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FOREWORD 
 
 

 Through the work of the school of K. KONDO, as well as a B. A. BILBY, R. 
BULLOUGH, and E. SMITH, continuum mechanics has developed into a theory with 
far-reaching geometric interpretations.  The advantage of a theory like the one here that 
is, e.g., based upon differential-geometric concepts, is, above all, the fact that in addition 
to general insights into the structure of the theory, the highly-developed and highly-
constructed differential-geometric formalism represents a significant practical tool for the 
solution of the corresponding problems in physics.  In that regard, for the continuum 
mechanics of crystal defects, it yields far-reaching mathematical, and in a certain sense, 
also physical, analogies with the theory of relativity, which E. KRÖNER pointed out 
especially.  One can further say that A. EINSTEIN’s (1928) theory of teleparallelism, 
which started from some questions in the general theory of relativity, finds a rigorous 
physical application in that subject. 
 We shall present the general nonlinear equations of the continuum theory of moving 
dislocations on that basis when we associate a crystal that is permeated with moving 
dislocations with a four-dimensional space with teleparallelism.  In conjunction with that, 
the mathematical similarities with and differences from special, as well as general, 
relativity, shall be examined thoroughly.  In contrast to other nonlinear equations of 
physics, we will find here that the nonlinearity of the system of equations will imply no 
restriction on our freedom to specify the dislocations and their currents.  Any solution of 
the linearized system can be extended to a solution of the rigorous solution.  That is also 
true for the dynamical generalization of KRÖNER’s theory with foreign atoms and the 
more general theory that is extended by the introduction of the so-called 
phenomenological matter tensor.  That will be explored as an approximation procedure 
for the solution of the field equations.  At the same time, the procedure will allow us to 
give the stress field of a moving dislocation explicitly to an arbitrary degree of 
approximation, up to numerical integration.  Furthermore, we shall investigate the non-
analytic solutions that are compatible with the equations, and in particular shockwaves in 
media that propagate by moving dislocations under elastic pre-stresses. 
 I am thankful to Herrn Prof. Dr. habil H. TREDER for the impetus to address those 
questions, as well as numerous discussions. 
 
  H. GÜNTHER 
 

___________ 
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INTRODUCTION  
 
 

 The first era in the theory of dislocations and internal stresses is naturally 
characterized by the notion that elementary and detailed physical arguments always 
defined the starting point and the foundations of the treatment of the most variegated 
problems. 
 The start of that development, which is linked with the names of V. VOLTERRA [1], 
U. DEHLINGER [2], E. OROWAN [3], M. POLANYI [4], G. I. TAYLOR [5], J. M. 
BURGERS [6], [7], et al., and was concerned, above all, with defining the concept of a 
dislocation and probing its meaning in the context of the plastic and elastic states of 
crystals, whereby in that quest, as well as in later contributions, many authors put the 
isolated dislocation in the foreground; cf., e.g., J. D. ESHELBY [8], G. LEIBFRIED and 
K. LÜCKE [9], F. C. FRANK [10], and many others.  Later on, an elementary continuum 
theory of dislocations was created by E. KRÖNER [11] and E. KRÖNER and G. 
RIEDER [12]; see also the review of E. KRÖNER: “Kontinuumstheorie der 
Versetzungen und Eigenspannungen” [13], in which one can also find a comprehensive 
overview of the literature on the dislocation problem that had appeared up to then. 
 An essential advance came about, as is known, when the theory admitted a geometric 
interpretation.  That means, on the one hand, that one can give the theory of dislocations 
a unified and compact formulation using the highly-developed mathematical apparatus of 
differential geometry and tensor analysis, and on the other, the first of the linear 
equations that follow from elementary arguments would find their rigorous nonlinear 
generalization in terms of the differential-geometric formulation.  That direction of 
research appeared perhaps simultaneously in Japan and Europe.  In Japan, it was through 
the groundbreaking work of the school that was founded by K. KONDO and his 
collaborators of “the general differential-geometric treatment of engineering science” 
(cf., on that, [14] and [15]), and in Europe, it was by way of B. A. BILBY, R. 
BULLOUGH, and E. SMITH [16], [17], and was promoted by E. KRÖNER [18] and E. 
KRÖNER and A. SEEGER [19], especially. 
 In the static theory of dislocations, one finds formal mathematical analogies with the 
general theory of relativity, as E. KRÖNER [18] stressed, in particular.  In addition, it has 
already been known for some time from elementary arguments that the speed of sound in 
the medium in question sets a definite limit on the velocity with which a dislocation can 
move in a crystal.  Work on that subject goes back to J. I. FRENKEL and T. A. 
KONTOROVA [20], [21], [22], as well as F. C. FRANK [23].  Hence, there also exist 
parallels with the special theory of relativity under which the speed of light is replaced, so 
to speak, with the speed of sound. 
 Now, it is an essential goal of the present work to discuss thoroughly the analogies 
and differences between the continuum theory of moving dislocations and the special, as 
well as general, theory of relativity, that are based upon the tensor calculus.  In particular, 
we will go into its relationship to EINSTEIN’s theory of teleparallelism in 
RIEMANNIAN spaces; see A. EINSTEIN [24]. 

 
 

___________



I. – The field equations of moving dislocations 
 
 

 Although the problem of moving dislocations has already been treated many times – 
cf., S. AMARI [25], E. F. HÖLLANDER [26], [27], H. BROSS [28], A. M. KOSEVICH 
[29], T. MURA [30], [31] (we shall come to speak of those papers later) – we shall next 
give a derivation of the basic equations of the dynamics of dislocations here that implies 
the most natural generalization of statics that is possible mathematically, as well as 
physically.  In that way, we will arrive, on the one hand, at a closed presentation of the 
theory.  In addition, we would like to construct the theory in such a way that it will make 
the discussion of the connection to the theory of relativity that was mentioned in the 
introduction more accessible. 
 The object of our considerations is an elastic continuum K that is embedded in our 
real three-dimensional Euclidian space E3 .  For the sake of simplicity, we shall employ 
Cartesian coordinates xi (i = 1, 2, 3) in E3 .  For certain special problems, the conversion 
of the problem into suitable curvilinear coordinates might be advantageous, so we will 
then simply have to replace the ordinary derivatives in the basic equations with covariant 
ones in the well-known way.  Since the curvature tensor of E3 vanishes, that replacement 
will also be possible for second derivatives in an unambiguous way with no 
complications.  We shall also describe the position of a mass-point of K by its Cartesian 
coordinates in E3 .  We essentially characterize K by two properties: 
 
 1. At each point of K, there exists a set of quantities µ1 , …, µr , … that describes its 
elastic properties.  K will also be characterized as an elastic body in that way.  In general, 
one will have to assume that the elastic quantities are functions of position and time, and 
therefore µi = µi (x

i, t).  However, in many practical cases, they will be simply the elastic 
constants of various orders. 
 
 2. At each point of K, there exist three unique non-coplanar directions, namely, the 
lattice directions of the crystal.  K will be characterized as a crystal in that way.  K will be 
found to be permeated by dislocations when it is in any twisted and stretched state. 
 
 We shall next sketch out the basic ideas of the statics of dislocations in order to arrive 
at some viewpoint on the transition to dynamics.  For what follows, we will then combine 
the terminology by referring to a continuum K that is in a state where no sort of crystal 
defect perturbs the lattice directions as an ideal crystal, while in any perturbed state it 
will be a real crystal.  For the sake of simplicity, we shall first confine ourselves to the 
case in which the lattice directions of the ideal crystal define an orthonormal system.  We 
will then show, by an additional consideration, that one can easily generalize to arbitrary 
ideal crystals. 
 From the second property above, three distinguished lattice vectors are defined at 
each point that therefore define a “dreibein.”  We describe it by the quantities: 
 

i
Kh  = ( )i r

Kh x   with the inverses K
ih  = ( )K r

ih x ,   (1) 
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which exist as a result of the fact that the assumed non-coplanarity implies that i K
K jh h⋅ = 

i
jδ . (Lowercase Latin indices i, j = 1, 2, 3 refer to tensor components, while K, L, … = 1, 

2, 3 are only numbers.)(1)  The lattice vectors ( )i r
Kh x  come about as a result of the 

distortion of the ideal crystal into a real crystal.  If one describes the lattice of the ideal 
crystal by the vectors Kkα  = K

αδ  (2) then when one denotes the distortion quantities by iAα , 

the connection between real and ideal lattices will be given by: 
 

i
Kh = i

KA kα
α  = i

KA α
α δ .     (2) 

 
It is clear from (2) that the lattice vectors of the real crystal already characterize the 
distortion completely.  Correspondingly, the relation: 
 

dxα = i
iA dxα ,      (3*) 

 
which describes the relaxation of two points in a crystal whose mutual separation is dxi 
into their mutual position dxα in the ideal crystal, will be described completely by the 
projections of dxi onto the lattice vectors Kih : 

 
dxK = K i

ih dx ,      (3) 

 
and we can express the distance between the two mass-points in the real crystal by: 
 

ds2 = dxK dxL δKL .     (4) 
 
 If one substitutes (3) into (4) then: 
 

ds2 = K L
i j KLh h δ  dxK dxL = gij dxi dxj,    (5) 

with: 
gij = K L

i j KLh h δ   and inversely i j
K L ijh h g  = δKL .  (6) 

 
We have introduced a metric gij on K by way of (6), which then makes K into a 
RIEMANNian space.  The physical meaning of that metric consists of the fact that it is 
immediately obvious from (5) (cf., e.g., [18]) that: 
 

εij = 1
2 (δ ij – gij)     (7) 

 
means the elastic deformation of the real crystal. 

                                                
 (1) An overview of the notations employed is compiled once more in the Appendix. 
 (2) We shall also operate with a Cartesian reference system in an ideal crystal.  The Greek index α = 1, 
2, 3 appears here to characterize a three-dimensional vector only to distinguish it from the case of a real 
crystal; otherwise, Greek indices will be employed only for the time-dependent case (cf. infra). 



4 The nonlinear continuum theory of moving dislocations 

 Due to the crystalline structure (1), three congruences of curves are defined in that 
RIEMANNian space in a distinguished way, namely, the lattice lines of the crystal.  (The 
RIEMANNian space is then “fibered.”) One can then introduce a teleparallelism in an 
invariant way when one establishes that a tensor is parallel-translated when the 
projections of its components onto those curve congruences do not change.  The 
coefficients of the parallel displacement are the coefficients of the integrable 
displacement that EINSTEIN introduced into field theory: 
 

i
klΓ = ,

i K
K i kh h ,     (8) 

which satisfy the lemma: 

||
K
r sh  ≡ ,

K K n
r s n s rh h− Γ = 0,   (8a) 

such that the RICCI lemma: 
gij || k ≡ gij  , k − n n

nj ki in kjg gΓ − Γ  = 0   (8b) 

 
will also be fulfilled (with asymmetric n

ijΓ  ≠ n
jiΓ ). 

 The essential traits of the real crystal are then mapped to that fibered RIEMANNian 
space. 
 From (6), the curve congruences will define an orthonormal system when they are 
measured with the metric gij .  Naturally, that means nothing but the fact that the lattice 
lines are orthonormal in the ordinary sense.  Furthermore, the metric gij is defined by (5) 
in precisely such a manner that those lines will be orthonormal.  Naturally, one will get 
the actual comparison of angles and lengths of the lattice vectors using the metric of 
Euclidian space δij , and one will then have i j

K L ijh h δ  ≠ δKL . 

 Due to the existence of a dreibein at each point of K, one can now characterize any 
tensor in two ways: namely, in one case, in the usual way by giving its tensor components 

i j
r sT⋯ ⋯

⋯ ⋯ , and in the other, by projecting those components onto the congruences: 

 
K L

M NT⋯ ⋯
⋯ ⋯= … K L

i jh h … i j
K Lh h … i j

r sT⋯ ⋯
⋯ ⋯ .    (9) 

 
(9) defines what we would like to call the dual space to K at every point of K.  A quantity 

K L
M NT  in that dual space is invariant under coordinate transformations ix  = ( )i rx x , but 

will go to K L
M NT  = 1 1K L S R H J

H J N M R SC C C C T− −  under a linear transformation Kdx = K L
LC dx , 

which would correspond to the transition to another system of dreibein-congruences, as 
one can conclude from the invariance of i j

r sT  under the transformations in (9). 

 The two spaces then behave as if they were truly dual to each other: Tensors in the 
dual space are invariants in the RIEMANNian space K and conversely (cf., e.g., G. 
VRANCEANU [32]). 
 The expressions (3) and (6), which characterize the connection between quantities in 
the ideal and real crystal precisely, are special cases of (9).  We can then see the physical 
meaning of (9) for our case with that: rV characterizes any physical quantity in the 



I. – The field equations of moving dislocations. 5 

crystal.  rV  (VK = K r
rh V , resp) is that quantity when it is referred to the real (ideal, resp.) 

crystal then. 
 From (4), the dual space will be a Euclidian space whose Cartesian axis directions 
can be identified with the lattice directions of the ideal crystal.  Globally, the Euclidian 
space is oriented and a complete image of the ideal crystal in that way.  The dual space 
reproduces that behavior point-wise and juxtaposes a small ideal crystal with each point 
of the real crystal, intuitively speaking. 
 In summary, we can make the following remarks, which we would like to apply to 
dynamics (with some meaningful conversion of them): 
 The “fibered” RIEMANNian space and the dual space that is associated with it point-
wise give geometric images of the real and ideal crystal, resp.  The metric of the dual 
space is equal to the metric on our Euclidian space.  Its distinguished directions are the 
directions of the coordinate axes of the Cartesian reference system.  The transition from 
an ideal crystal to a real one consists of twisting and stretching the lattice vectors.  [In 
that way, the presence of dislocations will be characterized precisely by the fact that the 
law of the transition (3*) is anholonomic.] 
 In the event that the lattice vectors of the ideal crystal are not orthonormal, as we 
have assumed up to now, so in the event that Khα  ≠ K

αδ  , we will alter our definition of the 

distinguished dreibein (1) by replacing it with: 
 

Kh α+  = i L
L Kh k α

α δ  = ( )i r
Kh x+ ,     (1*) 

 
in which Lkα  is the inverse of Lkα .  The congruences of curves will then be determined by 

the lattice of the real crystal as much as by that of the ideal one.  (1*) can then be 
regarded as a transformation of the congruences of curves with the matrix L

KC  = L
Kk α

α δ , 

under which i
Kh  will go to i

Kh+  and Kkα  will go to K
αδ , in such a way that all ratios will 

remain unchanged when one replaces i
Kh  with i

Kh+ . 

 In (8), we have defined the coefficients of the teleparallel displacement as EINSTEIN 
did [24].  Due to the integrability condition of the displacement, the curvature tensor that 
is defined by i

k lΓ  must vanish: 

 
l

i j kR  
def .
= , ,

l l r l r l
j k i i k j j k i r i k j rΓ − Γ + Γ Γ − Γ Γ  = 0.   (10) 

 
Equations (10) will become the true determining equations for the internal stresses when 
one decomposes the Γ-affinity according to: 
 

i
k lΓ  = i i i

k l k l l k

i
T T T

k l

 
+ + + 

 
, 

with 
i

k lT  = i
k l< >Γ ,      (11) 
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i

k l

 
 
 

 = CHRISTOFFEL affinity that is defined by gij , 

 
and the torsion i

k lT  can be interpreted physically as the dislocation density and treated as 

a given quantity.  In the statics of dislocations, that is the process that is used to derive the 
field equations, which we would now like to apply to dynamics, once we have formulated 
dynamics in a manner that is suitable to our purposes. 
 We would like to arrive at the equations of dynamics as a four-dimensional 
generalization of the three-dimensional static theory above.  Since we shall stick to 
classical mechanics, naturally, the speed of light will not come under consideration for us 
as a limiting velocity.  In that way, there will be no true four-dimensional tensors, and 
time will be forced into the role of a parameter (3).  We will also see that in the ultimate 
form of the field equations.  On the other hand, there are known effects in the theory of 
moving dislocations that had previously been known only for LORENTZ-invariant 
theories.  A dislocation will be restricted by the speed of sound just as a mass-point is 
restricted by the speed of light in relativistic mechanics.  The stress field of a uniformly-
moving dislocation suffers a contraction in the direction of motion that is similar to the 
way that the electromagnetic field of a uniformly-moving electron contracts in 
LORENTZ-MAXWELL electrodynamics. 
 Since one will consider singular dislocations in that way, along with ones for which a 
displacement vector field exists, that effect can be derived using elementary methods.  
However, certain complications will arise in the theory of elasticity due to the fact that 
one must generally deal with many speeds of sound (cf., on that, J. D. ESHELBY [33], 
A. W. SÁENZ [34], and J. WERTMAN [35]).  Since those effects all relate to the context 
of a particular mathematical theory – namely, the machinery of special relativity – we 
would like to incorporate the theory of moving dislocations in an entirely analogous 
mathematical model that is naturally subject to a physical interpretation that is completely 
distinct from special relativity. 
 We therefore extend our three-dimensional Euclidian space to a four-dimensional 
MINKOWSKI world in which the role of the speed of light will be taken on by the speed 
of sound in the medium in question.  However, the extension is not unique, since the 
elastic medium can have many speeds of sound, in contrast to the uniquely-determined 
speed of light.  When we restrict ourselves to the isotropic case, we will have to 
distinguish between only the transversal speed of sound cT and the longitudinal one cL .  
However, one knows from the treatment of moving singular dislocations that the actual 
limiting speed is already given by cT . 
 If one, in fact, considers, e.g., the expressions that J. WERTMAN [35] gave for the 
stress fields of moving dislocations then they will all go to infinity when the speed of the 
dislocation v reaches the transversal speed of sound cT .  When one exceeds one of the 
speeds of sound, for physically-reasonable distributions of dislocations, one will indeed 
expect finite fields again (cf., H. GÜNTHER [49] on that), but it is questionable on 
energetic grounds whether a dislocation can actually exceed cT (cL , resp) for the infinite 
configurations; see J. WERTMAN [35].  As a consequence of our analogy with special 

                                                
 (3) The space-time pseudo-rotations of the “reference system” will then have no physical sense here.   In 
fact, there is an absolute reference system that is realized by the crystal (cf. infra). 
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relativity, we will then work with cT from the outset.  We will also justify the foregoing 
later from the dynamical part of the field equations themselves.  We will then find that, in 
addition to that transversal speed of sound, there is also a longitudinal speed of sound cL 

(cf., infra, Chap. II), namely, the speed of propagation of longitudinal waves.  We then 
introduce: 

x0 = cT t 
 
as the fourth coordinate of our “acoustic MINKOWSKI space.”  We extend the Euclidian 
space metric aik = δik to the MINKOWSKI metric: 
 

aµν = ηµν = (1, 1, 1, − 1) (µ, ν = 0, 1, 2, 3), 
 
and our line element will take on the form: 
 

ds2 = ηµν dxµ dxν.     (12) 
 

We shall discuss these expressions later in a broader context. 
 If we now adapt the static phenomena to our four-dimensional case by way of 
analogy then we can regard that MINKOWSKI space as the four-dimensional image of 
an ideal crystal in the large.  The directions of the axes in MINKOWSKI space are the 
crystal directions.  Naturally, the spatial coordinate lines once more represent the usual 
ideal lattice in that.  The physical meaning of the fourth coordinate axis – viz., the time 
axis – will become clear when we consider that the parallels to the time axis can be 
interpreted kinematically as the world-lines of mass-points at rest.  This “four-
dimensional ideal crystal” then represents the history of a three-dimensional ideal crystal 
at rest here.  A four-dimensional real crystal will arise from a now-time-dependent 
anholonomic deformation and twisting of the four-dimensional lattice, which we 
associate with a four-dimensional RIEMANNian space with teleparallelism, in complete 
analogy to statics, as follows: 
 The three spatial vectors of our ideal lattice first go to the deformed vectors: 
 

Khα  = Khα (xi, x0) with  0
Kh  ≡ 0. 

 
It is clear that these actual lattice vectors cannot take on a temporal component under the 
deformation; hence, the condition 0Kh  ≡ 0.  The lattice vectors that are constantly 

changing in time from the three-dimensional standpoint will then lead us to single out 
three well-defined fixed congruences of curves in the four-dimensional image.  We will 
get the fourth congruence in such a way that the lines of the mass-points at rest that are 
parallel to the time axes will go to the world-lines of moving mass-points, which we can 
describe by the equation: 

xi = xi (x0) . 
 
If x0 is the parameter of that congruence of curves then we will get the following 
expressions for the components of that congruence: 
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0hα  = 0hα (xi, x0) with  0
ih  ≡ 

i

T

v

c
, 0

0h  = 1, 

 
in which vi = vi (xi, x0) means the velocity of the mass-point.  We easily convinces 
ourselves of the validity of that relation by referring to the following sketch: 

 

dxi 
xi 

xi = xi (x0) 

dx0 

x0 

 
The projection of a curve segment onto the axes, divided by dx0, will yield 0hα , from 

which, the formula above will arise. 
 In that way, we have obtained a complete vierbein field, which has the following 
form: 

hµ
Γ  = 

0

0
0 0

0

1

m
G G

m
m

T

h h

v
h h

c

 =
 
 = =
  

  with the inverse  hµ
Γ  = 

0

0
0 0

0

1

G
m m

G

h h

h h

 =
 = 

, 

according to (4): 
h hµ

ν
Γ

Γ  = µ
νδ  and  h hµ

µ
Λ

Γ  = δ Λ
Γ . 

 
The inverses hν

Γ exist on the basis of the non-coplanarity of the three spatial lattice 

vectors that was assumed initially.  Due to their special form (13), the individual 
reciprocity relations will then read: 
 

m G
G nh h  = m

nδ   ( m K
G mh h  = K

Gδ , resp.) 

and 

0
Gh hµ
µ  ≡ 0

0 0 0
m G G

mh h h h+   ⇒ 0
Gh  = − 0

m G
mh h .   (13*) 

 
 Just as we do in statics, we can now introduce the dual space when we characterize a 
tensor by its tensor components Vα, in one case, or by projecting those components onto 
the vierbein: 

V Γ = h Vα
α
Γ .     (14) 

 
In analogy to statics, we set the metric of the dual space equal to that of MINKOWSKI 
space, so: 

gΓΛ = ηΓΛ = (1, 1, 1, − 1), 

                                                
 (4) Lowercase, as well as uppercase, Greek indices (α, µ, … = tensor indices, Γ, Λ, … = numbers) will 
always range through the numbers 0, 1, 2, 3. (See Appendix) 
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and with the help of the equation: 
gµν = h hµ ν

Γ Λ ,     (15) 

 
we have endowed our four-dimensional, oriented continuum with a metric, and thus made 
it into a RIEMANNian space that was the image of the four-dimensional real crystal.  
The dual space that is associated with it point-wise contrasts with the behavior of the 
ideal crystal. 
 Due to the four distinguished congruences of curves that are defined by the vierbeins, 
we can once more define an EINSTEIN teleparallelism (cf., [24]) and the coefficients of 
the teleparallel displacement are given by (5): 
 

λ
µνΓ  = ,h hλ

ν µ
Γ

Γ   with  
4

hα β
Γ
�  = 0, 

4

gµν λ� = 0,  (16) 

 
so one will have, in particular: 

0
α βΓ = 0,     (17) 

 
whereas for all other displacement symbols, one will generally have i

α βΓ  ≠ 0, which one 

can easily believe on the basis of (13).  Along with (16), one can define the affinity: 
 

3

r
ikΓ = ,

r G
G k ih h      (18) 

 
solely on the basis of the reciprocity relations that exist already between the three spatial 
lattice vectors m

Gh  = m
Gh  (xi, x0) from (13*). (The index “3” in 

3

r
ikΓ  refers to the three-

dimensional character of that quantity; cf., the Appendix.) 
 We then get not only equations (17) for the field equations of moving dislocations 
(which should give an invariant characterization of the vierbein field (13), geometrically-
speaking), but also the integrability conditions for the the affinities (16) and (18), and 
therefore: 

, ,
0

, ,3 3 3 3 3 3 3

) 0,

) 0,

) 0.l l l r l r l
ijk jk i ik j jk ir ik jr

a R

b

c R

δ δ δ κ δ κ δ
αβγ βγ α αγ β βγ ακ αγ βκ

α β

≡ Γ − Γ + Γ Γ − Γ Γ =


Γ = 
≡ Γ − Γ + Γ Γ − Γ Γ =


  (19) 

 
 However, not all of equations (19) are algebraically independent of each other, and 
therefore they are useless in practice.  We shall now choose an algebraically-independent 
system, but we shall first make a few remarks about the geometric interpretation of (19). 
 With those vectors, (19.b) can be written in the form: 
 

                                                
 (5) For the meaning of the notation 

4

� , see the Appendix. 
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0 0 0 0
0 , ,

0
0

, ,0
0

0, so

.

G
G

GG

h h h h

h
h h

h

α β β α β α

β α β α

Γ ≡ + =

= − 


   (20) 

 
We would now like to assume only that the conditions: 
 

0hΓ  = 0δΓ       (21) 

 
are valid at some time-point and some well-defined location, and therefore that we also 
have 0hβ  = 0

βδ , from the reciprocity conditions, and that our vectors are analytic functions 

of position and time, in addition.  If we recall the development of the real crystal from an 
ideal crystal then naturally that condition will always be fulfilled.  We then immediately 
read off of (26) that the conditions (21) will then be true everywhere and for all times. 
 That means that the infinitesimal operators: 
 

XK ≡ Kh
x

µ
µ

∂
∂

= r
K r

h
x

∂
∂

 

 
that one defines with just the three congruences of curves Khµ  already define a complete 

system, which is well-known to be the necessary and sufficient condition for those three 
congruences of curves to define a manifold.  (19.b) is then the condition for a three-
dimensional submanifold to be distinguished in our four-dimensional manifold, namely, 
our ordinary Euclidian space (endowed with the metric gij, resp.), which is the three-
dimensional RIEMANNian space of the statics of dislocations.  (19.b) will then define a 
teleparallelism in that RIEMANNian space with the help of those three lattice vectors, 
and will therefore be identical with the equations (10) of dislocation statics.  They are 
then preserved here, and they will be extended by only the additional equations (19.a) 
and (19.b) under the transition to dynamics.  One difference between (10) and (19.c) 
consists of the fact that (19.c) is required to be true for all times, while (10) is referred to 
only one time-point from the outset. 
 We will introduce special-relativistic behavior with the speed of sound as the limiting 
velocity when we introduce a four-dimensional line element by way of: 
 

ds2 = ηµν dxµ dxν = δik dxi dxk – (dx0)2,   (12) 
 
and in that way, we will construct a theory of moving dislocations.  We would now like 
to make a few remarks about that construction. 
 In the special theory of relativity, the basis for the introduction of ds2 is the physical 
equivalence of all inertial systems.  The inertial systems emerge from each other by 
LORENTZ transformations, and ds2 is an invariant under the group of Lorentz 
transformations.  However, in our case, the demand that the sound should be produced by 
a point-like source and propagate like a spherical wave will establish the state of motion 
of the reference system uniquely; it is the system in which the elastic medium is at rest.  
The coordinate transformations that mix the space and time coordinates with each other 
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will be excluded then.  If we then restrict the allowable coordinate transformations to the 
orthogonal group of space-space transformations and the identity transformation in time 
then we will formally justify the condition of invariance of ds2, which is the centerpiece 
of the theory of relativity, under this subgroup of “LORENTZ transformations.”  We will 
have transferred the same mathematical relationships into continuum dynamics that we 
find in the general theory of relativity by way of the RIEMANNian space that is defined 
by: 

gµν = h hµ ν ηΓ Λ
ΓΛ ,     (15) 

 
and general relativity is also based upon a four-dimensional RIEMANNian space.  
 The teleparallelism that is introduced by: 
 

λ
µνΓ = ,h hλ

ν µ
Γ

Γ ,  
4

hα β
Γ
� = 0, 

4

gµν λ� = 0  (16) 

 
corresponds completely to the field theory that EINSTEIN introduced in 1928 (cf., [24]).  
The vierbeins that are defined at each world-point in that theory, which are analogous to 
our four-dimensional lattice, define local inertial systems.  The vierbein components of 
tensors represent the tensors that are measured in those inertial systems by projection.  
Just as in continuum dynamics, the dual spaces of the theory of gravitation carry the 
metric of MINKOWSKI space.  However, the vierbeins were not defined uniquely in 
EINSTEIN’s theory of 1915.  Furthermore, the general theory of relativity is invariant 
under the four-dimensional rotations of those vierbeins that vary from point to point – 
i.e., under local LORENTZ transformations – and according to TREDER [36], that is 
precisely the essence of the principle of general relativity.  Such a principle is not true a 
priori  in continuum dynamics, since the curve congruences are distinguished uniquely by 
the lattice structure in that case.  The only invariance in that case is under global spatial 
rotations. 
 What is the physical meaning of the four-dimensional metric now?  With the form 
(13) for the vierbeins that is guaranteed by the field equations (19), one finds that one 
has, in detail: 

4
ikg = i kh h ηΓ Λ

ΓΛ = 0 0G L
i k GL i kh h h hδ − = G L

i k GLh h δ = 
3

ikg . 

 
The spatial components of the four-dimensional metric then coincide with those of statics 
and therefore characterize the deformations as they would in the latter theory.  It further 
follows that: 

g0i = 0 ih h ηΓΛ
Γ Λ = − 0 0

0 0
i i GL

G Lh h h h δ+ = − 0
ih = − 

i

T

v

c
. 

 
The contravariant space-time components of the metric then determine the velocity of the 
matter, and finally: 

g00 = 0 0h h ηΓΛ
Γ Λ = − 0 0 0 0

0 0
GL

G Lh h h h δ+ = − 0 0
0 0h h = − 1 ; 
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i.e., the contravariant zero-zero component is constant and will always be set to minus 
one.  One finds the remaining components from the reciprocity relations: 
 

4 4
g g αν

αµ = ν
µδ ,  

4 4

rk
rig g = k

iδ , 

 
and therefore, in summary, one will have: 
 

0 0

4 3 4 3

0 0
0

00 0 0
00

, ,

, ,

1, 1 .

ik ik i k
ik ik

i
i r

i ri
T

r s
rs

g g g g g g

v
g g g g

c

g g g g g

= = −

= − = 

= − = − +


   (25) 

 
 The condition g00 = − 1, or more generally, the process of fixing some components of 
the metric to have definite values (restricting them by differential conditions, resp.), is 
well-known in the general theory of relativity.  Due to general covariance, in the general 
relativity, one can always impose four arbitrary conditions on the metric that correspond 
to an arbitrary choice of the four coordinates.  In that sense, we can now mathematically 
interpret the requirement g00 = − 1, which comes about as a result of the peculiarities of 
the RIEMANNian space that is defined here, conversely as a coordinate condition in a 
general RIEMANNian space. 
 The three further coordinate conditions that are possible can also find their 
counterparts in general relativity here.  Namely, the deformations are still not established 
uniquely by (19).  As is known, one must specify the external forces that act upon the 
medium; i.e., one must extend (19) with the equilibrium conditions, which one can write 
in the form: 

,
ri i

r

d
v

dt
σ ρ−  = − f i     (26) 

 
in the dynamical case, in which σ ri means the stress tensor, ρ means the density of the 
deformed medium, and f i means the volume force (6).  Those equations will give three 
differential conditions for the metric, which will also establish the metric gik uniquely, as 
in general relativity, when one adds a material law: 
 

σik = σik (εrs) = σik (grs) 
and introducing the notation: 

v i = − cT g
0i. 

 
Equations (26) can then be interpreted as the remaining three coordinate conditions.  
Therefore, in contrast to the theory of relativity, changes in the gαβ that are produced by 

                                                
 (6) (26) is an equation in Euclidian space, for which we employ Cartesian coordinates. The position of 
the indices in (26) is therefore inessential. 
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coordinate transformations will have an actual physical meaning here.  We shall return to 
that connection and some of its consequences later. 
 We would now like to choose an algebraically-independent system of field equations 
from (19).  In order to do that, we proceed in such a way that we shall exhibit successive 
equations that are obviously algebraically-independent of each other and with which, we 
can go into the still-unconsidered equations and check to see what new requirements that 
they might then express.  As we said, equations (19) will become true determining 
equations for the metric when we decompose the affinities according to: 
 

3 3 3 3 3

3 3

,

,k k k k k
ij ij ij ji ij

T T T h

k k
T T T h

i j i j

µ µ µ µ µ
αβ α β α β β α α β

µ µ
α β α β

   
Γ = + + + = +    

    
    Γ = + + + = +   
   


  (27) 

 
and therefore into the CHRISTOFFEL symbols and the torsion part, and regards the 
torsion as a physically-given quantity.  hαβ 

µ = ;h hµ
β α
Γ

Γ  is therefore RICCI’s rotation 

tensor for the tensor field hµ
Γ (cf., J. A. SCHOUTEN [37], G. VRANCEANU [32]). 

 In order to perform that decomposition, we must first find a relation between 
4

k
ijT  and 

3

k
ijT  and then interpret the torsion components with one or more zero indices physically. 

 We next point out that on the basis of the special form (13) of our congruences of 
curves, we will have: 

3

k
ijΓ = 

4

k
ijΓ ,      (28) 

 
which we can read off from (16) and (18).  With the help of (19.b), the torsion 
components with zero indices can all be brought back to the quantities 0

ikT  (vanish, 

resp.).  In that way, we will find the relations: 
 

a) 0Tαβ  = 0,  b)

0 0 0
0
0 0 0
0

0 0 0 0
00

,

,

,

r
i ri

r
i ri

r s
rs

T g T

T g T

T g g T

 =
 =
 =

 c)
4 3 def.

0 0

4 3

,

.

k k k
rs rs rs

k k k
rs rs rs

T T T

T T g T

 = =


 = −

 (29) 

 
(These relations are derived in the Appendix.)  As before, k

rsT  can be interpreted as a 

dislocation density, while only 0ikT  can be interpreted as new quantities in the equations.  

We will see that they can describe the dislocation current. 
 We shall consider what independent demands are still contained in (19.b).  Due to 
(29), we only need to consider the symmetric part of it: 
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0
αβΓ  = 00

2T αβα β
 

+ 
 

 ≡ 1
2 g0κ (gακ, β + gκβ, α − gβα, κ) + T 0αβ + T 0βα = 0. 

 
We write out those equations in detail, in which we employ (25) and get: 
 

 0
ikΓ  ≡ 00

2 ikT
i k

 
+ 

 
 

 
 ≡ 1

2 (gik, 0 + gik, q g
0q − g0q

,k giq) + T 0ik + T 0ki = 0, 

 

 0
0iΓ  ≡ 1

2 g0κ (g0κ, i + gκ i, 0 − gi0, κ) + T 0i 0 + T 00 i = 0  

 

  = 0 0 0
0 0

0q
i ig T T

q i

 
+ + 

 
 = 0, 

 

 0
00Γ  ≡ 1

2 g0κ (2 g0κ, 0  − g00, κ) + 2T 000 = 0  

 

  = 0 0 0
00

0
2q pg g T

p q

 
+ 

 
 = 0. 

 
If we employ (29.b) then it will follow directly that: 
 

0
0iΓ  ≡ 0 0q

qig Γ ,  0
00Γ  ≡ 0 0 0p q

pqg g Γ . 

 
The only independent requirement that will remain in (19.b) is: 
 

0
ikΓ  = 0.      (30) 

 
 Now, it is clear that equations (19.c) to (30) are algebraically independent.  Along 
with (30), we still have to fulfill: 

3

l
ijkR  = 0,      (31) 

 
and we still have to investigate which additional requirements must be added to (30) and 
(31) through equations (19.a).  The number of those independent equations will be 
determined from the number of algebraically-independent components of the curvature 
tensor using (19.a).  The number of independent components of the curvature tensor is, in 
turn, given by its symmetry properties.  For the algebraic identities in the curvature tensor 
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that will be given in what follows, cf., e.g., J. A. SCHOUTEN [37] (7).  Next, with our 
convention, we will have antisymmetry in the first two indices from the definition: 
 

Rαβγδ + Rβαγδ = 0.     (32) 
 
However, the last two indices are also antisymmetric: 
 

Rαβγδ + Rαβδγ = 0.     (33) 
 
That is a consequence of the special form (27) of our affinity.  (33) is the integrability 
condition for the RICCI Lemma: 
 

gαβ || γ ≡ gαβ, γ − g gµ µ
µβ γ α µα γ βΓ − Γ  = 0.   (34) 

 
[Otherwise expressed, (34) is the once-integrated form of (33).]  The general solution to 
(34) is an affinity of the form: 
 

µ
α βΓ  = 

µ
α β
 
 
 

+ Tαβ 
µ + T µαβ + T µβα  with Tαβ 

µ = − Tβα 
µ.  (34.a) 

 
Therefore, any curvature tensor that is defined by an affinity of the form (34.a) will 
satisfy (33) identically.  Since the form of our affinity (27) coincides (34.a), (33) will 
then be fulfilled. 
 We shall now consider the part of the curvature tensor that is cyclically-symmetric in 
the first three indices.  We can write it in the form: 
 
 R{ αβγ} δ ≡ 2 [Tαβγ, δ + Tβγδ, α + Tγαδ, β +T T Tκ κ κ

γ β κ α δ α γ β β δ β α κ γ δΓ + Γ + Γ ] 

 
  ≡ 2 [Tαβγ ; δ + Tβγδ ; α + Tγαδ ; β + ( )T T T Tκ

α β γ κ δ δ γ κ δ κ γ+ +  

  + ( ) ( )]T T T T T T T Tκ κ
β γ α κ δ δ α κ δ κ α γ α β κ δ δ β κ δ κ β+ + + + + .      (35) 

 
That is an expression that does not vanish identically and which includes only the torsion 
(i.e., physically speaking, the dislocations) in the linear approximation.  We will then 
have: 

R{ αβγ}
δ = 0       (36) 

 
as our new equations.  Now, the cyclically-symmetric part of (31) is likewise an 
expression that includes only the torsion in the linear approximation (and is known to 
express the closure condition for the dislocations).  In the Appendix, it will be shown that 
of equations (36), only the conditions: 
 

                                                
 (7) In comparing the corresponding expressions, one must observe which affinity that the covariant 
differentiation is performed with.  
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R{0 ij}
k = 0      (37) 

 
are algebraically independent of (30) and (31). 
 From the last of the symmetry properties that characterize the curvature tensor, from 
formula (27), one will have: 

 
Rαβγδ − Rγδαβ ≡ 1

2 [R{αβγ} δ  + R{βαδ} γ + R{δγβ} α − R{γδα} β]   (38) 

 
for the affinity, as one easily verifies.  However, since one already has R(αβγ)

δ = 0, on the 
basis of the field equations (31) and (37), one will also always have: 
 

Rαβγδ − Rγδαβ = 0 .    (39) 
 
 We have seen that the curvature tensor Rαβγδ has all of the symmetry properties of the 
RIEMANN-CHRISTOFFEL curvature tensor, on the grounds of conditions (36) and the 
form of the affinity (27).  We can then assume those symmetry properties in our search 
for other possible independent equations.  If we employ the triply-covariant, singly-
contravariant form: 
   R{αβγ}

δ = 0 
then we can restrict ourselves to: 
   R{αβγ}

k = 0 
 
due to the validity of (19.b).  Here, we must consider the equations: 
 

4

l
ijkR  = 0,      (40) 

 
R0 i j

k = 0,     (41) 
 

R0 i 0
k = 0     (42) 

 
separately.  All other equations will then follow from (40)-(42) as a result of the 
symmetry properties.  However, we can show that equations (40)-(42) imply no new 
requirements.  Moreover, our use of the expressions (25) for the metric and (29) for the 
form of the torsion components by itself will suffice to require equations (30), (31), and 
(37), so the system (40)-(42) will also be fulfilled. (The calculations are given in the 
Appendix.) When we split off the extra cyclically-symmetric part of (31), we can then 
write our system of equations for moving dislocations in the following form: 
 

{ }3 3

0
{ }3

) 0, ) 0,

) 0, ) 0.

ijkl ijk l

ik ijk l

a R b R

c c R

= = 
Γ = = 

   (43) 

 
 It is possible to replace this system of equations with one for which the analogy to the 
equations of general relativity emerges very sharply (see Appendix).  In that way: 
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{0 } {0 }3 def

r
ij k ij rkR R g=  

and 

{ }3 def 3 3ijkl ijkl ijk lR R R= − , so { }ijk lR ≡ 0. 

(43.a) is equivalent to: 

3 ijR = 0.     (43.a′) 

 

3 ijR  is then the RICCI tensor that is defined by 
3 def 3

s
ij sijR R= , so 

3 ijR  has just as many 

algebraically-independent components as 
3 kijlR . 

 The explicit form of (43.c) is given by: 
 

0
ikΓ  ≡ 1

2 (gik, 0 − gik, q g
0q − g0q

, i gkq − g0q
, k giq) + T 0ik + T 0ki = 0,  (43.c) 

 
while (43.d) can be brought into the following form: 
 
  {0 }3 i j kR  ≡ 0 0 0 0 0 0

,0 , , , , , ,3 3 3 3

r r r r
i j k ik j jk i ijk r j ijk i rjk k ijrT T T g T g T g T g T− + − + − −  

 
+ 0 0 0

3 3 3
2r r r

ir jk jr ik kr ijT T T TΓ − Γ + = 0.     (43.d) 

 
 (43.d) can now serve as the basis for the physical interpretation of T 0

ik .  In order to 
see that, we consider the linearized equations (43.d): 
 

Tijk, 0 = T 0ik, j − T 0jk, i .     (44) 
 
Now, the connection between the dislocation density Tijk and the plastic distortion β Pik is 
well-known (cf., e.g., E. KRÖNER [18]): 
 

Tijk = 1
2 (β Pjk, i − β Pik, j) . 

 
Differentiating with respect to time will yield: 
 

Tijk, 0 = 1
2 (β Pjk, 0 i − β Pik, 0 j) . 

 
Furthermore, the dislocation migration tensor Nijk is defined in the literature to be the 
number of αjk-dislocations per unit length that migrate in the i direction perpendicular to 
the line of motion of the dislocations and the direction of migration.  According to 
KRÖNER [13], its connection to plastic distortion is: 
 

β Pij = − b εrsi Nrsj . 
 
(b is the BURGERS vector in this, which is assumed to be constant, for the sake of 
simplicity.) 
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 Therefore, only the antisymmetric part of the first two indices of Nijk will come under 
consideration for plastic distortion.  One can call the time derivative of this quantity the 
dislocation current tensor that pertains to plastic distortion (cf., E. F. HOLLÄNDER 
[26]).  If one denotes that by I ij then one will have: 
 

β Pij, 0 = − I ij ,     (45) 
and one will have: 

Tijk, 0 = 1
2 (I ik, j − I jk, i) .    (46) 

 
A comparison of (44), (45), and (46) will then suggest that one might relate the next 
purely-geometrically-defined quantity T 0ik to the dislocation current (time derivative of 
the plastic distortion, resp.) according to: 
 

0

0
,0

0 0
,0 ( ),0def

2 ,

2 ,

( ).

ik ik

P
ik ik

P P
ik ik ik ki

T I

T

T T

β
ε β

=


= − 
= = − +


   (47) 

 
 We can then regard (43.d) as the nonlinear generalization of the elementary 
connection between the dislocation current and the time derivative of the dislocation 
density.  That also makes the physical meaning of (43.d) clear.  Those equations give the 
connection between the dislocation current T 0

ik , the material velocity v i, and the time 
evolution of the elastic strain gik, 0 . 
 We have therefore found interpretations for all of the quantities that enter into our 
basic equations (43) as three-dimensional tensors.  Tij

k describes the dislocation density, 
T0

ik  is the dislocation current, gik is the elastic strain, and g0i is the material velocity.  The 
basic equations (43) will then become equations between three-dimensional tensors in 
which time once more plays the role of a parameter.  That must also be true on the 
grounds of physical reality, as we mentioned already to begin with.  In what follows, we 
will then work with only three-dimensional quantities and drop the numeral 3 to 
characterize the three-dimensional character of the quantity in question, so we will mean 
that: 

gik = 
3

ikg , T i; k = ;3

r
sT , etc. 

 
(If we would like to employ the four-dimensional notation again specifically then we will 
characterize it by putting a “4” under the symbol.) 
 

___________ 
 



II. COMPARISON WITH THE LITERATURE  
 
 

 We shall now compare the field equations (43) with the earlier work on the dynamics 
of dislocations.  To begin with, we shall go into a little-known paper by AMARI [25].  To 
our knowledge, it was the first (and up to now, the only) treatment of moving dislocations 
that appealed to a geometric procedure that was extended to four dimensions for that 
purpose.  AMARI therefore deserves the credit for having adapted the differential-
geometric methods that had proved so fruitful in statics to the dynamical problems.  The 
relationships that AMARI derived also contain the basic equations (43) implicitly, 
although they were not actually given in the latter form.  The author generally treated 
small perturbations and material speeds that were small in comparison to the speed of 
sound, such that many of his relationships could be regarded as only linear 
approximations.  However, that came about more on the grounds of simplicity and should 
not be regarded as an essential restriction here, since the geometric methods are exactly 
the tool that is suited to the task of obtaining the rigorous, nonlinear equations. 
 A first example of such an approximation is that of the expressions for the 
components of the distortion that AMARI referred to by (1.4) and (1.41), which will read 
(8): 

L
h µ

Γ  = 
0

1

m m
G G

mv

δ β +
 
 

  with  m
Gβ ≪ 1, vm ≪1 

 
in our notations, and the inverses will then be given by: 
 

L
h µ

Γ  = 
0

1

G G
m m

Gv

δ β +
 
 

  with  
,

.

G G K n
m n m K

G G m
mv v

β δ δ β
δ

= −
= −

 

 
As one sees, those formulas correspond to the linear approximation of (13).  The fact that 
one finds the expression vm / cT here in place of vm is based upon the fact that AMARI 
chose t to be the fourth coordinate, not cT t. 
 AMARI introduced a metric by way of equations (1.7), and in our notation, it was: 
 

gµν = 
L L
h h gµ ν

Γ Λ
ΓΛ .    (1.7*) 

 
It differs from the metric that we defined by (15) only in that gΓΛ does not have the form 
ηΓΛ , but gΓΛ = (1, 1, 1, c), with a constant c that is left undetermined (9) and is not 
connected with the speed of sound a priori, and can be negative, as well as positive.  
However, that will not lead to any essential alteration of the theory, since we can again 
eliminate the speed of sound from the basic equations a posteriori. 
                                                
 (8) AMARI chose a unit of time such that the speed of sound would have an order of magnitude of 1. 

 (9) In order to compare (1.7*) with (15), one must observe that we would have to choose η ∗

ΓΛ  = (1, 1, 1, 

− 2

T
c ), instead of ηΓΛ  in our formalism if we were to choose t to be the fourth coordinate, instead of cT t , as 

AMARI did. 
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 We would not like to go further into that connection at this point.  Namely, we mean 
that distinguishing the MINKOWSKI signature (1, 1, 1, − 1) and using the transversal 
speed of sound as the limiting speed is most likely to do justice to a four-dimensional 
picture of the dynamics of dislocations (if one would like to employ such a thing, at all).  
In order to do that, we consider our starting equations (19.a) in the linear approximation: 
 

4
L

Rαβγδ  = 0. 

 
We will then regard, above all, the (four-dimensional) RICCI tensor as the components 
that characterize the dynamical description of the system.  In the linear approximation, 
we can write: 

4
L

R µν  ≡ 
4
L

Rαβ
α µν βη  = 0. 

 
If we consider the i, k-components in this, in turn, then with the use of (25) and the 
relation Tµν

0 = 0, we will find that: 
 

4 ik
L

R   

= ηαβ 1
2 (− gik, αβ − gαβ, ik + gi α, kβ + gkα, iβ) + T αik, α + T αki, α + Ti α

 α
, k + Tk α

 α
, i  = 0 (48*) 

or 
1
2

 [(− gik, rr − grr , ik + gir , kr + gkr, ir) + η00 (− gik, 00 − gi 0, k0 + gk 0, i 0)] 

 
= − (T 0ik, 0 + T 0ki, 0 + Trik, r + Trki, k + Ti rr, k + Tk rr, i) .   (48) 

 
We now consider the linearized equilibrium conditions (26) for the force-free case (f i = 
0): 

σri , r − 0

iv

t
ρ ∂

∂
= 0 (ρ0 = density in the stressed state),  (49) 

 
and with HOOKE’s law for isotropic bodies: 
 

σik = 2µ εik + λ δik εrr .     (50) 
With: 

gij = δik – 2εik ,  
2

0 Tcρ  = µ ,    (51) 

 
we can combine (49) and (50) into: 

gir , r +
2

λ
µ

grr , i + 2

1 i

T

v

c t

∂
∂

= 0.    (52) 

 
Equation (48) will now go to precisely the (inhomogeneous) wave equation that 
characterizes dynamical processes when (10): 
                                                
 (10) In order to do that, one must only take care that one has: 
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1.  η00 = − 1, 2. x0 = cT t . 
 
We will then have 0i

L

g  = g0i = − /i
Tv c , and we can write (52) in the form: 

gir , r +
2

λ
µ

grr , i − g0i
, 0 = 0.    (53) 

 
If we then substitute that into (48) then it will follow that: 
 
 1

2
 [(− gik, rr − grr , ik + gir , kr + gkr, ir)  

 
= − (T 0ik, 0 + T 0ki, 0 + Trik, r + Trki, k  + Ti rr, k + Tk rr, i) 

def
=  − Tik .  (54) 

 
For εrr = 0 – i.e., for shearing waves – we will get from this that: 
 

− gik, rr + 
2

2 2

1 ik

T

g

c t

∂
∂

 = − Tik , 

 
and thus, the correct description of transversal waves.  For εrr ≠ 0, when we contract over 
i and k, it will follow that: 

− ∆gik + 
2

2 2

1

2

rr

T

g

t
c

µ λ
µ

∂
∂ +

 
 

 = − Trr  

for longitudinal waves, or: 

− ∆grr + 
2

2 2

1 rr

T

g

c t

∂
∂

 = − Trr , 

resp., with: 

cL = 
2

Tc
µ λ
µ
+

, 

 
and thus, the correct relationship between cT and cL .  From that viewpoint, the signature 
and limiting speed are established.  However, the fact that one can also avoid such a way 
of looking at things without having to decide upon a well-defined signature and a 
distinguished limiting speed is based upon the fact that equation (54) “degenerates” in 
continuum mechanics; i.e., it decomposes into two summands that each vanish on the 

                                                                                                                                            

00

2

02x
η

∂

∂
= − 

2

2 2

1

Tc t

∂

∂
. 

Naturally, one can arrive at that by setting η00 = − 21/
T

c , x0 = t or other corresponding combinations that are 
less customary and lead to no new statements. 
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basis of the field equations.  Namely, if one observes the linearized form of equations 
(43.a′) and (43.c) then one will have: 
 

4 ik
L

R =
3

00 0
,0ik ik

L
L

R η− Γ = 0,    (55) 

with 
a)  

3 ik
L

R = 0, b) 0
ik

L
Γ = 0,  (55)[sic] 

 
such that η00 will then remain undetermined.  However, the four-dimensional description 
will be perturbed in that way, since (43.a′) and (43.c) are only three-dimensional 
equations.  If one looks closer at the basic equations (43) then it will be clear to begin 
with that the speed of sound does not enter into equations (a) and (b), since they are, in 
fact, equations of statics.  However, the speed of sound does not enter into equations (c) 
and (d) explicitly either.  Namely, if one observes that x0 = cT t, g

0i = − vi / cT , and in 
addition, that a factor of 1 / cT likewise enters into those quantities on the basis of the 
definition of T 0ik in equations (45)-(47), then one will see that when one multiplies (43.c) 
and (43.d) by cT , the speed of sound will also drop out of those equations completely.  
That corresponds to the possibility of developing a version of the theory of moving 
dislocations that is free from the introduction of the speed of sound, like the one that 
AMARI gave.  Furthermore, it is clear in this that the basic equations will also be true for 
the general case of an inhomogeneous and time-varying medium.  We shall now return to 
AMARI’s work. 
 By introducing a four-dimensional teleparallelism, AMARI likewise arrived at the 
equations that are referred to in (19.a): 
 

Rαβγ
δ ≡ , ,

δ δ κ δ κ δ
βγ α αγ β βγ ακ αγ βκΓ − Γ + Γ Γ − Γ Γ  = 0. 

 
However, since he did not make the distinction between four-dimensional and three-
dimensional quantities that is suggested by formula (13) [(1.4) and (1.41), resp.], he did 
not directly link that with the requirements (19.b, c) as further geometric conditions.  He 
treated (19.c) as the spatial part of (19.a), and therefore, in our notation: 
  

4

l
ijkR  = 0. 

 
However, upon restricting to linear quantities, that will be identical to (19.c), as one can 
infer from relations (3.11), (3.14) that are given in the Appendix.  AMARI obtained the 
linearized equations (19.b) [more precisely, equations (53) (cf., infra)] from an auxiliary 
consideration that he inferred from a linear relationship.  Combining the equations (3.10) 
and (3.11) that he gave: 

D

Dt
ds2 = 4 0 lkT dxl dxk, 

 
D

Dt
ds2 = 2 alk dxl dxk = , ,

lk
l k k l

g
v v

t

∂ + + ∂ 
 dxl dxk, 
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will give (53) precisely: 
1
2 (glk, 0 – g0l

, k – g0k
, l) + T 0lk + T 0 kl = 0. 

 
 Naturally, the relationships between dislocation densities and dislocation currents that 
AMARI obtained from linear considerations represent the first approximation to (43.d), 
and will then be identical to conditions (44): 
 

Tijk¸ 0  = T 0ik, j − T 0jk, i , 
 
which HOLLÄNDER [26] already gave [the compatibility conditions (60.d) that 
KOSEVICH [27] presented, resp. (cf., infra)]. 
 We pointed out that in AMARI’s relation (2.2) between dislocation density, 
dislocation current, and dislocation velocity v r, which reads: 
 

T 0ik = v r Trik 
 
with our notation, vr will not change with the likewise-denoted particle velocity.  
Moreover, that relation is true only for the case of constant dislocation speed (cf., the 
discussion below of the similar problem in HOLLÄNDER). 
 AMARI did not split off an algebraically-independent system of equations, so some 
of the relations that he gave are redundant.  For example, AMARI’s separate 
consideration of the components of the four-dimensional curvature tensor in equations 
(3.8) that have one zero index and two zero indices, which is: 
 

0

0mlk
L
R − Tlkm,0 – T0mk,l + T0ml,k = 0, 

 
0

0 0n l
L
R − T0ln,0 – T0nl,0 = 0 

 
in our notations, will imply no new statements, which is clear from equations (3.9) in our 
Appendix, when one considers (44). 
 E. F. HOLLÄNDER [26] undertook the search for a presentation of the linear 
equations of dislocation dynamics in a series of papers.  The meaning of those papers 
consists of, above all, the fact that it was the first time that the mathematical analogies 
between dislocation dynamics and special relativity were consulted in order to formula 
the dynamics of dislocations, and indeed, in a four-dimensional form.  We point out that 
one will already find the linear form of equations (43.d) in those papers: 
 

Tijk,0 – T 0ik,j + T0
jk,i = 0.    (44) 

It is written in the form: 

Rot I  +
t

∂
∂
αααα

 = 0        (44*) 

 
in those papers, in which αααα means the dislocation density, and I  means the dislocation 
current tensor.  However, in total, the equations that were presented in them still do not 



24 On the nonlinear continuum theory of moving dislocations 

lead to a closed physical theory of moving dislocations.  We would therefore not like to 
go further into the detailed results.  HOLLÄNDER himself emphasized that fact in a later 
paper [27], which we shall now discuss. 
 Nonlinear equations for moving dislocations were presented for the first time in that 
paper.  HOLLÄNDER even appealed to a geometric procedure in order to do that, but in 
three-dimensional form, and time appeared as a parameter.  His methods can be regarded 
as a sort of generalization of the procedure that KRÖNER applied to statics.  In that way, 
he found the following system of equations: 
 

; ;

1 1
( )

2 2
kl

l k k l

g
v v

t

∂+ +
∂

 = klI ≡ − 2 vm
m klT ,   (56) 

 
in which the notations are the ones that we defined, and Ikl is the dislocation current 
tensor.  We compare (56) with (43.c): 
 

1
2 (gkl, 0 – gkl, r g

0r − g0r
, k glr − g0r

, l gkr) = − (T 0kl + T 0lk). 

 
If we consider that g0r = − v r / cT , x

0 = cT t then we can write this in the form: 
 

; ;

1

2
kl

l k k l

g
v v

t

∂ + + ∂ 
 = − cT (T 0kl + T 0lk),   (57) 

 
as we can easily check.  (56) and (57) [i.e., (43.c)] are therefore entirely identical in form, 
but the right-hand sides do not agree, since we have: 
 

cT
0
klT   ≠ vm m klT  . 

One has merely: 
T 0ik ≡ g0α Tα ik = g0r Trik + g0r Trik , 

 

T 0ik = − 
r

T

v

c
Trik – T0ik . 

 
Initially, the sign in this is the opposite of the one that would make the right-hand sides of 
(56) and (57) coincide.  In addition, from (16), one has: 
 

Tik
0 ≡ 0

k
i< >Γ  ≡ 1

,0 0,2 ( )k G G
G i ih h h− . 

 
However, that expression, and therefore T0ik , as well, will not vanish unless one makes 
special assumptions about hα

Γ .  One therefore cannot regard the right-hand side of (56) as 

the dislocation current tensor (11). 

                                                
 (11) In his first paper [26], HOLLÄNDER still did not employ the relation cT T

0
kl = vm Tmkl , so the linear 

form of equation (48) that he gave there is not correct with no restrictions. 
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 In a paper on the theory of moving dislocations, H. BROSS [28] exhibited the 
following linear system of differential equations for the strain tensor εij : 
 

µ ∆εij + (λ + µ) εkk, ij − ijρ εɺɺ = P
ijρ εɺɺ + µ (ηij – δij ηkk).   (58) 

 
BROSS based this upon merely the equilibrium conditions when one considers the 
inertial term in the force-free case [and thus, our equation (26) with f i = 0], the 
decomposition of the total distortion Gikβ  into the elastic and plastic parts βik and P

ikβ , 

resp., according to: 
G

ikβ = βik +
P

ikβ ,  with βik = εik , 

 
and the connection between plastic distortion and dislocation density (cf., e.g., [13]): 
 

αik = − εirl ,
P

ik rβ . 

 
Equations (58) refer to the isotropic case, in which µ, λ are the LAMÉ constants, ρ is the 
density of the medium in the stressed state, and ηik is the incompatibility tensor here, 
which is connected with the dislocation density in the following known way (cf., e.g., 
[18]): 

ηik = − 1
2 (εinl εrsk Trsn, l + εknl εrsi Trsn, l).   (59) 

 
 In order to compare this with the system (13), we remark that we have derived 
equations (54) from (48*), which however follows from the system (43), according to 
(55).  If we now observe (47), (51), (59), and the facts that g0i = − vi / cT , x

0 = cT t, in 
addition, then we will see that (58) is identical to (59).  H. BROSS’s equations (58) are 
then included in the system (43), and (43) also includes their nonlinear generalization. 
 T. MURA [30, 31] arrived at the same physical results as the ones that are given in 
(58) by a different process.  MURA started from the displacement field of an isolated 
moving dislocation and then went over to continuous distributions of dislocations.  He 
derived the following relation for the connection between dislocation density and 
dislocation current: 

ikαɺ = εhlk (εmnk Vmni) , l . 

 
As one easily sees, these are equations (44*) [(44), resp.].  As in those equations, αααα is the 
dislocation density, while εmnk Vmni is identical to I . 
 We shall now briefly touch upon the work that A. M. KOSEVICH [29] did on the 
problem of moving dislocations.  That author considered the linear theory of elasticity 
and found the following system of equations: 
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i

iklm im k

ilm mk l ik

kik
i ik

v
a u

t
b u D

u
c v I

t

ρ λ

ε

∂ = ∂ = − 
∂
− =

∂ 

    (60) 

 
KOSEVICH then imposed the additional requirement that: 
 

,

) Rot 0, or

) 0, resp., in tensor notationik
irs sk r

d
t
D

d I
t

ε

∂ + = ∂
∂ ′ + =
∂ 

D
I

  (60) 

 
as the compatibility conditions for (60.c and b). In these equations, ρ is the mass density, 
vi is the material velocity, λiklm is the tensor of elastic moduli, and ukl is the distortion 
tensor, whose symmetric part is then the strain tensor: 
 

klu = εkl . 

 
Dik is the dislocation density tensor, and I ik is the dislocation current tensor. 
 We now see that (60.a) is equivalent to our condition (53), in which only isotropy 
was assumed.  (60.b) are then the equations of dislocation statics that KRÖNER [13] 
discussed, from which one had to go over to equations (55.a) in order to determine the 
internal stresses.  Equations (60.c), which must be symmetrized in order to determine the 
internal stresses, correspond to the linearized system (48) that HOLLÄNDER [26] gave 
already, and they are identical to (55.b).  Finally, as was pointed before in the discussion 
of HOLLÄNDER’s work, (60.d) is identical to the linearized form of equations (43.d).  
With that, KOSEVICH then had the complete system (43) for the determination of 
internal stresses, but in linearized form. 
 
 

___________ 
 



III. – DIFFERENTIAL IDENTITIES  
 
 

 Equations (61) do, in fact, define an algebraically-independent system, and therefore 
cannot be reduced to a smaller number of equations.  Nevertheless, not all of the 
equations are mutually independent, since differential identities exist between their left-
hand sides.  One must then impose them on the right-hand sides, as well, by means of the 
field equations. 
 The system (43) was derived on the basis of the teleparallelism that is defined by the 
(four-dimensional) lattice structure of the medium.  We shall now go another step further 
by allowing that structure to be perturbed at isolated points or also in finite regions.  We 
express that by saying that we have introduced phenomenological matter tensors, as we 
would like to say; i.e., we go from equations (43) to the following general equations: 
 

{ }
0

{0 }

) , ) ,

) , ) .
ijkl ijkl ijk l ijkl

ik ik ij k ijk

a R M b R V

c N d R L

= = 
Γ = = 

   (61) 

 
We will often also combine (61.a) and (61.b) into one equation: 
 

Rijkl = Mijkl , so M{i jk}  l = Vijkl ,   (61.a + b) 
 
We shall now discuss the system (61) and consider it to be the first of the differential 
identities that exist between the field equations. 
 As is known, the complete three-dimensional curvature tensor fulfills the BIANCHI 
identity, which can be written in the following form: 
 

defijklmH
∗

= R{ ij | kl | ; m}  − R{ ij | rl  |  hm} k 
r + R{ ij | rk | hm} l 

r ≡ 0      (62) 

 
for non-vanishing torsion, with the use of the notation that is explained in the Appendix 
(cf., J. A. SCHOUTEN [37])(12).  When we substitute this in the field equations, we will 
get a relation that we can write as follows: 
 

defijklnH = M{ ij | kl | ; n}  − M{ ij | rl  |  hn} k 
r + M{ ij  | rk | hn} l 

r ≡ 0 .     (63) 

 
 In order to obtain further identities, we recall the starting equations (19) – in 
particular, (19.a) – which will indeed be fulfilled due to the homogeneous system (43).  
Now, the four-dimensional curvature tensor will likewise fulfill the BIANCHI identity, 
which reads the same as (62): 
 

4
{ | | ; } { | | } { | | }4 4 44 4

R R h R hσ σ
αβ µν λ αβ σν λ µ αβ σµ λ ν− +  ≡ 0.   (64) 

                                                
 (12) When comparing the corresponding expressions, one must observe which affinity was used for the 
covariant derivation.  
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However, the four-dimensional curvature tensor Rαβµν can be expressed by 
4 ijklR , 0

ijΓ ,  

and {0 }3 ij kR  in our case (see Appendix).  Therefore, (64) expresses identities between the 

left-hand side of (61).  It is also clear that all of the identities are contained in (62) and 
(64).  In particular, we consider the identity (64) for (α, β, µ, ν, λ) = (i, j, k, l, 0), so: 
 

4
{ | | ;0} { | | 0} { | | 0}4 4 44 4
ij kl ij l k ij k kR R h R hσ σ

σ σ− + ≡ 0.   (63) 

 
By reverting to the three-dimensional quantities, (63) can then be brought into the 
following form: 
 
 Rijkl , 0 ≡ 0 0 0 0

, , , ,lj ik ik lj jk ik ik jkΓ + Γ − Γ − Γ  

 + 0 0 0 0 0 0
, , , , , ,[ ] [ ]r r

jl ik r ir k rk i ik lj r rj l lr jΓ − Γ + Γ + Γ + Γ −Γ + Γ + Γ  

 − 0 0 0 0 0 0
, , , , , ,[ ] [ ]r r

il jk r jr k rk j jk il r ir l rl iΓ − Γ + Γ + Γ − Γ − Γ + Γ + Γ  

 − 0 [ ]r s r s
rs ik jl jk ilΓ Γ Γ − Γ Γ  

 + g0r Rijkl , r + g0r
, i Rrjkl + g0r

, j Rirkl + g0r
, k Rijrl  + g0r

, l Rijkr 
 + (0 ) , {0 } , {0 } , {0 } , {0 } , {0 } ,3 3 3 3 3 3jk l i l j k i l k j i ik l j li k j lk i jR R R R R R+ + − − −  

 + {0 } {0 } {0 } {0 } {0 } {0 }3 3 3 3 33
[ ] [ ]r r

jk ir l l i r l r i jl ik r ri k rk iR R R R R RΓ + + + Γ + +  

 − {0 } {0 } {0 } {0 } {0 } {0 }3 3 3 3 33
[ ] [ ]r r

ik jr l l j r l r j il jk r rj k rk jR R R R R RΓ + + − Γ + +  

 − 2 T 0
lr Rijk

r + 2 T 0
kr Rijl 

r
 .           (66) 

 
 We can now verify that none of the other index combinations in (64) will yield any 
independent, non-trivial identities beyond (62) and (66).  However, we can avoid that 
verification, since will see (cf., infra) that no further identities will come into play by 
explicitly integrating (61).  A relationship will then exist between the matter tensors that 
is completely analogous to (66), due to the field equations.  We shall cite those equations 
only once: 
 
 Mijkl , 0 = Nlj, ik + Nik, lj – Njk, il – Nil , jk 
 + r

jlΓ [− Nik, r + …] + … − 2 Nrs [ ]r s r s
ik jl jk ilΓ Γ − Γ Γ  

 + g0r Mijkl , r + … + Ljkl, i + … 
+ r

jkΓ [Nirl  + …] + … + 2 T 0kr Mijl 
r .               (67) 

 
 Just as one had with the homogeneous field equations (43), only the dislocation 
densities enter into Rijkl = 0, while the equations 0

ikΓ  = 0 include the influence of the 
motion of the dislocation, when expressed in terms of its current, so one can understand 
that the ijklM  in (61) means the phenomenological matter tensor, while Nik is its current.  

In an entirely analogous way, Vijkl can be regarded as the hypothetical lack of closure of 
the dislocations, and its current can once more be expressed by Lijk .  (67) will then give 
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the connection between the matter tensor and the currents.  The currents determine the 
time evolution of the matter tensor, as they must.  The next question for us to ask is 
whether the nonlinearity of the basic equations will imply any restrictions on the 
phenomenological matter tensor (the dislocation currents, resp., in the case of pure 
dislocations). 
 We would next like to draw some general conclusions from the identities. 
 
 1. Geometrically-speaking, introducing the matter tensor means perturbing the 

teleparallelism.  However, the form of our displacement symbols r
ikΓ = 

r

i k

 
 
 

+ Tik 
r + T  rik 

+ T  rki further guarantees the validity of the RICCI lemma: 
 

gij || r = 0,     (68) 
which is essentially equivalent to: 

ij klR  = 0.     (69) 

 
The physical meaning of our parallel displacement is as follows: Suppose that we are 
given any physical quantity that is expressed as a tensor field T (P).  If we now parallel-
transports T (P1) to P2 using i

klΓ  then we will get 2( )T Pɶ , and the difference: 

 
T (P2) − 2( )T Pɶ  

 
will yield the change of T (P1) relative to T (P2).  If the teleparallelism is perturbed then 
that will mean that this difference depends upon the direction that we take along the path.  
In other words, the rotation of the element of matter will no longer be an integrable 
function then; physically-speaking, it will not be a state function. 
 However, if one maintains the RICCI lemma then that will mean that this difference 
does not depend upon the difference between the lengths of the paths.  In other words, the 
relative rotation is an integrable function.  The rotation will then be a state function, as it 
must be for the bodies that we shall consider here (see, e.g., E. KRÖNER [38]).  
However, if one had: 

Mijkl ≠ 0 
 

then the rotation would no longer be integrable.  The RICCI lemma would no longer be 
fulfilled then, and instead of (68), we would have: 
 

gik || r = fikr . 
 
The tensor fikr has just as many algebraically-independent components as Mijkl (namely, 
18) and is therefore equivalent to the latter. 
 We will always demand that: 

ij klM  = 0. 
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 One can now conclude from (66) [(67), resp.] that it suffices for one to demand that 
the latter condition should be true at one time-point in order for it to remain true at all 
times, independently of how all remaining matter tensors and currents have been chosen.  
Namely, one has: 
 

,0ij klR  ≡ 0 0 0 0 0
, , , , , ,

r r r r r
ij kl r i rjkl r j ir kl k ij rl l ij krg R g R g R g R g R+ + + + .  (70) 

 
[From (67), one will have a relationship for the matter tensor ij klM  that reads the same].  

However, if ij klM  ≠ 0 at some time-point then the further time evolution of those 

quantities will follow from (70); it will depend upon only g0i and ij klM  themselves. 

 
 2. In the case of a pure dislocation, the equation: 
 

R{ ijk} l = 0 
 
will express the fact that a dislocation cannot end in the interior of the medium (viz., the 
closure condition for dislocations; cf., E. KRÖNER [18]) (13).  However, the treatment of 
dislocations that are not closed still holds some theoretical interest (see, e.g., E. 
KRÖNER [18]).  Nonetheless, a violation of the closure condition will not only be caused 
by Vijkl , as one might suspect, but can also be a result of all matter tensors and their 
currents, in general (which will naturally give rise to non-vanishing Vijkl then).  Namely, 
one infers from (66) that: 
 
 R{ ijk}  l, 0 ≡ {0 } , {0 } , {0 } ,3 3 3

2( )jk l i ki l j ij l kR R R+ +  

 + {0 } {0 } {0 } {0 }3 3 3 3
2 ( ) 2r r

jk ir l li r lr i il jk rT R R R R+ + − Γ  

 + {0 } {0 } {0 } {0 }3 3 3 3
2 ( ) 2r r

ki jr l lj r lr j jl ki rT R R R R+ + − Γ  

 + {0 } {0 } {0 } {0 }3 3 3 3
2 ( ) 2r r

ij kr l lk r lr k kl ij rT R R R R+ + − Γ   

 + g0r R{ ijk}  l, r + g0r
, i R{ rjk}  l + g0r

, j R{ irk}  l + g0r
, k R{ ijr }  l + g0r

, l R{ ijk}  r 
 − 2 T 0lr R{ ijk}  

r + 2 T 0{ k | r  |  Rij} l 
r 

 − 2 Tjk 
r 0 0 0

, , ,( )il l ir l lr i− Γ + Γ + Γ  

 − 2 Tki 
r 0 0 0

, , ,( )jl r jr l lr j− Γ + Γ + Γ  

 − 2 Tij 
r 0 0 0

, , ,( )kl l kr l lr k− Γ + Γ + Γ  

− 4 0( )r s r s r s
rs jk il ki jl ij klT T TΓ Γ + Γ + Γ           (71) 

 
[and an analogous equation for the matter tensor, due to (67), resp.]. 
 One learns from (71) that in the theory without matter tensors, the dislocations will 
always remain closed when they are closed at just one time-point, on the basis of the field 

                                                
 (13) The formula that is denoted by (45) in [18] is the linear approximation to R{ ijk} l = 0.  One will find 

the rigorous equations in the form 
ij

R< >  = 0 in KRÖNER. 
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equations; that will be true in the linear theory as well as in the nonlinear one.  However, 
if one has non-zero matter tensors then the situations in the linear and nonlinear theories 
will be different.  In the linear theory, only equation (61.d) is responsible for determining 
whether the lack of closure of the dislocations (which should naturally not be confused 
with the lack of closure of the BURGERS path) changes in time or remains constant (so 
in particular whether the dislocations remain closed or not).  One infers from the 
linearized form of (71) that the necessary and sufficient condition for the constancy in 
time of the lack of closure is: 

L{ ij  | k | l}  = 0.     (72) 
 

(This can be satisfied identically by way of, e.g., the Ansatz Lijk = Lik, j – Ljk, i .) 
 If we allow a temporal change in the lack of closure of dislocations in the nonlinear 
theory then from (71) all matter tensors will contribute to that, in general.  The time 
evolution of the lack closure is also given explicitly by (71).  Conversely, the condition 
for the constancy in time of the lack of closure is a system of differential equations for 
the matter tensor.  We restrict ourselves to the important case in which the dislocations 
should remain closed!  The system of equations will then read: 
 
 Ljkl, i + Lkil, j + Lijl , k + r r r

il kjr jl ikr kl jirL L LΓ + Γ + Γ  

 + ( ) ( )r r
ik irl lir lri ki jrl ljr lrjT L L L T L L L+ + + + +  

 + 0
( | | )( )r r

ij krl lkr lrk k r ij lT L L L T M+ + +  

 − , , ,( )r
jk il r ir l rl iT N N N− + +  

 − , , ,( )r
ki jl r jr l rl jT N N N− + +  

 − , , ,( )r
ij kl r kr l rl kT N N N− + +  

− 2 Nrs ( )r s r s r s
jk il ki jl ij klT T TΓ + Γ + Γ  = 0.              (73) 

 
[Like (72), these are three independent equations.] 
 One can distinguish some different cases here.  Consider the simple case in which 
only Mijkl is non-zero.  (73) will then reduce to some algebraic relations between 
dislocation currents and the matter tensor: 
 

T 0{ k | r | Mij} lr = 0.     (74) 
 
If one continues to allow the dislocation current to be arbitrary then (74) will give three 
algebraic conditions for the matter tensor.  However, since, from (63), it is already 
subject to three differential conditions in the form of the BIANCHI identities, and due to 
its symmetry properties, it has only six independent components, in all (one must also 
observe the closure condition of the dislocations M(ijk) l = 0 here), the matter tensor itself 
must vanish for a sufficiently-general motion of the dislocation.  Conversely, if one is 
given the matter tensor then (74) will express three restricting conditions for the 
dislocation density.  Mijkl will then represent something like an obstruction to the free 
motion of dislocations. 
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 One will get an analogous situation when one also regards the remaining matter 
tensors Lijk and Nij , as well as the dislocation density, as freely-given.  In place of (74), an 
inhomogeneous system of equations will arise from (73), which one can write in the 
form: 

T { k | 
r
 | Mij} lr = Pijkl .     (75) 

 
Mijkl will then be determined completely for a given Pijkl and a sufficiently-general motion 
of the dislocation.  On the other hand, being given Mijkl and Pijkl will again imply 
conditions for the motion of the dislocation.  Furthermore, one can regard all quantities in 
(73) up to Tij 

r as being given, and in that way, one will get three algebraic conditions for 
the dislocation density itself that have the form: 
 

T { ij | 
r
 | Vk} lr = Wijkl ,     (76) 

 
and the six degrees of freedom of the dislocations (the closure condition will reduce the 
original nine degrees of freedom to precisely six) will be reduced to only three.  Finally, 
(73) can also be regarded as a system of differential equations for the partial 
determination of Lijr  .  All other quantities in (73) can be given freely then, since the 
integrability conditions for the system (73) are fulfilled identically in our case, where all 
indices run through only the numbers 1, 2, 3 (see Appendix, section 5). 
 
 3. From equations (67), the time evolution of Mijkl will be established by the matter 
tensors and their currents.  On the other hand, one knows from (63) that Mijkl is subject to 
three differential conditions; no time derivatives enter into those conditions.  They will 
then refer to one time-point (viz., static conditions).  One can now show that it will 
suffice to require the conditions (63) at one time-point in order for them to also be 
fulfilled at all times on the basis of (67).  Namely, if one takes the time derivative of (63) 
and expresses the time derivative of the matter tensor using (67) and the time derivative 
of the affinities by means of the field equations then one will find, by direct calculation, 
that: 
 Hijkln, 0 = g0r Hijkln, r – 2 0 r

lT  Hijkrn – 2 0 r
kT  Hijrln  

+ g0r
, n Hijklr  – g0r

, l Hijkrn – g0r
, k Hijrln  + g0r

, j Hirkln + g0r
, i Hrjkln .      (77) 

 
One reads immediately from (77) that (63) is, in fact, a static condition that no longer 
needs to be observed once it is fulfilled, and is therefore inessential for dynamical 
problems. 
 We shall now discuss the question of the solubility of the basic equations (61). 
 

_____________ 
 



IV. – INTEGRATING THE BASIC EQUATIONS  
 
 

 We saw above (see also the Appendix, section 4) that the basic equations of the 
theory of moving dislocations are similar to EINSTEIN’s equations of gravitation.  The 
stress field in the former corresponds to the gravitational field in the latter, and both are 
expressed in terms of a metric tensor.  Moreover, the sources of that metric, namely, the 
dislocations and other lattice fields, in the one theory correspond to the masses in the 
other.  The field equations are nonlinear in both cases.  Now, in the theory of relativity, 
one has the following fundamental state of affairs: If one is given the distribution of 
sources (say, a mass point) at one time-point, and its internal structure is known, 
moreover, then its further motion will be established uniquely by the field equations 
alone.  That is essentially a consequence of the nonlinearity of the equations and the 
BIANCHI identity.  That is the content of the celebrated work of A. EINSTEIN, L. 
INFELD, and B. HOFFMANN [39], V. FOCK [40], and A. PAPEPETROU [41] (also 
see the monograph of L. INFELD and J. PLEBANSKI [42]).  One might then suspect 
that a similar situation prevails in the theory of moving dislocations.  However, in 
contrast to that, we shall discover the following relationships upon integrating the basic 
equations: 
 The system of equations (43) can be integrated when one gives the distribution of 
dislocations at one time-point and the dislocation current for all times, which one has 
complete freedom to do.  Likewise, for the extended system (61), one is, in addition, free 
to choose the distribution of matter at one time-point and its current at all times. (Here, 
one needs merely to consider the viewpoint that was discussed in Chap. III.) The same 
thing is also true for the dynamical generalization of KRÖNER’s theory of foreign atoms, 
to which we shall return.  It is therefore true in full generality that any solution of the 
linearized theory can be extended to a solution of the rigorous theory.  That is the 
dynamical generalization of the theorem that KRÖNER [18] presented for statics to the 
effect that that the essential drift of the physical content of the theory of dislocations is 
already contained in the linear equations. 
 We will deal with the proof of those facts in what follows.  In order to do that, we 
shall show how the solutions of (61) can be obtained to an arbitrary degree of 
approximation by approximation process.  In that, we shall appeal to the same process 
that was developed in the celebrated work of A. EINSTEIN, L. INFELD, and B. 
HOFFMANN in order to derive the equations of motion for masses from the field 
equations for gravitation (which shall briefly be called the “EIH method” in what 
follows).  Since we would like to apply the process explicitly, we first need to extend the 
system (61) by way of the equilibrium condition (26) and the matter equations: 
 

a)    σri , r − id
v

dt
ρ = − f i, b)     σik = σik (εrs) = σik (grs) .   (78) 

 
As we have discussed already, those three equations, together with the algebraic 
condition g00 = − 1, enter in place of the four coordinate conditions of general relativity.  
In our RIEMANNian space with the metric that is defined by strain, we can also interpret 
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them geometrically, as such, since the Cartesian coordinate system that we have defined 
in our EUCLIDIAN space means only an arbitrary coordinate system in it. 
 It is clear that changes in the conditions (78), and therefore changes in the forces and 
matter laws (which will then mean only changes in the coordinate conditions), can have 
no effect upon the behavior of the solutions of the basic equations.  It is therefore also 
permissible for other conditions to enter in place of (78.a, b), which might come into 
play, for instance, as a result of a dependency of the stress tensor upon the time derivative 
of the distortion tensor or by considering moment stresses.  In that latter case, the stress 
tensor will be asymmetric, and (78.a) will be replaced with: 
 

c)  ,
i

ri r

d
v

dt
σ σ−  = − (f i + ,ri rσ ).    (78) 

 
The stress-strain relationship is now true for riσ , and the antisymmetric part σ<ri> is 

connected with the moment stress Mrsi = − Mris by: 
 

d)  Mrst, r + 2σ<rt> + mst = 0,    (78) 
 
in which mst characterizes the external moments in that.  If one now connects the moment 
stresses Mrst with the structural curvatures by a material law (cf., e.g., E. KRÖNER [43], 
AMARI [ 44]): 

f)  Mrst = Mrst (hijk)     (78) 
 

then one will once more find “generalized coordinate conditions” when one substitutes 
the differential equations (78.d) in (78.c) with the use of (78.f). 
 However, we can restrict ourselves to the force-free, homogeneous case, for the sake 
of simplicity, and substitute the very special series (14): 
 

c)  σik = 2µ1 εik + 2µ2 εir εrk + 2µ3 εir εrs εsk + …  (78) 
 
in (78.b).  The series (78.c) has only a formal significance, since the elastic constants µ3 , 
… are no longer known.  This restriction to second-order elastic constants, which is 
prescribed in practice, also implies a restriction in the usefulness of the strictly-nonlinear 
theory, since it makes sense to push the approximation only as far as higher elastic 
constants can be given.  However, since we are interested in purely-mathematical 
questions of solubility here, in order to be able to make general statements, we must 
continue up to an arbitrary approximation. 
 If one now considers: 
 

g0i = − 
i

T

v

c
, x0 = cT t, ρ = 0 gρ = 1

T

g
c

µ
  [g = det (gik)] 

 

                                                
 (14) That means we are no longer dealing with the general isotropic case, but that is irrelevant here.  
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and writes νi = 1

1

iµ
µ

+ , g0r = 0rg g  then (78.a) and (78.c) can be combined into: 

 

2εir, r + 2ν1
1 1 ,( )i s s r rε ε + … + 2νn 

1 1 2 ,( )
ni s s s s r rε ε ε⋯ + 0

,0
ig g − g0i

, r g
0r = 0.  (79) 

 
 According to the EIH method, we can further restrict ourselves to quasi-stationary 
motion (i.e., all velocities that enter into consideration shall be small in comparison to the 
speed of sound), and we shall employ the development Ansatz for the metric that is 
customary in that case (cf., [39]).  We shall write it out for the gik and g0i, since there 
exists a simple physical interpretation for those components in terms of strain and 
velocity: 

2 4 6

0 0 0 0

5 73

,

,

ik ik ik ik ik

i i i i

g g g g

g g g g

δ= + + + + 

= + + + 

⋯

⋯
   (80) 

 
and in addition, we have g0i = − 1.  We have chosen series of only even (odd, resp.) order 
to appear in order that radiation terms should not appear.  That corresponds to choosing 
the partial sums of retarded and advanced potential (cf., [39]).  Since one must have v ≪  
cT , one must substitute g0i = − vi / cT in (80) with one order higher. 
 (80) corresponds completely with the series Ansatz in the EIH method, up to other 
coordinate conditions.  Here, we have to extend these developments with the series 
Ansatz for torsion, and indeed: 

2 4 6

0 0 0 0

3 5 7

,irk ikr ikr ikr

ik ik ik ik

T T T T

T T T T

= + + + 
= + + + 

⋯

⋯
    (81) 

 
We again substitute the series for T 0ik with one order higher, since a factor of 1 / cT will 
enter into our definition of the dislocation tensor [cf., (45) – (47)].  Since x0 = cT / t, 
quasi-stationarity will imply that: 

,0
r

g µν  ~ ,
1

i
r

g µν
+

,    (82) 

 
in addition; i.e., taking the derivative with respect to x0 will raise the order of smallness 
by one step.  The meaning of the developments (80), (81) consists of the fact that the 
field equations will split into equations for the individual orders of the field quantities 
that will then be relatively simple to integrate. 
 We shall now turn to the case of the homogeneous equations (43); i.e., the case of 
pure dislocations.  If we substitute the series (80) in (79) then we will get the following 
system of equations: 

1 1
1

1

,
2

0 1
, ,0 1 ,2

4 3 2 2

0 0 0 0
, ,0 ,

2 2 1 2

) 0,

) ( ) ,

) ( , , ),

ir r

i
ir r is s r r

i n n r
ir r i rs rs rs s

n n n

a g

b g g g g

c g g NL g g g g g g

ν

−

− = 


− + = − 


− + = 


  (A) 
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in which NLi means the nonlinear terms. [We point out that the left-hand sides of (A) also 
agree formally with the coordinate conditions that are employed in the theory of 
relativity.] 
 We shall now substitute the developments (80) and (81) into the system (43), in 
which we shall employ equations (43.a′ ), instead of (43.a).  We will get, individually: 
 
 1. For (43.a′ ): 

1
, , , ,2

2 2 2 2

, , , ,2 2 2 2

1
, , , ,2

4 4 4 4

, , , ,4 4 4 4

2 2 22 2 24

1
,2

2

1) ( )

( ),

2) ( )

( )

( , , ),

3) (

kl ss ss kl ks ls ls ks

skl s skl s kss l lss k

kl ss ss kl ks ls ls ks

skl s skl s kss l lss k

kl rs mn rs mnt rst mpq

kl ss
n

g g g g

T T T T

g g g g

T T T T

BL g g g T T T

g

− − + +

= − + + +

− − + +

= − + + +

+

−
⋮

, , ,
2 2 2

, , , ,2 2 2 2

2

)

( )

( , , ),

ss kl ks ls ls ks
n n n

skl s skl s kss l lss k
n n n n

kl rs mn rs mnt rst mpq
n

g g g

T T T T

BL g g g T T T














− + +

= − + + +

+


  (B) 

 
in which 

2
kl

n

BL (…) mean linear forms. 

 
 2. For (43.c): 

1

1

1

0 01
, ,2

3 3

0 01
,02 3 32

0 01
, ,2

5 5

0 0 01
,02 5 54 2 35

0 01
, ,2

2 1 2 1

0 0 01
,02 2 1 2 12 2 1

1) ( )

,

2) ( )

( ),

3) ( )

( ),

i j
j i

ij ij ji

i j
j i

n
ij ij ji ij rs

i j
j i

n n

n
ij ij ji ij rs

n nn n

g g

g T T

g g

g T T BL g g

g g

g T T BL g g
+ +

+ +
+

− − +

= − − −




− + 

= − − − + 


− − +

= − − − + 


⋮

  (C) 

 
 3. For (43.b): 
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, , ,2 2 2

, , ,4 4 4 4 2 2 22

, , ,2 2 2 2

1) 0,

2) ( , ),

3) ( , ),

ijk l ijk l ijk l

ijk l ijk l ijk l ijkl rs mnq mnq rst

ijk l ijk l ijk l ijkl rs mnq mnq rst
n n n n

T T T

T T T BL g T T T

T T T BL g T T T

+ + = 


+ + = 


+ + =


⋮

 (D) 

and 
 
 4. For (43.d): 
 

1

1

0 0
,0 ,0 ,0 , ,2 2 2 2 2

0 0 0 0 0
, , ,05 5 2 5 2 2 2 22 2

0 0 0 0 0
, , ,02 1 2 1 2 2 1

1) ,

2) ( ) ( , , ),

3) ( ) ( , , ).

ijk ijk ijk ik j jk i

r
ik j jk i ijk ijk mnq rs mn mnq rs

r
ik j jk i ijk ijk mnq rs mn mnq mn

n n n n

T T T T T

T T T BL g T g T T T

T T T BL g T g T T T
+ + +

+ + = −


− + = − + 


− + = − +


⋮

 (E) 

 
The reason for the fact that the terms in (E.1) are arranged differently from the ones in the 
remaining equations of (E) will be explained later. 
 One succeeds in integrating equations (A)-(E) in the following way: One considers 

the lowest order of approximation 0

2 0
( , )i

ijkT x x  and go to a time-point 0

0
x  at which (D.1) 

is fulfilled; naturally, that is always possible.  On the one hand, that is because physically 
that means that only closed dislocations are given and mathematically, that the 
homogeneous equations (D.1) are integrable, as well as the inhomogeneous ones (2), …, 
since no integrability conditions exist for those systems (see Appendix, section 5).  One is 
then completely free to choose the dislocation currents in the first approximation 

0

2 0
( , )i

ijkT x x  at all times.  0

2
( , )i

ijkT x x  will then follow from (E.1) in a trivial way.  If one 

considers the identity (71) to the lowest order (and thus in the linear form) and the fact 
that (E.1) [i.e., the lowest order of approximation for (43.a)] is fulfilled already then it 
will follow that equations (D.2) [i.e., the lowest order or approximation for (43.b)], which 
we initially required to be fulfilled for only 0

0
x , are also fulfilled for all times. 

 We now go on to equations (A.1) and (B.1).  We make the following remarks about 
equations (B): The curvature tensor Rijkl can be decomposed into the RIEMANN-
CHRISTOFFEL curvature tensor and a torsion part according to: 
 

Rijkl = 
0

ijklR + Tijkl ,     (82) 

 
and in the case of a pure dislocation, the field equations can then be written in the form: 
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0

ijklR = − Tijkl .      (83) 

 
Now, for the RIEMANN-CHRISTOFFEL curvature tensor by itself, one has: 
 

0

{ | |; }ij kl nR  ≡ 0 ;      (84) 

 
i.e., from (82), one seems to have the additional demand that: 
 

T{ ij | kl |; n}  = 0.      (85) 
 
However, since one has the BIANCHI identity in the form (62) for the complete 
curvature tensor: 

R{ ij | kl |; n}  − R{ ij | rl | hn} k 
r + R{ ij | rk | hn} l 

r ≡ 0 ,    (86) 
 
when one substitutes (82) in (86) and considers (84), one will have: 
 

T{ ij | kl |; n}  − R{ ij | rl | hn} k 
r + R{ ij | rk | hn} l 

r ≡ 0 ,    (87) 
 
in addition.  The conditions (85) will then be fulfilled already to an arbitrary degree of 
approximation when the field equations Rijkl  = 0 are already fulfilled to the foregoing 
degree of approximation [since the identity (87) differs from equations (85) only by a 
bilinear tensor].  However, that is precisely the case in the approximation process. 
 We now substitute (A.1) in (B.1).  We give the general solution to those equations, 
which fulfills the conditions (A.1), in addition, at the nth step in the approximation.  Since 
the right-hand side of (B.1) is time-dependent, we will then get 0

2
( , )i

klg x x  from those 

equations, and (43.a′ ) is already fulfilled at all times. 
 The left-hand side of (C.1) has the form of a deformation.  There are then 
integrability conditions for the right-hand side.  If one writes the right-hand side in the 
form: 

0 0 01
, ,23 3 23 3

( )i j
ij j i i jK g g= − + − Γ  

then that will read: 
 

, , , ,3 3 3 3ij kl ki ij ik jl jl ikK K K K+ − − ≡ − 0 0 0 0
, , , ,( )ij kl kl ij ik jl jl ikΓ + Γ − Γ − Γ  = 0.  (88) 

 
If we observe the identity (66) in the lowest order of approximation (viz., the linear 
form), as well as the fact that equations (43.a) and (43.b) Rijkl (x

i, x0) = 0 are fulfilled 
already in this approximation, along with (43.d), viz., {0 }3 ij kR = 0, then we will see that 

(88) is, in fact, true.  We can then get the functions 0 0

3
( , )i ig x x , as well.  We shall also 

give them in the nth order of approximation. 
 We now assume that we have solved the field equations up to and including order (2n 
– 1) and then determine the solution for the next order from that.  We again begin with 
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equations (D) and (E).  According to our procedure, which is based upon a step-wise 
specification of the local dislocations and their currents that corresponds to the 
development of those quantities in the reciprocal speed of sound, we must then give 

2 ij k
n

T  

in (D.3) in such a way that these equations will be fulfilled.   Since those equations have 
no integrability conditions, as we remarked above, that will be possible with no further 
assumptions.  However, the right-hand side of (D.3), which is known from the lower 
approximations, is time-dependent, so we will also have time-dependent quantities in 

2 ij k
n

T (xi, x0).  We employ those quantities in (E.3) in order to determine 0

2 1 ik
n
T

+
. 

 However, the dislocations do not determine the currents uniquely, since there can be 
dislocation currents without any free dislocations appearing, just as there are electric 
currents without free charges.  That corresponds to the fact that only the rotation 
expression 0 0

, ,2 1 2 1ik j jk i
n n
T T

+ +
−  will follow from (E.3).  One is still free to choose a gradient 

expression of the form t 0
k, i when one establishes T 0ik . [The full expression for T 0ik is 

required in (E).] 
 Naturally, one can start with the first level of approximation, just as one does here.  
However, one will better see that the dislocations at a time-point and the current at all 
times can be given independently of each other in a different way.  Since the left-hand 
side of (E.3) has the form of a rotation, there will be integrability conditions for the right-
hand side.  If one sets: 

0 0
, ,def 2 1 2 12 1

( )kij ik j jk i
n nn

S T T
+ ++

= − −  

 
then the right-hand side of (E.3) will read: 
 

3 {0 }2 1
2 1

kij ij k
n

n

S R
+ +

− , 

 
and the integrability conditions will take on the form: 
 

3 3 3, , , {0 } , {0 } , {0 } ,2 1 2 1 2 1
2 1 2 1 2 1

( )kij n kjn i kni j ij k n jn k i ni k j
n n n

n n n

S S S R R R
+ + + + + +

+ + − + +  

 
≡ 

3 3 3{0 } , {0 } , {0 } ,
2 1 2 1 2 1

( )ij k n jn k i ni k j
n n n

R R R
+ + +

+ + = 0.   (89) 

 
If one now observes the identity (71) and considers that (D.3) is already fulfilled at all 
times so { } ,02 ijk l

n
R  = 0, and furthermore that the field equations of the foregoing order 

should be fulfilled, by assumption, then the validity of (89) will follow immediately. 
 The right-hand sides of equations (A.3) and (B.3) are known with that.  If one now 
substitutes (A.3) and (B. 3) and isolates the known functions from the unknown ones then 
one will get a system of equations in the form: 
 

,
2 2

kl ss kl
n n

g g∆ +  = 
2 kl

n
F , 
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in which 
2 kl

n
F  combines all of the known functions.  Contraction will yield: 

 
0

2
( , )i

ss
n

g x x∆  = 1
2 2 ss

n
F (xi, x0),    (90) 

and one writes: 
0

2
( , )i

ss
n

g x x∆  =
2 ss

n
F (xi, x0) − ,

2
ss kl

n

g (xi, x0) .   (91)  

 
If one first integrates (90) according to: 
 

2
ss

n

g (xi, x0) = 0 31
2 2

( ) ( , )i i i
ss

n
G x x F x x d x′ ′ ′−∫  

 
and then substitutes that in (91) then it will follow that: 
 

2
kl

n

g (xi, x0)  

= ( )2
0 0 3 31

22 2
( ) ( , ) ( ) ( , )i i i i i i

kl ssk ln n
G x x F x x G x x F x x d x d x

x x
′ ′ ′ ′′ ′′

′ ′

 ∂ ′′ ′− − − ∂ ∂ 
∫ ∫ . (92) 

 
If one constructs the expression ,

2
kl l

n

g  from (92) then one will see by partial integration 

that equation (A.3) is also fulfilled, due to the property of the GREEN function that: 
 

∆G (xi – xi′ ) = δ 3 (xi – xi′ ) . 
 
(92) is then the solution of (A.3) and (B.3) for all times.  The right-hand side of (C.3) is 
also known with that.  However, as we have established before, (C) has integrability 
equations, and with: 

0 0 01
, ,22 1 def 2 12 1 2 1

( )i j
ij j i i j

n nn n

K g g
+ ++ +

= − + − Γ , 

 
they can be written in the form (88) for the order (2n + 1), so: 
 

− ( )0 0 0 0
, , , ,2 1 2 1 2 1 2 1i j kl k l ss i k jl j l ik

n n n n+ + + +
Γ + Γ − Γ − Γ = 0.   (93) 

 
However, (93) is true, due to the identity (66), on the basis of the fact that we have 
already fulfilled 

2 ijkl
n

R (xi, x0) = 0 and 
3 {0 }

2
ij k

n

R = 0, and all field equations of lower order of 

approximation should be fulfilled by assumption.  We can then integrate (C.3).  We then 
form the equations: 
 

− 0 01
, ,2

2 1 2 1
( )i j

ji ii
n n

g g
+ +

+  = −
1

0 01
, 0 , , ,2 2 1 2 1 2 12

ij i ij i ji i ij i
n n nn

g T T BL
+ + +

− − + .  (94) 

 
Repeated differentiation will yield the equations: 
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0
,

2 1

i
i

n

g
+

∆  =
1

0 01
, 0 , , ,2 2 1 2 1 2 12

ij i ij i ji i ij i
n n nn

g T T BL
+ + +

− − + ,    (95) 

 
whose solution is given by: 
 

0
,

2 1

i
i

n

g
+

(xi, x0) = 
1

0 0 0 31
, 0 , ,2 2 1 2 12

( ) 2 ( , ) ( , )i i i i
ij ij ij ij ij ij

n nn

G x x g T x x BL x x d x′ ′ ′

+ +

  ′− + −  ∫ . (96) 

 
One then substitutes that in (94) and obtains: 
 

0

2 1

j

n

g
+

∆ = 
1

0 0 0
, 0 , , , ,2 1 2 1 2 12 2 1

2 2 2 r
rj r jr r rj r rj r rj

n n nn n

g T T BL g
+ + + +

+ + − − . (97) 

The solution (97) is then: 
 

0

2 1

i

n

g
+

(xi, x0) = 
1

0 0 0 0 0
, 0 , ,2 1 2 12

( ) ( , ) 2 ( , ) 2 ( , )i i i i i
ij ij jr r rj r

n nn

G x x g x x T x x T x x′ ′ ′ ′

+ +

− + −∫  

− 0 0 0 3
, ,2 1 2 1
( , ) ( , )i r i

rj r rj
n n

BL x x g x x d x′ ′

+ +

 ′− 
,  (98) 

 
in which the term 0 0

,
2 1

( , )r i
rj

n

g x x′

+
 under the integral is defined by (96).  One can verify 

that (98) is, in fact, a solution of (C.3) with the use of the identity (96). 
 In contrast to general relativity, in which the equations of the second stage of 
approximation can first be integrated when a well-defined law of motion is assumed for 
the sources in the first approximation, etc. (cf., [39]), here we have to show that the 
approximation can be continued up to an arbitrary degree with no restricting conditions 
on the sources and their currents.  We can generally say nothing about the convergence of 
the series that are obtained in that way.  However, we might assume that this is also 
guaranteed for properly-posed physical problems.  In all of the actual physical examples, 
one must truncate the series after a few terms anyway, since higher elastic constants will 
no longer be known. 
 Before we go into the integrability of the basic equations with matter (61), we would 
first like to turn to a discussion of the dynamical extension of the continuum theory with 
foreign atoms, namely, KRÖNER’s general continuum theory (cf., [18]).  The 
homogeneous field equations (43) were constructed upon the assumption that a lattice 
orientation is defined uniquely at each point of a crystal.  The perturbed lattice directions 
of the real crystal therefore emerge from that of the ideal crystal by way of the 
distribution of dislocations and their migration.  According to KRÖNER’s argument, the 
orientations will still remain preserved in the crystal when one assumes that intermediate 
lattice atoms are introduced into the crystal, along with the dislocations.  They will 
likewise alter the lattice structure and lead to internal stresses.  We can describe the 
alterations that are due to the foreign atoms by a quasi-plastic deformation ε Qkl that will 
still remain when we cut the mass elements and allow them to relax (cf., [18]).  Indeed, 
we now have: 
 

a) K L
i j KLh h δ = cij   with  b) cij = gij – 2 ε Qkl ,  (99) 
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instead of (6), as before, in which gij again characterizes the elastic deformations.  The 
dislocation density is further given by the expression: 
 

c)  Tkl 
i = ,

i K
K l kh h .      (99) 

 
 The basic equations of the theory with foreign atoms then remain formally the same.  
One merely has to replace gij with cij and decompose cij according to (99.c).  In this, ε Qkl 
is then the given quasi-plastic deformation that originates in the foreign atoms and 
determines the internal stresses, along with the dislocation density.  If one adds the 
world-lines as the fourth curve congruence in the transition to the time-dependent theory 
then when one proceeds in a manner that is completely parallel to the development in the 
beginning, one will get equations (19) as the starting equations for the theory with foreign 
atoms, but in which cµν now appears in place of gµν .  In this, cik is connected with gik by 
(99.b), and we will once more have: 
 

c00 = 0 0h h ηΓΛ
Γ Λ  = − 1, 

 

c0 i = 0 ih h ηΓΛ
Γ Λ  = − 0

ih  = − 
i

T

v

c
 = c0 i 

for the remaining components. 
 One must then regard the system (43) as the basic equations for the theory of foreign 
atoms in the time-dependent case, in which one merely replaces gik with cik using (99.b); 
c0 i appears in place of g0 i, but it still has the same meaning, namely, − v i / cT .  When 
one expresses the appearance of cµν in place of gµν by means of a “c” that is placed 
beneath the symbol, the equations of the theory with foreign atoms will then read: 
 

3

{ }

0
{0 }

) 0, ) 0,

) 0, ) 0.

ij ijk l
c c

ij ij k
c

c

a R b R

c d R

= = 

Γ = =


    (100) 

 
(100.a) and (100.b) can be once more combined into: 
 

ijkl
c
R  = 0.    (100.a + b) 

 
When one decomposes all terms that are connected with ε Qkl , one can also give (100) in 
the form: 

{ }

0
{0 }3 3

) , ) ,

) , ) ,

ijkl ijkl ijk l ijkl
c c

ij ij ij k ijk
c

a R M b R V

c N d R L

= = 
Γ = = 

   (101) 

 
(a) + (b) Rijkl = ijkl

c
M  with ijkl

c
V = { }ijk l

c
M ,  ijkl

c
M = ijkl ijkl

c c
M V− ,  
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which formally coincide with (61). [The left-hand sides of (61) and (101) are the same.] 
 However, it should be emphasized that there is an essential difference in the meaning 
of the matter tensors here and in the other theory.  Namely, whereas the matter tensors in 
(61) mean the dislocations of the lattice structure, the closure conditions for the 
dislocations, and their time evolution, that is not the case here.  Due to (99.a) and (99.c), 
equations (100.a) and (100.b) now insure the existence of a teleparallelism and the 
closure condition for the dislocations, while (100.c) and (100.d) guarantee their temporal 
conservation. 
 We have shown that the differential identities (62) and (66) are fulfilled for the left-
hand sides of (101).  That must then be true for the right-hand sides, as well, and thus, for 
the tensors ijkl

c
M , ijkl

c
V , ij

c
N , and ijk

c
L .  However, that implies no restricting conditions 

on those tensors, since analogous differential identities are also true for the left-hand 
sides of (100).  We shall shortly show that explicitly for the case of BIANCHI identity 
(62).  Here, we shall denote the covariant tensor that is defined with the CHRISTOFFEL 
symbols for cij by “||” and the one that is defined by the CHRISTOFFEL symbols for gij 
by “;”.  Along with: 

R{ ij | kl | ; n}  − R{ ij | rl  | hn} k 
r + R{ ij | rk | hn} l 

r ≡ 0,     (62) 
one has the identity: 

R{ ij | kl | || n}  − R{ ij | rl  | hn} k 
r + R{ ij | rk | hn} l 

r ≡ 0 .   (102) 
 
Due to the field equations (101), one must then have: 
 

c
M { ij | kl | ; n}  −

c
M { ij | rl  | hn} k 

r +
c

M { ij | rk | hn} l 
r ≡ 0 .  (103) 

We now set: 

ijkl
c
R  = Rijkl   −

c
M ijkl ,   

c

r

i k

 
 
 

 = r
i k

r

i k

 
+ Γ 

 
.   (104) 

 
With that, the covariant derivatives can be expressed in terms of each other: 
 
  ||ijkl n

c
R ≡ ; ( )r

ijkl n mv pqst
c c
R R+ Π , 

and finally: 

||ijkl n
c
R ≡ Rijkl  ; n − ; ( )r

ijkl n mv pqst
c c

M R+ Π .   (105) 

 
(The expressions in parentheses shall then stand for four terms of that kind, for the sake 
of brevity.) If one substitutes (104) and (105) into (102) then that will imply: 
 
R{ ij | kl | ; n}  − R{ ij | rl  | hn} k 

r + R{ ij | rk | hn} l 
r − { | |; } { | | } { | | }

r r
ij kl n ij rl n k ij rk n l

c c c
M M h M h+ − +( )r

mv pqst
c
RΠ  

≡ 0.      (106) 
 
If one observes (62) then it will follow that: 
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{ | |; } { | | } { | | }
r r

ij kl n ij rl n k ij rk n l
c c c

M M h M h− +  − ( )r
mv pqst

c
RΠ  = 0.  (107) 

 
(107) differs from (103) only by bilinear terms and is therefore always fulfilled already 
with our approximation procedure by an argument that is used repeatedly at each step of 
the approximation.  One shows in precisely the same way that no conditions on the 
tensors ijkl

c
M , ij

c
N , ijkl

c
V , and ijk

c
V will follow from the identity (66). 

 The integration of equations (100) [(101), resp.] now proceeds in complete analogy to 
what was done in the foregoing case with no foreign atoms.  We therefore do not need to 
go into the details of that procedure. 
 We shall now apply our approximation procedure to equations (61).  In order to do 
that, we must first extend the series Ansatz to the tensors M , N, V, L .  When we assume 
series of the following forms, the field equations will split into ones for the individual 
levels of approximation, as before: 
 

2 4

2 4

3 5

3 5

,

,

,

ijkl ijkl ijkl

ijkl ijkl ijkl

ij ij ij

ijk ijk ijk

M M M

V V V

N N N

L L L

= + +


= + + 
= + + 
= + + 

⋯

⋯

⋯

⋯

    (108) 

 
In order to avoid unnecessary repetitions, we restrict ourselves to just the case in which 
the dislocations and their currents vanish, and therefore only the tensors ijklM  and Nij are 

non-zero.  Only three groups of equations will remain in the approximation procedure, 
namely: 
 
 1. The “coordinate conditions” [i.e., equations (A) on page 35]: 
 

1 1
1

1

,
2

0 1
, ;0 1 ,2

4 3 2 2

0 0 0 0
, ;0 ,

2 2 1 2

1) 0,

2) ( ) ,

3) ( , , , ),

ir r

i
ir r is s r r

i n n n
ir r i rs mn rs r

n n n

g

g g g g

g g NL g g g g g g

ν

+

− = 


− + = − 


− + =


⋮

…

  (A) 

 2. (61.a): 
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1
, , , ,2 22 2 2 2

1
, , , ,2 44 4 4 4 2 24

1
, , , ,2 22 2 2 2 2

1) ( ) ,

2) ( ) ( ) ,

3) ( ) ( ) ,

ir ss ss kl ks sl ls ks kl

kl ss ss kl ks sl ls sk i rs mn kl

kl ss ss kl ks sl ls sk i rs mn kl
nn n n n n

g g g g M

g g g g BL g g M

g g g g BL g g M

− − + + = 


− − + + = + 


− − + + = +


⋮

 (F) 

and 
 
 3. (61.c): 

1

1

1

0 01 1
, , ,02 2 32 2 2

0 0 01 1
, , ,02 2 52 2 4 2 34

0 0 01 1
, , ,02 2 2 12 1 2 1 2 2 1

1) ( ) ,

2) ( ) ( ) ,

3) ( ) ( ) .

i j
j i ij ij

i j n
j i ij i rs ij

i j n
j i ij i rs ij

nn n n n

g g g N

g g g BL g g N

g g g BL g g N
++ + +

− + = − +


− + = − + + 


+ = − + +


⋮

  (G) 

 
 If one starts from the first approximation then one must give 

2 klM  at a time-point 0

0
x  

such that the integrability condition of (F.1) (i.e., the BIANCHI identity in the linear 
approximation) is fulfilled.  The conditions for 

2 klM : 

 

1
, ,22 2kl l rr kM M− = 0 ( ,2 kl lM

∗
= 0, resp., with klM

∗
= Mik − 1

2
r

kl rg M )  (109) 

 
must then be fulfilled at the time point 0

0
x .  In addition, one can give 

3
ijN (xi, x0) 

arbitrarily and arrive at 
2 ijM (xi, x0) by simply integrating (67).  Equation (109), which is 

the linearized form of (63) (for vanishing dislocation density), is therefore preserved for 
all times, on the basis of (77).  

2
klg (xi, x0) then follows by integrating (A.1) and (F.1), 

which takes exactly the same form as the integration of (A.1) and (B.1).  We then 
substitute that into (G.1).  (G.1) has an integrability condition.  If one writes the right-
hand side of (G.1) in the form: 
 

0 0 01
, ,23 def 3 33 3

( )i j
ij j i ij ijK g g N= − + − Γ +ɶ  

then that condition will read: 
 
 , , , ,3 3 3 3kl ij ij kl ki lj lj kiK K K K+ − −ɶ ɶ ɶ ɶ   

≡ 0 0 0 0
, , , ,3 3 3 33 3 3 3

( ) ( ) ( ) ( )kl kl ij ij ij kl ki ki lj lj lj kiN N N N− Γ + − Γ + − Γ + − Γ = 0. (110) 
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 If one considers the fact that (F.1) is already fulfilled at all times and combines the 
identity (66) with equation (67), both of which are taken in the linear approximation, then 
one will see that (110) is fulfilled.  One can therefore determine 0

3

ig (xi, x0) from (G.1) 

with no further discussion.  [That happens in precisely the same way as it does with 
(C.1).] 
 We shall now further assume that equations (A), (F), and (G) are fulfilled up to an 
including order (2n – 1), and we would like to show how one can then arrive at the 
solution to the next-higher order.  One must therefore once more demand the BIANCHI 

identity for 
2 kl
n

M (
2 kl
n

M
∗

, resp.), into which bilinear terms of the lower orders also enter 

now: 

   ;2

l
k l

n
M

∗
 ≡ ,2

2 2

l l r
k l r k

n

n n

r l
M M M

k l r l

∗ ∗∗    − +   
   �	
	� �	
	�

 = 0, 

so 

,2

l
k l

n
M

∗
 =

2 2

l r
r k

n n

r l
M M

k l r l

∗ ∗   −   
   �	
	� �	
	�

,     (111) 

 
in which the right-hand side of (111) is known and time-dependent now.  However, at 
first, we shall fulfill (111) only at an arbitrary, but fixed, time-point 0

0
x .  In that way, one 

can then freely choose three suitable functions of 
2

l
k

n
M

∗
, while the remaining ones are then 

fixed by (111).  In addition, we freely give the currents 
2 1

kl
n
N

+
 at all times and then 

determine 
2

l
k

n
M

∗
(xi, x0) at all times from them by using equations (67) in the 

approximation considered and simple integration.  From Chapter III.3, equation (77), that 
is sufficient for (111) to be also true for all times.  Equations (A.3) and (F.3) can now be 
integrated in the known way and will yield 

2
kl

n

g (xi, x0).  We then substitute that into 

(G.3).  The integrability conditions of (G.3) will now read: 
 

0 0 0 0
, , , ,2 1 2 1 2 1 2 12 1 2 1 2 1 2 1

( ) ( ) ( ) ( )kl kl ij ij ij kl ki ki lj lj lj ki
n n n nn n n n

N N N N
+ + + ++ + + +

− Γ + − Γ + − Γ + − Γ  = 0. (112) 

 
 If one observes that (F.3) is already fulfilled at all times and that, by assumption, all 
field equations of the foregoing orders are true, moreover, then upon combining the 
identity (66) with equation (67), one will find that (112) is confirmed.  One then 
determines 0

2 1

i

n

g
+

(xi, x0) from (G.3).  The approximation can then be continued arbitrarily 

with no restrictions, which was to be shown. 
 

___________ 



V. – NON-ANALYTIC SOLUTIONS  
 
 

 We would now like to consider solutions that do not behave in an analytic way on a 
well-defined hypersurface in our four-dimensional space-time continuum.  In order to do 
that, we give ourselves a family of hypersurfaces: 
 

a) z = z (xi, x0), and further let  
defi i

z
p

x

∂=
∂

, 0 0def

z
p

x

∂=
∂

, (112) 

 
and let the jump surface be given by: 

b) z = 0 .     (113) 
 
We write out the basic equations explicitly once more in the following form: 
 
 R{ ijk} l  ≡ 2 [Tijl , k + Tjkl, i + Tkil, i  

 − Tijr  
r r r

kl kl lk

r
T T T

k l

  
+ + +  

  
 

 − Tjkr 
r r r

il il li

r
T T T

i l

  
+ + +  

  
 

− Tkir 
r r r

kl jl lj

r
T T T

j l

  
+ + +   

  
,     I 

 
 {0 }3 ij kR  ≡ Tijk, 0 + T 0ik, j + T 0jk, i 

 − g0r Tijk, r + g0r
, j Trik − g0r

, i Trjk − g0r
, k Tijr  

+ 0 0 02r r r
ir jk jr ik kr ijT T T TΓ − Γ +  = 0,             II 

 

 
0

ikR  ≡ 1
2 grs (gsi, rk + grk, si − gik, rs − grs, ik) + grs gpq 

p q p p

r k i s i k r s

      
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= − grs (Tsik, r + Tski, r + Tkrs, i + Tirs, k) 
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is si rk kr rs sr ik ki

p q p q
T T T T T T T T

r k i s i k r s
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− grs gpq [Trk 

p Tis 
q + (T p

rk + T p
kr) (T

 q
is + T q

si) − (T p
ik + T p

ki) (T
 q

i k + T q
k i)],     III 

 
0

0
ikΓ  ≡ 1

2 (gik, 0 − gik, r g 0r − g 0r
, i gkr − g 0r

, k gir) = − (T 0
ik + T 0

 ki).   IV 
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We add the equilibrium conditions as the fifth system of equations, which we can write in 
the form: 

σri , r + gµ (g0i
, 0 − g0i

, r g
0r ) = 0,    V 

 
with µ = ρ c2, due to the absence of forces.  In that equation, stress is assumed to be an 
algebraic function of gik , namely, σik = σik (grs). 
 We first ask what sort of discontinuities the grs , g

0i (their derivatives, resp.) might 
admit when crossing the surface z = 0 as a result of the basic equations.  The answer 
depends essentially upon the assumptions that we made about the right-hand sides of III 
and IV.  If we were to demand that they should vanish then we would be dealing with the 
homogeneous, “matter-free” case, just as in, e.g., MAXWELL’s electrodynamics or 
EINSTEIN’s theory of gravitation (cf., H. TREDER [45], for that).  Only the 
homogeneous equations III and IV will then remain, which will be satisfied identically by 
the Ansatz that grs can be derived from a displacement field (15), and g0i (vs, resp.) is the 
material derivative of the displacement vector with respect to time. 
 There are no other solutions, and the investigation of shock waves will reduce to the 
investigation of jumps in the derivatives of the displacement vector with the help of only 
the equilibrium condition.  That is well-known in the theory of elasticity, and we shall 
refer to, say, the work of C. TRUESDELL [46].  TRUESDELL’s study of wave 
propagation for finite stresses included not only the general theory, but also a thorough 
examination of the special features of waves propagating in materials with specific 
properties; here, we are interested in only the former theory.  In contrast to our 
presentation, in which mass-points are described by their coordinates xr after the 
distortion (as one usually does in the theory of dislocations), TRUESDELL characterizes 
them by their Xα before the deformation, which is expressed by: 
 

xr = xr (Xα, t) . 
 
We consider jumps in the derivatives of the xr across a two-dimensional surface, so: 
 

[xr
, αβ] ≠ 0 with xr

, α = 
( , )rx X t

X

α

α
∂

∂
, rxɺ  = 

( , )rx X t

t

α∂
∂

, 

 
which can be characterized by an “amplitude vector” ak and a propagation speed U. 
 We can regard the family of two-dimensional surfaces that is defined by the wave 
front with the propagation speed U as a hypersurface in the space-time continuum that we 
consider.  The jump conditions will then follow from the equilibrium conditions.  
Corresponding to our choice of starting coordinates for the variable, they can be written 
in the form (16): 

                                                
 (15) I. e., for the quantities εrs in grs = δrs – 2εrs , one will have εrs = ,r s

s − 1
2 sn, r sn, s , with the displacement 

vector sr . 
 (16) In this: 

Tk 
α 

def
= I σk 

m X α
; m 
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Tk
α

; α = kxρɶ ɺɺ  

 
(we have dropped the external forces), and applying the jump will yield the relation: 
 

Qkm (n) am = ρɶ U 2 ak .    (114) 
 
Qkm is the so-called acoustic tensor, which depends upon the pre-stresses and the 
direction n of propagation of the waves.  The basic equation (114) characterizes the 
amplitude vector ak on the right as the eigenvector of the acoustic tensor with ρɶ U 2 as its 
corresponding eigenvalue.  We will encounter this equation again in our description 
below. 
 One can allow the right-hand sides of III and IV to be non-vanishing, so one must 
consider equations I and II, in addition, and the derivatives of the dislocations and their 
currents to likewise exhibit jumps.  One generally understands the jump problem of order 
n to mean that all derivatives of gµν up to and including order (n – 1) should be 
continuous upon crossing the jump surface, while the nth-order derivatives, and therefore 
all higher-order derivatives, in general, will suffer a jump upon crossing that surface (cf., 
TREDER [45]).  Now, it is clear from the basic equations that in the jump problem of 
order n, discontinuities in the nth derivatives of the grs , g

0r are coupled with those of order 
(n – 1) of the Trsk , T 0, ik .  However, if one maintains the demand that the derivatives of 
order (n – 1) of the dislocations and their currents should be continuous in the jump 
problem of order n then the jumps in the nth derivatives of the grs , g

0r that are allowed by 
the field equations will have precisely the form that would be produced by a displacement 
vector field.  Those jumps will be either excluded by the equilibrium conditions or they 
will satisfy certain propagation conditions on the hypersurfaces that the equilibrium 
conditions define, namely, the propagation surfaces of the sound.  Those jumps can then 
be given freely on a two-dimensional surface that belongs to the hypersurface.  We shall 
then deal with acoustic shock waves in a medium that contains dislocations and their 
currents with elastic pre-stresses. 
 In order to do that, we consider the nth-order shock waves, as they were introduced 
into the theory of gravitation by TREDER [45]: 
 

11

0 0 0 0

11

( ) ( ) ,

( ) ( )

ik ik ik ik
n nn n

i i i i

n nn n

g g h z h z

g g h z h z

γ γ

γ γ

−

++
−

++

= + + +



= + + + 

⋯

⋯
   (115) 

 
The ( )

n
h z  in this are the so-called “jump functions”: 

 

                                                                                                                                            
is the so-called PIOLA-KIRCHHOFF stress tensor, I is the JACOBIan determinant of the deformation, and 
with our choice of Cartesian coordinates in the initial state, as well as in the deformed state, I will coincide 

with g , and furthermore, ρɶ = g ρ .  “;” means a generalized covariant differentiation here.  Cf., C. 
TRUESDELL, R. A. TOUPIN [47]. 
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( )
n
h z  = 

0 for 0

1
for 0

!
n

z

z z
n

<

 ≥

,  so one then has ( )
n

d
h z

dz
=

1
( )

n
h z
+

, (116) 

 
and ikg− , g0i− mean the analytic continuation of the quantities gik , g

0i that were defined for 

z < 0 across the jump surface z = 0.  We employ the usual notation: 
 

  [A] = 
0 0

lim lim
z z

A A
+ −→ →

−       (117) 

for a jump in a field quantity. 
 Since the equations III have order two, it would seem reasonable to restrict ourselves 
to the cases of n = 2, 3, …  We will discuss the cases of n = 0 and n = 1 later on.  Here, 
we shall treat the case of n = 2, for the sake of simplicity, since it exhibits all that is 
essential.  Since we then have: 
 

[Tijk, µ] = [T 0ik, µ] = [Tijk] = [T 0ik] = 0,    (118) 
 
by assumption, when we apply the jump condition to III, we will get the condition: 
 

1
2

2 2 2 2
( )rs

si r k rk s i ik r s rs i kg p p p p p p p pγ γ γ γ+ − − = 0.  (119) 

 
Due to (118), imposing jumps in I, II, and IV will not produce any condition, but when 
one differentiates IV once and then applies a jump, one will get the jump relation: 
 

0 0 0
0

2 2 2 2

q q q
ij ij q i jq j iqp p p p g p p g p p gµ µ µ µγ γ γ γ+ − −  = 0.  (120) 

 
Since it is possible to have pr p

r = 0 only when pr itself vanishes, the general solution of 
(119) will be: 

2
ijγ  = 

2 2
i j j ia p a p+ ,     (121) 

 
and when one writes 0

2
iγ  = 0

2

rγ gri , it will then follow from (120) that: 

 

0
2

iγ = (p0 – g0q pq)
2

ia .     (122) 

 
 With that, we immediately recognize the following special cases: 
 
 1.     pr = 0. 
 
The hypersurface is then our three-dimensional space at a well-defined time-point; it will 
then follow from (121) that: 
  

2
ijγ  = 0, 
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and when we differentiate V and apply the jump, we will also get: 
 

0

2

iγ  = 0. 

 
 2.     p0 – g0q pq = 0. 
 
The hypersurfaces that are defined in that way are the generalizations to the case of a 
moving medium of the two-dimensional spatial surfaces of the static case that are 

established for all times.  When one observes that g0q = − vq / c (so 0
0

q
q

g
x x

∂ ∂−
∂ ∂

 

represents the material derivative), one will see that (2.) represents surfaces that are 
constantly swept out by the same particles.  It follows directly from (122) that: 
 

0

2

iγ  = 0, 

 
while one infers from V by differentiating and applying the jump that the divergence of 
the stress tensor has no second-order jump.  There will also be no jump in 

2
ijγ  for a 

physically-reasonable stress-strain relationship that is one-to-one.  No jumps will be 
allowed by both of the hypersurfaces that are characterized by (1.) and (2.). 
 Before we go into the general form of the hypersurface, we would like to briefly 
consider the higher-order jumps that are permitted by the field equations I – IV alone.  
For the sake of simplicity, we shall pursue the case of n = 2 further. 
 If one goes on to calculate the third-order jumps then they will be composed of the 
quantities 

3
ikγ , 0

3

iγ  as well as 
2

ikγ , 0

2

iγ .  When one observes (115) and (117), one will 

find that: 

, , , ,
2 2 2

, , ,
2 2

0 0 0 0
, , , ,

2 2 2

0 0
, , ,

2 2

[ ]

( ) ,

[ ]

( ) .

rs kln rs k l n rs l k n rs n k n

rs k n l n l k l k n rs k l n

r r r r
kln k l n l n k n k l

r r
k n l n l k l k n k l n

g p p p p p p

p p p p p p p p p

g p p p p p p

p p p p p p p p p

γ γ γ

γ γ

γ γ γ

γ γ

= + + 

+ + + +



= + +

+ + + + 

  (124) 

 
When one differentiates III with respect to xn and apply the ancillary jump that will then 
yield: 
 
 grs (

3
siγ  pr pk +

3
rkγ  ps pi −

3
ikγ  pr ps −

3
rsγ  pi pk) pn 

 
 = − grs [ ,

2
si kγ  pr pn + ,

2
si rγ  pk pn − ,

2
si nγ  pr pk −

2
siγ (pk, r pn + pr, n pk + pn, k pr) 

 + three analogous terms] 
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  − grs gpq 
2

qa pn [pk pr (− gis, p + gsp, i + gpi, s + 2 Tpsi + 2 Tpis) 

 + pi ps (− gkr, p + grp, k + gpk, r + 2 Tpkr + 2 Tprk) 
 − pi pk (− grs, p + gsp, r + gpr, s + 2 Tprs + 2 Tpsr) 

− pr ps (− gik, p + gkp, i + gpi, k + 2 Tpik + 2 Tpki)] 
def 3 ikI= − .      (125) 

 
 Since we have already treated the case of pr = 0, in particular, we can exclude it here 
and then find that the general solution of (125) is: 
 

3
ijγ  = 

33 3

1
i j j i ijrs

r s

a p a p I
p p g

+ + ,   (126) 

 
with a new jump vector 

3
ia  that is initially arbitrary.  We must substitute (121) for 

2
ikγ .  

In order for (126) to actually be a solution of (125), 
3 ijI  must fulfill the compatibility 

equations: 
1
22 3

rs
ij r rs iI p I p g −

 
= 0.    (127) 

 
That is a consequence of the BIANCHI identity (54).  Namely, if one applies a jump to 
(54) and observes that the equation [Rijkl] = 0 is fulfilled already due to (118), (119), and 
(120) then (127) will follow immediately.  When one now sets: 
 

[T 0ij, µν] = 0,     (128) 
 
in addition to (118), one will find by differentiating II and applying the jump that: 
 

2
ijkt  (p0 – g0r pr) = pk g

sn 
2
na (T 0js pi – T 0is pj),  (129) 

 
in which one has set [Tijk, µν] = 

2
ijkt pµ pν .  Since the case of p0 – g0r pr = 0 was treated 

above, it can be excluded here, such that 
2

ijkt  will actually be determined by (129).  One 

sees here that jumps in the nth derivatives of the gik will also induce jumps in the nth 
derivatives of the local dislocation densities.  That is understandable, since the metric 
enters into the definition of T ijk implicitly.  The equation that arises from I by derivation 
and applying a jump is fulfilled along with (129).  If one now observes (128) then one 
will get the jump relation for 0

3

iγ ( 0
3

iγ = 0

3

rγ gri , resp.) from IV, which one can write in 

the form: 
 
 0

3
iγ  pj pµ pν + 0

3
jγ  pi pµ pν = 0

3
iγ (p0 – g0r pr) pµ pν + 03 2 2

( , )ij rs rµν γ γΓ  

def
= Kijµν + pµ pν (p0 – g0r pr)

3 3
( )i j j ia p a p+ ,      (130) 
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in which 
3 ij µνΓ  summarizes the terms in 

2
ijγ  and 0

2

iγ .  The solubility conditions for (130), 

which can be written in the form: 
 

Kijµν pk pl  + Kklµν pi pj − Kkjµν pj pl − Kjlµν pi pk = 0,  (131) 
 
are fulfilled here on the grounds of the identity (66), which one can easily verify by 
applying a jump to (66) and considering the fact that one now has (0 ) ,3

[ ]ij k lR  = [Rijkl , s] = 0 

and the lower-order jump relations are fulfilled already.  One can write the solution of 
(130) in the form: 

0
2

iγ = (p0 – g0r pr) 
3

ia + bi .    (132) 

 
The vector bi can be calculated simply by contracting (130).  One can calculate all of the 
quantities ik

r
γ , 0i

r
γ  that appear in the jump series in that way with no difficulty.  For the 

higher-order jumps, one must merely observe the product rule for jumps: 
 

[A B] = A− [B] + [A] B− + [A] [B] .   (133) 
 
 The first-order jump problem can be treated similarly.  In order to calculate the first-
order jump relation, one must require the equations: 
 

0
lim

z

ij
z

z

R
ε

ε

=+

→
=−
∫ = 0     (134) 

 
for III, in place of the simpler jump condition, in analogy with the integral form of the 
gravitational equations according to A. PAPAPETROU and H. TREDER [48].  Here, that 
condition excludes jumps in the dislocation densities, which led to δ-functions in III.  The 
first-order jump relations that follow from (134) are completely analogous to (119).  All 
of the other jump relations can be obtained precisely as above and will lead to completely 
analogous results. 
 We make the following remark about the jump problem of order zero: It is clear from 
the jump relations (121), (122), (126), (132), etc., that the jumps that are allowed by the 
basic equations have precisely the same form as the jumps that are produced in a 
displacement vector.  In general relativity, they correspond to the jumps that can be 
transformed away.  In fact, the form of the jumps that are described by (121), (122), etc., 
in general relativity is precisely the same as the one that can be specified in the 
corresponding derivatives of a discontinuous coordinate transformation that will make the 
transformed metric no longer exhibit jumps (cf., TREDER [45]).  However, such jumps 
are also permissible in the gµν themselves.  We must also reckon with zero-order jumps in 
the theory of elasticity from the outset then.  The only jumps that are relevant to general 
relativity are the ones that cannot be transformed away.  Only the jumps that are 
independent of a choice of coordinates can reproduce physical phenomena.  However, in 
contrast to that, in continuum mechanics, as we have emphasized since the beginning (see 
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Chap. I), the conditions that correspond to a coordinate transformation express a physical 
law, namely, the equilibrium conditions.  Therefore, in contrast to general relativity, the 
ai also have a genuine physical meaning here.  However, zero-order jumps in the theory 
of elasticity would also imply jumps in the velocities themselves, which would then 
require infinitely-large forces.  We shall therefore exclude those jumps here on physical 
grounds.  The further treatment of the jump problem will then reduce to a discussion of 
the vector ai that is left arbitrary in equations I – IV with the help of only the equilibrium 
conditions.  We then find ourselves in the same situation as in the aforementioned 
“vacuum waves,” except that the quantities gij , g

0i that enter into equations V cannot be 
constructed from just a displacement vector field, but must be determined from equations 
I – IV.  We once more arrive at the relations of the elementary theory of elasticity as the 
limiting case of vanishing dislocation density and dislocation current.  If we go on to the 
second-order stress problem here then when we differentiate equations V and apply the 
jump, that will yield: 

− 0

2 2

i i
jmn mn jp gγ µ γΣ + (p0 – g0r pr) = 0,   (135) 

with (17): 

σ i j = σ i j (− gmn) and − i
jmnΣ = 

i
j

mng

σ∂
∂

, 

so: 
[σ i j, rs] = −

2

i
jmn mn r sp pγΣ . 

 
If we substitute the solutions (121), (122) for 

2
mnγ , 0

2

iγ  and define: 

 
c (p0 – g0r pr) 0def

p= ɶ  and further 
2

rs
sg a = 

2

ra  

 
then (135) will take on the following form: 
 

− 2
0

2 2

i r i
r a g p aρΣ + ɶ  = 0,    (136.a) 

with 
i
rK  = Σi

jmn pj (pm gnr + pn gmr) . 

 
On grounds that will become clear immediately, we divide (136) by pr pr , set: 
 

i
r

r r

K

p p

ɶ
 = K ir ,  

2
0

r r

p

p p

ɶ
= U 2, 

and get: 

− 2

2 2

i r i
r a g U aρΣ +  = 0.    (136.b) 

                                                
 (17) We can write σ i j = σ i j (− gmn), since gmn = δmn – 2 εmn and the matter equations take the form σ i j = 
 σ i j (− εmn). 



V. – Non-analytic solutions. 55 

In that form, (136.b) agrees completely with equation (114) in TRUESDELL [46] (18), 
except that all quantities in (136) refer to the final state, while the ones in (114) refer to 
the initial state.  The quantity: 

U 2 = 
2

0

r r

p

p p

ɶ
 

 
has the meaning of the square of the speed of sound for us, as well.  Namely, if one writes 
the equation of the hypersurface, e.g., in the form: 
 

Z (xi, x0) ≡ x3 – h (x1, x2, t) = 0, 
then: 

pr = (− h, 1 , − h, 2 , 1),  p0 = − 1 h

c t

∂
∂

. 

The two-dimensional surfaces: 
x3 = h (x1, x2, t) 

 
run through the family z = 0 in the direction of the normal pr with the speed: 
 

u =
/

| |

h t

p

∂ ∂
= − 0

| |r

p
c

p
. 

 
In our elastic medium, the speed of propagation of the matter current overlaps with the 
velocity vi = − c g0i.  The speed of sound in that medium is then: 
 

U = u − 
| |

r
r

r

v p

p
=  − 

| |r

c

p
(p0 – g0r pr), 

so 

U 2 = 
2

0

r r

p

p p

ɶ
, 

which shall be shown. 
 (136.b) is a linear system of equations in 

2

ia  whose non-trivial solubility for a given 

stress-strain relation and the quantities gij , g0i depend upon only the choice of the 
hypersurface, which is characterized by p0 , pr .  The coefficient matrix will be non-
degenerate, in general, so no non-zero solutions will be allowed.  Conversely, when one 
demands that the determinant must vanish, one will get a defining equation for p0 , pr 
( 0pɶ , pr, resp.), and the degree of vanishing will dictate how many combinations of 

2

ia  

one is free to choose.  Due to the special form of equation (136), that will be an 
eigenvalue problem, whereby 0pɶ  will be connected to the eigenvalue Λ directly by way 

of: 
                                                
 (18) The fact that our equation relates to the second-order jump problem for gµν , while (114) is written 
down for first-order jumps in gµν is irrelevant, since the form of the latter equation does not depend upon 
the order of the jump problem (cf., infra). 
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2

0

r r

p
g

p p
ρ

ɶ
= Λ.    (137) 

 
We remark that the hypersurfaces that are determined in that way are independent of the 
order of n, since we will always get the same equations for the lowest-order jump 
relations (19). 
 Intuitively, one must introduce the hypersurfaces that follow from (136) as moving 
two-dimensional surfaces that represent the fronts of the sound waves.  It is therefore 
clear that one cannot give the components of 

2
ia  that one is free to choose on the total 

hypersurface – i.e., the totality of all two-dimensional surfaces – since being given the 
2
ia  

on a single two-dimensional surface will determine the further evolution of the 
2
ia .  The 

2
ia  must then satisfy certain propagation conditions on the hypersurfaces.  As in the 

theory of gravitation, one gets the conditions for the nth-order jumps from the equations 
for the th( 1)n+ -order jumps (cf., TREDER [45]), and here they will be a consequence of 
the equilibrium conditions V.  There exist far-reaching analogies with the relationships in 
the theory of gravitation when one fixes the coordinate conditions in the latter (which 
correspond to the equilibrium conditions here).  If one defines the corresponding jump 
conditions from V by differentiating twice then the relations between the second and 
third-order jumps that one obtains can be written in the following form: 
 

− 2
0

3 3

i r i
rK a g p aρ+ ɶ  = H i (2).   (138) 

In that, one has set: 
 

[σi
j, kln] = − Σ ijrs pj (pj gsm + ps grm) pk pl pn

3 3

m i
jklna S+ . 

 
Here, as with the second-order jumps, the first terms will lead to the tensor K i r , whereas 
the combinations of lower-order jumps (so second-order jumps) are summarized in i jklnS ; 

one must consider (126) here.  As one sees from (132), applying the jump to the 
expression: 

( )0 0 0
,0 ,

,

i i r
r

ln
g g g− g  

 

will first lead to a term of the form 2
0

3

ig p aρ ɶ , while all of the other terms will contain 

only lower-order jumps.  They are written, along with 
3

i
jklnS , on the right-hand side of 

(138) as H i (2).  As a defining equation for 
3

ia , (138) has the same form as (136) then, 

except that the right-hand side is non-vanishing.  However, since the hypersurface was 
chosen in precisely such a way that the homogeneous equations would be soluble, one 
                                                
 (19) That corresponds to C. TRUESDELL’s first equivalence theorem [46]. 
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will get different conditions for the inhomogeneity Hi (2) according to the rank of the 
system of equations.  Since Hi (2) is, in turn, a differential expression in 

3
ia , that 

expression will give the equations of propagation for the second-order jumps.  If they are 
fulfilled then once more one will be free to choose just as many combinations of the 

3
ia  

on the hypersurface as one previously would with the 
2
ia , and one will obtain the 

propagation conditions for the 
3
ia  from a consideration of the jumps of order four, etc. 

 We remark that the mathematical basis for the fact that the equilibrium conditions, 
and with them, the matter equations, play such a central role in a discussion of waves 
naturally consists of the fact that a characterization of the field equations is first 
determined by them, in contrast to the theory of gravitation, in which the characteristics 
are known to be determined by the equation pµ pµ = 0.  However, a similar relation 
( p p gµν

µ ν  = 0) is not true in the theory of elasticity. 

 Here, from (137), one has: 

2
0pɶ  =

gρ
Λ

pr pr = U 2 pr pr ,    (137*) 

 
in which Λ is the eigenvalue of (136.b), so it will generally be a complicated function of 
gik , as well as pr .  Therefore, since Λ generally depends upon direction, (137*) cannot be 
written in the form: 

g*µν pµ pν = 0, 
 
with suitable g*µν = g*µν (xα).  It is only in the special case where the medium is isotropic 
that one will have: 

U = U (xα) 
 
(the speed of sound does not depend upon direction then), such that one can define a 
suitable g*µν with which one can describe the characteristics by using (137*).  As one 
easily calculates, one will have: 
 g*00 = g00 = − 1, 
 g*0r = g0r, 

 g*rs = 
2

2

U

c
δ rs − g0r g0s. 

 
The effect of the stress field on the speed of sound is therefore different from the effect of 
the gravitational field on the speed of light. 
 We shall now briefly describe the case in which one couples nth-order jumps in the 
grs, g

0r with (n + 1)th-order jumps in the dislocations and their currents.  Here, one must 
distinguish two ways of posing the question: 
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 1. Are there always distributions of dislocations that are discontinuous in the 
th( 1)n−  derivatives in such a way that arbitrary jumps in the nth derivatives of the grs , g

0r 
that are given on any sort of hypersurface will be compatible with the field equations? 
 
 2. The converse problem: Are discontinuities in the (n − 1)th derivatives of the 
dislocations and their currents that are given arbitrarily on any sort of hypersurface z = 0 
compatible with the field equations? 
 
 In the second case, one is free to give the jumps in the derivatives of the dislocations 
and their currents as long as equations I and II are fulfilled.  The corresponding jumps in 
the grs , g

0r can then be calculated with no difficulty using III and IV.  However, in the 
case where the hypersurface is a characteristic of the basic equations that are defined by 
the equilibrium conditions, that will imply restrictions on the jumps in the motion of 
dislocations that represent generalizations of the restrictions on the motion of dislocations 
that result of the speed of sound. 
 In question (1.), we again restrict ourselves to the case of n = 2.  We get the jump 
relations: 

2 2 2 2

2 2 2 2

2 2 2

0 0 0
0 0 0

1 12 2 2
0 0 0

0
1 1 1

) ( )

2 ( ),

) 0,

) ( ) 2 ( ),

) ( ) .

rs
si i k rk s i ik r s rs i k

rs
sik r ski r krs i irs k

iks l kls i lis k

r
ij r i j j i ij ji

r
ijk r ik j jk i

a g p p p p p p p p

g t p t p t p t p

b t p t p t p

c p g p p p t t

d t p g p t p t p

γ γ γ γ

γ γ γ

+ − −

= − + + +

+ + = 
− − − = − + 

− = −





  (139) 

 
In the case where p0 – g0r pr ≠ 0, 

2
ikst is determined by d) and satisfies b), and in the other 

case, one satisfies b) identically by a similar Ansatz: 
 

tijk = nik pj − nik pj .    (140) 
 
If we once more consider the case that was connected with the treatment of waves in 
which the right-hand sides of (139.a, c) vanish then we can infer that: 
 

t 0ik = τik ,      (141) 
 
with an arbitrary choice of τik = − τki .  The corresponding jump in the derivative of the 
dislocation then reads: 

1
ijkt = (p0 – g0r pr)

−1 (τik pj − τjk pi) .    (142) 

 
 Those special jumps in the motion of a dislocation are also allowable in shock waves 
then.  The basis for that fact consists of the fact that those are precisely the parts of the 
dislocation that will lead to the so-called “stress-free structural curvatures.”  Namely, that 
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part of the structural curvatures will be produced by precisely the combination (cf., 
KRÖNER [18]): 

Tijk + Tkij + Tkji . 
  

If one forms the first-order jump in this then it will follow that: 
 

1 1 1
ijk kij kjit t t+ +  = 2 (p0 – g0r pr)

−1τkj pi . 

 
However, if one allows the right-hand sides of (139.a) and (139.c) to become non-
vanishing then one can give the quantities 

2
ikγ , as well as the 0

2
iγ , freely with the single 

restriction that the equilibrium condition V must be satisfied.  If one then substitutes 
(139.d) in (139.a) then it will follow that: 
 
 

2 2 2 2
( )rs

si r k rk s i ik r s rs i kg p p p p p p p pγ γ γ γ+ − −  

= − 4 grs (p0 – g0n pn)
−1 0 0 0 0

1 1 1 1
( )si r r rk s i ik r s rs i kt p p t p p t p p t p p+ − − . (143) 

 
The general solution to (143) is: 
 

0

1
ikt  = − 1

4 (p0 – g0r pr)
2

ikγ + 1
4 (τi pk + τk pi) .   (144) 

 
The quantities τi , which are still undetermined here, will then be determined by (139.c), 
since, along with (144), it will follow that: 
 

0 0
2 2

i k k ip pγ γ+  = τi pk + τk pi ,   (145) 

so 
 τi = 0

2
iγ .     (146)  

 
The part t 0<ik> still remains undetermined here.  [One can construct the solution similarly 
in the case where p0 – g0r pr = 0 with the use of (140).] 
 

___________ 



APPENDIX  
 
 

1. – Notations. 
 

 It will generally be true that the following notations will be employed, unless 
specifically stated to the contrary: 
 
 Uppercase and lowercase Greek indices Γ, Λ, Θ, … and µ, τ, λ, …, resp., will always 
run through the numbers 0, 1, 2, 3, while uppercase and lowercase Latin indices K, L, M, 
… and i, k, l, …, resp., will always run through just 1, 2, 3.  In that way, lowercase Latin 
(Greek, resp.) indices i, k, l, … (µ, τ, λ, …, resp.) will each be tensor indices in three- 
(four-, resp.) dimensional RIEMANNian spaces, while the uppercase indices K, L, M, … 
(Γ, Λ, Θ, …, resp.) will be just numbers in RIEMANNian spaces.  Precisely the opposite 
will be true for the dual spaces that are explained in the text.  Indices that appear twice 
will always be summed over.  In order to distinguish between three- (four-, resp.) 
dimensional quantities that read the same, when any doubt might arise, the numeral 3 (4, 
resp.) will be placed under the symbol; e.g.: 
 

3

ikg , but 
4

ikg ≡ 
3

ikg − g0i g0k, 

 
and likewise for the covariant derivatives (cf., infra): 
 

3
;r sT , but 

4
;r sT . 

 
However, in approximation procedures, numbers under the field quantities mean the 
order in a development in some parameter, and in the jump relations, the numbers stand 
for the orders of the jumps.  No confusion should be possible then. 
 Symmetrization (antisymmetrization, resp.) will be characterized by an underbar 
beneath the indices (angle brackets that enclose them, resp.), while curly brackets will 
stand for cyclic permutation (indices that are not included in that will be separated by 
vertical lines): 

1
2defikT =  (Tik + Tki), 1

2defikT< > =  (Tik − Tki), 

 
T{ ikl}  

def
=  Tikl + Tkli + Tlki , T{ ik | n | l}  

def
=  Tiknl + Tklni + Tlkni . 

 
δik stands for the KRONECKER symbol, and εikl will stand for the LEVI-CIVITA 
symbol.  We will employ the symbols: 
 

∆ = 
2 2 2

1 2 2 2 3 2( ) ( ) ( )x x x

∂ ∂ ∂+ +
∂ ∂ ∂

, fɺ  = 
f

t

∂
∂

. 
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In order to characterize the linearized form of equations, an L will be placed under the 
symbol; e.g. [cf., (43.c) for this]: 
 

0 1
2defij

L
Γ = (gij, 0 – g0i

, j − g0i
, j) + T 0ij + T 0ji . 

 
Boldfaced symbols will characterize tensors without giving their indices: 
 

αααα =̂  αik . 
The curvature tensor is defined by: 
 
 , ,def

R δ δ δ κ δ κ δ
αβγ βγ α αγ β βγ ακ αγ βκ= Γ − Γ + Γ Γ − Γ Γ , 

  
 , ,3 def 3 3 3 3 3 3

l l l r l r l
ijk jk i ik j jk ir ik jrR = Γ − Γ + Γ Γ − Γ Γ , 

and the RICCI tensor by: 
Rαβ 

def
=  Rµαβ 

µ,  
3 def 3

r
ik rikR R= . 

 
The affinity in this is given by: 
 

α
βγΓ  = h δ

βγ
δ

β γ
 

+ 
 

,  
3

l
ikΓ  = 

3

3

l
ik

i
h

i k

 + 
 

, 

with the CHRISTOFFEL affinity: 
 

δ
β γ
 
 
 

≡ 1
2 gδκ (gβκ, γ + gκγ, β − gγβ, κ),  

3

i

i k

 
 
 

 ≡ 1
2

3

irg (gir , k + grk, i − gki, r) 

 
and the RICCI rotation tensors: 
 

4
;h hδ

γ β
Γ

Γ  ≡ hβγ
δ ≡ Tβγ

δ + T δβγ + T δγβ ,  
3
;

i G
G k ih h  ≡ 

3

l
ikh ≡ 

3 3 3

l l l
ik ik kiT T T+ + , 

 
and for the torsion in this, one will have: 
 

Tβγ
δ  = − Tγβ

δ,  
3

l
ikT = − 

3

l
kiT . 

Furthermore, let: 
0

def
, ,

l
ijk

i j

l l r l r l
R

j k i k j k i r i k r j

         = − + −         
         

, 

 

defijklR = Rijkl – R{ ijk} l . 

 
The EINSTEIN tensor will be introduced by: 
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 Eαβ = Rαβ – 1
2 gαβ R, 

4
R  = Rαβ g

αβ , 

 
 

3 ikE = 1
23 3ik ikR g R− , 

3
R  =

3 3

ik
ikR g . 

 
The covariant derivatives that one forms with the CHRISTOFFEL affinity will be 
expressed by way of the semi-colon: 
 

T r; s = T r, s − n r
T

s n

 
 
 

, 

 
and the ones that are formed with the full affinity will be indicated by two vertical lines: 
 

T r|| s = T r, s − n r
snT Γ , 

 
while a comma means the partial derivative: 
 

T r, s = 
r

s

T

x

∂
∂

. 

 
 

2. – On the derivation of the relations (29). 
 

 One addresses the equations: 
 

0

0 0 0
0

0 0 0
0

0 0 0 0
00

4 3

0 0 0

4 3

) 0,

) ,

) ,

) ,

) ,

) .

r
i ri

r
i ir

r s
rs

k k
rs rs

k k
rs rs rs

a T

b T g T

c T g T

d T g g T

e T T

f T T g T

αβ =
= 
= 
=


= 


= − 

    (2.1) 

 
(2.1a) follows immediately from antisymmetrizing (19.b): 
 

0
αβ< >Γ  ≡ Tαβ 

0 = 0, so one will also have T αβ 
0 = Tα 

β
 
0 = T αβ

 
0 = 0. (2.2) 

 
Due to the facts that: 

0
ikΓ  ≡ 

0

i k

 
 
 

+ T 0ik + T0
ki = 0,     (2.3) 
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0
0iΓ  ≡ 0 0rg

r i

 
 
 

+ T 00i + T0
i 0 = 0,    (2.4) 

 

0
00Γ  ≡ 0 0 0r sg g

r s

 
 
 

+ 2 T 000 = 0,    (2.5) 

 
(19.b) will further imply the relation: 
 

T 000 = g0r g0s T 0rs ; i.e., equation (2.1d), 
and further: 

T 0i 0 + T 00i = g0r (T 0ri + T 0ir).   (2.6) 
 
However, the use of the expression (25) on page 12, when one employs (2.1), will yield: 
 
 T 0i 0 ≡ g0α T 0i

α = g0r T 0i
r 

  = g0r
4

rg α T 0
iα = g0r 

4

rsg T 0
is + g0r  g

0r T 0
i 0 

  = g0r (
4

rsg − g0r g0s) T 0
is + g0r  g

0r T 0
i 0 

  = g0s
 T

 0
is  − g0r g

0r g0s T 0
is + g0r  g

0r T 0
i 0 

  = g0s
 T

 0
is  − g0r g

0r g0α T 0
iα , 

and therefore: 
T 0i 0 = g0s

 T
 0

is ; 
 
i.e., one has (2.1c).  However, if one substitutes (2.1c) in (2.6) then (2.1b) will also 
follow.  Equation (2.1c) is an immediate consequence of (28), since it is precisely the 
antisymmetric part of it.  Finally, (2.1f) will follow from: 
 
 

4

k
rsT  ≡

4

kg α gsβ T
 
α r 

β = 
4

kg α gsp T
 
α r 

p 

  = 
4

kqg gsp 
4

p
qrT + g0q gsp T

 
0 r  

p 

  = (
4

kqg − g0k g0q) gsp 
4

p
qrT + g0k gsp T

 
0 r  

p 

  = 
3

k
rsT − g0k gsp T

 0
r  

p 

  = 
3

k
rsT − g0k gsα T 0

r  
α, 

 
4

k
rsT  = 

3

k
rsT  − g0k T 0

r s
 ; i.e., (2.1f). 

 
 

3. – On systems of independent equations. 
 

 We next go on to some formulas that we will need in the following calculations and 
which can be easily verified by substituting (25) into the CHRISTOFFEL symbols: 
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0 0 01
,0 , , ,2

0

0 0

0 0 0 0 0 0 0 0 0
,0 ,

3

0
,

0
) ( ),

0 0
) ,

0

0 0
) ,

0 0

0 0
) 2 ,

0 0

)
0

q q q
ij ij q i jq j iq

q

p q

k k q r s kr s k r s
q

k
j

a g g g g g g g
i j

b g
j q j

c g g
p q

k k
d g g g g g g g g g g

r s r s r s

k
e g

j

 
= − − − 

 

   
=   

   

   
=   

   

       
= + + + −       

       

 
= + 

 

0 0 0

3

3

0

4 3

0 0
,

0
) .

q kq k q

k

k
g g g g

q j q j q j

k k
f g

i j i j i j
















      + −            


      = −           


      (3.1) 

 
We must now show that of equations (36), only the part (37) is independent of the system 
(30), (31).  Along with (37), (36) also include the equations: 
 
 { }4

l
ijkR  ≡ 

4 4 4
; ; ;4 4 4 4 4 4 4

2[ ( )l l l l l l
ij k jk i ki j ij k k kT T T T T T Tν

ν ν ν+ + + + +  

+ 
4 4 4 4 4 4 4 4

( ) ( )]l l l l l l
jk i i i ki j j jT T T T T T T Tν ν

ν ν ν ν ν ν+ + + + +  = 0.  (3.2) 

In this, one has: 

4
;4

l
ij kT  ≡ ,4

l l l l
ij k j i i j

l
T T T T

k i k j kα α
α α

α
     

− − +     
     

.   (3.3) 

 
The cyclically-symmetric part of (31) has the completely-analogous form: 
 
 { }3

l
ijkR  ≡ 

3 3 3
; ; ;3 3 3 3 3 3 3

2[ ( )l l l n l l l
ij k jk i ki j ij kn kn nkT T T T T T T+ + + + +  

+ 
3 3 3 3 3 3 3 3

( ) ( )]n l l l n l l l
jk in in ni ki jn jn njT T T T T T T T+ + + + +  = 0.  (3.4) 

In this: 

3
;3

l
ij kT  ≡ ,3 3 3 3

3 3 3

l l l l
ij k r j i r i j

r r r
T T T T

k i k j k r

     − − +     
     

.   (3.5) 

 
 If one now substitutes (3.3) in (3.2) and (3.5) in (3.4) and employs formulas (3.1) and 
(2.1) then one can easily calculate that the right-hand sides of (3.2) and (3.4) differ 
merely by terms that can be combined in such a way that they will each contain a factor 
of 0

ikΓ .  However, they will vanish on the basis of the field equations (30), and (3.2) will, 

in fact, express no new requirements.  However, due to the fact that (37) actually does 
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yield a new requirement in comparison to (30) and (31), it will be clear that the latter are 
equations in the torsion components T 0

ik , which do not appear in the remaining 
equations at all.  One must now show that equations (40) – (42): 
 

4

l
ijkR  ≡ , ,4 4 4 4 4 4

l l l l
jk i ik j jk j ik j

κ κ
κ κΓ − Γ + Γ Γ − Γ Γ ,    (3.6) 

 

0
k

ijR  ≡ ,0 0 , 0 04 4 4 4

k k k k
ij j i jk j i

κ κ
κ κΓ − Γ + Γ Γ − Γ Γ ,    (3.7) 

 

0 0
k

iR  ≡ 0,0 00, 0 0 00 04

k k l k
i i i

κ κ
κ κΓ − Γ + Γ Γ − Γ Γ     (3.8) 

 
are fulfilled already due to the system (43).  For (3.6), that is trivial, since one needs only 
to consider (28), 

4

i
klΓ  = 

3

i
klΓ , and (43.c) in order to get (43.c) and (43.b).  However, for 

the sake of better clarity, we would like to carry out the proof for all three cases together.  
In order to do that we decompose the curvature tensor into its RIEMANN-
CHRISTOFFEL and torsion parts according to: 
 

 Rαβγ
δ ≡ 

4 4 4 4 4 4

0

; ; ; ; ; ;R T T T T T Tδ δ δ δ δ δ δ
αβγ βγ α βγ α γ β α αγ β αγ β γ α β+ + + − − −  

 + (Tβγ
κ + T κβγ + T κ

γβ) (Tακ
δ + T δακ + T δ

κα) 
− (Tαγ

κ + T καγ + T κ
γα) (Tβκ

δ + T δβκ + T δ
κβ)    (3.9) 

with 
0

R δ
αβγ  ≡ 

, ,α β

δ δ κ δ κ δ
β γ α γ β γ α κ α γ β κ
         

− + −         
         

.  (3.10) 

 
By an identical conversion and the use of the expression (3.1) [the temporal derivative of 
the metric will then be expressed by, e.g., (3.1a)]: 
 

0

4

l
ijkR  ≡ 

0 0
0 0

3 3

0 0 0 0l l lr
ijk ijkR g R g

j k i r i k j r

      
− + −      

      
,  (3.11) 

 
0

04

k
ijR  ≡ 

0 0 0
0 0 0 0 0

4 3

sks k k
sij ij jsig R g R g R+ + ,     (3.12) 

 
0

0 0
k

iR  ≡ 
0 0

0 0
0 0

3

krr k
ir irg R g R+ .      (3.13) 

 
With the use of (2.1), as well as a consideration of the equations: 
 

 
4

0
;jk iT  = 

0r
jkT

i r

 
 
 

, 

 



66 On the nonlinear continuum theory of moving dislocations 

 
4

0
;jk iT  = T 0jk, i − 0

3

3 3

0l r
rk jr jk

r r
T T T

i j i k i r

     − +     
     

, 

 

 
3
;3

l
jk iT  = ,3 3 3 3

3 3 3

l r l l
jk i jk rk jr

l r r
T T T T

i r i j i k

     − − −     
     

, 

 

 
4
;4

l
jk iT  = 

3 4

0 0 0 0
; ;3 3

3

0l l rl l
jk i jk i jk k

r
T g T g T T

i r i j

   − + −   
   

, 

 

 
4
;
l

jk iT  = 
3 4

0 0 0 0
; ;

0 0l l l l
jk i jk i k jT g T T T

i j i k

   
− + −   

   
, 

 
one can now check that the torsion part of the curvature tensors 

4

l
ijkR , R0ij

k , R0i0 
k can be 

converted in such a way that they will extend RIEMANN-CHRISTOFFEL curvature 
tensors on the right-hand sides of (3.11) [(3.13), resp.] to the complete curvature tensors 
that are defined by α

µνΓ  according to (3.9) precisely.  One must add equation (37) to 

(3.12), as well.  Equations (3.6) – (3.8) can then be written in the form: 
 

4

l
ijkR  = 0 0 0 0 0 0

3 3
( )l l lr

ijk ijk jk ir ik jrR g R g− + Γ Γ − Γ Γ = 0,   (3.14) 

 

0
k

ijR  = 0 0 0 0 0

4 3

r k k kr
rij ij jrig R g R g R+ + = 0,        (3.15) 

 

0 0
k

iR  = 0 0
0 0

3

r k kr
ir irg R g R+ = 0.    (3.16) 

 
However, the right-hand sides of (3.14) – (3.16) vanish term-wise, on the grounds of 
(43), and will therefore represent no new requirements, which was to be shown. 
 
 

4. 
 

 At this point, let us add a remark in regard to the choice of algebraically-independent 
systems (43) from the starting equations (19).  It is clear from (3.14) that in order to 
fulfill: 

4 ikR  ≡ 
4 ikR α

α  = 0,          (4.1) 

the equations: 

3

l
ijkR  = 0,     (4.2) 
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0
ikΓ = 0      (4.3) 

 
are all that will be necessary.  In addition, the system (4.1) contains just as many 
algebraically-independent equations as (4.3).  Algebraically, one can replace (4.3) with 
(4.1), such that instead of (43), one will then have the following system: 
 

{ }3 3

{0 }4 3

) 0, ) 0,

) 0, ) 0.

ijkl ijk l

ij ij k

a R b R

c R d R

= = 
= = 

    (4.4) 

 
However, the combination of equations (4.1) and (4.2) is only a system of differential 
equations in 0

ikΓ  that does not have just the trivial solution 0
ikΓ  = 0.  Therefore, in order 

for (4.4) to be identical to (43), one must pose some addition conditions that we would 
not like to go into here.  A further algebraically-independent system is: 
 

{ }4 3

0
{0 }3

) 0, ) 0,

) 0, ) 0.

ij ijk l

ij ij k

a R b R

c d R

= = 
Γ = = 

     (4.5) 

 
We now remark that equations (4.1), especially when we separate the RIEMANN-
CHRISTOFFEL part from the torsion part of the curvature tensor and go over to the 
EINSTEIN tensor, when it is written in the form: 
 

0

ikE  = Tik ,       (4.6) 

 
will coincide precisely with the spatial components of the equations of general relativity: 
 

0

E αβ  = − κ Tαβ ,      (4.7) 

 
so the expressions for Tik in (4.6) and (4.7) will naturally be different. 
 
 

5. 
 

 Let: 
Gijk  

def
=  Fij, k + Fjk, i + Fki, j ,    (5.1) 

with 
Fij  = − Fji .     (5.2) 

One will then have: 
Fijkr  

def
=  Gijk, r − Grjk, i − Girk, j − Gijr , k ≡ 0.   (5.3) 

 
The integrability conditions for the system of equations for Fij that takes the form: 
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Gijk = gijk ,     (5.4) 
 
with any sort of functions gijk , will then read: 
 

fijkr 
def
=  gijk, r − grjk, i − girk, j − gijr , k = 0.    (5.5) 

 
 When the system (73) is interpreted as a system of differential equations for the 
partial determination of Likr , while the other functions are regarded as givens, it will have 
precisely the form (5.4) when one makes the association Likr → Fij , so it must fulfill the 
integrability conditions (5.5).  However, due to (5.2), Gijk is totally-antisymmetric, and 
from (5.3), Fijkr (i.e., , fijkr , as well) will also be totally-antisymmetric then.  However, fijkr 
must vanish identically then, since our indices run through just 1, 2, 3.  Therefore, (73) 
has no integrability conditions. 
 

___________ 
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