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Summary. — The conformal invariance of MAXWELL’s equations hasrbpeoved
by several authors; BATEMAN and CUNNINGHAM)(first did that in the year 1910.
In the first paragraph of this paper, it will be showrt thamula (1.5) for the calculation
of the field of a point-charge is also conformally-inaati A physical interpretation of
conformal invariance will also be given for the casdahef special theory of relativity.
Let B' be an observer that is in uniformly-accelerated tadwosial motion with respect to
a Cartesian system, namely, the system of an olisBiveThere will then exist a
fundamental Euclidian tenstgi = o2 gni for whichB' is likewise a preferred observer,
just asB is relative togni . The acceleration can then be transformed awaydans of a
conformal transformation. It will then follow fromme conformal invariance of the laws
of electromagnetism that the observBrandB' are equivalent. Space-time must not be
regarded as a Euclidian space then, but as a conformathdin space (but generally,
only as far as electromagnetic phenomena are comberttence, it is not the group of
LORENTZ transformations, but the group of conformahsfarmations that determines
the geometry of space-time.

At the conclusion of this article, it will be showmatB andB’ will measure the same
electromagnetic field of a charged massive particlennd®e assumes that takes on a
factor of 0! under the conformal transformatign — o2 gni . That brings with it the
fact that the dimensiorML] is invariant under conformal transformations, which agrees
with the constancy df (dimension = ML*T 7).

8 1. The conformal invariance of the electromagnetic equations. — It is known
that the electromagnetic fiekd; (h, i, j, ... = 1, 2, 3, 4) can be derived from a poteral

Fij = 205 ¢y - (1.1)

() E. CUNNINGHAM, Proc. London Math. S08.(1910), 77.
H. BATEMAN, Proc. London Math. S08.(1910), 223.



Haantjes — The equivalence of uniformly-acceleratedrobse 2

In a space-time with a conformal metric — i.e., acgpin whiclkgy, is given only up to
an arbitrary (non-constant) factor — there existsnadedensity®;, of weight — 1/2 that

one obtains frongy; as follows:
Gih=(-g)"gn, g = Det @in). (1.2)

Now the electromagnetic field satisfies the followegations:

a) 0j;Fy =0,
b) 9,3"=-s", F"=6"¢"F, (1.3)
c) 09,5 =0,

in which s" stands for the current vector-density of weight. +These are MAXWELL'’s

equations in conformally-invariant forrf)
In the special theory of relativitythe line element is Euclidian, and the reference
system can be chosen in such a way that one has:

011=022=03=-0uu=-1, g =0 h#i). (1.4)

In this case, it is possible to give the potentedtor ¢ more specifically as a solution of
(1.30). Namely, every point-charge determines a fiattj one will obtain the total field
by adding (or integrating) those fields. It theref suffices to give an expression for the
field of a single point-charge

In order to do that, we consider an arbitrary p&in Let Q be the intersection point
of the world-line of the point-charge with the pasil-cone ofP, and letu" be a tangent
vector to that world-line a@. As is known, the value of the field potent@lthat is
produced by the chargeat the poinP is:

e u

Aru, R (1.5)

¢ =-

In this, R" is the radius vectorQP, and thus, a null vectorR{ R, = 0). The
electromagnetic field of the point-charge can thercalculated from (1.5) by means of
(1.2).

We will now show that formula (1.5) is also confally-invariant. Here, we mean
by that:

If a conformal transformatiotgin = o gn were performed in such a way that the
fundamental tensor remained Euclidian, and if thieeqtial vector:

() J. A. SCHOUTEN and J. HAANTJES, “Ueber die the komfmvariant Gestalt der Maxwellschen
Gleichungen und der elektromagnetischen Impulsenergiegiegeim,” Physical (1934), 869-872. Cf,,
also: J. A. SCHOUTEN and J. HAANTJES, “Ueber die konformariant Gestalt der relativistischen
Bewegungsgleichungen,” Proc. Kon. Akad. v. Wetensch., Adete39 (1936), 1059-1065.
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' j'
& Gy
4r'g,,, u" R

¢i" = (1.6)

were constructed in reference to a Cartesian coosdydtem If) that belongs tdgin
[i.e., a system for whictgi, is determined by the numbers (1.4)] thghwould differ

from ¢ only by a gradient vectorg. andg would then lead to the same electromagnetic

field. In other words: Formulas (1.5) for the calculataf the electromagnetic field are
conformally-invariant.

The transformation that takes the Euclidian refezesystemlq) that belongs t@y; to
a Euclidian reference systehi)(that belongs t&gy; is a conformal transformation. Now,
any conformal transformation can be composed of invessiand LORENTZ
transformationsj. We then need only to prove the aforementioned invegiainder an
inversion, since the invariance under LORENTZ transfoiona is immediately clear
from (1.5). In order to do that, we consider the folty inversion (which is regarded as
a coordinate transformation here):

K= X g (1.7)

Differentiation of (1.7) leads to the transformatmoefficients of a vector:

1 2% X

A= ﬁlm—()& Y)? 3. (1.8)
On Is determined by the numbers:
i = A Oin (1.9)

relative to ). A brief calculation will show that:

Gn = (! %)> gn 0, JF . (1.10)
The transformed fundamental tensor is determined byuhwers (1.4) relative tdh/),
So:

"Gin' =Gn O, I, (1.11)

which, in conjunction with (1.10), will yield:

‘Gn=0°gn, 0% = (x! )q)_z. (1.12)

() Cf., J. HAANTJES, “Conformal representations of mdimensional Euclidian space with a non-
definite fundamental form on itself,” Proc. Kon. Akad.Wetenschapen, Amsterdatfl (1937), 700-705.
Cf., also SCHOUTEN-STRUIKEinfuhrung Il Noordhoff, pp. 210.
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We will next calculate the vectdR". Let the coordinates d&f (Q, resp.) bed" (",
resp.). One will then have:
Rh :xh_}ﬁ, (1.13)
with
R'Ry=X"% — 2"y +y"y, = 0. (1.14)

The numbers that determif®” relative to k') are the coordinate differences betwé&en
andQ relative to [):

R =y = {X—h—ijaﬁ (1.15)

Now let y" = y(1) be the world-line of the point-charge; letbe an arbitrary
parameter. The tangent vectBratQ is determined by the numbers:

b (AN (h — '_2yhyj i) 1 dy h_M
u' = (A)qu —(Jﬁ vEY Jjjy.y . [u _drj' (1.16)

relative to ) [cf., (1.8)].
We find the denominator of (1.6) from (1.11), (1.15), and (1.16)

R =g d o XY s ai'—zYiyka:j 1 dy
G R = g, { y,yi] ( 1| L
cg | XY L fdy Yy 1.17
g“'{xjx,- MJH((Y "y dj -
_ 1 thyh_xix dy’ ny}ﬁd)f 2)kx dyh}
Xx)(Y y) yy " d o yy y'y T dr
This expression can be simplified by means of (1.14).oW¢ain:
'ghir'RVU = L [ dy hdwj: R% 1.18
P T e e ) T Gy (19

For the calculation o’ , the vecto' must be parallel-displaced (in the sensaygf
from Q to P. The determining numbers will not change under this pspadaliel
displacement relative to the systeim).( From (1.6), we need the covariant determining

numbers of that pseudo-parallel-displaced vector thadefieed by means ody,; . From
(1.16), they are:

- i = i si| st _2Yn Y 1dy'_ 1 _2% ¥ Q
ui.—g],u—gcrla,,[cx yycxjyyd,—wcr[gh wj ACED
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The determining numbers relative to) can now be found with the use of (1.8),
(1.14), and (1.19). One will get:

ATy 1 2y, (X = ¥) _2x(%— ¥)| Y
Ui = (A )P U= (ijj)(yj y]){gm + y y % X } d (1.20)

Each pointP (X") belongs to a well-defined poi on the curve/ =y" (1), and thus,
a well-defined value of. One can then considetto be a function o”. That function
will follow from [cf., (1.14)]:

Xx+y' (Dyi(D-2xy (D=0, (1.21)

Differentiating with respect tg yields:
dy' ar

L\ — —W)———=0; 1.22

X — Y= —h o (1.22)
hence [cf., (1.16)]:

or _ X~

— = L. 1.23

ox Ry, (1.23)

We now return to (1.18) and (1.20) and constrbetnew potential vectog’ that

belongs to'gni . We consider the determining numbers of the netergial vector
relative to the old reference system. (From (1.6), (1.18), (1.20), and (1.23), thegar

=& _ Y
/ ar'g, 'R U

_eju 2y dyor_2x
4r|Ry, Yy d ok xx

(1.24)
e ; e :

= —90. In(V' v.)+—20. In( ¥

[ il y'y) o (X x)

e
=9 +8_77{ai|n(0)Q -0,In(0) ..
¢ and ¢ will then differ by only a gradient vector, fronhieh, it emerges that:

F =Fi. (1.25)
We have then proved that:

If the electromagnetic field in the special theofyrelativity were calculated from a

Euclidian fundamental tenség; = o g; , instead of g, by means of the same formulas
then one would get the same result.
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Upon considering the conformal invariance of MAXWELL’s edquatwe will obtain
the following theorem:

The electromagnetic equations have the same form relative to thesi@anteference
system that belongs to thg, that they have relative to the Cartesian system that belongs
to the ¢, . Those reference systems are therefore all equivalent.

8 2. The conformal transformation that belongs to a uniformly-accelerated
observer. — We shall now consider the world-line of a point (orofserverB' that is in
uniformly-accelerated translational motion relative adCartesian reference systdn
Let B' be at rest relative tB at timet = 0. We choose the direction of tkleaxis in such
a way that it coincides with the direction of motimiB'. The equation for the world-line
of B:

a{(x)’-0H+2x'=0, ¥=x=0 (2.1)

will then be verified, as in what follows.
That world-line is a hyperbola whose asymptotic direstiare null directions. The
equation for the hyperbola reads:

xl:+, x4:%, X=x=0 (2.2)
a(A?-1) a(A2-1)

in parametric form.
It emerges from this that:

ox_ 2 oA+t d¢ = @) - @7 =S 23
ds A°-1 ds A°-1 a” (A°-1)
o)
d’x" _ a(A*+1) d’x* _ 2al
= = ) 2.4
ds? A2-1" dg A%-1 4
We find:

a7 ) (de)]
- =|a 2.5
{(dszj [dgj} al @5)
for the length of the vectat? X" / d<.
At every pointP of the world-line, the acceleration Bf is then equal to:

ac (2.6)

relative to an observer that moves with constaltcity (relative toB) and has the same
velocity asB' atP, so for that observer, one will hagt¢ = ¢? dt.
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We now ask what the conformal coordinate transformatio
X" =f" (%) (2.7)
would be that would make the world-line Bfhave the equation:

x' =0, x* =0, X2 =0. (2.8)

relative to the systen’(.
There are several such transformations, although undeirc@hysically-plausible

restrictions, there is just one of them. Namelg, will assume that the transformation
satisfies the following requirements:

I. The origin of the reference system is invariant.
[I. The transformation does not change when oneceplaither:
a) X with =X, or

b) ¢ with =, or
c) x* with —x* (and thus switches past and future).

lll. gin has the same determining numbers at the origin reladiv@’) that it has
relative to f), and therefore(1,— 1,— 1, + 1). In other words: Let= 1 at the origin.

The most general infinitesimal local conformal tfansiation that satisfies the
requirements | and Il is:

K =S Xra,Reafe a8+ 3 g Xk

x2'=%{—a12x1+x2+ a, X+ g, X+ g, g X%

h (2.9)
X =Jlmaad - and+ X+ g otr g g XX
x4':%{+a14x1+ a, X+ a, X+ X+ g5 g ¥
in which one has:
N = 1—23.15X1—23.25X2—2835X3—2845X4, (210)

and the coefficienta,, (A, k= 1, ..., 5) are infinitesimal. The requirementHén leads
to the following infinitesimal transformation:
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. X +1bg XX 14
:# Or:)(l+u()&) +Eq X)k},
X% = X or=x>+bxX ¥,
1“;’)‘1 (2.11)

3_ X _
X = o2 or=xX+bxx,

4 _ x* _
X = og or=x*+bxX ¥,

when one neglects’ . The associated finite transformations can bedamsolutions to
the system of differential equations:

) Doy eigax,

db (2.12)
b) %lexa (a=2,3,4).

db

It emerges from (2.12) that:

A o0 (00 - 607 - (07 - 00 -3 X X =g XX (2.19)
hence [with (2.12a)]:
d?xt dx o dx
7 2xl%+%gij X x! = 3(15— )3, (2.14)

The solution to this differential equation will lmdtained most simply when one first

substitutesc = —% Iny. That substitution leads ¢’ = 0, from which, it emerges that:
l —
xt=_ 2P (2.15)
1-a'b+1pp
in whicha' andB are constants. Substituting this expression.ib2t will yield:

a

a

= W (a. = 2, 3, 4) (216)

It will then follow from (2.12), (2.15), and (2.16) that:

p=-1gja'al (2.17)
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The constants’ will be determined from the initial values ®f That will yielda" =
(") . If we again call the initial value€ and the transformed determining numbérs
then thefinite conformal transformation will readb (s no longer infinitesimal here):

= X' +ibg X X
1-bx' -1k g x %’
) : (2.18)
' X
= —_ (a=2,3,4).
T g A )

One gets the inverse transformation when one repthegsarametds with —b in (2.18).
The world-line (2.1) oB' has the equation:

(@+b) {()?=)+2x"*=0, ¥ =xX=0 (2.19)
relative to ). If we then choose = — a then that world-line will take on the desired
form:

X" =xF =x¢ = 0. (2.20)

The transformatiorf2.18)with b= - a is then the only conformal transformation that
satisfies the three aforementioned requirements and leads to eq{zafioh

In regard to the transformations (2.18), we can makéotlosving remarks:
1. The transformation (2.18) defines a one-parameter grahwas its parameter.
If we denote the transformation that is associateti tiie parameteb by Ty, then the
multiplication law can be written as:
Tp OO0 = Toee, To=1 (identity). (2.21)

We will omit the proof of this theorem here.

2. The following conformal transformation is derived tie paper9) that was cited
before:

= X" —1b"X x

—~T  bhb=0. 2.22
b (2.22)
Now, the transformation (2.18) is the product of two swahsformations — the one,
by b" (—9,0,0,—9) and the other bip" (—E,O,O,Ej.
2 2 2 2

3. The determining numbers of the fundamentalaeng; relative to f) can be
calculated by means of the forngal-= A", g,,. That will yield:

() Loc. cit.(), pp. 704.
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Orr =022 =03 =Oss =— (L -b X' — %bZ i x!x"?, ogi- =0 @ zi’). (2.23)

8 3. The physical consequence. — Thespecial theory of relativitys based upon the
following postulate: If a coordinate systdBns chosen such that the laws of physics take
on their simplest form relative to it (i.e., a pmeé coordinate system) théine same
laws will also be true relative to any other coordingystemB' that moves with a
uniform translationrelative toB. There are preferred observers, and every preferred
observer is associated with a certain Cartesiandawaie system in space-time. These
observers have constant velocities relative to edloér, while the associated reference
systems emerge from each other by means of LORENAr&formations. The vacuum
speed of light is equal tofor every observer, and thus constant. The preferbservers
are allequivalent.

However, we can now go somewhat further (at leasfaaas the electromagnetic
laws of physics are concerned) and extend the clgsetdrred observers. We can also
consider the observers that relate to Cartesian magste uniformly-accelerated
translational motion They are then the observers whose world-lines anerghkzed
circles. Namely, we showed in the second paragraplotigtould transform away the
acceleration by means of a conformal transformatiowl ia the first paragraph we
showed that the laws of electromagnetism are conforimvariant; i.e., they do not
change under conformal transformations.

We can make that result somewhat more precise. der ¢@ do that, we consider the
observeB' that has the following world-line [cf., (2.1)]:

a{(M)?-0h3+2xt=0, ¥=x*=0 (3.1)

relative to a Cartesian systeim,(namely, the system of the obserBer B' is then in
uniformly-accelerated motion relative Bowith acceleratiora &. As one can show, the
preferred reference system that belongsBtas obtained fromHK) by means of the
transformation [cf., (2.18)]:

v _ X' —fag XA
l+ax-1a% g x %’
<49 (3.2)
X = X
l+ax-ial g X%
The world-line ofB' is:
=X = =0 (3.3)

relative to {).

In the first paragraph, we showed that the electrom&gequations have the same
form relative to ') for B'; (') is the preferred system for them then. The vacywerd
of light is also equal ta for B'. However,B' does not use the same fundamental tensor
asB. Its fundamental tensor has the same determining msmékative to If') that g
has relative tol{). One obtains the fundamental tensoBofrom the fundamental @&
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by multiplying it by a factor [cf., (2.23)]. Hence, as &8 electromagnetic phenomena
are concerned andB' are also equivalent then.

That brings with it the idea that we must alter ounception of space-time
somewhat. As far as electromagnetic phenomena are concerned, space-time is not a
Euclidian space, but a conformally-Euclidian spadg@.andB' are then equivalent, and
therefore so are the two associated fundamental rensbhe transformationg3.2),
together with theLORENTZ transformations, define the conformal group, which
determines the geometry of space-time.

Up to now, no measurements have been taken into corigder&lowever, the field
Fij is measured with the help of a charged massive partielg.;-by the acceleration of
particles that the field provokes. In order to do tlmate must first measure the
acceleration of the particle with the field and onathewt it. One then addresses the
changein the acceleration that is caused by the figld We can now prove th#te two
observers B and 'Bwill obtain the same resulting measurement in that way when we
assume that the mass m takes on a facter bfunder the transformationyg— o2 g .
That brings with it the idea tham (- g)*? must not change under conformal

transformations.
Namely, the equation of motion of a charged partialétfe observeB:

d*x _

m 3.4
o (3.4)
will include the term:
Ed—x Fij ghj. (35)
cdr
o I : dxX dx
In this, m is the mass foB, while 7 is determined by means @, EE: 1. That
expression has the form:
S)%':i'J"éilh'j':U3 Ed—x, g (3.6)
cdr cdr

relative to a preferred system) of the observeB'. The left-hand side of the equation
of motion (3.4) reads:

2y 2y . .
m dd;(z + .. :ma2((3:)2 +..., @r)?="gudX dx =o?(dp? (3.7)

relative to ), in which only the terms that contain second\aggives are written down.
Once more, as far as measurements are concerpauhgsarvers are equivalent when:

m=0c"'m, (3.8)
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in which the mass for the obser8r is denoted byn'. Naturally,B andB' will not
measure the same acceleration in this case, butniedange in acceleration.

Formula (3.8) means that the massis different for two observers that are
accelerated relative to each othem takes on a factor o™ under the conformal
transformationgi, — o2 gin . A transformation of lengths by must then imply a
transformation of masses loy . The dimensionNIL] is then invariant, which one could
also conclude from the constancy of PLANCK'’s constafitimension =ML? T ) ().

() Cf., J. A. SCHOUTEN and J. HAANTJES, “Ueber die kanfinvariante Gestalt der relativistichen
Bewegungsgleichungen,” Proc. Kon. Akad. v. Wetensch., Adeste39 (1936), 1063.



