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 The proof by Ames of Jordan’s theorem on closed curves with no double points (nos. 
306, 307) rests upon the consideration of the order of a point, or if one prefers, on the 
consideration of a variation of the argument. 
 The generalization to the case where the number of dimensions exceeds two is 
provided by the Kronecker index, which is a notion that is now classical (1). 
 It has received some new applications in several contemporary works.  I propose to 
present some of them here. 
 All of the arguments that follow can be easily put into a purely-arithmetic form, even 
though they are not immediately posed in that form, to abbreviate.  In order to be valid 
under the general hypotheses that we shall adopt, they must satisfy the condition that they 
involve only the continuity of the functions that are employed, moreover. 
 
 

I. – JORDAN’S THEOREM IN THE PLANE  
 

 1. – I shall begin by returning for a moment to the proof of Jordan’s theorem in the 
case of a plane, and in one part of the theorem I will be forced to go a little further than 
was done in the introduction of the notion of order. 
 A planar line (2) (C) is defined by the two equations: 
 
(1)     x = x (t), y = y (t), 
 
in which the right-hand sides are continuous functions of t in the interval (t0, t1).  That 
curve will be closed, i.e., it will be such that one has: 
 
(2)     x (t0) = x (t1), y (t0) = y (t1), 
 
and it has no double point, i.e., the equations in t′, t″ : 
 

x (t′ ) = x (t″ ),  y (t′ ) = y (t″ ) 
 

                                                
 (1) Above all, in the treatise Traité d’Analyse by Picard (T. I, pp. 123; T. II, pp. 193). 
 (2) It is what was called a simple closed knot in the text (no. 290).  
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have no other solution than t′ = t0 , t″ = t1 or t′ = t1 , t″ = t0 when t′ is different from t″. 
 Jordan’s theorem then consists of this: 
 
 1. The curve (C) determines at least two distinct regions in the plane. 
 
 2. The curve (C) determines only two distinct regions. 
 
 I shall address only the first of those two statements (1). 
 
 
 2. – I recall that the order of a point P that is not situated on the curve (C) with 
respect to that curve is defined by means of the continuous variation of the argument of 
the vector PM when the point M describes the curve C. 
 That order is zero when one can draw a half-line through the point P that has no point 
in common with (C). 
 It is equal to ± 1 when one can draw a half-line through the point P that has one and 
only one point in common with (C), and is such that if one lets t′ denote the value of t that 
corresponds to that point then the points of (C) that correspond to value of t that are a 
little smaller than t′ and the point of (C) that correspond to values of t that are a little 
large than t′ will be on different sides of the half-line. 
 
 
 3. – Having said that, we shall confirm the existence of a point whose order is 0 and 
that of a point whose order is ± 1. 
 First, let y = y1 be a parallel to the x-axis that has some points in common with the 
curve.  Among them, let A (x1, y1) be the one that has the smallest abscissa (2).  If one lets 

1x′  denote a quantity that is less than x1 then the point 1 1( , )A x y′ ′  will have order 0, since 

the half-line that starts from that point in the opposite direction to A′A has no point in 
common with (C). 
 
 
 4. – Now let ξ be a value of x that is included, in the strict sense (i.e., excluding 
equality), between x1 and the maximum value of x on (C), in such a way that the curve 
(C) cuts the line x = ξ at two or more points.  Let M, N be the two extreme points of 
intersection; i.e., the ones that have the smallest and largest ordinate, respectively (3), or 
rather, the ones that are closest to A.  By that, I mean the points for which the values of t 
are the closest to the one that corresponds to A above and below it (4).  The points M, N 
divide (C) into two arcs.  I shall call the one that contains the point A the first of them.  

                                                
 (1) It was established in the text under the condition that there must exist a vector AB that cross the 
curve (C) (no. 296).  
 (2) The set of values of t (they are infinite in number) that verify the equation y (t) = y1 is closed.  The 
same thing will then be true for the corresponding values of x.  The latter set will then contain a maximum 
element and a minimum element. 
 (3) See the preceding footnote.  
 (4) That will imply an obvious modification when the point that corresponds to t = t0 or t = t1 is between 
A and M or between A and N. 
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Under either of the definitions that I just indicated for M and N, the first arc will contain 
no point that is located on the prolongation of the segment of the line MN, either when 
the first arc MN contains no point in common with the line x = ξ besides M, N (first 
definition) or when the first arc MN has no point in common with it besides M, N (second 
definition). 
 Draw a line Aa through A that cuts the line x = ξ at a point a that is located between 
M and N.  That line Aa can meet the first arc MN at only one point (viz., the point A) or at 
several of them; let B the one of those points that has the largest abscissa (1). 
 Let B′ be a point on the line Aa that has an abscissa that is larger than B, but 
meanwhile there is no point on the second arc MN that is between B and B′ [which is 
possible (2) without B itself having to be a point of the second arc, contrary to 
hypothesis]. 
 The point B′ has order ± 1. 
 In order to see that, join M to N by a path that is composed of two rectilinear 
segments MP, NQ that are borrowed from the two prolongations of MN, respectively, and 
are such that aP is equal to aQ, and P and Q are joined by a semi-circle with its center at 
a, which is located on the line of MN (i.e., on the side that does not have A) and has a 
radius that large enough that it has no point in common with the first arc (3).  That new 
path forms a closed line (C1) with the first arc MN and a closed line (C2) with the second 
arc MN.  We agree to choose the sense of traversal along (C) to be the sense that 
corresponds to increasing t, and (C1) and (C2) have a sense such that the parts that are 
common to (C) will be traversed in the same sense as they are on (C).  Under those 
conditions, the auxiliary path MPQN is traversed in the opposite sense on (C1) and (C2). 
 Upon letting Ω(C)(B′ ), 

1( ) ( )C B′Ω , 
2( ) ( )C B′Ω  denote the orders of B′ with respect to the 

closed curves (C), (C1), (C2), respectively, one will then have: 
 

Ω(C)(B′ ) = 
1( ) ( )C B′Ω  + 

2( ) ( )C B′Ω , 

 
since the variations of the argument on MPQN cancel.  Now, 

2( ) ( )C AΩ  is zero [for the 

same reason that ( ) ( )C A′Ω is], so the same thing will be true for 
2( ) ( )C B′Ω  (no. 295), since 

one can join A to B′  by a path that has no point in common with (C2), namely, the portion 
of AB of the first arc that follows the segment of the line BB′. 
 On the other hand, 

1( ) ( )C B′Ω  is equal to ± 1, since the half-line that starts from the 

point B′ and moves in the direction of increasing x will meet (C2) at only one point that is 
located on the semi-circle, and it will do that under the conditions that were specified 
above. 
 Our conclusion is thus proved. 
 
 
 
                                                
 (1) See footnote (2) on the previous page. 
 (2)  Once more, see footnote (2) on the previous page. 
 (3)  In the second way of defining the points M, N, the path MPQN can be replaced by the line segment 
MN, so the point B′ will be between B and a. 
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II. – GENERALITIES ON VARIETIES AND SURFACES  
 

 5. – Without actually examining whether one can prove Jordan’s theorem in the case 
of more than two dimensions by an analogous method, we shall now suppose that the 
theorem was proved, and that will be done by specifying just that statement in a manner 
that will be indicated later. 
 However, we must define what we mean by surfaces in n-dimensional spaces. 
 In order to do that, we shall first define the m-dimensional tetrahedroid. 
 Conforming to the classical definition in elementary geometry, we call the set of 
points (x1 , …, xm) in that space that verifies the inequalities: 
 
(3)    x1 ≥ 0, x2 ≥ 0, …, xm ≥ 0, x1 + x2 + …+ xm ≤ 1 
 
a locus – or, by extension, any set that is deduced from the first one by a linear 
substitution that is not necessarily homogeneous (i.e., the intervention of constant terms 
is possible) and has a non-zero determinant. 
 
 
 6. – Upon replacing one and only one of the m + 1 inequalities (3) (or with the ones 
that correspond to them after substitution, if that has been done) with an equality, to 
which one continues to append the remaining m inequalities with no modification, one 
will have one of the m + 1 faces of the tetrahedroid.  Upon similarly replacing two (and 
only two) of the inequalities in question with equalities, one will have a primary edge 
(which is, by its very definition, common to two faces).  Upon writing out three equalities 
and m – 2 inequalities, one will similarly have a secondary edge, etc. 
 Finally, a point that is common to m faces is a summit.  If one lets: 
 
(4)     ( )

1
iξ , …, ( )i

mξ  (i = 1, 2, …, m + 1) 

 
denote the m + 1 summits then one will have: 
 

(5)     
( ) ( )

1 1
( 1) ( 1) ( 1)

1 1

1, 0 ( 1, , ; ),

0

i i

m m m
m

i m j iξ ξ
ξ ξ ξ+ + +

 = = = ≠
 = = = =

…

⋯

 

for the tetrahedroid (3). 
 
 
 7. – An arbitrary point of a tetrahedroid can be represented by the formulas: 
 

(6)   xi = 
(1) (2) ( 1)

1 2 1

1 2 1

m
i i m i

m

t t t

t t t

ξ ξ ξ +
+

+

+ + +
+ + +

⋯

⋯

  (i = 1, 2, …, m), 

 
in which t1 , t2 , …, tm+1 are m + 1 positive numbers. One sees that immediately for the 
tetrahedroid (3), and one extends that to the other tetrahedroid by remarking that the 
linear substitution will not change the relations (6). 
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 8. – Moreover, as one easily convinces oneself, m + 1 arbitrary points whose 
coordinates are given by the formulas (4) can be considered to be the summits of a 
tetrahedroid, provided that the determinant ∆ that is formed by bordering the matrix (4) 
with a column of non-zero units is non-zero.  That tetrahedroid can be considered to be 
represented by the formulas (6), which are written: 
 

(6′)    
(1) (2) ( 1)

1 2 1

1 2 1

,

1

m
i i i m i

m

x t t t

t t t

ξ ξ ξ +
+

+

 = + + +
 + + + =

⋯

⋯

 

 
this time.  t1 , t2 , …, tm+1 will be called the barycentric coordinates [absolute, in the case 
of equations (6′) and homogeneous, in the case of (6)] of the point (x1 , …, xm) with 
respect to the tetrahedroid. 
 m absolute barycentric coordinates can be considered to define a point.  If one, in 
turn, considers those m quantities t1 , …, tm to be Cartesian coordinates then the point that 
has those coordinates will describe the tetrahedroid (3) when the point (x1 , …, xm) 
describes the given tetrahedroid. 
 If the determinant that was just denoted by ∆ is zero then we will say that formulas 
(6) or (6′) define a degenerate tetrahedroid. 
 
 
 9. – More generally, the formulas: 
 

(7)     γi = 
(1) (2) ( 1)

1 2 1

1 2 1

m
i i m i

m

t t t

t t t

ξ ξ ξ +
+

+

+ + +
+ + +

⋯

⋯

, 

 
or, what amounts to the same thing: 
 

(7′)    
(1) (2) ( 1)

1 2 1

1 2 1

,

1,

m
i i i m i

m

y t t t

t t t

ξ ξ ξ +
+

+

 = + + +
 + + + =

⋯

⋯

 

 
in which the index i varies, no longer from 1 up to m, but from 1 up to n ≥ m (t1 , …, tm+1 
being positive variables), will define an m-dimensional tetrahedroid in n-dimensional 
space, provided that the determinants that are deduced from the rectangular matrix: 
 

( ) ( )
1 1, , ,1i iξ ξ…  (i = 1, …, m + 1) 

 
are not all zero (1).  In the contrary case, one will once more be dealing with a degenerate 
tetrahedroid. 

                                                
 (1) One can also say that such a tetrahedroid is deduced from an m-dimensional tetrahedroid (3) by 
taking the n variables in it to be linear functions of the m variables x (when at least m of those functions are 
independent).  
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 The (non-degenerate) tetrahedroid (7) can also be regarded as being defined by n – m 
first degree equations [that are obtained by eliminating the t from equations (7) or (7′)] 
and m + 1 inequalities. 
 A face of the m-dimensional tetrahedroid is, in that sense, an m – 1-dimensional 
tetrahedroid.  The opposite face to the i th summit of the tetrahedroid (5) is, in fact, 
represented by the formulas (6) [or (6′)], in which one sets t1 = 0. 
 A primary edge of an m-dimensional tetrahedroid is likewise an m – 2-dimensional 
tetrahedroid, etc. 
 
 
 10. – The tetrahedroid (3) can be decomposed by the planes: 
 

xi = 
k

p
  (i = 1, 2, …, m ; k = 1, 2, …, p) 

 
into convex parts, and they, in turn, can be decomposed into tetrahedroids (1) whose 
dimensions are all less than 1 / p ; consequently, they will be as small as one desires in 
any sense.  The latter property will then extend (by linear substitution) to an arbitrary 
tetrahedroid. 
 
 
 11. – Having said that, let u1, …, um be m parameters such that the point that they 
define, and which we will call a parametric point, describes an m-dimensional 
tetrahedroid.  Let x1, x2, …, xn be some continuous functions of u1, …, um that are n ≥ m .  

                                                
 (1) A convex polyhedron in m-dimensional space is the set of points in that space that verify an arbitrary 
number of inequalities of the first degree: 
 

( ) ( ) ( ) ( )

1 1 2 2

h h h h

m m
a x a x a x b+ + + +⋯ ≥ 0 (k = 1, 2, …) . 

 
Those inequalities are capable of being verified simultaneously, in the strict sense (i.e., excluding equality), 
and are such that | x1 |, | x2 |, …, | xm | are necessarily bounded, thanks to those inequalities.  A face of the 
polyhedron will again be obtained by replacing one of those inequalities with the corresponding equality, 
provided that the remaining inequalities can still be verified simultaneously in the strict sense under those 
conditions. 
 The proof of the theorem: Any convex polyhedron in m-dimensional space is decomposable into 
tetrahedroids is easy to arithmeticize.  One takes an interior point O (α1 , …, αm) and connects it to each 

point (x1 , …, xm) of the frontier S of the polyhedron by a line segment 
1
i i

i

t x
x

t

α +=  + 
, 0 ≤ t ≤ + ∞. 

 When (x1 , …, xm) describes a face, the point 
i

x′  will describe an m-dimensional pyramid, and when all of 

those pyramids are external to each other, the set of all of them will form a given polyhedron (thanks to the 
fact that S is cut by an arbitrary half-line that issues from O at one and only one point). 
 If the theorem is assumed to have been proved for every value of m that is less than the one considered 
then one can decompose each face into an m – 1-dimensional tetrahedroid.  The corresponding pyramid 

will be, at the same stroke, decomposed into parts that will be tetrahedroids [the coordinates 
i

x′  can be 

easily expressed in the form (6) then]. 
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We say that the point (x1, …, xn) (which will be the point properly speaking) describes an 
m-fold extended element in the n-dimensional space En . 
 Let ε1 be such an element that corresponds to a tetrahedroid T1 that is described by the 
parametric point (u1, …, um); let ε2 be an analogous elements that corresponds to a second 
tetrahedroid T2 .  Suppose that those two elements are linked by the intermediary of a 
face f1 of T1 and a face f2 of T2 in the following manner: 
 If the summits of f1 (or those of f2, resp.) have been permuted in a suitable manner, if 
needed, then any parametric point of f1 will give the same position for the point (x1, …, 
xn) as the point of f2 that has the same barycentric coordinates (by means of the 
permutation that was just spoken of) (1). 
 If that were the case then agree to regard those two parametric points, one of which is 
taken on f1 and the other on f2 , and which we shall call coupled points, as being identical 
to each other (although their coordinates u are different, in general).  Consequently, the 
faces f1 , f2 will themselves be regarded as constituting only one face.  The elements ε1, ε2 
will then be called contiguous along the unique common face that corresponds to f1 and f2 
(in the space En). 
 A third element ε3 can be contiguous to ε2 along a face 2f ′  of T2 ; we suppose that it 

is different from f2 (the contrary case will be discarded in all of what follows).  The 
primary edge that is common to f2 , 2f ′  will give an edge that is common to ε1 , ε2 , ε3 

whose points will be the same whether one deduces them from one or the other of the 
elements considered. 
 Similarly, several elements can have an edge of higher order in common (or a unique 
summit).  However, one must remark that an arbitrary number of elements can further 
have the same primary edge in common. 
 
 
 12. – Now consider an arbitrary finite number of m-fold extended elements in n-
dimensional space that have contiguity relations between each other of the sort that we 
have just defined, but in such a manner that any face of one of them can be common with 
(at most) one other face.  We will then have a (finite) m-fold variety that is extended in n-
dimensional space (2). 
 Conforming to the preceding, two coupled parametric points on the face that is 
common to two contiguous elements, or more generally, two or more coupled parametric 
points on an edge (of arbitrary order) that is common to two or more elements (or rather, 
a common summit to two or more elements) will be considered to give only a single point 
(x1, …, xn) of our variety.  In any other situation in which the same point (x1, …, xn) in n-
dimensional space is found on our variety more than one time [even though it 
corresponds to two different parametric points of the same element or two different 

                                                
 (1) More generally, one can assume there is an arbitrary perfect, continuous correspondence between 
the points f1 and f2 such that the parametric points that provide the same point x are the ones that correspond 
under those new conditions.  One shows that this somewhat-more general case can be reduced to the one 
that is treated in the text. 
 (2) The varieties, thus-defined, are the ones that we consider in what follows.  The question of knowing 
whether one can give more general definitions to the same word is, of course, entirely reserved for later.  It 
will not be addressed here. 
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parametric points of elements that are not coupled (1)], that point will be called double or 
multiple according to whether it occurs twice or m > 2 times, resp. (2). 
 
 
 13. – The same variety can be represented in the form that was just indicated in an 
infinitude of ways, moreover.  Indeed, we shall not consider two varieties V and V′ of the 
preceding type to be distinct if there exists a perfect, continuous correspondence between 
the parametric points that generate V and the ones that generate V′ such that any 
parametric point of V will give the same point (x1, …, xn) as its corresponding one on V′.  
The continuity and perfection that we just spoke of are supposed to exist only by means 
of the previously-made convention that we consider coupled points to be identical (3), so 
the decomposition of V′ into elements it not at all supposed to correspond to that of V, 
moreover, and the number itself of those elements can be different. 
 If the two varieties have no multiple points then if that is to be true, it will suffice that 
each point of V is also a point of V′, and conversely. 
 In particular, we will not change a variety by subdividing one or more of the 
tetrahedroids that correspond to its various elements into partial tetrahedroids, as was 
explained above (no. 10). 
 
 
 14. – We add that one might have to consider two m-fold varieties V and V′  between 
whose point, there exists a correspondence of the type that was mentioned in that number, 
but without the values of x being the same at the corresponding points, even if the integer 
n were the same for V and V′.  Two varieties of that type are called homeomorphic, and 
the study of properties that are common to them constitutes analysis situs. 

                                                
 (1) We then exclude the case in which an element is contiguous to itself (viz., two of its faces are 
coupled to each other) from what we are expressing. If that case presents itself (which is not at all 
impossible) then we can easily modify our definition in such a manner as to take it into account.  However, 
one can also discard it by a convenient subdivision (see above) of the element considered, as one can assure 
oneself with no difficulty. 
 (2) One can have m = ∞. 
 (3) In other words, here, contiguity signifies that: 
 1. A parametric point of an element ε′ and only one point of V′ correspond to a point that belongs to an 
element ε (and only one) of V, so the values of u that relate to one of those points are continuous functions 
of the ones that relate to the other. 
 2. If a parametric point P that belongs to just one element ε of V corresponds to a point P′ that is 

common to several elements 
1

ε ′ , 
2

ε ′ , …, 
p

ε ′  of V′, and if one considers a second point Q of ε such that its 

corresponding Q′ belongs to 
1

ε ′ , for example (while still being able to be common to 
1

ε ′  and to one or 

more of the other element 
2

ε ′ , …, 
p

ε ′ ), then the values of u that correspond to Q′ in 
1

ε ′  will be continuous 

functions of the ones that correspond to Q. 
 3. One has statements for the entirely general case in which a point that is common to several elements 

ε1 , …, εp of V corresponds to a point that is common to several elements 
1

ε ′ , …, 
p

ε ′  of V′ that are 

analogous to the statements that one makes in the case where a point that is common to several elements of 
V corresponds to a point that is taken from just one element of V′, 
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 15. – The changes of parametric representation that we just indicated are attached to 
the possibility of making a supplementary hypothesis that one generally makes on the 
varieties V that we have envisioned, and which we shall make in what follows. 
 No matter what P is taken on V, one assumes that among the various decompositions 
of V into elements that one can carry out in conformity with the preceding conception, 
there exists at least one of them in which P belongs to only one element. 
 That hypothesis is distinct from the preceding one: Certain admissible varieties that 
do not include it are excluded by its intervention (1). 
 
 
 16. – The variety V will be a single piece if one can pass from an arbitrary element to 
another likewise arbitrary element by a chain of elements, each of which is contiguous to 
the preceding one along a face. 
 It is closed of every face is common to two elements.  In the contrary case, the set of 
faces, each of which belongs to only one element, constitutes the frontier S of V. 
 That frontier, which is an m – 1-times extended variety, might not be in just one 
piece; however, it is necessarily closed, as one easily assures oneself (2). 
 
 
 17. – In all of the preceding, the order in which one arranged the coordinates of the 
parametric point in each element (or what amounts to the same thing, the order in which 
one arranged the summits of the corresponding tetrahedroid) was irrelevant. 
 We now agree to introduce such an order, but only to the following extent: 
 We divide the (m + 1)! permutations to which one arrives by arranging the (m + 1) 
summits of the tetrahedroid in all possible ways into two classes according to the method 
that is employed in the theory of determinants.  In other words, we put all of the ones for 
which the passage from one to the other is an alternating permutation into the same class. 

                                                
 (1) For example, that is what happens for the volume of the cone that has a circular ring for its base.  
Such a volume is decomposable into parts that each have a perfect, continuous correspondence with a 
tetrahedron, but the summit of the cone must be common to at least two of those parts. 
 Furthermore, let the torus be represented by the equations: 
 

x = cos ψ (r + a cos ϕ), y = sin ψ (r + a cos ϕ), z = a sin ϕ, 
 

in which ϕ and ψ are considered (mod 2π).  One can deduce the three-fold extended variety in four-
dimensional space: 
 

x1 = t cos ψ (r + a cos ϕ), x2 = t sin ψ (r + a cos ϕ), x3 = t a sin ϕ, x4 = t cos ϕ, 
 
in which t varies from 0 to 1.  That variety is likewise decomposable into elements, but the point x1 = x2 = 
x3 = x4 = 0 is forced to belong to several of them. 
 (2) If the elements f of S are faces of V then the faces a of S will be the primary edges of V.  If one of 
them belongs to only one element of V then the two faces that include a will belong to S and will be 
contiguous.  If it is common to a series of elements that are contiguous to each other (and the last of which 
is not contiguous to the first at the moment when a on the frontier) then the two exterior faces of the 
extreme elements will belong to S and will be contiguous along a. 
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 We shall not choose from the permutations of the same class, but we shall choose 
from the two classes, and that choice will be what we call the orientation of the 
tetrahedroid. 
 Furthermore, there is no loss of generality in supposing that the chosen class is the 
first one (i.e., the one that includes the natural order), and that is what we shall do from 
now on. 
 A well-defined orientation of the tetrahedroid T will obviously correspond to a well-
defined orientation for each face, which will be called the resulting orientation: One 
obtains it by arranging the m summits of that face into an order such that when they are 
preceded by the opposite summit, one will have a permutation of the first class of the (m 
+ 1) summits of T.  We say that this orientation is the one that results from that of the 
tetrahedron for the face considered. 
 If two elements of a variety V are contiguous along a face then we will say that the 
orientations of the two elements are concordant if they do not imply the same orientation 
for the common face (in the sense that was just explained). 
 
 
 18. – After having oriented one of the elements of V in an arbitrary way, choose the 
orientations of the elements that are contiguous to it in such a way that they are 
concordant with the first one, and then proceed similarly for the elements that are 
contiguous to the ones whose orientation was just determined, and so on.  If V is in one 
piece then one will arrive at an orientation for each element of V in that way. 
 Since there generally exist several ways of passing from one element to another by 
the intermediary of contiguous elements, it can happen that the orientations that are 
obtained will differ according to the way of making that transition that one adopts.  In 
that case, V will be called unilateral.  If, on the contrary, one never meets up with such a 
contradiction then the variety will be called bilateral. 
 From now on, we shall suppose that our variety V is bilateral and oriented in such a 
manner that the orientations of all elements are concordant.  That will be possible in only 
two different ways (if V is in one piece). 
 
 
 19. – Finally, we call an n-fold extended variety that is supposed to have no double 
point in n-dimensional space a volume in that space. 
 We call an n – 1-fold extended variety in n-dimensional space a surface. 
 
 
 20. – The notion of multiple integral, as well as its reduction to simple integrals and 
the changes of variables that one can perform on it, can likewise be presented in an 
entirely arithmetic form.  I will suppose that those properties have been established (1). 

                                                
 (1) Their proof can present some difficulty for the most general domains.  However, in what follows, the 
domain of integration will also be a tetrahedroid, and the volume of one tetrahedroid is interior to the other 
(which is a volume that can itself be decomposed into tetrahedroids). 
  Under those conditions, the formula for changing variables will be established for only linear changes of 
variables. 
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 Moreover, one can deduce Green’s formula from them.  For the sake of speed, I will 
likewise be content to state that formula, which is easy to prove by following the classical 
route. 
 In the m-dimensional space that is the locus of the points (x1, …, xm), let V be a 
volume that is bounded by a frontier surface S, and let there be m continuous functions ψ1 

, …, ψm of x1 , …, xm in that volume that admit integrable derivatives of first order.  The 
position of a point on an element of S will be defined by m – 1 coordinates v1 , v2 , …, vm ; 
for example, they might be the barycentric coordinates of the parametric point with 
respect to the tetrahedroid that it described.  We suppose that those coordinates are 
arranged in an order such that the determinant: 
 

(8)     

1 2

1 2

1 1 1

1 2

1 1 1

m

m

m

m m m

xx x

v v v

xx x

v v v

α α α

− − −

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 
is always positive whenever the direction (a1, …, am) is directed to the interior of V (at 
the point considered).  We will then have: 

(9)   1 2
1

1 2

m
m

m
m

dx dx
x x x

ψψ ψ ∂∂ ∂+ + + ∂ ∂ ∂ 
∫ ∫⋯ ⋯ ⋯

���

= 

1

1

1 1
1 1

1

1

1 1

m

m

m

m

m

m m

xx

v v
dv dv

xx

v v

ψ ψ

−

−

− −

∂∂
∂ ∂

∂∂
∂ ∂

∫ ∫

⋯

⋯

⋯ ⋯

⋯ ⋯ ⋯���

⋯

. 

 
 In that formula, the m-tuple integral on the left-hand side is extended over the volume 
V.  The (m – 1)-uple integral on the right-hand side is extended over all elements of S, in 
which the v are coordinates that are arranged according to the rule that was just explained 
in every case. 
 
 
 21. – In the case where V is a tetrahedroid with summits: 
 

( )
1

kx , …, ( )k
mx   (k = 1, 2, …, m + 1), 

 
the rule in question can be formulated in the following manner: 
 Agree to say that the orientation of the tetrahedroid V conforms to that of the system 
of coordinates x1, …, xm if the determinant ∆ that was considered above, namely: 
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(10)    ∆ = 

(1) (1)
1
(2) (2)
1

( 1) ( 1)
1

1

1

1

m

m

m m
m

x x

x x

x x+ +

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

is positive. 
 In order to obey the rule in question, the coordinates v on each face, which are then 
supposed to be linear functions of x (for example, m – 1 of the absolute barycentric 
coordinates), must be arranged in some order such that their orientation conforms to the 
one that results (no. 17) from that of V itself on the face in question.  For example, on the 
face that is opposite to the index 1, one must have: 
 

(10′)    

(1) (1)
1 1
(2) (2)
1 1

( 1) ( 1)
1 1

1

1

1

m

m

m m
m

v v

v v

v v

−

−

+ +
−

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

> 0, 

 
in which ( )

1
kv , …, ( )

1
k

mv −  are the values of v at the summit with index k. 

 
 
 22. – A particular case of what we just said is the following one: If a parallel to the x1-
axis (i.e., a line whose equations are x2 = const., …, xm = const.) meets a face F of a 
tetrahedroid T in such a way that x1 increases when one passes from the exterior to the 
interior of T upon traversing that face then its orientation (which results from that of T) 
will or will not conform to that of the coordinate system x2 , …, xm according to whether 
the orientation of T itself does or does not conform to that of the coordinate system x1 , x2, 
…, xm , resp. 
 The opposite situation will take place when x1 increases when one passes from the 
interior to the exterior. 
 If the face F is opposite to the summit with index 1 (as one can suppose by means of 
a permutation of the first class between the summits) then that is what one will get by 
setting v1 = x2 , v2 = x3 , …, vm−1 = xm in the determinant (10′) and α1 = ± 1, α2 = … = αm = 
0 in the determinant (8). 
 
 

III. – ORDER OF A POINT WITH RESPECT TO A SURFACE  
 

 23. – Having posed those preliminaries, we can define the order of a point with 
respect to a closed surface S in the n-dimensional space En . 
 Let such a surface be defined as was indicated in the preceding (and presenting 
double points or not, moreover).  Suppose, for the time being, that in each element, the 
coordinates x1 , …, xn of the space En admit continuous partial derivatives of the first 
order with respect to the parameters u1 , …, un−1 .  On the contrary, when one passes from 
one element to another contiguous one, the x will be subject to only being continuous.  
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Moreover, that will obviously imply the existence and continuity of the (first) derivatives 
of the x with respect to the parameters v (no. 20) on the face that is common to those two 
elements. 
 Consider the integral then: 

(11)   I = − 

1

1

1 1
1 1

1

1

1 1

1

n

n

nn

n

n

n n

x x

xx

u u
du du

r

xx

u u

−

−

− −

∂∂
∂ ∂

∂∂
∂ ∂

∫ ∫

⋯

⋯

⋯ ⋯

⋯ ⋯ ⋯���

⋯

 

 
which extends over the entire surface S, and in which r denotes the positive quantity: 
 

r = 2 2
1 nx x+ +⋯ , 

 
while u1, …, un−1 are the coordinates of the parametric point in each element, when they 
are arranged (no. 21) in conformity to the orientation of the element (1). 
 That integral will make sense as long as the coordinate origin in En does not belong to 
S.  One confirms immediately that it will not change in value: 
 
 a) When one multiplies x1 , …, xn by the same positive quantity λ, which is constant 
or varies with the u (provided that it is continuous and differentiable under the same 
conditions as the ones on the x). 
 
 b) When one performs any sort of orthogonal substitution with constant coefficients 
and a determinant equal to + 1 on the x. 
 
 Furthermore, let S and S′ be two closed surfaces that have a certain number of 
elements in common. Suppose that they are bilateral and oriented in such a manner that 
the orientation of each of the common elements in question in S is opposite to the one in 
S′.  If one then forms a new surface (which is obviously closed and bilateral, like the first 
one) by suppressing those common elements and combining the remaining elements 
(which is a surface that we shall call the resultant of S and S′ ) then when the integral (11) 
is taken over that resultant, it will be the sum of the integrals over each of the component 
surfaces S and S′, which is an obvious consequence of the form of that integral. 
 
 
 24. – The fundamental property of the integral (11), when it is extended over the 
closed surface, is the following one: 
 One has: 
 
(12)     I = ω ⋅⋅⋅⋅ Kn , 

                                                
 (1) I. e., the orientation of the tetrahedroid that gave rise to them.  
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in which Kn is a numerical constant that depends upon only n (1), and ω is a (positive, 
zero, or negative) integer. 
 In order to establish that, we suppose that the proof has been made for every value of 
n that is less than the one that one considers. 
 We then set: 

r0 = + 2 2
2 nx x+ +⋯ , 

 
and let θ denote the angle that is defined by the two concordant equations: 
 

cos θ = 1x

r
, sin θ = 0r

r
, 

 
where that angle is supposed to be found between 0 and π (which is possible, since its 
sine is positive).  The differential of θ is coupled to that of x by the relation: 
 

− sin θ dθ = 
2

0 1 1 2 2
2

( )n nr dx x x dx x dx

r

− + +⋯
, 

 
which will permit one to put the quantity under the ∫…∫ sign in I into the form: 
 

(13)  −

2

2

2
1 1 1

1
0

2

1 1 1

0

sin

n

n

n

n

n

n n n

x x

xx

u u u

r

xx

u u u

θ
θ

θ

−

−

− − −

∂∂∂
∂ ∂ ∂

∂∂∂
∂ ∂ ∂

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 = −
2

,1
0

sinn

i i kn
k

x A
r u

θ θ−

−

∂
∂∑  , 

in which, for example: 

(13′)    A21 = − 2

2 1

( , , )

( , , )
n

n

D x x

D u u −

…

…

. 

 
 Now let F (θ) + h (where h is an arbitrary constant) be the primitive of sinn−2 θ, in 
other words, let: 

F (θ) = sinn−2 θ, 
so the quantity (13) can be written: 
 

(14)    − 11 2

1 2 1

n

nu u u

ψψ ψ −

−

 ∂∂ ∂+ + + ∂ ∂ ∂ 
⋯ ; 

with 

                                                
 (1) Kn is nothing but the areas of the sphere in n-dimensional space. 
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ψk = [F (q) + h] 32
2, 3, ,1 1 1

0 0 0

n
k k n kn n n

x xx
A A A

r r r− − −

 
+ + + 

 
⋯ . 

 
 The set of terms in (14) that do not enter into (13), namely: 
 

1
, 0

i
ikn

i k k

x
A

u r −

 ∂
 ∂  

∑ , 

 
is, in fact, zero (the index i varies from 2 to n, while k varies from 1 to n – 1). 
 That will result from the identity [which is easy to verify (1)] for n – 1 arbitrary 
(differentiable) functions X2, X3, …, Xn of x2 , …, xn : 
 

1u

∂
∂

(A2,1 X2 + A3,1 X3 + … + An,1 Xn) + 
2u

∂
∂

(A2,2 X2 + A3,2 X3 + …) 

 

+ … + 
1nu −

∂
∂

(A2,n-1 X2 + …) 

 

= 3 22

2 3 2 1

( , , )

( , , )
n n

n n

X X D x xX

x x x D u u−

 ∂ ∂∂ + + + ∂ ∂ ∂ 

…
⋯

…

, 

 
when one sets Xi = 1

0/ n
ix r −  and observes that one has: 

 

(15)    2
1

2 0
n

x

x r −

 ∂
 ∂  

+ … + 
1

0

n
n

n

x

x r −

 ∂
 ∂  

 = 0. 

 
 The form (14) that is given to the integration element permits one to apply Green’s 
formula, as long as the functions ψ are continuous: With that reservation, and upon 
transforming the result by the known theorem on the multiplication of determinants, we 
will have: 

(16)  I = − 

2 3

32

1 1 1

1
0

32

2 2 2

( )

n

n

n

n

n n n

x x x

x xx

v v vF h

r

x xx

v v v

θ
−

− − −

∂ ∂∂
∂ ∂ ∂+

∂ ∂∂
∂ ∂ ∂

∑∫ ∫

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯���

⋯

dv1 dv2 … dvn−2 . 

 

                                                
 (1) That identity, in which the Ai,k are the quantities that are defined by (13), (13), is well-known for the 
case of constant X2 , …, Xn : It enters into the theory of the multiplier (see Jordan, Goursat, etc., Traités 
d’Analyse). 
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 The summation ∑ here relates to all faces of all the elements of S.  On each of those 
faces, the coordinates v must be defined and arranged as was explained in nos. 20, 21, 
with the orientation of each face being the one that results from the orientation of the 
element from which it was taken. 
 Since the surface S is closed, each face will then occur twice, and (from the preceding 
hypotheses and conventions) with the opposite orientations in the two cases. 
 Therefore, the two terms that relate to that face in the expression (16) must cancel if 
at least the number h has the same value on one part and the other. 

 
 
 25. – However, all of that is subordinate to the legitimacy of formula (16).  Up to 
now, that was established only when r0 never became zero; i.e., when the line: 
 
(17)     x2 = … = xn = 0 
 
did not cut S. 
 In that case, when one sets h = 0 in all elements, one will see that I is zero. 
 More generally, the integral (11) will be zero when one can draw an arbitrary line D 
through the origin that has no point in common with S. 
 That is because we can reduce D to the x1-axis by means of an orthogonal 
transformation that does not change I ; i.e., to something that is represented by equations 
(17). 
 
 
 25 (cont.). – We abandon the first case, and then we shall nonetheless begin to make 
certain particular hypotheses. 
 We first suppose that no line that issues from the origin cuts the same element of S at 
points that are located on one side of the origin and the other.  That first hypothesis does 
not diminish the generality.  In order to verify that, it will suffice to make the elements 
small enough (by subdivision, if that exists) for the distance between two points on the 
same element to always be less than twice the minimum distance from the origin to S, 
which is possible by virtue of the continuity of the x. 
 We then suppose the existence of a line D whose intersection with the surface 
satisfies the following conditions: 
 D does not meet any face. 
 Any element that is met by D is such that the x, y are linear functions of the u (which 
are generally non-homogeneous).  Furthermore, it is met by D only a single point (1). 
 Such an element is obviously itself a tetrahedroid (and not only in its parametric 
representation), which can nonetheless be degenerate. 
 The conditions that were just enumerated will be verifiable, in particular, if the x are 
linear in the u in any element of S, in which case, S will be called a closed polyhedral 
surface (1). 

                                                
 (1) Those suppositions are hardly essential.  Their only purpose is to avoid certain complications of the 
general case.  
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 One can even subject D to being as close as one desires to an arbitrarily-given line D0 
that passes through the origin. 
  
 
 26. – We assume, as we just did, that D is nothing but the x1-axis, which is the locus 
of points for which r0 is zero.  θ will be equal to zero or π on that line according to the 
sign of x1 . 
 From that, the elements of S can be divided into three categories: 
 
 1. The ones on which θ does not become equal to 0 or π .  The corresponding value 
of h will be taken to be equal to zero. 
 
 2. The ones where one has (once and only once) θ = 0 (in such a way that one 
cannot have θ = π).  We then take h = − F (0). 
 
 3. The ones where one has (once and only once) θ = π.  We then take h = − F (π). 
 
 The formula (16) will be valid even when S contains elements of the second or third 
category by means of that choice of h, although the functions ψ would cease to be 
continuous in those two cases. 
 In order to prove that, suppose, for example, that all of the elements belong to the first 
category, except for just one ε1 , which belongs to the second.  ε1 will then contain a point 
P1 such that: 

x1 = … = xn = 0, x1 > 0. 
 
 Let 0 0

1 1( , , )nu u −…  be the parametric point that corresponds to P1 , which is interior to 

the tetrahedroid T1 that gave rise to ε1 .  The applicability of Green’s formula will be 
assured when one subtracts the interior of a tetrahedroid τ1 from T1 that likewise contains 
the parametric point 0

1(u , …) (in its interior).  One can then write down the formula (16) 

if one assumes that: 
 
 1. The integral I does not extend over the entire surface S, but only the (open) 
surface S′ that one deduces from S by suppressing the part of ε1 that corresponds to τ1 . 
 

                                                                                                                                            
 (1) If the x are linear in the u then the fact that D meets a face or the fact that it has more than one point 
in common with an element (and consequently, and infinitude of common points) is expressed by a linear 
equation that is not an identity (or sometimes several equations) and has the form: 
 

A1 ξ1 + … + An ξn = 0, 
 

in which ξ1, …, ξn are the coordinates of an arbitrary point on the line, and the A are non-zero constants. 
 One can always choose the ξ (even in the neighborhood of the given quantities) in such a manner that 
they do not verify any of the relations that are written in that way. 
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 2. One must add terms to the (n – 2)-tuple integral on the right-hand side that 
correspond to the frontier of τ1 (each of those terms appears only once, contrary to the 
ones that correspond to the faces of S). 
 
 Let i be the set of terms in question.  I must show that i will tend to zero when all of 
the dimensions of the tetrahedroid τ1 tend to zero without ceasing to include the point P1. 
 Indeed, we remark that an arbitrary half-line that issues from the parametric point 

0
1(u , …) cuts the frontier of each of the tetrahedroids T1 and τ1 at a single point.  In the 

space En , those points will give the points of ε1 that are in a straight line with P1 , and 
since the last n – 1 coordinates of P1 are zero, they are all deduced by multiplying each of 
the coordinates in question by the same positive factor.  From what we saw before, it will 
then result that if one ignores the factor [F (θ) + h] then the corresponding integral 
elements on the frontier of T1 and on that of τ1 will be identical, because (always without 
the factor [F (θ) + h]) the integral on the right-hand side has the same form as I when one 
simply changes n into n – 1. 
 Now, the integral that relates to the frontier of T1 will make sense even when one 
replaces each of its elements with its absolute value.  Let I0 be the value that is obtained 
under those conditions.  One will have: 
 

| i | < I0 α, 
 
in which α denotes the maximum of [F (θ) + h] – i.e., of [F (θ) – F (0)] – on the frontier 
of τ1 .  Now, that maximum will tend to zero with the dimensions of τ1 , since θ is equal 
to 0 at P1 . 
 Therefore, the formula (16) will remain valid under those conditions by means of the 
choice of h that was indicated, and that result will be likewise established in the case of 
an arbitrary number of elements of the second or third category.  It will suffice to perform 
the construction that we just made on ε1 for each of them. 
 
 
 27. – On the other hand, we have seen that only the terms in h will persist, while the 
other will cancel on the closed surface S. 
 Hence, one will get: 
 
(18)    I = J1 F (0) + J2 F (π), 
 
in which J1 and J2 denote the integrals: 
 

(11′)   

1

1

1 1
1 2 11

0
2

1

1 1

1

n

n

nn

n

n

n n

x x

xx

v v
dv dv dv

r

xx

v v

−−

−

− −

∂∂
∂ ∂

∂∂
∂ ∂

∫ ∫

⋯

⋯

⋯ ⋯

⋯ ⋯ ⋯���

⋯

, 
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when they are extended, in the first case, over the set of frontiers of the elements of the 
second category, and in the second, over the set of frontiers of elements of the third 
category, respectively.  One will have: 

J1 + J2 = 0, 
 
moreover, as one sees upon noting that the right-hand side of (18) must be independent of 
the additive constant that remains arbitrary in F.  One can then write: 
 

I = − J1 [F (π) – F (0)] = − 2
1 0

sinnJ d
π

θ θ−
∫ . 

 
 Now, as we have pointed out already, the integral (11′) has the same form as I when 
one changes n into n – 1, and that integral is extended over a system of closed surfaces in 
the space En−1 , namely, the ones that one obtains by projecting (1) onto En−1 the frontiers 
of the elements of the second category of S, which are nothing but the frontiers of the (n – 
2)-dimensional tetrahedroid, moreover.  By virtue of our hypotheses, it will result that: 
 

J1 = Kn−1 ∑ ω 
 
in which the ω are integers that correspond to the various closed surfaces that were just in 
question, respectively. 
 That will indeed give a value to I that has the form (12).  It will suffice to define Kn 
by the relation: 

Kn = 2
1 0

sinn
nK d

π
θ θ−

− ∫ . 

 
 Once the numbers Kn that are defined by that recurrence relation (with K1 = 2), our 
conclusion will have been proved by the preceding, since for n = 2, the expression (11) 
will reduce to: 

− 1 2
2 12 2

1 2

1 x x
x x du

x x u u

∂ ∂ − + ∂ ∂ 
∫  = 2

1

arctan
x

d
x

 
 
 

∫ ; 

 
i.e., to the variation of the argument that was considered previously.  Consequently, that 
will verify our proposition. 
 
 
 28. – The integer ω that appears in the formula (12) is called the order of the origin 
with respect to S. 
 The order of an arbitrary point (a1 , …, an) (that is not located on S) is obtained by 
replacing x1 , …, xn with x1 − a1 , …, xn − an in formula (11) . 
 That order is zero, by virtue of the preceding considerations if one can draw at least 
one half-line through the point envisioned (and no longer even an entire line) that does 
not meet S. 

                                                
 (1) In analytical language, “projecting a figure in the space En onto the space En−1” means simply that 
one drops one of the coordinates (here, x1). 
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 If S is the frontier of the tetrahedroid to which the origin is interior then the half-line 
that is defined by the equation θ = π will cut S at one and only one point.  The order of 
the origin will then be + 1 or – 1, according to whether the determinant (10) is positive or 
negative, resp. 
 One can verify that with no difficulty in the case of n = 2 (where S is the frontier of a 
triangle).  It is easy to pass from that value of n to other ones by recurrence by applying 
what was said in no. 22, since, as we have seen, J1 is always composed of orders that 
relate some (n – 1)-dimensional tetrahedroids (here, there is just one tetrahedroid). 
 Moreover, one obviously deduces an expression for the order that relates to an 
arbitrary closed polyhedral surface from that.  One has: 
 
(19)     ω = N1 – N2 , 
 
in which N1 + N2 is the total number of points where a half-line that issues from the point 
(a1 , …, an) cuts S, and any of those point will be counted in N1 or N2 according to 
whether the n summits of the element that contains that point, after they have been 
arranged in the order that results from the orientation of that element and is preceded by a 
summit that is located at the origin, does nor does not give a tetrahedroid whose 
orientation conforms to that of the coordinate system. 
 
 
 29. – If the x are simply differentiable with respect to u in each element without 
verifying the particular hypotheses that we just made then the value of the integral I will 
once more have the form (12). 
 As we just saw, that fact is not entirely indispensible to what follows, so we shall 
simply summarize the proof by saying that any portion T of S that is close (1) to D can be 
replaced with another T′ that is slightly different from the first one, and is such that in any 
element of T′ that is met by D, the x are linear functions (2) of the u.  The integral I, when 
taken on the surface thus-modified S′, will have the same value that it has on S.  Indeed, 
the set of T and T′ forms a closed surface σ such that S can be considered to be the 

                                                
 (1) To be precise: One can introduce any element ε into T that has a point in common with D and any 
element ε′ that is contiguous to an element ε . 
 (2) Replace each element ε or ε′ with the tetrahedroid e or e′ that has the same summit.  In other words, 
replace the coordinates x of such an element with the quantities x′ that are defined by formulas (20) (see 

below, no. 30): We will get a new open surface 
1

T ′ .  On the other hand, join each point on the frontier of T 

(which is composed of the faces F that are borrowed from the elements ε′ ) to the corresponding point of 

the frontier of 
1

T ′ .  The line segments thus-traced will form a new portion of the surface 
2

T ′ .  T′ will be the 

union of 
1

T ′  and 
2

T ′ . 
 If the subdivision of the elements is pushed much further then x1 will not be annulled on either T or T′.  
Moreover, let ρ be the minimum of r0 on the frontier of T.  If (after forming T, but before deducing T′ ) one 
subdivides the elements ε′ in such a manner that the distance between any two points in each face F of the 

frontier is less than ρ then the part 
2

T ′  will have no point in common with D. 
 As for the condition that D must not meet the faces, as we saw, it will be realized by giving a very 
small displacement to D, if needed. 
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resultant of S′ and the surface or surfaces σ, and the integral that relates to σ will be zero, 
because σ has no point in common with any line D′ that has x1 = 0 for one of its 
equations. 
 S′ satisfies the conditions by means of which the relation (12) was proved just now.  
That relation is also true for S then. 
 
 
 30. – However, it is not necessary to insist upon evaluating the order in the case of 
differentiable coordinates.  Indeed, we can pass directly from the case that was the 
subject of no. 25 (cont.) to the completely general case in which the x are arbitrary 
continuous functions of the parameters. 
 In order to do that, it will suffice to once more replace the functions x1, …, xn with 
some other ones 1x′ , …, nx′  that are close to them and are linear functions of the u in each 

of the elements (after a convenient subdivision of them). 
 In order to define those x′, we suppose that the elements are made sufficiently small 
by subdivision that in each of them, the gap between each of the continuous functions x 
will be smaller than a certain number η . 
 Having done that, we replace each element by the tetrahedroid (which is or is not 
degenerate) that has the same summits; in other words, if: 
 

( )
1

kx , …, ( )k
nx   (k = 1, 2, …, n) 

 
denote the coordinates of the n summits of an element then we will take: 
 
(20)   ix′  = (1) (2) ( )

1 2
n

i i n it x t x t x+ + +⋯  (i = 1, 2, …, n) 

 
for an arbitrary point of the element, when one calls the (absolute) barycentric 
coordinates of the corresponding parametric point with respect to the tetrahedroid that it 
describes t1, t2, …, tn . 
 It is clear (by virtue of the relation t1 + …+ tn = 1) that ix′  is found between the 

smallest and largest of the quantities (1)
ix , …, ( )n

ix . 

 It obviously results from this that the absolute value of the difference xi − ix′  is less 

than 2η in the element considered. 
 In order to calculate the order, we substitute the ix′  for the xi , which will bring us 

back to the case that was treated previously.  In other words, we substitute an 
approximating polyhedron for S, and we define the order with respect to S to be the order 
with respect to that polyhedron (1). 
 In order to legitimize that definition, we shall show that the value of ω is the same no 
matter how one chooses the functions x′ that are substituted for the x, provided that η is 
sufficiently small. 

                                                
 (1) For example, in ordinary space, one replaces S with an inscribed polyhedron with sufficiently-small 
faces. 
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 More precisely, it will suffice that η is less than the smallest reduced distance (see no. 
271 in the text) from the point (a1, …, an) to S. 
 Indeed, consider a second approximating polyhedron – in other words, a second 
system of functions 1x′′ , 2x′′ , …, nx′′  that are close to the x and are defined in a manner that 

is analogous to the x′.  Suppose that the absolute values of the differences ix′′  – xi are 

likewise all less than 2η . 
 The second approximating polyhedron will be deduced by a decomposition of the 
elements of S that is different from the one that is provided by the first one.  For example, 
let 1τ ′ , … be the tetrahedroids into which T1 was decomposed in the first case, and let 1τ ′′ , 

… be the ones into which it was decomposed in the second case.  One can find a third 
decomposition into tetrahedroids t that is a subdivision with an axis in common with the 
other of the first two (1). 
 In each tetrahedroid τ″, the ix′ , like the ix′′ , are linear functions of u, and 

consequently, the same thing will be true for each of the quantities: 
 

ξi = 
1
i ix xµ

µ
′ ′′+

+
, 

 
in which µ is an arbitrary positive parameter. 
 The locus of the point (ξ1 , ξ2 , …, ξn) is a new closed polyhedral surface Σ that 
depends upon the parameter u. 
 Due to the hypothesis that was made on η, Σ will not pass through the point (a1, …, 
an)  for any positive value of µ. 
 Indeed, xi is found between ix′  and ix′′  (for m > 0), and consequently, between xi – 2η 

and xi + 2η .  Now, by hypothesis, at least one of the quantities | xi – ai | is greater than 2η 
at each point of S. 
 Moreover, the order of our point with respect to Σ is defined for every positive value 
of µ, and will vary continuously with µ [as one sees from the expression (11)]. 
 Since that order is, in essence, a whole number, it will necessarily remain constant.  It 
will then have the same value for µ = 0 and µ = ∞ ; i.e., for the two polyhedral surfaces 
envisioned. 
 It likewise results from this that the result obtained will be the same for another 
closed surface whose points correspond to those of the first one in such a manner that the 
reduced distance between two corresponding points will constantly be less than η′ (η′  
denotes no particular quantity that is found between 0 and η, excluding the limits). 
 One then sees that the order ω is continuous of order zero with the respect to the 
expressions for x as functions of the u; i.e., that it will be altered very little (and even not 
at all) when one alters the x by quantities that are everywhere very small. 

                                                
 (1) If the two tetrahedroids –

1
τ ′ , 

2
τ ′ , for example – have a common region (i.e., they have some non-

frontier points in common) then that region will be a convex polyhedron (cf., page 6, note 2) that one can 
decompose into tetrahedroids, and one proceeds similarly for each tetrahedroid τ′, combined with each 
tetrahedroid τ″. 
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 The expression (11) exhibits only continuity of order one; in other words, in order to 
affirm that ω is altered very little, it will seem necessary to assure that not only the 
functions x, but also their derivatives with respect to u, experience very small variations. 
 That is true thanks to the continuity of order 0 that we could define for ω by means of 
an approximating polyhedral surface (1). 
 
 
 31. – ω would not change if we were to employ another mode of parametric 
representation for S either, since its definition by formula (19), when applied to a 
polyhedral surface that is close to S does not depend upon that representation. 
 In a word, ω will indeed be a completely well-defined quantity when one is given the 
surface S and the point (a1, a2, …, an) that is not located on that surface. 
 It will remain constant while the point in question varies continually without crossing 
the surface. 
 One can easily assure, in a general manner, that it possesses the properties that we 
confirmed in the case where the x are differentiable even when they are merely 
continuous, and those are the properties that we must invoke in what follows. 
 
 
 31 (cont.). – We add that the combination of formula (19) with the results of no. 30 
will permit us to evaluate the order in the simplest case. 
 That order is obviously equal to ± 1 when S is a convex polyhedron and (a1, a2, …, 
an) is an interior point [since one of the numbers N1, N2 in formula (19) would then be 
equal to 1 and the other to zero]. 
 It is likewise equal to ± 1 for the n-dimensional sphere whose center is (a1, a2, …, an), 
as one will see upon replacing a portion of it with a portion of the plane. 
 
 

IV. – THE KRONECKER INDEX  
 

 32. – One now passes from the definition of the order of a point with respect to a 
closed surface to that of the index of a system of functions on that surface. 
 Once more, let the surface S be the locus of points (x1, …, xn) in n-dimensional space.  
On the other hand, let f1 , f2 , …, fn be a system of n continuous functions of x1, …, xn that 
have needed to be defined only on S, up to now. 
 The index of the system of functions f1 , …, fn is, by definition, the order of the origin 
of the coordinates with respect to the surface that is generated by the points whose 
coordinates are f1 , …, fn . 
 From the foregoing, that definition supposes that f1 , …, fn are not simultaneously zero 
at any point of S. 
  f1 , f2 , …, fn can be regarded as the components of a vector, and when one indicates 
their values at each point of S, one will define a continuous vectorial distribution that is 
attached to that surface. 

                                                
 (1) The area of a curved surface in ordinary space is continuous of order 1 only with respect to the form 
of the surface.  One cannot define it by an approximating polyhedron without special precautions, either.  
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 Such a distribution will have a well-defined index on a closed surface as long as the 
vector is not zero at any point of the surface. 
 
 
 33. – The fundamental property of the index, thus-defined, relates to the case in 
which S is the frontier of a volume V in n-dimensional space. 
 This time, suppose that the functions f1 , …, fn are defined and continuous over all of 
that volume, and not only on S. 
 Finally, suppose that the equations: 
 
(21)     f1 = 0, …, fn = 0 
 
have no common solution inside of V. 
 If that were true then the index of the system of functions considered on S would be 
zero. 
 In order to see that, we begin by pointing out that if we let F denote the largest of the 
n absolute values | f1 |, | f2 |, …, | fn | at an arbitrary point of V then the quantity F will be 
itself a continuous function that is never zero, and in turn, will admit a positive minimum 
g. 
 Then subdivide the elements of V in such a manner that the oscillation of each of the 
functions f in each of them is less than g′ (g′ < g).  Now let ε be one of those elements, 
and let s be its frontier.  One can make each point of the latter correspond to a new point 
whose coordinates are f1 , …, fn .  Let σ be the closed surface that is described by that 
second point.  One can always make a half-line that does not meet σ start from the 
coordinate origin, because if f1, for example, is the largest in absolute value of the n 
functions at a well-defined point of ε and it is positive (which will imply that f1 > g) then 
(since g′ < g) the function f1 will be likewise positive at any point of ε or s, in such a way 
that the half-line f2  = …= fn = 0, f1 < 0 will possess the stated property. 
 It will result from this that the index of the system f1 , …, fn is zero on s, since that is 
true on each frontier of each element of V, and S can be considered to be the resultant (no. 
23) of all those frontiers, so the theorem is proved.  
 
 
 34. – On the contrary, the index will no longer be necessarily zero when equations 
(21) have common solutions inside of V. 
 By contrast, when one supposes that there are a finite number of them, to fix ideas, 
and one lets P1, .., Pp denote the corresponding points of V, the index that relates to S will 
be the algebraic sum of the partial indices, each of which is characteristic of one of the 
solution points. 
 Indeed, if one decomposes V into elements in such a manner that P1, for example, is 
in the interior (and not on the frontier) of an element ε1 that does not contain any other 
points P, and that the other points are similarly strictly interior to p − 1 other distinct 
elements ε1 , …, εp then the index with respect to S will be the sum of the indices with 
respect to the frontiers s1 , s2 , …, sp of the ε1 , …, εp (all other elements will give zero 
indices, from the foregoing).  It is obvious, moreover, from this that the index with 
respect to s1 , for example, will be independent of the form and dimensions of the element 
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ε1 under the single condition that it must contain the solution point P1 in its interior, but 
none of the other ones (and in particular, no matter how small ε1 is).  That index will then 
depend upon only the point P1 and the way that the functions f behave in the 
neighborhood of that point. 
 If the f have derivatives at P1, and their functional determinant is non-zero, then one 
can show (1) that the partial index will be equal to + 1 or – 1 according to the sign of that 
functional determinant. 
 However, we reach the following conclusion, above all: If ω denotes the index of the 
system f1 , …, fn on S then the inequality ω ≠ 0 will imply the existence of a common 
solution to equations (21) in V. 
 
 
 35. – The calculation of the index of a system of functions on a surface is often 
facilitated by the following theorem in a remarkable way: 
 
 Poincaré-Bohl theorem: 
 
 Let two systems of n functions f1 , f2 , …, fn ; g1 , g2 , …, gn be given on the same closed 
surface S, such that the elements of one system are not simultaneously zero at any point 
on S. 
 If those two systems do not have the same index then there will exist at least one point 
on S such that one has: 

(22)    1

1

f

g
= 2

2

f

g
 = … = n

n

f

g
 < 0, 

 
and if the ratios of their indices are not (− 1)n then there will exist at least one point such 
that one has: 

(22′)    1

1

f

g
= 2

2

f

g
 = … = n

n

f

g
 > 0 . 

 
 That theorem was established by Poincaré in 1886 (2) and obtained once more 
independently by Bohl (3) in 1904. 
 In order to prove it, it will suffice to consider the two auxiliary systems: 
 

(23)   1 1

1

f gµ
µ

+
+

, 2 2

1

f gµ
µ

+
+

, …, 
1

n nf gµ
µ

+
+

 

and 
 

                                                
 (1) See Picard, Traité d’analyse, volume II.  
 (2) POINCARÉ – “Sur les courbes définies par les équations différentielles,”  J. de Math. (4) 2 (1886), 
pp. 177. 
 (3) BOHL, J. für Math. 127 (1904). – The statements that the two cited authors gave differ from each 
other, as well the present text, in that they specialized the choice of the functions g (and each, in a different 
way).  However, their arguments (which are likewise different, moreover) will extend to the case in which 
those functions are taken arbitrarily.  The proof that we give here is that of Poincaré. 
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(23′)   1 1

1

f gµ
µ

−
+

, 2 2

1

f gµ
µ

−
+

, …, 
1

n nf gµ
µ

−
+

, 

 
in which µ is a positive parameter. 
 If the system of relations (22) is not verified at any point of S then the system of 
functions (23) will have an index for any positive value of µ, and from an argument that 
was already presented before, that index will be constant for any µ.  Upon successively 
setting µ = 0, + ∞, one will see that (f1 , f2 , …, fn) has the same index as (g1 , g2 , …, gn). 
 On the other hand, if the relations (22′) are not verified simultaneously at any point of 
S then it will be the index of the system (23′) that remains constant for any value of µ, in 
such a way that f1 , f2 , …, fn will give the same index as − g1 , − g2 , …, − gn .  It will then 
result [as one will see from formula (11) by inspection] that the ratio of the indices of f1 , 
f2 , …, fn and g1 , g2 , …, gn will be (− 1)n. 
 The theorem is thus proved. 
 
 If the two indices considered are not equal in absolute value then it will result from 
the relations (22), (22′) that the quantity: 
 

f1 g1 + f2 g2 + … + fn gn 
 
cannot have a constant sign on S. 
 
 

V. – APPLICATIONS.  
 

 36. The Schoenflies theorem. – The proof that was just given of Jordan’s theorem 
(see nos. 306 and 307 in the text and the beginning of this note) tells us that not only does 
a closed curve with no double point divide the plane into an exterior region and an 
interior one, but also that the order of a point with respect to the curve is equal to 0 in the 
former region and ± 1 in the latter. 
 As one sees, that will suffice to prove an important theorem by Schoenflies, which is 
stated thus: 
 Let: 
 
(24)    X = f (x, y), Y = g (x, y) 
 
be two functions of x and y that are indeed different and continuous on the interior and 
circumference of the circle: 
 
(25)     x2 + y2  ≤ 1. 
 
 Suppose that the equalities: 
 

f (x, y) = f (x′, y′ ), g (x, y) = g (x′, y′ ), 
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cannot be verified simultaneously in the circle in question unless one has x = x′, y = y′. 
 Let C be the curve that is described by the point (X, Y) when (x, y) describes the 
circumference of the circle. 
 One then has: 
 
 The equations (24), in which X, Y are considered to be given, will have a solution 
(which is unique, from the hypothesis) whenever the point (X, Y) is taken inside of C. 
 
 That theorem will result immediately from some properties of the order and index 
that were established in the preceding discussion. 
 Indeed, a point (X, Y) that is interior to C is characterized by the fact that its order 
with respect to C is equal to ± 1. 
 That amounts to saying that the index of the system (f (x, y) – X, g (x, y) – Y) has that 
same value, and is consequently non-zero. 
 Hence, the equations (24) have a common solution in the interior of the circle (25). 
 
  Q. E. D. 
 
 
 37. – As I said before, I will now address Jordan’s theorem in a space with more than 
two dimensions.  I will even suppose that the theorem has been proved, along with a 
complement that is natural to give it, from the preceding considerations.  I shall not only 
assume that a closed surface with no double point always divides n-dimensional space 
into an exterior region and an interior region, but also that the order of any interior point 
will be equal to ± 1. 
 Under those conditions, the Schoenflies theorem is proved for an arbitrary number of 
variables. 
 In other words, let: 

(24′)     

1 1 1

2 1 2

1

( , , ) ,

( , , ) ,

..............................

( , , )

n

n

n n n

f x x X

f x x X

f x x X

=
 =


 =

…

…

…

 

 
be a system of relations that define the quantities X as continuous functions of the x in a 
certain volume v in n-dimensional space.  I suppose, to simplify (although this hypothesis 
is not essential), that this volume is bounded by a surface with just one piece. 
 Suppose that one cannot have: 
 
(26)   fi (x1, …, xn) = 1( , , )i nf x x′ ′…   (i = 1, 2, …, n) 

 
in the volume in question, unless one has x1 = 1x′ , x2 = 2x′ , …, xn = nx′ . 

 Now let S be the surface (which is necessarily closed and has no double point) that is 
described by the point X when the point x describes the frontier s of v.  The equations 
(24′) have a solution whenever the point X is in the interior of S. 
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 The proof that was given for the case of two variables in fact persists without 
modification once one assumes the propositions that were cited above. 
 One can even point out that the proof of the existence of at least one solution 
supposes only that the relations (26) are impossible for two distinct points on the frontier 
S. 
 One sees from what was just said that the Schoenflies theorem is not fundamentally 
distinct from that of Jordan. 
 
 
 38. – The importance of that theorem is very great, moreover, which will emerge 
when one compares that theorem to the classical results from the theory of equations of 
degree one. 
 Consider a system of linear equations for which the number of unknowns is equal to 
the number of the equations. 
 Although such a system will generally admit one and only one solution, it can happen 
that such a solution is impossible or even indeterminate. 
 However, the condition for the system to admit one solution, no matter what values 
are attributed to the right-hand sides, is not distinct from the condition that expresses the 
idea that it cannot have more than one. 
 The Schoenflies theorem tells us that the latter condition again implies the former 
one, at least on a conveniently-chosen portion of space when one envisions completely-
general equations of the form (24′) instead of linear equations. 
 
 
 39. – The following remark results immediately from the Schoenflies theorem. 
 Suppose that a perfect, continuous correspondence exists between two volumes V, V′ 
in n-dimensional space (each of which is bounded by a surface with only one piece).  I 
say that if that were true then interior point of V will correspond to interior points of V′, 
and frontier points of V will correspond to frontier points of V′. 
 Indeed, suppose that the point P, which is interior to V, corresponds to a point P′  that 
is located on the frontier S′  of V′.  If that were true then the frontier S of V would 
correspond to a surface S′  (which is closed and has no double point) to which P would 
not belong.  From Jordan’s theorem, S′ will bound a volume V′ that is completely interior 
to V and to which P′ will consequently be exterior (1), in such a way that the points P that 
are interior to S will not correspond to any point P′ that is interior to S′. 
 That therefore contradicts the Schoenflies theorem, and our conclusion is proved. 
 
 
 40. – The preceding considerations likewise permit us to prove Brouwer’s theorem 
for the volume of a sphere any dimension. 
 The volume of the n-dimensional sphere that has its center at the origin and a unit 
radius is the set V of points that verify the inequality: 

                                                
 (1) The fact that a point P′ of S′  is necessarily exterior to any surface S that is interior to V′ results from 
the fact that one can join P′ to infinity by a continuous path that has no point in common with V′ or S′ 
besides P′ (which must, in turn, be considered to belong to it, from Jordan’s theorem). 
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(27)    2 2 2
1 2 nx x x+ + +⋯  ≤ A . 

 
 The theorem that we shall prove is the following one: 
 
 Any perfect, continuous transformation of the volume V into itself will leave at least 
one point invariant, either in its interior or on its frontier. 
 
 Indeed, suppose that x1 , x2 , …, xn ;  1x′ , 2x′ , …, nx′  are the coordinates of two 

corresponding points.  Consider the n functions: 
 
(28)    1x′ − x1 , 2x′ − x2 , …, nx′  − xn , 

 
while first supposing that the point (x1 , …, xn) describes the frontier of the sphere. 
 If those n functions are annulled simultaneously then the theorem will be proved.  
Otherwise, the system of functions that we just wrote down will have the same index as 
the system (x1 , …, xn), because we always has (1): 
 

1 1 1 2 2 2( ) ( ) ( )n n nx x x x x x x x x′ ′ ′− + − + + −⋯  > 0. 

 
 Since the latter index (i.e., the order of the center with respect to the surface of our 
sphere) is non-zero, there has to exist an interior point where the functions (28) are 
simultaneously zero. 
  Q. E. D. 
 
 
 41. – Note further that the consideration of the index permits one to generalize a 
classical notion that relates to the sense of areas to an arbitrary bijective and continuous 
transformation. 
 When the f in equations (24′) have derivatives, one knows that such a transformation 
will preserve the senses of areas if its functional determinant is positive and will change 
them if it is negative. 
 While confining ourselves to equations (24), let (x, y) be a point on a closed curve c 
in the plane that has no double point and bounds the area s, so the points that are interior 
to s will have an order equal to + 1 or – 1 with respect to c. 
 c will correspond [if we suppose that the correspondence that is defined by equations 
(24) is perfect and continuous] to a closed curve C with no double point that bounds an 
area S.  The points interior to it will have order ± 1 with respect to C. 
 One can say that a curve like c or C is described in the direct sense if the order of the 
interior points with respect to that curve is + 1 and in the retrograde sense if that order is 
equal to – 1. 

                                                
 (1) By virtue of Lagrange’s well-known identity, that inequality is a consequence of the equations: 
 

2 2 2

1 2 n
x x x+ + +⋯ = 2 2 2

1 2 n
x x x′ ′ ′+ + +⋯  = 1. 
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 Now, the transformation (24) can preserve or change the sense thus-defined according 
to the case.  However, that will depend upon only the transformation itself (at the 
moment when it is supposed to be perfect) and not upon the choice of the particular 
closed curve c. 
 In order to see that, it will suffice to deform the latter in a continuous manner. 
 In the case of the plane, one easily passes to an oriented, bilateral surface in the way 
that was explained above. 
 
 
 42. – I will now point out, in summary form, another series of applications of the 
same principle (1). 
 Consider a variety V that is closed and m-fold extended in n-dimensional space (n > 
m).  That variety will be supposed to admit a well-defined tangent plane at each of its 
points that varies continuously with the position of the point. 
 The simplest case (which is, above all, the one that we have in mind to fix ideas) is 
that of the surface of a sphere in ordinary space. 
 Imagine a tangent vectorial distribution on V; i.e., make each point of V correspond 
to a vector that is tangent to V at that point.  The components of that vector will be 
supposed to vary continuously, but not necessarily admit partial derivatives with respect 
to the coordinates of their origin. 
 Above all, only its direction will be relevant.  It is essential to note that the direction 
will be indeterminate when and only when the vector is zero. 
 The direction parameters can be considered to be proportional to a system of 
differentials dx1 , …, dxn of the x that correspond (in each element) to well-defined 
differentials du1, …, dum of the parameters u (while supposing that the x are differentiable 
with respect to the u, which is legitimate, from the hypothesis that was made on V). 
 Those differentials du1, …, dum , or rather, of other (finite) quantities λ1, …, λm that 
are proportional to them with a positive proportionality factor, can, in turn, be regarded as 
defining a direction vector in the space that is the locus of parametric points.  That 
direction vector will be indeterminate only if the direction is.  We assume that this is true 
only at a finite number of points, and we suppose that the decomposition of V into 
elements has been done in such a way that those points are not on any face. 
 Under those conditions, the corresponding system (λ1, …, λm) will admit a well-
defined index.  Consider the sum σ of all those indices. 
 One proves (2) that it does not depend upon either the parametric representation that is 
adopted for V or the choice of the tangent distribution. 
 When the number m is odd, the sum in question will be zero, because from what we 
just said, it must not change when one simultaneously changes the signs of all the λ, 
which will be multiplied by (− 1)m, as we saw. 
 Things are different for the even values of m.  The integer σ will then be one of the 
quantities that characterize V from the standpoint of analysis situs.  It will have the same 

                                                
 (1) On that subject, see the papers of Poincaré on the curves that are defined by differential equations in 
J. de Math. (3) t. 7, 8; ibid. (4), t. 1; those of Dyck in the Berichte der Ges. Wiss. Leipzig 37 (1885), pp. 
314; ibid. 38 (1886), pp. 53, and several recent works by Brouwer that were included in the minutes of the 
Royal Academy of Sciences in Amsterdam. 
 (2) See the works that were cited above.  
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value for two arbitrary homeomorphic varieties, even when they are located in spaces 
with different dimensions. 
 In order for σ to have a value that is not zero, it will suffice to take V to be the surface 
of a sphere in three-dimensional space (or, more generally 2p + 1).  For the sphere in 
ordinary space, one can, for example, take the tangent direction to be that of the tangent 
to a meridian, which is supposed to be traversed towards a well-defined pole.  Such a 
distribution will be indeterminate at the two poles.  In the tetrahedroid (here, the triangle) 
that surrounds one of them, one can take the parameters to be the rectangular coordinates 
of the point that is projected onto the equator, and one will then find that a sum of the 
indices is: 
 
(29)     σ = 2. 
 
 
 43. – A truly-remarkable consequence results immediately from the fact that the 
integer s is non-zero: 
 
 It is impossible to make each point of V correspond to a direction tangent to V at that 
point without that direction being indeterminate at one or more points of V. 
 
 That is because the index that relates to each element will be zero, as we proved in 
no. 33. 
 Consequently, such an impossibility will be true on the of the sphere in ordinary 
space. 
 
 
 44. – One can deduce Brouwer’s theorem on that surface from that result.  In that 
case, the theorem is confined to transformations that preserve the sense of orientation (no. 
41), moreover.  It is stated as follows: 
 
 If any perfect, continuous transformation of the surface of a sphere preserves the 
sense of orientation then it will leave at least one point invariant. 
 
 In order to prove that (1), let M be an arbitrary point of the surface, let M′ be its 
homologue, and let A be a fixed point.  Take the tangent direction at M to be the tangent 
to the circle MM′A; more precisely, the tangent to that one of the two arcs of that circle 
that are determined by the points A and M that contains the point M′.  Such a direction 
will become indeterminate only in the following three cases: 
 
 If M coincides with A. 
 If M coincides with A. 
 If M coincides with M′. 
 

                                                
 (1) The method of proof was communicated to me by Brouwer.  
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 Each of the first two situations is realized once and only once.  First, consider an 
element of the sphere that surrounds the point A.  If the homologue A′ of the point A 
coincides with A then the theorem will have been proved.  Otherwise, the circle AMM′ 
will be (for M close to A) very close to the circle AMA′.  It will then result that it will not 
be very small at any moment.  Since AM is, on the contrary, a small arc, it will make a 
very small angle with the great circle AM at M.  Under those conditions, the tangents to 
those two arcs will have the same total rotation when M turns around A.  It will result 
from this that the index of the variable direction in question along the element that 
contains A will be equal to + 1. 
 If, on the contrary, it is the point M′ that coincides with A then the point M will 
become a point B that is distinct from A (since otherwise the theorem would have been 
proved). 
 When M turns around B, M′ will turn around A, and in the same sense, by virtue of 
the hypothesis that was made on our transformation.  The circle AM′M will be very close 
to the circle AM′B, anyway.  Now, the tangent to the latter at B or M will have a sense of 
rotation that is inverse to that of the tangent at A. (Those two lines are symmetric to each 
other with respect to the plane that is perpendicular to the midpoint of AB.) That is, the 
sense is inverse to the sense of rotation of M′ around B. 
 Therefore, the index along a small element that surrounds the point B will be equal to 
– 1, and will give a sum of zero with the first one. 
 Since, on the contrary, the total sum is non-zero, the third hypothesis must be verified 
at one or more points on the surface, as well. 
  Q. E. D. 
 
 As for the transformations that change the orientation, they cannot admit any 
invariant point at all.  That is the case in which one replaces each point of the surface 
with the diametrically-opposite one. 
 

___________ 
 


