTTOH 7'—'\/m-|-mM .

One has merely:
T% =0 Toi = o Tk +9” Tk,

Vr
T % =— — Tk — Toik -

Initially, the sign in this is the opposite of tbae that would make the right-hand sides of
(56) and (57) coincide. In addition, from (16)edmas:

Tiko = r<k0i> = Ehé(h(?o_ h)G,)

However, that expression, and therefdsg , as well, will not vanish unless one makes
special assumptions abolff. One therefore cannot regard the right-hand aid86) as
the dislocation current tensdr)(

(Y In his first paper6], HOLLANDER still did not employ the relatiogr T% = V™ T , SO the linear
form of equation (48) that he gave there is not corrébt mo restrictions.
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In a paper on the theory of moving dislocations, HOSS P8 exhibited the
following linear system of differential equations fbetstrain tensos; :

D + A+ 1) &ij — PE;= PE"+ 1 (75 — & M) (58)

BROSS based this upon merely the equilibrium conditiohenvone considers the
inertial term in the force-free case [and thus, our éguaf26) withf ' = 0], the

decomposition of the total distortiof® into the elastic and plastic pag and 5/,
resp., according to:

Bé= B +By with Bk = &,
and the connection between plastic distortion andahsion density (cf., e.g.18)]):
Qi == &1 By, -

Equations (58) refer to the isotropic case, in which are the LAME constantg is the
density of the medium in the stressed state, rands the incompatibility tensor here,
which is connected with the dislocation density in bkowing known way (cf., e.g.,
[18]):

Nk =— %(&nl &sk Trsn 1 + &nl &si Trsn, I)- (59)

In order to compare this with the system (13), we renthak we have derived
equations (54) from (48 which however follows from the system (43), accordiog
(55). If we now observe (47), (51), (59), and the factsdf = -V /cr,xX* =crt, in
addition, then we will see that (58) is identical to (58). BROSS's equations (58) are
then included in the system (43), and (43) also includesribalmear generalization.

T. MURA [30, 31] arrived at the same physical results as the orasatie given in
(58) by a different process. MURA started from thsplacement fieldf an isolated
moving dislocation and then went over to continuous didlidbs of dislocations. He
derived the following relation for the connection beém dislocation density and
dislocation current:

a, = &k (Emnk Vimn) |1 -

As one easily sees, these are equation3 [@#4), resp.]. As in those equatiomsijs the
dislocation density, whil&mnk Vimni iS identical tdl.

We shall now briefly touch upon the work that A. M. 8BEVICH [29] did on the
problem of moving dislocations. That author considereditiear theory of elasticity
and found the following system of equations:
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oV
a) pE = Aiklm uim,k’
B)  &m Ui =~ Dy (60)
ou,
C) —k—\=1.
) at i ik

KOSEVICH then imposed the additional requirement that:

d) 6_D+ Rotl =0, or
gltj (60)
d") a_tik+£irs|sk,r =0, resp.,intensor notation

as the compatibility conditions for (@0andb). In these equationg, is the mass density,
V' is the material velocitydim is the tensor of elastic moduli, ang is the distortion
tensor, whose symmetric part is then the strairotens

UM: &l -

Di is the dislocation density tensor, dfds the dislocation current tensor.

We now see that (64). is equivalent to our condition (53), in which only isgyo
was assumed. (@f).are then the equations of dislocation statics trROKER [L3]
discussed, from which one had to go over to equationg)(8border to determine the
internal stresses. Equations 0which must be symmetrized in order to determine the
internal stresses, correspond to the linearized sygt8jrthat HOLLANDER R6] gave
already, and they are identical to (5. Finally, as was pointed before in the discussion
of HOLLANDER'’s work, (60d) is identical to the linearized form of equations (3.
With that, KOSEVICH then had the complete system (#8)the determination of
internal stresses, but in linearized form.
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Equations (61) do, in fact, define an algebraically-indepdargietem, and therefore
cannot be reduced to a smaller number of equations. rtleless, not all of the
equations are mutually independent, since differential igestxist between their left-
hand sides. One must then impose them on the rigiat-$ides, as well, by means of the
field equations.

The system (43) was derived on the basis of the teligieam that is defined by the
(four-dimensional) lattice structure of the medium. $Wall now go another step further
by allowing that structure to be perturbed at isolatedtpain also in finite regions. We
express that by saying that we have introduced phenomécadlogatter tensors, as we
would like to say; i.e., we go from equations (43) to thieiong general equations:

a) Rkl = I\_/‘jkl’ b) |%k}l = M !
0 (61)
C) M = Ny, d) |%ii}k = lﬂk
We will often also combine (64) and (61b) into one equation:
Rik = Mijx , SO Miijy 1 = Vi (61a +b)

We shall now discuss the system (61) and consider be the first of the differential
identities that exist between the field equations.

As is known, the complete three-dimensional cumeatensor fulfills the BIANCHI
identity, which can be written in the following far

O

H am = Rei a1 = Reij i1 Py k4 Reij iy 7= 0 (62)

for non-vanishing torsion, with the use of the miotathat is explained in the Appendix
(cf., J. A. SCHOUTEN37))(*3. When we substitute this in the field equations,will
get a relation that we can write as follows:

Hijan = Mtk iy = Mg B "+ M o1 " =0 (63)

In order to obtain further identities, we recdtletstarting equations (19) — in
particular, (19) — which will indeed be fulfilled due to the hon@geous system (43).
Now, the four-dimensional curvature tensor willeNkise fulfill the BIANCHI identity,
which reads the same as (62):

Reaamn™ Ranon Mwi'* Ragon y" =0 (64)

(*3 When comparing the corresponding expressions, one musvehseich affinity was used for the
covariant derivation.
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However, the four-dimensional curvature tenBgg,, can be expressed b&-m T

and B{ou}k in our case (see Appendix). Therefore, (64) expressattide between the

left-hand side of (61). It is also clear that alltleé identities are contained in (62) and
(64). In particular, we consider the identity (64) far G, 1, v, A) = (, j, k 1, 0), so:

E?{inku‘;‘of AR{ij|d| 4h:)}k °+ ﬁij|d{| 4|3}kUE 0. (63)

By reverting to the three-dimensional quantities, (63) tten be brought into the
following form:

F\‘)ijkI,OE r|?|k +r||?|1 rjl?ik _rikojk
[ r|l(<)r+r|rok+rrk|]+r|k[ r| r]I lu]
_ru[ err+rj(r)k+rrk]] er[ |Ir |rI r||]
Ls[rik il _rjk rn]
+0” Ri.r + 0% R + 0| R|rkl +0” « Rin + 0”1 Rixr
* Reojnit R ¥ Rowaii = Biwri = B = &

+ r;k[S{Oir}l + Bon}r + g{%lr}i ] +I, jl [ 3Bik}r @}k + {QRk i]

- rirk[E{Oer + 50|j}r+ ?%n}j]_rnr[ 3Bjk}r + ﬁ}k +{9R;< j]
- 2T% R+ 2T% Ry " (66)

We can now verify that none of the other index borations in (64) will yield any
independent, non-trivial identities beyond (62) 468). However, we can avoid that
verification, since will see (cfinfra) that no further identities will come into play by
explicitly integrating (61). A relationship wilhen exist between the matter tensors that
is completely analogous to (66), due to the figJdagions. We shall cite those equations
only once:

Mit, 0 = Njj, ik + Nik, i =Nk, it = Nir, jx
+r;| [— Nik,r + ] + ...— 2N [F,kFS —er |I]
+0” Migr + ... +Lji +
+rjrk[Nir|+...]+...+2T0krMij|r. (67)

Just as one had with the homogeneous field eqsaid3), only the dislocation
densities enter int&Ry = 0, while the equation§, = 0 include the influence of the
motion of the dislocation, when expressed in teofni$s current, so one can understand
that the Mum in (61) means the phenomenological matter tensbite Ny is its current.

In an entirely analogous wayjx can be regarded as the hypothetical lack of céosfir
the dislocations, and its current can once morexpeessed bl . (67) will then give
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the connection between the matter tensor and thentsirrélhe currents determine the
time evolution of the matter tensor, as they mushe Text question for us to ask is
whether the nonlinearity of the basic equations will impny restrictions on the
phenomenological matter tensor (the dislocation cwsrergsp., in the case of pure
dislocations).

We would next like to draw some general conclusions fifte identities.

1. Geometrically-speaking, introducing the matter tensmans perturbing the

: r
teleparallelism. However, the form of our displacetsymbolsl™, = {i k} + T+ T "

+ T "y further guarantees the validity of the RICCI lemma:

gijur =0, (68)
which is essentially equivalent to:

Riw =0. (69)

The physical meaning of our parallel displacement isoiswis: Suppose that we are
given any physical quantity that is expressed as a tdéiesd (P). If we now parallel-

transportsT (Py) to P, using I}, then we will get‘I:(PZ), and the difference:
T(P) - T(R)

will yield the change of (Pi) relative toT (P,). If the teleparallelism is perturbed then
that will mean that this difference depends upon thetiine that we take along the path.
In other words, the rotation of the element of mattér mo longer be an integrable

function then; physically-speaking, it will not be atstfunction.

However, if one maintains the RICCI lemma then thilt mean that this difference
does not depend upon the difference between the lengths pétins. In other words, the
relative rotation is an integrable function. The tiotawill then be a state function, as it
must be for the bodies that we shall consider here, @ge, E. KRONER 38g)).
However, if one had:

Mij # 0

then the rotation would no longer be integrable. The(RIEmma would no longer be
fulfilled then, and instead of (68), we would have:

Oik |jr = fikr -

The tensoffy, has just as many algebraically-independent componeri@a(namely,
18) and is therefore equivalent to the latter.
We will always demand that:

M,, = 0.
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One can now conclude from (66) [(67), resp.] that itisedf for one to demand that
the latter condition should be true at one time-pwoinbrder for it to remain true at all
times, independently of how all remaining matter tenaocs currents have been chosen.
Namely, one has:

Ri&ﬂ = gorRi&,r + gori nKLE + é}J iBL+ dk ijh_\i+ & ijkB' (70)

[From (67), one will have a relationship for the matemsorM,, that reads the same].
However, if M;,, # O at some time-point then the further time evolutidnttmse
quantities will follow from (70); it will depend upon ongy and M;, themselves.

2. Inthe case of a pure dislocation, the equation:

Reijgy1=0

will express the fact that a dislocation cannot endhénimterior of the medium (viz., the
closure condition for dislocations; cf., E. KRONER]) (**). However, the treatment of
dislocations that are not closed still holds someordtcal interest (see, e.g., E.
KRONER [18]). Nonetheless, a violation of the closure conditidgll not only be caused
by Vix , as one might suspect, but can also be a result ofisater tensors and their
currents, in general (which will naturally give rise ton@nishingViu then). Namely,
one infers from (66) that:

R{iik} 0= 2(5{0jk}|,i+ 50k}l,j+ ?’R)ij}l,k )
+ 2Tjkr (5{0ir}| + Bon}r + oM )-2n' 5jk}r
+ 2Tkir (5{0jr}| + Bou}r + ELIL )_zrnr 5k}r
+ 2TijIr (5{0kr}| + Bom} T 3%"} k )_zrk||r 5u r
+0" Reijg 1,0 + 9% Ry 1 + 9% Riing 1 + 9™ Riiry 1 + 9”1 Reigg «
=2T% Ry "+ 2T %pry Ryt !
_2Tjkr (_rfl +Fifl +r|rj)
-2Ty' (_ri,r +F£L "‘rnj )
—2Ty" (T +Mg, +T

- 4r£(-|-jkIr rﬁ +-|T<ir r?l +-E rrkT) (71)

[and an analogous equation for the matter tenser tal (67), resp.].
One learns from (71) that in the theory withoutteratensors, the dislocations will
always remain closed when they are closed at justime-point, on the basis of the field

(** The formula that is denoted by (45) itf] is the linear approximation iy 1 = 0. One will find
the rigorous equations in the forR). . = 0 in KRONER.

ij >
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equations; that will be true in the linear theory ad a®lin the nonlinear one. However,
if one has non-zero matter tensors then the sitosiio the linear and nonlinear theories
will be different. In the linear theory, only equati@i.d) is responsible for determining
whether the lack of closure of the dislocations (whsbbuld naturally not be confused
with the lack of closure of the BURGERS path) changeasme or remains constant (so
in particular whether the dislocations remain closednot). One infers from the
linearized form of (71) that the necessary and sufficeemdition for the constancy in
time of the lack of closure is:
L ikin = 0. (72)

(This can be satisfied identically by way of, e.g.,AmsatzLj = Li,j — Li,i .)

If we allow a temporal change in the lack of closure@lisfocations in the nonlinear
theory then from (71) all matter tensors will contitd to that, in general. The time
evolution of the lack closure is also given explicily (71). Conversely, the condition
for the constancy in time of the lack of closure isyatem of differential equations for
the matter tensor. We restrict ourselves to theomant case in which the dislocations
should remain closed! The system of equations will teed:

Liw, i + Liit,j + Lok + T Ly +T5 L +00 L,
ST )T (G )
+ T (L +he Ly )+ T M
=T N+ N+ NG
- T (=N, +N  +N;)

_Tijr(_NKI,r + N«l + N|k)
=2 Nrs (Tjkr ri? +Tkir ro +-|j- rr|<|S) =0. (73)

[Like (72), these are three independent equations.]

One can distinguish some different cases here. i@anghe simple case in which
only Mj. is non-zero. (73) will then reduce to some algebraiations between
dislocation currents and the matter tensor:

T %kir 1 Mijy 1 = 0. (74)

If one continues to allow the dislocation currenb®arbitrary then (74) will give three
algebraic conditions for the matter tensor. Howegance, from (63), it is already
subject to three differential conditions in the forfrite BIANCHI identities, and due to
its symmetry properties, it has only six independent comisn in all (one must also
observe the closure condition of the dislocatidig) | = O here), the matter tensor itself
must vanish for a sufficiently-general motion of thelattation. Conversely, if one is
given the matter tensor then (74) will express thregtricting conditions for the
dislocation density. My will then represent something like an obstruction tofthe
motion of dislocations.
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One will get an analogous situation when one also regasisemaining matter
tensord.jx andN; , as well as the dislocation density, as freely-givBnplace of (74), an
inhomogeneous system of equations will arise from (73)clwbne can write in the
form:

T k1" | Mijy i = Pija - (75)

Mi will then be determined completely for a givigjp and a sufficiently-general motion
of the dislocation. On the other hand, being giWp and Py will again imply
conditions for the motion of the dislocation. Furthere, one can regard all quantities in
(73) up toT; " as being given, and in that way, one will get threetalje conditions for
the dislocation density itself that have the form:

T Vig e = Wi (76)

and the six degrees of freedom of the dislocatiore ¢itisure condition will reduce the
original nine degrees of freedom to precisely six) wilkéguced to only three. Finally,
(73) can also be regarded as a system of differentialtieqaafor the partial
determination olj . All other quantities in (73) can be given freely theimce the
integrability conditions for the system (73) are fudfdl identically in our case, where all
indices run through only the numbers 1, 2, 3 (see Appenditipse).

3. From equations (67), the time evolutionMyfs will be established by the matter
tensors and their currents. On the other hand, onekfrom (63) thatjq is subject to
three differential conditions; no time derivatives entgéo those conditions. They will
then refer to one time-point (viz., static conditipnsOne can now show that it will
suffice to require the conditions (63) at one time-pambrder for them to also be
fulfilled at all times on the basis of (67). Namafypne takes the time derivative of (63)
and expresses the time derivative of the matter tamsog (67) and the time derivative
of the affinities by means of the field equations thee will find, by direct calculation,
that:

Hiiin. 0 = 9" Hikin,r — 2T %" Hign — 2T %" Hijn
+0” nHigr —0” 1 Hikn — 9% k Hin + 9 j Hiran + 9 Heian - (77)

One reads immediately from (77) that (63) is, in facstadic condition that no longer
needs to be observed once it is fulfilled, and iseafoee inessential for dynamical
problems.

We shall now discuss the question of the solubilitynefliasic equations (61).
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We saw above (see also the Appendix, section 4)theabasic equations of the
theory of moving dislocations are similar to EINSTEINguations of gravitation. The
stress field in the former corresponds to the graeialifield in the latter, and both are
expressed in terms of a metric tensor. Moreoverstleces of that metric, namely, the
dislocations and other lattice fields, in the one themrrespond to the masses in the
other. The field equations are nonlinear in both cadiswy, in the theory of relativity,
one has the following fundamental state of affairsorié is given the distribution of
sources (say, a mass point) at one time-point, andntisnal structure is known,
moreover, then its further motion will be established unigly the field equations
alone. That is essentially a consequence of the neanity of the equations and the
BIANCHI identity. That is the content of the celated work of A. EINSTEIN, L.
INFELD, and B. HOFFMANN B89, V. FOCK [40], and A. PAPEPETROUA4[] (also
see the monograph of L. INFELD and J. PLEBANSHKP]). One might then suspect
that a similar situation prevails in the theory of nmgvidislocations. However, in
contrast to that, we shall discover the followingatieinships upon integrating the basic
equations:

The system of equations (43) can be integrated when igas the distribution of
dislocations at one time-point and the dislocationentrifor all times, which one has
complete freedom to do. Likewise, for the extendesiesy (61), one is, in addition, free
to choose the distribution of matter at one time-pamd its current at all times. (Here,
one needs merely to consider the viewpoint that wasusised in Chap. 1ll.) The same
thing is also true for the dynamical generalization BMNER'’s theory of foreign atoms,
to which we shall return. It is therefore true in fgénerality that any solution of the
linearized theory can be extended to a solution of therous theory. That is the
dynamical generalization of the theorem that KRONEBS presented for statics to the
effect that that the essential drift of the physwamtent of the theory of dislocations is
already contained in the linear equations.

We will deal with the proof of those facts in what do¥is. In order to do that, we
shall show how the solutions of (61) can be obtained rtoakbitrary degree of
approximation by approximation process. In that, we simgeal to the same process
that was developed in the celebrated work of A. EINSTHIN,NFELD, and B.
HOFFMANN in order to derive the equations of motion fomsses from the field
equations for gravitation (which shall briefly be callee ttEIH method” in what
follows). Since we would like to apply the process Exp), we first need to extend the
system (61) by way of the equilibrium condition (26) arelrtiatter equations:

d ; i
a) Gir —pav' =—f, b) Gk = dic (&s) = G (Ors) - (78)

As we have discussed already, those three equatiogsth&w with the algebraic
conditiong® = - 1, enter in place of the four coordinate conditiongerieral relativity.
In our RIEMANNIan space with the metric that is defirmdstrain, we can also interpret
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them geometrically, as such, since the Cartesian c@edsystem that we have defined
in our EUCLIDIAN space means only an arbitrary coordisgtem in it.

It is clear that changes in the conditions (78), ardetiore changes in the forces and
matter laws (which will then mean only changes indberdinate conditions), can have
no effect upon the behavior of the solutions of thacbeguations. It is therefore also
permissible for other conditions to enter in place &84, b), which might come into
play, for instance, as a result of a dependency ddttiess tensor upon the time derivative
of the distortion tensor or by considering moment séesdn that latter case, the stress
tensor will be asymmetric, and (@B will be replaced with:

C) g

iy

d . .
-o—V =-(f'+g;,). 78
o (f' +o,,) (78)

The stress-strain relationship is now true fr, and the antisymmetric patk> is
connected with the moment stréds; = — M;;s by:

d) Mistr + 20> + Mgt = 0, (78)

in whichmg characterizes the external moments in that. Ifreowe connects the moment
stressed,st with the structural curvatures by a material law (cb,,e€. KRONER 43],
AMARI [ 44)):

f) Mist = Myst (hijk) (78)

then one will once more find “generalized coordinate ¢@rd” when one substitutes
the differential equations (748.in (78c) with the use of (78).

However, we can restrict ourselves to the force-fneenogeneous case, for the sake
of simplicity, and substitute the very special sertds (

C) Ok = 20l &k + 2L & &k + 2l & &s Ek+ .. (78)

in (78b). The series (78) has only a formal significance, since the elastitstantsys ,

. are no longer known. This restriction to second-oelastic constants, which is
prescribed in practice, also implies a restrictiothi usefulness of the strictly-nonlinear
theory, since it makes sense to push the approximation amifiar as higher elastic
constants can be given. However, since we are stegtein purely-mathematical
guestions of solubility here, in order to be able to ng&eeral statements, we must
continue up to an arbitrary approximation.

If one now considers:

Pe-Li wmot peplueEVT la=deto)

(Y That means we are no longer dealing with the genetabjsic case, but that is irrelevant here.



IV. — Integrating the basic equations. 35

and writesu = st 0 = J g g then (78) and (7&) can be combined into:
P

1
Oi Oi or _
25r,f+2v1(£isl£§r),r+ +2Vn (‘gisl‘gslsz“"gg r),r+\/Eg ,0_g 8 =0. (79)

According to the EIH method, we can further restoatselves to quasi-stationary
motion (i.e., all velocities that enter into consaen shall be small in comparison to the
speed of sound), and we shall employ the developmenttAfsiathe metric that is
customary in that case (cf39). We shall write it out for they, andg”, since there
exists a simple physical interpretation for those camgpts in terms of strain and
velocity:

Ok = t 9yt Oyt Gyt
2 4 6 (80)

gm: ga+go+go+_“,
3 5 7

and in addition, we havg’ =— 1. We have chosen series of only even (odd, resp.) orde
to appear in order that radiation terms should not appEaat corresponds to choosing
the partial sums of retarded and advanced potential 3f), [Since one must hawe<
cr, one must substitug® = -V / crin (80) with one order higher.

(80) corresponds completely with the series AnsatzenBiHd method, up to other
coordinate conditions. Here, we have to extend theselafements with the series
Ansatz for torsion, and indeed:

(81)

We again substitute the series Tofi with one order higher, since a factor of dr vill
enter into our definition of the dislocation tengof., (45) — (47)]. Since® = cr / t,
guasi-stationarity will imply that:

g uv,0 - gl,uv,i ’ (82)

in addition; i.e., taking the derivative with respéo x° will raise the order of smallness
by one step. The meaning of the developments (8Q), consists of the fact that the
field equations will split into equations for thedividual orders of the field quantities
that will then be relatively simple to integrate.

We shall now turn to the case of the homogenequsat®ns (43); i.e., the case of
pure dislocations. If we substitute the serieg (8Q79) then we will get the following
system of equations:

a) _gir,r:O’
2

b) -9 irr + gm,o = _%Vl( gis1 gslr) re (A)
4 3 1 2 2

0 -9,,+9%,=NL(g g.9 ¢, § g,
2n 2n-1 1 2n
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in whichNL; means the nonlinear terms. [We point out that thehlfid sides of (A) also
agree formally with the coordinate conditions thaé @mployed in the theory of
relativity.]

We shall now substitute the developments (80) and (81)theosystem (43), in
which we shall employ equations (43), instead of (4%). We will get, individually:

1. For (43&’):
1) %(_g kI,ss_gsskl+g kslg_ g Isb%

(T sk, s skl s 2 kssT T Is.s)<I

2) %(_g K,ss g ss kl+ g kslé_ g Iskl

= _(T sk, s skl s 4 kssT T Iss)<

B
+BLkI(grsgmn’ grs;r mnt ;I— rst;r mp)’ ( )
4 2 2 2
3) %(_g Kl,ss g ss Wt g ks it g s kl
= (T sk, s skl s on kssTTn ISS)<
+BLkI(grs gmn’ grs mnt! rst Tmp()
in which BL,, (...) mean linear forms.
2n
2. For (430):
S
= _%glj E)_-L-O _1‘0“ !
2 3g%+g%)
N C
= 30,077 +BL(g. 9" ©
! 5
3) -39 Oij+ g O,ji)
2n+1 2n+1
= zguo 2n+10ij_2n+l "+;Bn!fl(g gm)’

3. For (430):



IV. — Integrating the basic equations. 37
1) -Iz_ijk|+lek]+lek| :0'

2) -E ijk | +T|Jkl Tijk l = BquI ( gs omnq ! T Trst) (D)

3) -Zl—nijkl +T|Jkl +T|Jkl = E’nl-ﬁm (4 Tgs Tog To)

and
4. For (43d):
1) -gijk,0+-12-ijk,0+Tuk 0~ -Iz_ _I?kl’
2) _(—g |kJ+-IS- ]kl)__ ijk , O+ BLuk (gor mnq’ grs mn’ ;rmnquOI’S)’ (E)

3) _(T+ |kj+ T ‘ )__ uk O+ BH]k (d) Jr:nq’ gs TOmn’ I\nq r‘)

on l]kl

The reason for the fact that the terms in (E.1l)aar@nged differently from the ones in the
remaining equations of (E) will be explained later.
One succeeds in integrating equations (A)-(E) in the oty way: One considers

the lowest order of approximatio‘g'\ iiI((x‘, 3(0) and go to a time-poin(t)<0 at which (D.1)

is fulfilled; naturally, that is always possible. @m® one hand, that is because physically
that means that only closed dislocations are given aatheamatically, that the
homogeneous equations (D.1) are integrable, as well ashibmogeneous ones (2), ...,
since no integrability conditions exist for those systésee Appendix, section 5). One is
then completely free to choose the dislocation cusrant the first approximation

'gijk(x‘, 3(0) at all times. T (X, ) will then follow from (E.1) in a trivial way. lbne
considers the identity (71) to the lowest orderd(&mus in the linear form) and the fact

that (E.1) [i.e., the lowest order of approximation (43.a)] is fulfilled already then it
will follow that equations (D.2) [i.e., the lowestder or approximation for (43.b)], which

we initially required to be fulfilled for only(s)<°, are also fulfilled for all times.

We now go on to equations (A.1) and (B.1). We endie following remarks about
equations (B): The curvature tensBfq can be decomposed into the RIEMANN-
CHRISTOFFEL curvature tensor and a torsion parbiting to:

Ri = R i+ T (82)

and in the case of a pure dislocation, the fieldagigns can then be written in the form:
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0

Rijkl == Tijkl . (83)

Now, for the RIEMANN-CHRISTOFFEL curvature tensor bseif, one has:

0

R =05 (84)

i.e., from (82), one seems to have the additional ddrtizat:
Ty = 0. (85)

However, since one has the BIANCHI identity in thenfof62) for the complete
curvature tensor:

Reij ki = R k" + Ryij ek hapt " =0, (86)

when one substitutes (82) in (86) and considers (84), dhieawe:

Teij kg = Rej o hoyk” + Reij ok hap " =0, (87)

in addition. The conditions (85) will then be fukditl already to an arbitrary degree of
approximation when the field equatioRgs = O are already fulfilled to the foregoing
degree of approximation [since the identity (87) differs frequations (85) only by a
bilinear tensor]. However, that is precisely the aagbe approximation process.

We now substitute (A.1) in (B.1). We give the geneddlit®on to those equations,
which fulfills the conditions (A.1), in addition, dtan™ step in the approximation. Since

the right-hand side of (B.1) is time-dependent, we Wit getg ,, (X, ¥) from those
2

equations, and (48’) is already fulfilled at all times.

The left-hand side of (C.1) has the form of a defoinat There are then
integrability conditions for the right-hand side. Heowrites the right-hand side in the
form:

Ki5-2(9%+9%) -1}
then that will read:
|§ij,kl +|§ki,ij _|§ik il _|§j| ik E_(r;m +rlijj _rig,n _rjfik ) =0. (88)

If we observe the identity (66) in the lowest orddrapproximation (viz., the linear
form), as well as the fact that equations @&nd (43b) R (X, xX°) = 0 are fulfilled
already in this approximation, along with (dB.viz., ISQ{O".}k = 0, then we will see that

(88) is, in fact, true. We can then get the fuongig ®(X, X°), as well. We shall also
3

give them in the” order of approximation.
We now assume that we have solved the field empstip to and including ordern(2
— 1) and then determine the solution for the negeofrom that. We again begin with
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equations (D) and (E). According to our procedure, whichased upon a step-wise
specification of the local dislocations and their cusethat corresponds to the
development of those quantities in the reciprocal spésdund, we must then giVZE ik

n

in (D.3) in such a way that these equations will belfetfi Since those equations have
no integrability conditions, as we remarked above, whthitbe possible with no further
assumptions. However, the right-hand side of (D.3)ckwhs known from the lower
approximations, is time-dependent, so we will also have-tlependent quantities in

-Zl;ijk (X, x%). We employ those quantities in (E.3) in order to mheiree T 0.

2n+1
However, the dislocations do not determine the curnemtguely, since there can be
dislocation currents without any free dislocations appegarjust as there are electric
currents without free charges. That corresponds to dbe that only the rotation

expressionleoik i leoiki will follow from (E.3). One is still free to choosegradient
n+. ! n+ ’

expression of the forr®% ; when one establishds’ . [The full expression foff % is
required in (E).]

Naturally, one can start with the first level ofpapximation, just as one does here.
However, one will better see that the dislocationa &itme-point and the current at all
times can be given independently of each other infardiit way. Since the left-hand
side of (E.3) has the form of a rotation, there dlintegrability conditions for the right-
hand side. If one sets:

__( T Ok,j_ T° )

2nS+1 kij d;f 2n+1 i n+1 ki
then the right-hand side of (E.3) will read:

S . — R
kij 3 {O0ij}k ?
2n+1 ol

and the integrability conditions will take on thaerh:

amakin oSkt S (Znsf{ou}k,n’L 2r$+F1%0 kit 2n3+|§ v i)
= (R pipknt Roui™ Rogr)=0. (89)
2n+1 2n+1 n+ 1

If one now observes the identity (71) and consideas (D.3) is already fulfilled at all
times so B{ijk}w = 0, and furthermore that the field equations led foregoing order

should be fulfilled, by assumption, then the vayidif (89) will follow immediately.

The right-hand sides of equations (A.3) and (Bu® known with that. If one now
substitutes (A.3) and (B. 3) and isolates the knfwmations from the unknown ones then
one will get a system of equations in the form:

AQyutOeu= '2:nk|’
2n

2n
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in which |2: « combines all of the known functions. Contraction wigid:
n

(X, %) =3F (¢ X)), (90)

and one writes: _
Ag (X, X)) =F (X, ) - 9, x) . (91)

If one first integrates (90) according to:

g, = [G(X-X)FF (X, ) & X

and then substitutes that in (91) then it will folldvat:
Ju (Xi’ x°)
2n

:jc;(x'—%){ WK, 2) = (je(k %) Fol %, &)) a% R 92)

If one constructs the expressian,,, from (92) then one will see by partial integration
2n

that equation (A.3) is also fulfilled, due to the prop@iftyhe GREEN function that:
AG(X -X)=d3(K =A%)

(92) is then the solution of (A.3) and (B.3) for all timeBhe right-hand side of (C.3) is
also known with that. However, as we have estatdighefore, (C) has integrability
equations, and with:

-4(g %+ g%)-T

K ij iJ 1
2ns1l gef 2n+1 2n+1

they can be written in the form (88) for the order €21), so:

- (anﬂi(ij,m'*' N |?| ss ZLlﬁ(,jl_ Llijk ) =0. (93)

2n+1=—

However, (93) is true, due to the identity (66), on thesbasithe fact that we have

already fulfilled R“k, (X, %% =0 and R{O”}k 0, and all field equations of lower order of

approximation should be fulfilled by assumption. We dantintegrate (C.3). We then
form the equations:

l(g0| it gO]JI)_ ZgljJO i _TO+2§+' (94)

iji i,
2n+1 2+l 2”“1 It 2ne]

Repeated differentiation will yield the equations:
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Ag 0|| _-; g UJO

ol 2n+1 " : 2n+1“'

2n+lﬂ e (95)

whose solution is given by:

o (X, x)—je(x X)[ g”0+2 T, (% )= B, (% %)} a5 (96)

2n+1

One then substitutes that in (94) and obtains:

Agol—gmo +2T° +2T°? - 2Bl —2910{].'. (97)

onel an+1 ¥ an+1 "

The solution (97) is then:

g "0 =[G = 3)| 8,0 (6 D+2,T5. (% D=2, 7, (% %

2n+1

“BL,, (€. %)~ g%, (X, f)} ¢ & (98)

2n+1°"’

in which the term g * (X', X’) under the integral is defined by (96). One can verify

2n+1
that (98) is, in fact, a solution of (C.3) with the wé¢he identity (96).

In contrast to general relativity, in which the equatimisthe second stage of
approximation can first be integrated when a well-defirmed df motion is assumed for
the sources in the first approximation, etc. (c39]), here we have to show that the
approximation can be continued up to an arbitrary degreenaittestricting conditions
on the sources and their currents. We can generglligathing about the convergence of
the series that are obtained in that way. However,might assume that this is also
guaranteed for properly-posed physical problems. In all@fttual physical examples,
one must truncate the series after a few terms anysiragg higher elastic constants will
no longer be known.

Before we go into the integrability of the basic equagiwith matter (61), we would
first like to turn to a discussion of the dynamical asien of the continuum theory with
foreign atoms, namely, KRONER’s general continuum mpe¢cf., [18]). The
homogeneous field equations (43) were constructed upon shenpSon that a lattice
orientation is defined uniquely at each point of a crystdle perturbed lattice directions
of the real crystal therefore emerge from that of teal crystal by way of the
distribution of dislocations and their migration. Aoting to KRONER’s argument, the
orientations will still remain preserved in the crysthen one assumes that intermediate
lattice atoms are introduced into the crystal, alonth whe dislocations. They will
likewise alter the lattice structure and lead to intesteesses. We can describe the
alterations that are due to the foreign atoms by a quiastic deformatiore % that will
still remain when we cut the mass elements and almmtto relax (cf.,18]). Indeed,
we now have:

a) hK hjL O = Gj with b) Ci=0gj—2 SQM , (99)
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instead of (6), as before, in whicfj again characterizes the elastic deformations. The
dislocation density is further given by the expression:

c) Ta' = hihk. (99)

The basic equations of the theory with foreign atdmes remain formally the same.
One merely has to replagg with c; and decompose; according to (99.c). In this; %
is then the given quasi-plastic deformation that origat the foreign atoms and
determines the internal stresses, along with the @istot density. If one adds the
world-lines as the fourth curve congruence in the tramsto the time-dependent theory
then when one proceeds in a manner that is complededllel to the development in the
beginning, one will get equations (19) as the starting equatiorihe theory with foreign
atoms, but in whicle,, now appears in place gf, . In this,ci is connected witlgix by
(99.b), and we will once more have:

A
i i v 0i
:h?h/'\/f/\ =—h =—— =¢
C;

for the remaining components.

One must then regard the system (43) as the basic equttticthe theory of foreign
atoms in the time-dependent case, in which one merglgogsgic with cik using (9%);

" appears in place @f ', but it still has the same meaning, namely,' / cr . When
one expresses the appearance,pfin place ofg,, by means of ac’ that is placed
beneath the symbol, the equations of the theory wihign atoms will then read:

a) R" =0, b) B{ijku =0,

) r°_o d) Ry =0. (100)
(100a) and (10() can be once more combined into:
E\’uku =0. (100a +b)

When one decomposes all terms that are connectedRithone can also give (100) in
the form:

a) ﬁi]kl Ivlukl’ b) |%k}l = Ijk| '
c) ry=Ny, d)

CIJ

(101)
3{0|J}k Luk'

(@ + (b) Rik = |\£| ikl with V ik — M {iik} 1 * I\Cﬁ ikl = |\£| ikl _\{ ikl
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which formally coincide with (61). [The left-hand sidef561) and (101) are the same.]

However, it should be emphasized that there is sengéial difference in the meaning
of the matter tensors here and in the other theogmely, whereas the matter tensors in
(61) mean the dislocations of the lattice structures tosure conditions for the
dislocations, and their time evolution, that is n& tase here. Due to (&9and (99%),
equations (10@) and (10) now insure the existence of a teleparallelism and the
closure condition for the dislocations, while (I€)Gand (10Qd) guarantee their temporal
conservation.

We have shown that the differential identities (62) &6) are fulfilled for the left-
hand sides of (101). That must then be true for the hghtt sides, as well, and thus, for

the tensorsM i Vi Ny, and L . However, that implies no restricting conditions
Cc Cc

on those tensors, since analogous differential idesitare also true for the left-hand
sides of (100). We shall shortly show that explictdy the case of BIANCHI identity
(62). Here, we shall denote the covariant tensorishadefined with the CHRISTOFFEL
symbols forc; by “||” and the one that is defined by the CHRISTOFFEL®ymforg;
by “;”. Along with:

Riij 1k 1y = Rij 1t 1Py k" + Reij e hny1 " =0, (62)
Rij ki i = Rij 1 1oy k" + Ryij ey 17 =0 (102)

Due to the field equations (101), one must then have:

one has the identity:

M gij i oy =M g1 1B k" + Mg £ =0 (103)

r r
ukl I:\>le| - Ijk| y {I k} = {I k} + Firk . (104)

With that, the covariant derivatives can be expregséerms of each other:

We now set:

R

AT

= I?ijkl;n-*-(rI r:w qus) !
and finally:
|]k||h F\"JkI n— c ijkl ;n (rl pqs) : (105)

(The expressions in parentheses shall then starfdudoterms of that kind, for the sake
of brevity.) If one substitutes (104) and (105pi(t02) then that will imply:

Reij 1k ooy = R 10y i+ Rt 1" =My + Mgy By = Mg B+ (A0, R )
-0, (106)

If one observes (62) then it will follow that:
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I\g Ltk sy~ {IJ|I‘|| h1}k {.] k| hﬂ (n r:wB pqs) =0. (107)

(107) differs from (103) only by bilinear terms aisdtherefore always fulfilled already
with our approximation procedure by an argument ihased repeatedly at each step of
the approximation. One shows in precisely the samag that no conditions on the
tensorsl\gl il N V il andV i Will follow from the identity (66).

ij?

The integratlon of equatlons (100) [(101), respyv proceeds in complete analogy to
what was done in the foregoing case with no foraigms. We therefore do not need to
go into the details of that procedure.

We shall now apply our approximation proceduredoations (61). In order to do
that, we must first extend the series Ansatz ta¢hsordM, N, V, L. When we assume
series of the following forms, the field equatiomsl split into ones for the individual
levels of approximation, as before:

MI]H I\g Ijk| M ijkl + !
\/I]k| \2/ ijkl + VleI +-
(108)
N. =N.+ N.+---,
ij g 5 U
I‘ijk = Ig ijk + Igijk +

In order to avoid unnecessary repetitions, we ictsburselves to just the case in which
the dislocations and their currents vanish, ancefoee only the tensorist ja andNj are

non-zero. Only three groups of equations will rema the approximation procedure,
namely:

1. The “coordinate conditions” [i.e., equationg (& page 35]:

1) _gir,rzo’
2

2) _9‘”+ gO‘;(l):

3

_%Vl(gis1 9slr)r ' (A)

3) _Zgir,r+ g 0i2(1): I>”T(gs gnn’ gs d)ﬂ, dn gm,r"")a

2n+l

2. (61a):
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1) l( glrss gsskl+gk$ glskl Iyl kp

2) 3(9us Jssut st 9 5= BL(G G 2+ M, (F)
4 4 4 4 4 2 2

3) %(_g Kl,ss g ss at 9 kssT g lss)<: BL( gfsg”)‘+ zerI K
2n 2n 2n 2n 2n

2) —%(g°‘,,-+g°'}i) ~3 90+ BL(G g+ N . (G)

3) 1(gm+gol)_ -ig |Jo+B|i-(Q é))+2n1.

2n+1 2n+1 1 2n+1

If one starts from the first approximation then onestgive I\él g ata time-point%)<0

such that the integrability condition of (F.1) (i.ehetBIANCHI identity in the linear
approximation) is fulfilled. The conditions fo\g -

O

0
|\£| kl,l_%l\g k=0 (|\£| w) = 0, resp., withM w = My —3 g, M,") (109)

must then be fulfilled at the time poir%to. In addition, one can givé;l i X, X
arbitrarily and arrive at\él (X, X% by simply integrating (67). Equation (109), which is

the linearized form of (63) (for vanlshlng dislocation dnsis therefore preserved for
all times, on the basis of (77)g " (X, X% then follows by integrating (A.1) and (F.1),

which takes exactly the same form as the integratiofAdl) and (B.1). We then
substitute that into (G.1). (G.1) has an integrabdiydition. If one writes the right-
hand side of (G.1) in the form:

39+ gD+ N,

i et
then that condition will read.

= (lél kl_gz),ij +(N ru )kl +(Nk| O i +(l;!j _réjfy)d =0. (110)
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If one considers the fact that (F.1) is already lfeti at all times and combines the
identity (66) with equation (67), both of which are takethim linear approximation, then

one will see that (110) is fulfilled. One can therefdetermineg® (X, xX°) from (G.1)
3

with no further discussion. [That happens in precisbé same way as it does with
(C.1)]

We shall now further assume that equations (A), (kdl, &) are fulfilled up to an
including order (& — 1), and we would like to show how one can then arat the
solution to the next-higher order. One must therefoxe onore demand the BIANCHI

O
identity for I;/I kI(I;/I «» resp.), into which bilinear terms of the lower ordaiso enter
n n

now.
|\?|'=|\?|'—MD' ' +|\/|Dr | =0
2n k)l — 2n k,1 r kl k |’| - 1
2n 2n
SO
v | DI r Dr l
Iyr!kJ_Mr Kl -M, [ (111)
2n 2n

in which the right-hand side of (111) is known and time-ddpahnow. However, at
first, we shall fulfill (111) only at an arbitrary, bukéd, time-point%<°. In that way, one

O
can then freely choose three suitable functionglqj, while the remaining ones are then
n

fixed by (111). In addition, we freely give the currerzlk\‘alkI at all times and then

O .
determine I;/I L (X, X9 at all times from them by using equations (67) in the

approximation considered and simple integration. Fronptéhall.3, equation (77), that

is sufficient for (111) to be also true for all timeBquations (A.3) and (F.3) can now be

integrated in the known way and will yield ,, (X, xX). We then substitute that into
2n

(G.3). The integrability conditions of (G.3) will noware

_ 0 _ 0 _ 0 _ —
(N = L 8 +(N=T O +(Ng=T O +(N -9 =0, (112)

2n+1 2n+ 1L

If one observes that (F.3) is already fulfilledadittimes and that, by assumption, all
field equations of the foregoing orders are truereaver, then upon combining the
identity (66) with equation (67), one will find thg112) is confirmed. One then

determines g ° (xi, x°) from (G.3). The approximation can then be camtharbitrarily
2n+1

with no restrictions, which was to be shown.
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We would now like to consider solutions that do ndtdwe in an analytic way on a
well-defined hypersurface in our four-dimensional space-tiomticuum. In order to do
that, we give ourselves a family of hypersurfaces:

oy _ 0z 0z
a) z=z(X,x0), and further let P=or v (112)
and let the jump surface be given by:
b) z=0. (113)

We write out the basic equations explicitly once more following form:

Reiky 1 =2 [Ty, + Tja, i + Tt i

r r r r
_Tiif ({kl}-ﬂ-kl +T K +T ij
r
_Tjkr {{'|}+Tﬂr +Tri| +TrIi j
|
r r r r
= Tir il +Tk| +T jl +le d I

— 0 0
B{Oij}k = Tijk, ot T iK, j +T ik, i

-g” Tig,r + gor,j Tik — g” i Tik — a” « Tir
+T0ir rjj( —TOJ-r r”i +2T(|)(r ]'r =0, I

) plfa Pl P
i = 59" (Gsinc + O si— Girs ~ Grs, i) + 9 Gpa {{r k}{i S} _{i k}{r S}j

== grs (Tsik r + Tskir + Tirs,i + Tirs, k)

— s p q q q p p p q [ q p p
g ngI|:{rk}(T is+T si)+{is}(T rk+T kr)+{lk}(T rs+ Tsr) {rs}(Tik+ Tki)}

= 0% Goq [Ti® Tis T+ (TP + TR) (T% + T%) = (TP + TPa) (T + T%)], I

X o

0
Mo =2(Gko-0krgd” -9 ige—9%kar) =— (T%+T%). \Y
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We add the equilibrium conditions as the fifth systdraquations, which we can write in
the form:

i +i/9 (@ 0-g" ") =0, Vv

with 1 = p ¢, due to the absence of forces. In that equation,ssisesssumed to be an
algebraic function ofik , namely,dik = G (0rs). _

We first ask what sort of discontinuities the, g” (their derivatives, resp.) might
admit when crossing the surfaze= 0 as a result of the basic equations. The answer
depends essentially upon the assumptions that we madethbaight-hand sides of Ill
and IV. If we were to demand that they should vanish e would be dealing with the
homogeneous, “matter-free” case, just as in, e.g., MEXWSs electrodynamics or
EINSTEIN’s theory of gravitation (cf., H. TREDER4%, for that). Only the
homogeneous equations Il and IV will then remain, whithbe satisfied identically by
the Ansatz thags can be derived from a displacement fi€ft),(andg® (V°, resp.) is the
material derivative of the displacement vector witspext to time.

There are no other solutions, and the investigatiomatkswaves will reduce to the
investigation of jumps in the derivatives of the displacgnvector with the help of only
the equilibrium condition. That is well-known in ttieeory of elasticity, and we shall
refer to, say, the work of C. TRUESDELI4q. TRUESDELL's study of wave
propagation for finite stresses included not only the ggnbkeory, but also a thorough
examination of the special features of waves propagatingiaterials with specific
properties; here, we are interested in only the fortheory. In contrast to our
presentation, in which mass-points are described by twirdinatesx after the
distortion (as one usually does in the theory of dations), TRUESDELL characterizes
them by theiX“ beforethe deformation, which is expressed by:

X =X (X9 1).
We consider jumps in the derivatives of #hacross a two-dimensional surface, so:

] . r_OX (X, o X' (X7,1)
[X,ad Z0 with X 4 PG X p ,
which can be characterized by an “amplitude vecabeind a propagation speted

We can regard the family of two-dimensional suefathat is defined by the wave
front with the propagation speéblas a hypersurface in the space-time continuumibat
consider. The jump conditions will then follow ifothe equilibrium conditions.
Corresponding to our choice of starting coordindbeshe variable, they can be written
in the form ¢9):

(15) . e., for the quantitiess in gs = ds — 255, one will havegs =s, —%3” S, s, With the displacement
vectors; .
(% In this:

Te? =1 6" X%
def
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T 0= P%
(we have dropped the external forces), and applying the ythyield the relation:
Qun(n) @™ = pU *a. (114)

Qkm is the so-called acoustic tensor, which depends upon thsetrpeses and the
direction n of propagation of the waves. The basic equation (11l4acteizes the
amplitude vector, on the right as the eigenvector of the acoustic tenithr p U ? as its

corresponding eigenvalue. We will encounter this equatgmnain our description
below.

One can allow the right-hand sides of Ill and IV ® ron-vanishing, so one must
consider equations | and Il, in addition, and the dé&xiea of the dislocations and their
currents to likewise exhibit jumps. One generally undedstéahe jump problem of order
n to mean that all derivatives @j,, up to and including ordem(— 1) should be
continuous upon crossing the jump surface, whilentherder derivatives, and therefore
all higher-order derivatives, in general, will suffguenp upon crossing that surface (cf.,
TREDER H5]). Now, it is clear from the basic equations thatha jump problem of
ordern, discontinuities in the" derivatives of theys , g are coupled with those of order
(n— 1) of theTisx, T% i . However, if one maintains the demand that the déresof
order o — 1) of the dislocations and their currents shoulccdetinuous in the jump
problem of orden then the jumps in the" derivatives of theys, g* that are allowed by
the field equations will have precisely the form thatilddoe produced by a displacement
vector field. Those jumps will be either excluded by ¢lg@ilibrium conditions or they
will satisfy certain propagation conditions on the hypdexes that the equilibrium
conditions define, namely, the propagation surfaceketbund. Those jumps can then
be given freely on a two-dimensional surface thatrmgao the hypersurface. We shall
then deal with acoustic shock waves in a medium thatagts dislocations and their
currents with elastic pre-stresses.

In order to do that, we consider thB-order shock waves, as they were introduced
into the theory of gravitation by TREDERY]:

O = G * Vi p(z)'*' ylik nfl]( I+,
9 =g" +y’ h(P+y° h( 3+

n+l

(115)

The h(2) in this are the so-called “jump functions”:

is the so-called PIOLA-KIRCHHOFF stress tendas, the JACOBIlan determinant of the deformation, and
with our choice of Cartesian coordinates in the ingtake, as well as in the deformed stht&ill coincide

with /g, and furthermorep = \/Ep. “” means a generalized covariant differentiationeheCf., C.
TRUESDELL, R. A. TOUPIN 47].
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0 for z<O0 q
h(2) = , SO one then has —h(2=h (2, 116
n() ilzn for z=0 dzn() n+1() (116)
n!

and g, , g”~ mean the analytic continuation of the quantitigs g that were defined for
z< 0 across the jump surfaze 0. We employ the usual notation:

[A] = lim A-lim A (117)

for a jump in a field quantity.

Since the equations Il have order two, it wowde s reasonable to restrict ourselves
to the cases af = 2, 3, ... We will discuss the casesnof 0 andn = 1 later on. Here,
we shall treat the case of= 2, for the sake of simplicity, since it exhib@ that is
essential. Since we then have:

[Tk, d = [T %% = [Tad = [T%] =0, (118)
by assumption, when we apply the jump conditiotltave will get the condition:

%g“(gsi PRV RRATVi R R Vs P R =0. (119)

Due to (118), imposing jumps in [, Il, and IV wilbt produce any condition, but when
one differentiates IV once and then applies a juome, will get the jump relation:

ViRtV BB -y pp gy ppg=o (120)

Since it is possible to haye p" = 0 only wherp; itself vanishes, the general solution of
(129) will be:

Jz/ij = g[i p]. + ?‘j P, (121)
and when one writeg, = y” g , it will then follow from (120) that:
2 2

12/0i=(po—90q Po) 2, - (122)

With that, we immediately recognize the followisigecial cases:
1. pr =0.

The hypersurface is then our three-dimensionalespa@ well-defined time-point; it will
then follow from (121) that:

Vi =0,

2
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and when we differentiate V and apply the jump, we aldb get:

y® =0.
2

2. po—g™ pq = 0.

The hypersurfaces that are defined in that way are the alieaions to the case of a
moving medium of the two-dimensional spatial surfaceshef static case that are

established for all times. When one observes ¢ffat= - V* / ¢ (so i—gOqi

ox° ax°
represents the material derivative), one will see (Bat represents surfaces that are
constantly swept out by the same particles. It fadl@livectly from (122) that:

y0i = 0’
2

while one infers from V by differentiating and applying tlump that the divergence of
the stress tensor has no second-order jump. Theralbdlbe no jump iny,; for a
2

physically-reasonable stress-strain relationship thains-to-one. No jumps will be
allowed by both of the hypersurfaces that are chaiaeteby (1.) and (2.).

Before we go into the general form of the hypersurface,would like to briefly
consider the higher-order jumps that are permitted byighe équations | — IV alone.
For the sake of simplicity, we shall pursue the case=o® further.

If one goes on to calculate the third-order jumps they will be composed of the
quantitiesy ., y* as well asy,, y®. When one observes (115) and (117), one will

3 3 2 2

find that:
[grs,kln] :JZ/rs,k pl pn+12/rsl pk pn+1g rs n pk pn

+12/rs(pk,np|+ P Bt R p«)ﬂz/rs R PR

(124)

(9% =V PR+ RV L RR
(P PH Py R R RTYT R PR

When one differentiates 11l with respectxband apply the ancillary jump that will then
yield:

91“5(13/3i PrPHY o PP i PrPs =Y e P Py) P

=-g° [gsi,k PPt Y PcPr =Y g PrPeY (P r Pn + Pr,n P+ Pk PY)

+ three analogous terms]
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~g°d™ a P [PcPr (- Gisp * Gspi * Gpios + 2 Tpsi + 2 Tpi)

+ i Ps (= Gkr.p + Op.k + Gk r + 2 Tpkr + 2 Tprk)
“Pi P (= GsptOspr+pr,st 2Tprs+ 2Tpsy)
~Pr Ps (= Giop + Gkp.i + Gpick + 2 Tpik + 2 Toi)] = =1y (125)

Since we have already treated the cagg of0, in particular, we can exclude it here
and then find that the general solution of (125) is:

ap,+a] Pt————= 1 (126)

with a new jump vector, that is initially arbitrary. We must substitute2q) for y . .
3 2

In order for (126) to actually be a solution of !6;L,2I3 ; must fulfill the compatibility

equations:
[ sl % p}g“zo. (127)

That is a consequence of the BIANCHI identity (548amely, if one applies a jump to
(54) and observes that the equatiBg] = 0 is fulfilled already due to (118), (119), and
(120) then (127) will follow immediately. When onew sets:

[T 0ij, w] =0, (128)

in addition to (118), one will find by differentiag 1l and applying the jump that:

Ly (Po— ¢ p) = pkgs”e\q(T s B —-T%mn), (129)

in which one has sefl 1] =t px pv . Since the case @b — g” p- = 0 was treated
above, it can be excluded here, such tzq,gtwill actually be determined by (129). One

sees here that jumps in th& derivatives of thegy will also induce jumps in the™
derivatives of the local dislocation densities. af'ls understandable, since the metric
enters into the definition of j implicitly. The equation that arises from | byridation
and applying a jump is fulfilled along with (129)f one now observes (128) then one

will get the jump relation fory® (y ;= ¥ @i , resp.) from 1V, which one can write in
3 3 3

the form:

Yoi PrPuPy*y o) PiPupy= yO.(po d° pr)pypu+r.,w(yrs,y0r)
d;fK.,ywpypu(po—g P@ p+a; p), (130)
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in which E i

which can be written in the form:

summarizes the terms jn, and y% . The solubility conditions for (130),
2 2

Kijuw Pk P+ K Pi B — K B P — Kjiw Pi e = 0, (131)

are fulfilled here on the grounds of the identity (66jick one can easily verify by
applying a jump to (66) and considering the fact that (memas[ls?(ou xi)] = [Ria, =0

and the lower-order jump relations are fulfilledealdy. One can write the solution of
(130) in the form:

Vo= (Po=g"p) 2 +bi. (132)

The vectorb; can be calculated simply by contracting (130).e @an calculate all of the
quantitiesy ., y° that appear in the jump series in that way withdifficulty. For the

r

higher-order jumps, one must merely observe thdymtorule for jumps:
[AB]=A[B] +[A] B +[A][B]. (133)

The first-order jump problem can be treated sirtyilaln order to calculate the first-
order jump relation, one must require the equations

z=+¢&

im | R =0 (134

for 1ll, in place of the simpler jump condition, analogy with the integral form of the
gravitational equations according to A. PAPAPETRand H. TREDER48]. Here, that
condition excludes jumps in the dislocation deasitwhich led t@-functions in lll. The
first-order jump relations that follow from (134)eacompletely analogous to (119). All
of the other jump relations can be obtained précse above and will lead to completely
analogous results.

We make the following remark about the jump probtef order zero: It is clear from
the jump relations (121), (122), (126), (132), tcat the jumps that are allowed by the
basic equations have precisely the same form aguthps that are produced in a
displacement vector. In general relativity, theyrespond to the jumps that can be
transformed away. In fact, the form of the jumipattare described by (121), (122), etc.,
in general relativity is precisely the same as tdme that can be specified in the
corresponding derivatives of a discontinuous coatdi transformation that will make the
transformed metric no longer exhibit jumps (cf.,HBER @45]). However, such jumps
are also permissible in tlye, themselves. We must also reckon with zero-org®pg in
the theory of elasticity from the outset then. Dimy jumps that are relevant to general
relativity are the ones that cannot be transforraecy. Only the jumps that are
independent of a choice of coordinates can repmg@hgsical phenomena. However, in
contrast to that, in continuum mechanics, as we leemphasized since the beginning (see
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Chap. 1), the conditions that correspond to a coordimatsformation express a physical
law, namely, the equilibrium conditions. Therefarecontrast to general relativity, the
g also have a genuine physical meaning here. However-order jumps in the theory
of elasticity would also imply jumps in the veloesi themselves, which would then
require infinitely-large forces. We shall therefoselade those jumps here on physical
grounds. The further treatment of the jump problem \wéht reduce to a discussion of
the vectorg that is left arbitrary in equations | — IV with the p@f only the equilibrium
conditions. We then find ourselves in the same situadienn the aforementioned
“vacuum waves,” except that the quantitigs g” that enter into equations V cannot be
constructed from just a displacement vector field, bustrbe determined from equations
| — IV. We once more arrive at the relations of éfementary theory of elasticity as the
limiting case of vanishing dislocation density and didiocacurrent. If we go on to the
second-order stress problem here then when we diffatergquations V and apply the
jump, that will yield:

"V Pt 9y (o= p) =0, (135)
with (*): |
00"
=1
0

i
jmn

c', =o' (- gmn) and -3

SO: _
[Uljyfs] = _lemnlz/mn pr ps'

If we substitute the solutions (121), (122) for,., y° and define:
2 2

rs r

c(po—g" pr) =P, andfurther g*a.=a
then (135) will take on the following form:
-3 §r+p\/_g ra =0 (136a)

with _
KiIr = zljmn B (Pm Gnr + Pn Omr) -

On grounds that will become clear immediately, we @&\i36) byp; pr , set:

) = 2
r _Klr, po :UZ
PR P R

and get:
-3 §f+pJ_g U2 9‘ = 0. (136h)

(*) We can writeo; = 7'} (= Gmr), SINCEYmn = dnn— 2 &mnand the matter equations take the farip=
a'i (= &u).



V. — Non-analytic solutions. 55

In that form, (136) agrees completely with equation (114) in TRUESDEUH] [(*?),
except that all quantities in (136) refer to the finalestathile the ones in (114) refer to
the initial state. The quantity:

has the meaning of the square of the speed of sound forwsll.atNamely, if one writes
the equation of the hypersurface, e.g., in the form:

Z(K, X)) =x3—h (x5 1) =0,
then:
10h
pr:(_h,ll_h,le)l pO:___
c ot

The two-dimensional surfaces:
X2 =h (x4, %, 1)

run through the familg = 0 in the direction of the normpl with the speed:

_ondt__  p,

u= =
P P

In our elastic medium, the speed of propagatiothefmatter current overlaps with the
velocityV =—c . The speed of sound in that medium is then:

SO

which shall be shown.
(136Db) is a linear system of equationsigﬁ whose non-trivial solubility for a given

stress-strain relation and the quantit@gs, g” depend upon only the choice of the
hypersurface, which is characterized fly, p . The coefficient matrix will be non-
degenerate, in general, so no non-zero solutiohdeviallowed. Conversely, when one
demands that the determinant must vanish, onegeilla defining equation fquw , pr

( Py, pr, resp.), and the degree of vanishing will dictavev many combinations ozfizi
one is free to choose. Due to the special formeqdation (136), that will be an
eigenvalue problem, wherebfy, will be connected to the eigenvalbedirectly by way
of:

(*®) The fact that our equation relates to the second-gudgs problem forg,, , while (114) is written
down for first-order jumps i, is irrelevant, since the form of the latter equatioesdot depend upon
the order of the jump problem (cinfra).
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Po _
P g——=A. (137)
\/_ P B

We remark that the hypersurfaces that are determinectmty are independent of the
order ofn, since we will always get the same equations for ltheest-order jump
relations t9).

Intuitively, one must introduce the hypersurfaces thédviofrom (136) as moving
two-dimensional surfaces that represent the frontth@fsound waves. It is therefore

clear that one cannot give the components othat one is free to choose on the total
2
hypersurface — i.e., the totality of all two-dimensiosuaifaces — since being given the
2
on a single two-dimensional surface will determineftiieher evolution of thea, . The
2

a must then satisfy certain propagation conditions onhyyersurfaces. As in the
2

theory of gravitation, one gets the conditions for nflerder jumps from the equations
for the (n+1)" -order jumps (cf., TREDER4F]), and here they will be a consequence of

the equilibrium conditions V. There exist far-reachinglagies with the relationships in
the theory of gravitation when one fixes the coordinatediions in the latter (which
correspond to the equilibrium conditions here). If dieéines the corresponding jump
conditions from V by differentiating twice then thelations between the second and
third-order jumps that one obtains can be written enftlowing form:

- K e};+p\/_g % é =H'(2). (138)
In that, one has set:

[diien] = = Z s Py (P Gom+ Ps Grm) PP o+ S

Here, as with the second-order jumps, the first temifidead to the tensoK ', , whereas
the combinations of lower-order jumps (so second-ordepgyir@are summarized iB‘jk,n;

one must consider (126) here. As one sees from (132), agpige jump to the
expression:
(\/E QOi,o_ go"r go )Y,n

will first lead to a term of the fornp\/E ok ? , While all of the other terms will contain

on the right-hand side of

only lower-order jumps. They are written, along w?hjk,n,

(138) asH ' (2). As a defining equation foaé‘ , (138) has the same form as (136) then,

except that the right-hand side is non-vanishing. Howesiace the hypersurface was
chosen in precisely such a way that the homogeneousi@tatould be soluble, one

(*°) That corresponds to C. TRUESDELL's first equivaletizmrem §6).
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will get different conditions for the inhomogenelty (2) according to the rank of the
system of equations. Sindg; (2) is, in turn, a differential expression i@, that
3

expression will give the equations of propagation for dm®sd-order jumps. If they are
fulfilled then once more one will be free to choosst jas many combinations of tlae
3

on the hypersurface as one previously would with ¢he and one will obtain the
2
propagation conditions for the from a consideration of the jumps of order four, etc.
3

We remark that the mathematical basis for the tia&t the equilibrium conditions,
and with them, the matter equations, play such a aerdle in a discussion of waves
naturally consists of the fact that a characteripatad the field equations is first
determined by them, in contrast to the theory of graeiain which the characteristics
are known to be determined by the equafipnp” = 0. However, a similar relation

(p, p, ¢ =0)is not true in the theory of elasticity.
Here, from (137), one has:

L, A
P =——p p=U?p pr, (137)
Py g

in which A is the eigenvalue of (13§, so it will generally be a complicated function of
g , as well ap; . Therefore, sincA generally depends upon direction, ()3¥nnotbe
written in the form:

g*yV p,u pv — 0’

with suitableg™’ = g™ (x%). It is only in the special case where the mediuisdgopic
that one will have:
U=U (x9

(the speed of sound does not depend upon direction then)tlatchne can define a
suitableg™” with which one can describe the characteristics byguél37). As one
easily calculates, one will have:

g 00 _ goo -1

g*rs — L(J:_zz 5rs _ gOr gOs.

The effect of the stress field on the speed of souttterefore different from the effect of
the gravitational field on the speed of light.

We shall now briefly describe the case in which oneptEsn™order jumps in the
O, g with (n + 1)th-order jumps in the dislocations and their currentgrelHone must
distinguish two ways of posing the question:
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1. Are there always distributions of dislocationsttlare discontinuous in the
(n-1)" derivatives in such a way that arbitrary jumps inrthelerivatives of theys, g™
that are given on any sort of hypersurface will be caiblgawith the field equations?

2. The converse problem: Are discontinuities in the—(l)th derivatives of the
dislocations and their currents that are given arbiyramnl any sort of hypersurfaze= 0
compatible with the field equations?

In the second case, one is free to give the jumpseiderivatives of the dislocations
and their currents as long as equations | and Il afilefd] The corresponding jumps in
the gis, g” can then be calculated with no difficulty using Ill avd IHowever, in the
case where the hypersurface is a characteristic dfgdbie equations that are defined by
the equilibrium conditions, that will imply restrioiis on the jumps in the motion of
dislocations that represent generalizations of theicegns on the motion of dislocations
that result of the speed of sound.

In question (1.), we again restrict ourselves to #meemfn = 2. We get the jump
relations:

3 G RR*YRPA Vi PR Vs PR

2
:_Zgrs(gsik pr+§ski pr+ gkrs p|+ Ztirs px)’
b) giks p|+;(k|s p|+;:lis =0, (139)
A Vi(R=¢" R)Ve R-Vq P=-2(F *§),
2 2 2
d) }ijk(po_gor p)zlt?k Q_l(j)k P-

In the case whem —g” p; # 0, Eiks is determined byl) and satisfie®), and in the other

case, one satisfidn identically by a similar Ansatz:
tik =Nk B —Nik B - (140)

If we once more consider the case that was corhegilh the treatment of waves in
which the right-hand sides of (139c) vanish then we can infer that:

t % = 7, (141)

with an arbitrary choice ofix = — 7 . The corresponding jump in the derivative of the
dislocation then reads:

tye = (Po—g" P)™ (TP — 7k ) - (142)

Those special jJumps in the motion of a dislocatiom also allowable in shock waves
then. The basis for that fact consists of the faat those are precisely the parts of the
dislocation that will lead to the so-called “strés=e structural curvatures.” Namely, that
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part of the structural curvatures will be produced by precife combination (cf.,
KRONER [18)):

Tig + Tiij + Tiii -
If one forms the first-order jump in this then it widllow that:

Eijk+t1kij+gkji =2 (pO_gor pr)_lrkj Pi .

However, if one allows the right-hand sides of (&3%nd (13%) to become non-
vanishing then one can give the quantitjes, as well as thg/,;, freely with the single

2 2
restriction that the equilibrium condition V must batisfied. If one then substitutes
(139d) in (139a) then it will follow that:

I°Ws P RV RAVi RRV PP
2 2 2 2

=-49°(Po—-g"P) P R+ RR- P R-E. PR, (143)
The general solution to (143) is:
t% ==3(Po—9" P) i+ 3 (T et Tp) - (144)
1 2

The quantities; , which are still undetermined here, will thendsgermined by (136),
since, along with (144), it will follow that:
J;ink+12/0kp:ﬁpk+rkpi, (145)

SO
L=V - (146)
2

The partt % still remains undetermined here. [One can consthe solution similarly
in the case whena —g” pr = 0 with the use of (140).]




APPENDIX

1. — Notations.

It will generally be true that the following notationgill be employed, unless
specifically stated to the contrary:

Uppercase and lowercase Greek indIceA, ©, ... andy, 1, A, ..., resp., will always
run through the numbers 0, 1, 2, 3, while uppercase and loseekedin indices, L, M,
...andi, k1, ..., resp., will always run through just 1, 2, 3. Intthay, lowercase Latin
(Greek, resp.) indices k, I, ... (i, 1, A, ..., resp.) will each be tensor indices in three-
(four-, resp.) dimensional RIEMANNIian spaces, while the ugssrandice, L, M, ...
(', A, O, ..., resp.) will be just numbers in RIEMANNian spacé&secisely the opposite
will be true for the dual spaces that are explained entéat. Indices that appear twice
will always be summed over. In order to distinguishwieein three- (four-, resp.)
dimensional quantities that read the same, when any daght arise, the numeral 3 (4,
resp.) will be placed under the symbol; e.g.:

Oi Ok

g“-g" g%
3

g ik , but g ik
3

4

and likewise for the covariant derivatives (affra):

However, in approximation procedures, numbers under the dieantities mean the
order in a development in some parameter, and in thp refations, the numbers stand
for the orders of the jumps. No confusion should beiplesghen.

Symmetrization (antisymmetrization, resp.) will be reladerized by an underbar
beneath the indices (angle brackets that enclose, tfemp.), while curly brackets will
stand for cyclic permutation (indices that are notudel in that will be separated by
vertical lines):

T 23 Tkt Ta), Toe =3 (T = T,

Ty = Tia + T + Tiai Tk = Tiknl + Tini + Tikni -
def def

ak stands for the KRONECKER symbol, amg, will stand for the LEVI-CIVITA
symbol. We will employ the symbols:

N = 62 + 62 + 62 f:ﬂ
30?00?92 ot
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In order to characterize the linearized form of equati@mL will be placed under the
symbol; e.g. [cf., (48) for this]:

[5 =3@@0=0"i-g")+T%+T5.
Boldfaced symbols will characterize tensors withoutrguiheir indices:

a = oy .
The curvature tensor is defined by:

0 _ 190 _ro K 0 _r«k o
Raﬂy d;frﬂyya ray,ﬂ+rﬂyrak rayrﬂk’

I — | | r | r |
I?ijk ot rsjk,i_rsik,j'*'rajk r?,ir_r3ik rsjr )
and the RICCI tensor by:
— u _ r
Raﬁ et R/laﬁ ) I?ik ot Brik .

The affinity in this is given by:

a 1) i

with the CHRISTOFFEL affinity:

—
—
[}

N

w@QQ
~
«Q
;\_
+
«Q
x~
|
«Q
=
<

o
{ﬁy} =10% (G y + Gy p = 9y ),
and the RICCI rotation tensors:
hrd ti;ﬁ = hﬂyaz Tﬁya'*_ T 6ﬁy+ T 6%8’ hle hS'i = Dikl =T ikI+T|ik+ l—lki '

and for the torsion in this, one will have:

Tﬁyaz_TVﬂa’ -gikI:_Tk'l'

R dff{jlk}i _{ilk}i +{jrkHilr}_{irk Hrl j }

Riw = Rik =Ry 1 -

Furthermore, let:

The EINSTEIN tensor will be introduced by:
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Ews=Rop— 3098 R |4?=Raﬁg”ﬁ,

ik

Eik: E}ik_

N

Gk R

w0

ik 9

3

The covariant derivatives that one forms with the CHROFFEL affinity will be
expressed by way of the semi-colon:

-I-r _-I-r _Tn{r}
'S T ,S ’
sSn

and the ones that are formed with the full affinityl e indicated by two vertical lines:

TI’”S:TI”S_anI’

sn?
while a comma means the partial derivative:

_ 0T’

T' .
NG

2. — On the derivation of the relations (29).

One addresses the equations:
a T.=0,

b) Tu=g" T
0 T=g"T,

d) T, =g g=T°, (2.1)
k — k

e) Irs - 3 1S’

f) -!; OrS = -13- kl’S_ gOkTorS'

(2.1a) follows immediately from antisymmetrizing (1.

e . =Tw’=0, soonewillalsohavd %°=T,”°=T%°=0. (2.2

<gﬂ>
Due to the facts that:

Fﬁs%i}+T%+T%:0, (2.3)
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0
Mo Egor{r.}+TOOi+Toio:0, (2.4)
- |
o _ o) 0 0
Fro=9"9 {I’ S}+ 2T 00=0, (2.5)

(19.b) will further imply the relation:
T% =g" g*T%; i.e., equation (2d),
and further:
T+ T % =g" (T% +T%). (2.6)

However, the use of the expression (25) on page 12, wieearaploys (2.1), will yield:

=003 T%% =00 9°T% +gor 0" TS0
4 4
— QOr (g s _ gOr 903 Tois + gOr gOr -I—Oi 0
4
— gOs-I—OiS _ gOr gOr gOs Tois + gOr gOr -I—Oi 0
— gOs-I—OiS _ gOr gOr gOa Toia ,
and therefore:
OSTO .

T O| 0 = g IS s

i.e., one has (2d). However, if one substitutes (2)1in (2.6) then (2.) will also
follow. Equation (2.t) is an immediate consequence of (28), since it isigghcthe
antisymmetric part of it. Finally, (2idwill follow from:

-I;krs QMQSﬁTarﬁ: 9“0gspTar®
4 4

=(9"-0%d) G T o + 0™ gepTor ”
4

T4k :'g"rs—go"TOrs; e, (2.9).

3. — On systems of independent equations.

We next go on to some formulas that we will neethenfollowing calculations and
which can be easily verified by substituting (25) into the CHROFFEL symbols:
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%(guo gjq g()q d)qi % - dq,j 9),

S <
—
1
(o]

o
=~
O
O
=
8
+
Q
/—/%
%,_/
+
N
G
Q
—
—_—
=
2
@,
o
—
L

3

k}= o™, +g°“{ k}+gkq{ O} g°kg°q{ 0},
0] alj s 9] q]
3
— k 0k O
MNEEN

3

(3.1)

We must now show that of equations (36), only the parti§3rigependent of the system

(30), (31). Along with (37), (36) also include the equations:

E\){ijk}l = 2[-5 ijl;k+T kll k| J (Tk|/+ T‘kv+ T.,k)

+ -I; jkV(I v

+TI +TI )+Tk|(T + T‘ J+ TVJ)]

In this, one has:

T =T, T,/ a—T “ !
RS K j *T ka|’

The cyclically-symmetric part of (31) has the coetply-analogous form:

Raw = 2055+ T * Ty 13" (To* Tt T
n | | | n | _
T Tt Tt To)+ Ta (T + Tt Tl =

T | =T | -T | r -T | r +T| r
3ij;3k 3ij,k 3rj K i 3iI’ kj 3ij Kr :
3 3 3

In this:

(3.2)

(3.3)

(3.4)

(3.5)

If one now substitutes (3.3) in (3.2) and (3.5§)3mM) and employs formulas (3.1) and
(2.1) then one can easily calculate that the rigind sides of (3.2) and (3.4) differ
merely by terms that can be combined in such atatythey will each contain a factor

of Y. However, they will vanish on the basis of trediequations (30), and (3.2) will,
in fact, express no new requirements. However,tdude fact that (37) actually does
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yield a new requirement in comparison to (30) and (31),litbsiclear that the latter are
equations in the torsion componenks® , which do not appear in the remaining
equations at all. One must now show that equations (4B)= (

I [ [
IZ\)ijk = E jk,i_Eik,j+EJk r4'K_r|k r4]K’ (3.6)
ROiik = E:J(,O E +E]k r" —FK rli, (3.7)
ROiOk = r|oo rl(()o; i IO(_rKOOE k@ (3.8)

are fulfilled already due to the system (43). FoB)3hat is trivial, since one needs only
to consider (28) = EL" and (43) in order to get (48) and (430). However, for

the sake of better clarity, we would like to carry outpheof for all three cases together.
In order to do that we decompose the curvature tenstr s RIEMANN-

CHRISTOFFEL and torsion parts according to:

-I-rY

%)
+T ya ;4[?

0
Jo_ 5 5
Raﬁ = aﬂy+T +T yﬂa -Eyﬂ Hyﬂ

ﬂy a ﬂya

+(Tg +T ﬁy"'TKyﬂ) (TaK +T% +T5Ka)
~ (T + T+ T) (Ta’+ T ﬁK+T ) (3.9)

e 5] A8 A, o

By an identical conversion and the use of the expreg8id) [the temporal derivative of
the metric will then be expressed by, e.g.,d8:1

O 0 4% o 0 0 _ 0 0
R, = R- g R G [{jk}{”} {ikerH’ 311)

0 0 0
|4:\> K= g% I;QS”"+ g R® %+ Sjk 0 (3.12)

with

0 0 , 0
Rok = 0% Ri+ d" R,°. (3.13)
3

With the use of (2.1), as well as a consideration @fetfuations:

T =T, {.Or}
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0 —T0  _ 0 r _ Tl r r 0
TJk‘,lI _T kal Trk{lj} TJF {lk}+1— Jk{lr}’
3 3

0 r
T Ijk;i = T Ijk;i_gol-r(;k;i-i_ 3ng {l }T(J)k_{ . } T‘Dk,

4 4 3

0 0
Tjkl;i :Tjkl;si_guT()jk;i+T()kl {i J}_To; {ik}’

one can now check that the torsion part of the cureaemsorsR ', Roi* , Roio* can be

converted in such a way that they will extend RIEMARNRISTOFFEL curvature
tensors on the right-hand sides of (3.11) [(3.13), resptljé complete curvature tensors

that are defined by ;, according to (3.9) precisely. One must add equation (37) to
(3.12), as well. Equations (3.6) — (3.8) can then be writi¢ime form:

IflzijkI = Bijkl_ g0| Fﬁk ° + Bdr (rjg riro_rikO rjro) = 01 (314)
ROijk :gm 4Rrijk+ g)k Ri 0+ 3gkr ﬁ 0— O, (315)
Rio = 9" Ry + g“ R,°=0. (3.16)

3

However, the right-hand sides of (3.14) — (3.16) vanish-teisa, on the grounds of
(43), and will therefore represent no new requiremevitg;h was to be shown.

4.

At this point, let us add a remark in regard to the chofiGgebraically-independent
systems (43) from the starting equations (19). It isrdean (3.14) that in order to
fulfill:

Rik = I?

4 K

@ =, (4.1)

aik
the equations:
I?ijkl =0, (4-2)
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Me=0 (4.3)

are all that will be necessary. In addition, theteys (4.1) contains just as many
algebraically-independent equations as (4.3). Algebraicatlg, can replace (4.3) with
(4.1), such that instead of (43), one will then have thewmg system:

ﬁij|<| =0, b iy = 0,
DL ) S } (4.4)

0 R;=0, ) Ry =0

4 1

However, the combination of equations (4.1) an@)(4 only a system of differential
equations in) that does not have just the trivial soluti6f} = 0. Therefore, in order

for (4.4) to be identical to (43), one must posea@ddition conditions that we would
not like to go into here. A further algebraicaihdependent system is:

a) R;=0, b) Ry =0, }
‘e s (4.5)

C) Fﬁ):O, d) B{Oij}k=0.
We now remark that equations (4.1), especially wien separate the RIEMANN-

CHRISTOFFEL part from the torsion part of the ciwa tensor and go over to the
EINSTEIN tensor, when it is written in the form:

0

E ik = Tik ) (46)
will coincide precisely with the spatial componeatshe equations of general relativity:

0

E

aB == KTaﬂ, (47)

so the expressions fdik in (4.6) and (4.7) will naturally be different.

5.
Let:
Gii = Fij, « + Fi,i + Fuij (5.1)
with
Fij == Fji . (52)
One will then have:
Fiikr = Gik,r = Giik,i = Girk,j = Gijr,k = 0. (5.3)

The integrability conditions for the system of etyuas forF;; that takes the form:
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Gik = ik » (5.4)
with any sort of functiongiy , will then read:

ik = Gik,r ~ Griki ~ Girk,j ~ G k = 0. (5.5)

When the system (73) is interpreted as a system tdrelitial equations for the
partial determination dfj, , while the other functions are regarded as givemgl|lihave
precisely the form (5.4) when one makes the associbjion- Fj, so it must fulfill the
integrability conditions (5.5). However, due to (5.@) is totally-antisymmetric, and
from (5.3),Fix (i.e., ,fi , as well) will also be totally-antisymmetric theHowever fij.
must vanish identically then, since our indices run thrqughl, 2, 3. Therefore, (73)
has no integrability conditions.
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