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 Summary. – The conformal invariance of MAXWELL’s equations has been proved 
by several authors; BATEMAN and CUNNINGHAM (1) first did that in the year 1910.  
In the first paragraph of this paper, it will be shown that formula (1.5) for the calculation 
of the field of a point-charge is also conformally-invariant.  A physical interpretation of 
conformal invariance will also be given for the case of the special theory of relativity.  
Let B′ be an observer that is in uniformly-accelerated translational motion with respect to 
a Cartesian system, namely, the system of an observer B.  There will then exist a 
fundamental Euclidian tensor ′ghi = σ 2 ghi for which B′ is likewise a preferred observer, 
just as B is relative to ghi .  The acceleration can then be transformed away by means of a 
conformal transformation.  It will then follow from the conformal invariance of the laws 
of electromagnetism that the observers B and B′ are equivalent.  Space-time must not be 
regarded as a Euclidian space then, but as a conformally-Euclidian space (but generally, 
only as far as electromagnetic phenomena are concerned).  Hence, it is not the group of 
LORENTZ transformations, but the group of conformal transformations that determines 
the geometry of space-time. 
 At the conclusion of this article, it will be shown that B and B′ will measure the same 
electromagnetic field of a charged massive particle when one assumes that m takes on a 
factor of σ −1 under the conformal transformation ghi → σ 2 ghi .  That brings with it the 
fact that the dimension [ML] is invariant under conformal transformations, which agrees 
with the constancy of h (dimension = [ML2T −1]). 
 
 
 § 1.  The conformal invariance of the electromagnetic equations. – It is known 
that the electromagnetic field Fij (h, i, j, … = 1, 2, 3, 4) can be derived from a potential ϕi: 
 

Fij = 2 ∂[i ϕi] .      (1.1) 

                                                
 (1) E. CUNNINGHAM, Proc. London Math. Soc. 8 (1910), 77. 
  H. BATEMAN, Proc. London Math. Soc. 8 (1910), 223. 
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 In a space-time with a conformal metric – i.e., a space in which gih is given only up to 
an arbitrary (non-constant) factor – there exists a tensor density Gih of weight – 1/2 that 

one obtains from ghi as follows: 
 

Gih = (− g)−1 gih , g = Det (gih).    (1.2) 

 
Now the electromagnetic field satisfies the following equations: 
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in which sh stands for the current vector-density of weight + 1.  These are MAXWELL’s 

equations in conformally-invariant form (2). 
 In the special theory of relativity, the line element is Euclidian, and the reference 
system can be chosen in such a way that one has: 
 

g11 = g22 = g33 = − g11 = − 1, ghi = 0  (h ≠ i).   (1.4) 
 

In this case, it is possible to give the potential vector ϕi more specifically as a solution of 
(1.3b).  Namely, every point-charge determines a field, and one will obtain the total field 
by adding (or integrating) those fields.  It therefore suffices to give an expression for the 
field of a single point-charge e. 
 In order to do that, we consider an arbitrary point P.  Let Q be the intersection point 
of the world-line of the point-charge with the past null-cone of P, and let uh be a tangent 
vector to that world-line at Q.  As is known, the value of the field potential ϕi that is 
produced by the charge e at the point P is: 
 

ϕi = − 
4

i
h

h

ue

u Rπ
.     (1.5) 

 

In this, Rh is the radius vector QP
����

, and thus, a null vector (Rh Rh = 0).  The 
electromagnetic field of the point-charge can then be calculated from (1.5) by means of 
(1.1). 
 We will now show that formula (1.5) is also conformally-invariant.  Here, we mean 
by that: 
 If a conformal transformation ′gih = σ 2 gih were performed in such a way that the 
fundamental tensor remained Euclidian, and if the potential vector: 
 

                                                
 (2) J. A. SCHOUTEN and J. HAANTJES, “Ueber die the konforminvariant Gestalt der Maxwellschen 
Gleichungen und der elektromagnetischen Impulsenergiegleichungen,” Physica 1 (1934), 869-872.  Cf., 
also: J. A. SCHOUTEN and J. HAANTJES, “Ueber die konforminvariant Gestalt der relativistischen 
Bewegungsgleichungen,” Proc. Kon. Akad. v. Wetensch., Amsterdam 39 (1936), 1059-1065. 
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     (1.6) 

 
were constructed in reference to a Cartesian coordinate system (h) that belongs to ′gih 
[i.e., a system for which ′gih is determined by the numbers (1.4)] then iϕ ′′  would differ 

from ϕi only by a gradient vector.  iϕ ′′  and ϕi would then lead to the same electromagnetic 

field.  In other words: Formulas (1.5) for the calculation of the electromagnetic field are 
conformally-invariant. 
 The transformation that takes the Euclidian reference system (h) that belongs to ghi to 
a Euclidian reference system (h′) that belongs to ′ghi is a conformal transformation.  Now, 
any conformal transformation can be composed of inversions and LORENTZ 
transformations (3).  We then need only to prove the aforementioned invariance under an 
inversion, since the invariance under LORENTZ transformations is immediately clear 
from (1.5).  In order to do that, we consider the following inversion (which is regarded as 
a coordinate transformation here): 

xh′  = 
h

h
hi

i

x

x x
δ ′ .      (1.7) 

 
Differentiation of (1.7) leads to the transformation coefficients of a vector: 
 

h
hA ′ = 

2

21

( )

j
h hh
h ji i

i i

x x

x x x x
δ δ′ ′− .    (1.8) 

 
gih is determined by the numbers: 
 

gi′ h′  =
i h
i hA′ ′ gih       (1.9) 

 
relative to (h′).  A brief calculation will show that: 
 

gi′ h′  = (x j xj)
2 gih 

i h
i hδ δ′ ′ .    (1.10) 

 
The transformed fundamental tensor is determined by the numbers (1.4) relative to (h′), 
so: 

′ gi′ h′  = gih 
i h
i hδ δ′ ′ ,      (1.11) 

 
which, in conjunction with (1.10), will yield: 
 

′ gih = σ 2 gih , σ 2 = (x j xj)
−2.    (1.12) 

 

                                                
 (3) Cf., J. HAANTJES, “Conformal representations of an n-dimensional Euclidian space with a non-
definite fundamental form on itself,” Proc. Kon. Akad. v. Wetenschapen, Amsterdam 40 (1937), 700-705.  
Cf., also SCHOUTEN-STRUIK, Einführung II, Noordhoff, pp. 210.  
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 We will next calculate the vector ′Rh′.  Let the coordinates of P (Q, resp.) be xh (yh, 
resp.).  One will then have: 

Rh = xh – yh,     (1.13) 
with 

Rh Rh = xh xh – 2xh yh + yh yh = 0.    (1.14) 
 
The numbers that determine ′Rh′ relative to (h′) are the coordinate differences between P 
and Q relative to (h′): 

′Rh′ = xh′ – yh′ = 
h h

h
hi i

i i

x y

x x y h
δ ′ 

− 
 

.   (1.15) 

 
 Now let yh = yh(τ) be the world-line of the point-charge; let τ be an arbitrary 
parameter.  The tangent vector uh at Q is determined by the numbers: 
 

uh′ = ( )h h
h QA u′  = 

2 1j h
h hh
h ji i

i i

y y dy

y y y y d
δ δ

τ
′ ′ 
− 

 
  

h
h dy

u
dτ

 
= 

 
.  (1.16) 

 
relative to (h′) [cf., (1.8)]. 
 We find the denominator of (1.6) from (1.11), (1.15), and (1.16): 
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(1.17) 

 
This expression can be simplified by means of (1.14).  We obtain: 
 

′gh′ i′ ′Rh′ ui′  = 
1

( )( )

h h

h hj j
j j

dy dy
x y

x x y y d dτ τ
 

− 
 

 = 
( )( )

h
h

i i
i i

R x

x x y y
.  (1.18) 

 
 For the calculation of iϕ′ , the vector ui′ must be parallel-displaced (in the sense of ′ghi) 

from Q to P.  The determining numbers will not change under this pseudo-parallel 
displacement relative to the system (h′).  From (1.6), we need the covariant determining 
numbers of that pseudo-parallel-displaced vector that are defined by means of ′ghi .  From 
(1.16), they are: 
 

2 21 1
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m h h
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. (1.19) 
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 The determining numbers relative to (h) can now be found with the use of (1.8), 
(1.14), and (1.19).  One will get: 
 

′ui = ( )i
i P iA 'u′

′ = 
2 ( ) 2 ( )1

( )( )

h
h i i i h h

ihj j j j
j j j j

y x y x x y dy
g

x x y y y y x x dτ
 − − + − 
  

. (1.20) 

 
 Each point P (xh) belongs to a well-defined point Q on the curve yh = yh (τ), and thus, 
a well-defined value of τ.  One can then consider τ to be a function of xh.  That function 
will follow from [cf., (1.14)]: 

xi xi + y i (τ) yi (τ) – 2 xi yi (τ) = 0.   (1.21) 
 
Differentiating with respect to xi yields: 

xi – yi – (xh – yh)
h

i

dy

d x

τ
τ

∂
∂

= 0;    (1.22) 

hence [cf., (1.16)]: 

ix

τ∂
∂

 = i i
h

h

x y

R u

−
.      (1.23) 

 
 We now return to (1.18) and (1.20) and construct the new potential vector iϕ′  that 

belongs to ′ghi .  We consider the determining numbers of the new potential vector 
relative to the old reference system (h).  From (1.6), (1.18), (1.20), and (1.23), they are: 
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   (1.24) 

 

iϕ′ and ϕi will then differ by only a gradient vector, from which, it emerges that: 

 

ijF ′  = Fij .     (1.25) 

 We have then proved that: 
 
 If the electromagnetic field in the special theory of relativity were calculated from a 
Euclidian fundamental tensor ′gij = σ 2 gij , instead of gij , by means of the same formulas 
then one would get the same result. 
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 Upon considering the conformal invariance of MAXWELL’s equation, we will obtain 
the following theorem: 
 
 The electromagnetic equations have the same form relative to the Cartesian reference 
system that belongs to the ′gih that they have relative to the Cartesian system that belongs 
to the gih .  Those reference systems are therefore all equivalent. 
 
 
 § 2.  The conformal transformation that belongs to a uniformly-accelerated 
observer. – We shall now consider the world-line of a point (or an observer) B′ that is in 
uniformly-accelerated translational motion relative to a Cartesian reference system B.  
Let B′ be at rest relative to B at time t = 0.  We choose the direction of the x1-axis in such 
a way that it coincides with the direction of motion of B′.  The equation for the world-line 
of B: 

a {(x1)2 – (x4)2} + 2x1 = 0, x2 = x3 = 0   (2.1) 
 
will then be verified, as in what follows. 
 That world-line is a hyperbola whose asymptotic directions are null directions.  The 
equation for the hyperbola reads: 
 

x1 = 2

2

( 1)a λ −
, x4 = 2

2

( 1)a

λ
λ −

, x2 = x3 = 0  (2.2) 

 
in parametric form. 
 It emerges from this that: 
 

1dx
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2
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λ
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λ
λ

+
−
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2

2 2 2
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d

a

λ
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, (2.3) 

 
so 

2 1

2

d x

ds
= 

2

2

( 1)

1

a λ
λ

+
−

, 
2 4

2

d x

ds
= 

2

2

1

aλ
λ −

.   (2.4) 

 We find: 
1/22 22 1 2 4

2 2

d x d x

ds ds

     −    
     

= | a |   (2.5) 

 
for the length of the vector d 2 xh / ds2. 
 At every point P of the world-line, the acceleration of B′ is then equal to: 
 

a c2       (2.6) 
 
relative to an observer that moves with constant velocity (relative to B) and has the same 
velocity as B′ at P, so for that observer, one will have ds2 = c2 dt2. 
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 We now ask what the conformal coordinate transformation: 
 

xh′ = f h′ (xi)      (2.7) 
 
would be that would make the world-line of B′ have the equation: 
 

x1′ = 0,  x2′ = 0,  x3′ = 0.    (2.8) 
 
relative to the system (h′). 
 There are several such transformations, although under certain physically-plausible 
restrictions, there is just one of them.  Namely, we will assume that the transformation 
satisfies the following requirements: 
 
 I. The origin of the reference system is invariant. 
 
 II. The transformation does not change when one replaces either: 
 
    a)  x2 with – x2, or 
    b)  x3 with – x3, or 
    c)  x4 with – x4 (and thus switches past and future). 
 
 III. gih has the same determining numbers at the origin relative to (h′) that it has 
relative to (h), and therefore (− 1, − 1, − 1, + 1).  In other words: Let σ = 1 at the origin. 
 
 The most general infinitesimal local conformal transformation that satisfies the 
requirements I and III is: 
 

1 1 2 3 4
12 13 14 15

2 1 2 3 4
12 23 24 25

3 1 2 3 4
13 23 34 35

4 1 2 3 4
14 24 34 45

1
{ },

1
{ },

1
{ },

1
{ },

i j
ij

i j
ij

i j
ij

i j
ij

x x a x a x a x a g x x
N

x a x x a x a x a g x x
N

x a x a x x a x a g x x
N

x a x a x a x x a g x x
N

′

′

′

′

= + + + + 

= − + + + +


= − − + + +


= + + + + +


  (2.9) 

in which one has: 
 

N = 1 – 2 a15 x
1 – 2 a25 x

2 – 2 a35 x
3 – 2 a45 x

4,   (2.10) 
 
and the coefficients aλκ (λ, κ = 1, …, 5) are infinitesimal.  The requirement II then leads 
to the following infinitesimal transformation: 
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1 1
21 1 1 2 1

21

2
2 2 1 2

1

3
3 3 1 3

1

4
4 4 1 4

1

or {( ) },
1

or ,
1

or ,
1

or ,
1

i j
ij i j

ij

x bg x x
x x b x g x x

bx

x
x x b x x

bx

x
x x b x x

bx

x
x x b x x

bx

′

′

′

′

+
= = + + − 


= = + −


= = + −

= = +
− 

 (2.11) 

 
when one neglects b2 .  The associated finite transformations can be found as solutions to 
the system of differential equations: 
 

1
1 2 1

2

1

) ( ) ,

) ( 2,3,4).

i j
ij

a
a

dx
a x g x x

db

dx
b x x a

db


= + 


= =


   (2.12) 

It emerges from (2.12) that: 
 

( )i j
ijd g x x

db
= 2x1 {(x2)2 − (x3)2 − (x2)2 − (x1)2 − 1

2 gij x
i x j} = x1 gij x

i x j ; (2.13) 

 
hence [with (2.12a)]: 

2 1

2

d x

db
= 2x1

1dx

db
+ 1

2 gij x
i x j = 3x1

1dx

db
– (x1)3.  (2.14) 

 
The solution to this differential equation will be obtained most simply when one first 

substitutes x1 = − d

db
ln y.  That substitution leads to y″′ = 0, from which, it emerges that: 

 

x1 = 
1

1 21
21

a b

a b b

β
β

−
− +

,     (2.15) 

 
in which a1 and β are constants.  Substituting this expression in (2.12b) will yield: 
 

xa = 
1 21

21

aa

a b bβ− +
 (a = 2, 3, 4).   (2.16) 

 
It will then follow from (2.12a), (2.15), and (2.16) that: 
 

β = − 1
2 gij a i a j.    (2.17) 
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The constants ia  will be determined from the initial values of xh.  That will yield ah = 
(xh)0 .  If we again call the initial values xh and the transformed determining numbers xh′ 
then the finite conformal transformation will read (b is no longer infinitesimal here): 
 

1 1
21

1 21
4

1 21
4

,
1

( 2,3,4).
1

i j
ij

i j
ij

a
a

i j
ij

x b g x x
x

bx b g x x

x
x a

bx b g x x

′

′

+
= − − 


= = − − 

  (2.18) 

 
One gets the inverse transformation when one replaces the parameter b with – b in (2.18). 
 The world-line (2.1) of B′ has the equation: 
 

(a + b) {(x1′)2 – (x4′)2} + 2x1′ = 0, x2′ = x3′ = 0  (2.19) 
 
relative to (h′).  If we then choose b = − a then that world-line will take on the desired 
form: 

x1′ = x2′ = x3′ = 0.    (2.20) 
 
 The transformation (2.18) with b = − a is then the only conformal transformation that 
satisfies the three aforementioned requirements and leads to equation (2.20). 
 
 In regard to the transformations (2.18), we can make the following remarks: 
 
 1. The transformation (2.18) defines a one-parameter group with b as its parameter.  
If we denote the transformation that is associated with the parameter b by Tb then the 
multiplication law can be written as: 
 

Tb ⋅⋅⋅⋅ Tb = Tb+c , T0 = I (identity).   (2.21) 
 
We will omit the proof of this theorem here. 
 
 2. The following conformal transformation is derived in the paper (4) that was cited 
before: 

xh′ = 
1
2

1

h h i
i

i
i

x b x x

b x

−
−

, bi bi = 0.   (2.22) 

 
 Now, the transformation (2.18) is the product of two such transformations – the one, 

by ,0,0,
2 2

h b b
b
 − − 
 

, and the other by ,0,0,
2 2

h b b
b
 − 
 

. 

 3. The determining numbers of the fundamental tensors gij relative to (h) can be 
calculated by means of the formal gh′i ′ = hi

h i hiA g′ ′ .  That will yield: 

                                                
 (4) Loc. cit. (3), pp. 704.  
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g1′1′ = g2′2′ = g3′3′ = g4′4′ = − (1 – b x1 – 1

4 b2 gij x j x i)2, gh′i′  = 0    (h′ ≠ i′ ). (2.23) 

 
 
 § 3.  The physical consequence. – The special theory of relativity is based upon the 
following postulate: If a coordinate system B is chosen such that the laws of physics take 
on their simplest form relative to it (i.e., a preferred coordinate system) then the same 
laws will also be true relative to any other coordinate system B′ that moves with a 
uniform translation relative to B.  There are preferred observers, and every preferred 
observer is associated with a certain Cartesian coordinate system in space-time.  These 
observers have constant velocities relative to each other, while the associated reference 
systems emerge from each other by means of LORENTZ transformations.  The vacuum 
speed of light is equal to c for every observer, and thus constant.  The preferred observers 
are all equivalent. 
 However, we can now go somewhat further (at least, as far as the electromagnetic 
laws of physics are concerned) and extend the class of preferred observers.  We can also 
consider the observers that relate to Cartesian systems in uniformly-accelerated 
translational motion.  They are then the observers whose world-lines are generalized 
circles.  Namely, we showed in the second paragraph that one could transform away the 
acceleration by means of a conformal transformation, and in the first paragraph we 
showed that the laws of electromagnetism are conformally-invariant; i.e., they do not 
change under conformal transformations. 
 We can make that result somewhat more precise.  In order to do that, we consider the 
observer B′ that has the following world-line [cf., (2.1)]: 
 

a {(x1)2 − (x4)2} + 2x1 = 0, x2 = x3 = 0   (3.1) 
 
relative to a Cartesian system (h), namely, the system of the observer B.  B′ is then in 
uniformly-accelerated motion relative to B with acceleration a c2.  As one can show, the 
preferred reference system that belongs to B′ is obtained from (h) by means of the 
transformation [cf., (2.18)]: 

1 1
21

1 21
4

1 21
4

,
1

.
1

i j
ij

i j
ij

a
a

i j
ij

x a g x x
x

ax a g x x

x
x

ax a g x x

′

′

−
= + − 


= + − 

   (3.2) 

The world-line of B′ is: 
x1′ = x2′ = x3′ = 0    (3.3) 

relative to (h′). 
 In the first paragraph, we showed that the electromagnetic equations have the same 
form relative to (h′) for B′; (h′) is the preferred system for them then.  The vacuum speed 
of light is also equal to c for B′.  However, B′ does not use the same fundamental tensor 
as B.  Its fundamental tensor has the same determining numbers relative to (h′) that gih 
has relative to (h).  One obtains the fundamental tensor of B′ from the fundamental of B 
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by multiplying it by a factor [cf., (2.23)].  Hence, as far as electromagnetic phenomena 
are concerned, B and B′ are also equivalent then. 
 That brings with it the idea that we must alter our conception of space-time 
somewhat.  As far as electromagnetic phenomena are concerned, space-time is not a 
Euclidian space, but a conformally-Euclidian space.  B and B′ are then equivalent, and 
therefore so are the two associated fundamental tensors.  The transformations (3.2), 
together with the LORENTZ transformations, define the conformal group, which 
determines the geometry of space-time. 
 
 Up to now, no measurements have been taken into consideration.  However, the field 
Fij is measured with the help of a charged massive particle – e.g., by the acceleration of 
particles that the field provokes.  In order to do that, one must first measure the 
acceleration of the particle with the field and once without it.  One then addresses the 
change in the acceleration that is caused by the field Fij .  We can now prove that the two 
observers B and B′ will obtain the same resulting measurement in that way when we 
assume that the mass m takes on a factor of σ −1 under the transformation gih → σ 2 gih .  
That brings with it the idea that m (− g)1/2 must not change under conformal 

transformations. 
 Namely, the equation of motion of a charged particle for the observer B: 
 

m 
2

2

hd x

dτ
= …     (3.4) 

will include the term: 
ie dx

c dτ
Fij g

hj.     (3.5) 

 

In this, m is the mass for B, while τ is determined by means of 
i j

ij

dx dx
g

d dτ τ
= 1.  That 

expression has the form: 
ie dx

c dτ

′

Fi′ j′ g
h′ j′ = σ 3 

ie dx

c dτ

′

′
Fi′ j′ ′gh′ j′,   (3.6) 

 
relative to a preferred system (h′) of the observer B′.  The left-hand side of the equation 
of motion (3.4) reads: 
 

m 
2

2

hd x

dτ

′

+ … = m σ 2
2

2( )

hd x

dτ

′

′
+ …, (dτ′ )2 = ′ghi dxi dx j = σ 2 (dτ)2 (3.7) 

 
relative to (h′), in which only the terms that contain second derivatives are written down.  
Once more, as far as measurements are concerned, the observers are equivalent when: 
 

m′ = σ −1 m ,     (3.8) 
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in which the mass for the observer B′ is denoted by m′.  Naturally, B and B′ will not 
measure the same acceleration in this case, but the same change in acceleration. 
 Formula (3.8) means that the mass m is different for two observers that are 
accelerated relative to each other.  m takes on a factor of σ −1 under the conformal 
transformation gih → σ 2 gih .  A transformation of lengths by σ must then imply a 
transformation of masses by σ −1.  The dimension [ML] is then invariant, which one could 
also conclude from the constancy of PLANCK’s constant h (dimension = ML2 T −1) (5). 
 
 

__________ 
 

                                                
 (5) Cf., J. A. SCHOUTEN and J. HAANTJES, “Ueber die konforminvariante Gestalt der relativistichen 
Bewegungsgleichungen,” Proc. Kon. Akad. v. Wetensch., Amsterdam 39 (1936), 1063.  


