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NOTE
SOME APPLICATIONS OF THE KRONECKER INDEX
By Jacque$iADAMARD

Translated by D. H. Delphenich

The proof by Ames of Jordan’s theorem on closed cumitisno double points (nos.
306, 307) rests upon the consideration of the order of a pointf one prefers, on the
consideration of a variation of the argument.

The generalization to the case where the number ofndiones exceeds two is
provided by th&ronecker indexwhich is a notion that is now classicHL (

It has received some new applications in several nogpueary works. | propose to
present some of them here.

All of the arguments that follow can be easily pubia purely-arithmetic form, even
though they are not immediately posed in that formglibreviate. In order to be valid
under the general hypotheses that we shall adopt, theysatisdyy the condition that they
involve only the continuity of the functions that amployed, moreover.

l. — JORDAN’'S THEOREM IN THE PLANE
1. — I shall begin by returning for a moment to the proof efldo’s theorem in the
case of a plane, and in one part of the theoreml Ib&iforced to go a little further than

was done in the introduction of the notion of order.
A planar line ) (C) is defined by the two equations:

) x =x (1), y=y ),

in which the right-hand sides are continuous functionsinfthe interval {, t;). That
curve will beclosed i.e., it will be such that one has:

(2 X (to) =x (t1), Y (to) =y (to),

and it has nalouble pointi.e., the equations ir{ t”:

x () =x(t"), y(t)=y(t”)

() Above all, in the treatis€raité d’Analyseby Picard (T. I, pp. 123; T. II, pp. 193).
() Itis what was called simple closed knat the text (n0290).
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have no other solution thah=ty,t”"=t; ort’=t;, t” =ty whent’is different fromt”.
Jordan’s theorem then consists of this:

1. The curve@) determinest leasttwo distinct regions in the plane.
2. The curve@) determine®nly twodistinct regions.

| shall address only the first of those two statemé@hts

2. — | recall that theorder of a pointP that is not situated on the curv€)(with
respect to that curve is defined by means of the continvarnietion of the argument of
the vectoM when the poinM describes the curve.

That order is zero when one can draw a half-line throlglpointP that has no point
in common with C).

It is equal tax 1 when one can draw a half-line through the pBitihat has one and
only one point in common withd), and is such that if one letsdenote the value d¢fthat
corresponds to that point then the points©f that correspond to value othat are a
little smaller thant” and the point of @) that correspond to values bthat are a little
large thart”will be on different sides of the half-line.

3. — Having said that, we shall confirm the existence ofiatpehose order is 0 and
that of a point whose order4s1.

First, lety = y1 be a parallel to thg-axis that has some points in common with the
curve. Among them, Ik (x;, y1) be the one that has the smallest abscfsdf(one lets
X, denote a quantity that is less tharthen the pointA'(x, y;) will have order 0, since

the half-line that starts from that point in the ogip® direction toA’A has no point in
common with C).

4. — Now let £ be a value ok that is included, in the strict sense (i.e., excluding
equality), betweer; and the maximum value afon (C), in such a way that the curve
(C) cuts the linex = ¢ at two or more points. Lé¥l, N be the two extreme points of
intersection; i.e., the ones that have the smadledtlargest ordinate, respectivefy, ©r
rather, the ones that are closesAtoBy that, | mean the points for which the value$ of
are the closest to the one that correspondsabove and below i’\. The pointsM, N
divide (C) into two arcs. | shall call the one that congathe pointA thefirst of them.

() It was established in the text under the conditiaat there must exist a vectdB that crossthe
curve C) (no.296).

() The set of values df(they are infinite in number) that verify the equatjoft) =y, is closed. The
same thing will then be true for the corresponding valfies dhe latter set will then contain a maximum
element and a minimum element.

() See the preceding footnote.

(%) That will imply an obvious modification when the pothat corresponds to=t, ort = t; is between
A andM or betweerA andN.
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Under either of the definitions that I just indicated Kb andN, the first arc will contain
no point that is located on the prolongation of the sadmof the lineMN, either when
the first arcMN contains no point in common with the lime= ¢ besidesM, N (first
definition) or when the first al®IN has no point in common with it besidds N (second
definition).

Draw a lineAa throughA that cuts the ling = £ at a pointa that is located between
M andN. That lineAa can meet the first aldN at only one point (viz., the poi&) or at
several of them; IeB the one of those points that has the largest afast)s

Let B’ be a point on the linda that has an abscissa that is larger tBarbut
meanwhile there is no point on the secondMi¢ that is betweem and B’ [which is
possible f) without B itself having to be a point of the second arc, copntrta
hypothesis].

The pointB’has ordet: 1.

In order to see that, joiM to N by a path that is composed of two rectilinear
segmentdP, NQ that are borrowed from the two prolongation®/i, respectively, and
are such thaaP is equal tcaQ, andP andQ are joined by a semi-circle with its center at
a, which is located on the line ®N (i.e., on the side that does not hajeand has a
radius that large enough that it has no point in comwitim the first arc b That new
path forms a closed lin€() with the first ardVIN and a closed line) with the second
arc MN. We agree to choose the sense of traversal alghdo( be the sense that
corresponds to increasingand C;) and C,;) have a sense such that the parts that are
common to C) will be traversed in the same sense as they ar@Cpn Under those
conditions, the auxiliary patdPQN is traversed in the opposite sense©4) and C,).

Upon lettingQc)(B"), Q,(B), Q,,(B) denote the orders & with respect to the

closed curvesQ), (Ci), (Cy), respectively, one will then have:

Q(B’) = Q(Q)(BI) + Q(CZ)(B'),

since the variations of the argument MRPQN cancel. Now,Q,(A) is zero [for the
same reason th&® ., (A)is], so the same thing will be true fex ,(B’) (no.299), since

one can joirA to B’ by a path that has no point in common with)( namely, the portion
of AB of the first arc that follows the segment of time BB’
On the other handQ(Cl)(B’) is equal tox 1, since the half-line that starts from the

point B”and moves in the direction of increasingill meet ;) at only one point that is
located on the semi-circle, and it will do that under ¢beditions that were specified
above.

Our conclusion is thus proved.

() See footnote?( on the previous page.

() Once more, see footnofd ¢n the previous page.

() In the second way of defining the poiMsN, the pathiMPQN can be replaced by the line segment
MN, so the poinB’will be betweerB anda.
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Il. - GENERALITIES ON VARIETIES AND SURFACES

5. — Without actually examining whether one can prove Josddw@orem in the case
of more than two dimensions by an analogous method, ale rebw suppose that the
theorem was proved, and that will be done by specifyingtiaststatement in a manner
that will be indicated later.

However, we must define what we mean by surfacasdimensional spaces.

In order to do that, we shall first define thedimensionatetrahedroid

Conforming to the classical definition in elementggometry, we call the set of
points & , ..., Xm) in that space that verifies the inequalities:

(3) X120,%=0,..,Xn20, Xg+X+ ... +Xn<1

a locus — or, by extension, any set that is deduced from the dinst by a linear
substitution that is not necessarily homogeneous {ne.jntervention of constant terms
is possible) and has a non-zero determinant.

6. — Upon replacing one and only one of the+ 1 inequalities (3) (or with the ones
that correspond to them after substitution, if thad baen done) with an equality, to
which one continues to append the remaimmghequalities with no modification, one
will have one of than + 1facesof the tetrahedroid. Upon similarly replacing two (and
only two) of the inequalities in question with equalitiese will have grimary edge
(which is, by its very definition, common to two fages&Jpon writing out three equalities
andm — 2 inequalities, one will similarly havesacondary edgestc.

Finally, a point that is common tafaces is a summit. If one lets:

(4) DD (=12, ...m+1)
denote then + 1 summits then one will have:

(5)

for the tetrahedroid (3).

{ 0=1, =0 (=1..m;j#i),

(m+l) — g(m+l) — — c(mrl)
1 61 _“'_5m =0

7.— An arbitrary point of a tetrahedroid can be represehy the formulas:

1 2 1
= tlgi()'*'tz@(i( )+"'+tm+1§(i(m+ )

6 .
© * LG+,

in whicht;, to, ..., tner @arem + 1 positive numbers. One sees that immediatelyher
tetrahedroid (3), and one extends that to the otherhestraid by remarking that the
linear substitution will not change the relations (6).
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8. — Moreover, as one easily convinces onesalf+ 1 arbitrary points whose
coordinates are given by the formulas (4) can be considerd® the summits of a
tetrahedroid, provided that the determinArnthat is formed by bordering the matrix (4)
with a column of non-zero units is non-zero. Thatatetdroid can be considered to be
represented by the formulas (6), which are written:
©) [ g

L+t +eett =1

this time. t1, t2, ..., tme1 WIll be called thebarycentric coordinatefabsolute in the case
of equations (§ and homogeneoysin the case of (6)] of the poinki(, ..., Xm) with
respect to the tetrahedroid.

m absolute barycentric coordinates can be consideredfitte de point. If one, in
turn, considers those quantitied;, ..., tm to be Cartesian coordinates then the point that
has those coordinates will describe the tetrahedroidw{®n the point i, ..., Xm)
describes the given tetrahedroid.

If the determinant that was just denotedMis zero then we will say that formulas
(6) or (8) define adegenerate tetrahedroid.

9. — More generally, the formulas:

(7) )= tlgfi(l) +t2§(i(2)+"'+tm+1§(i(m+l) |

H+E+m+%ﬂ

or, what amounts to the same thing:

(7) { Y S ED L ED bkt FOD),
tl+t2+-..+tm+l:1’
in which the index varies, no longer from 1 up to, but from Lup tov=m(ty, ..., tma

being positive variables), will define an-dimensional tetrahedroid in n-dimensional
space provided that the determinants that are deduced froneth@ngular matrix:

|&001] (=1 ...m+1)

are not all zero'}. In the contrary case, one will once more bdidgavith adegenerate
tetrahedroid.

() One can also say that such a tetrahedroid is deduweddnm-dimensional tetrahedroid (3) by
taking then variables in it to be linear functions of threvariablesx (when at leasin of those functions are
independent).
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The (non-degenerate) tetrahedroid (7) can also be regasdmdng defined by — m
first degree equations [that are obtained by eliminatieg thom equations (7) or ()}
andm + 1 inequalities.

A face of themrdimensional tetrahedroid is, in that sense,mar 1l-dimensional
tetrahedroid. The opposite face to th8 summit of the tetrahedroid (5) is, in fact,
represented by the formulas (6) [of)[6in which one setf = 0.

A primary edge of am-dimensional tetrahedroid is likewise am— 2-dimensional
tetrahedroid, etc.

10. - The tetrahedroid (3) can be decomposed by the planes:
k )
X =— i=12,..m;k=1,2,...p
p

into convex parts, and they, in turn, can be decompasedtétrahedroids® whose
dimensions are all less than p [ consequently, they will be as small as one desires in
any sense. The latter property will then extend (by lirsednstitution) to an arbitrary
tetrahedroid.

11. - Having said that, laty, ..., un be m parameters such that the point that they
define, and which we will call gparametric point describes amm-dimensional
tetrahedroid. Lexy, Xy, ..., X, be some continuous functionswaf ..., un that aren > m.

() A convex polyhedron in m-dimensional spicthe set of points in that space that verify an nyit
number of inequalities of the first degree:

al(h)xl+a(2h)xz+...+ Erinh))%-i- bh)ZO (k=l, 2,)

Those inequalities are capable of being verified simetiasly, in the strict sense (i.e., excluding equality),
and are such tha] |, |z |, ..., |%n | are necessarily bounded, thanks to those inequalfidace of the
polyhedron will again be obtained by replacing one of thiesqualities with the corresponding equality,
provided that the remaining inequalities can still befiggtisimultaneously in the strict sense under those
conditions.

The proof of the theoremAny convex polyhedron in m-dimensional space is decomposable into

tetrahedroidsis easy to arithmeticize. One takes an interior (pOitia; , ..., dn) and connects it to each
point(Xy, ..., Xy of the frontierS of the polyhedron by a line segme{nd;:a‘littx] , 0<t< +oo.

When &, ..., Xy) describes a face, the poixt will describe arm-dimensional pyramjdand when all of

those pyramids are external to each other, the sétafftaem will form a given polyhedron (thanks to the
fact thatSis cut by an arbitrary half-line that issues fr@at one and only one point).

If the theorem is assumed to have been proved foy @adue ofm that is less than the one considered
then one can decompose each face intman 1-dimensional tetrahedroid. The corresponding pyramid

will be, at the same stroke, decomposed into parts thiabevietrahedroids [the coordinate$ can be
easily expressed in the form (6) thenl].
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We say that the poink{, ..., X,) (which will be the poinproperly speakingdescribes an
m-fold extendedelementn then-dimensional spack, .

Let & be such an element that corresponds to a tetraheédrthidt is described by the
parametric pointys, ..., Uy); let & be an analogous elements that corresponds to a second
tetrahedroidT, . Suppose that those two elements are linked by themietgary of a
facef; of T, and a facé, of T» in the following manner:

If the summits of; (or those of;, resp.) have been permuted in a suitable manner, if
needed, then any parametric pointfoWill give the same position for the point ...,

Xn) as the point off, that has the same barycentric coordinates (by meérthe
permutation that was just spoken dj) (

If that were the case then agree to regard thos@awametric points, one of which is
taken orf; and the other ofy, and which we shall catloupled pointsas being identical
to each other (although their coordinateare different, in general). Consequently, the
facesf; , f, will themselves be regarded as constituting only one fate elements,, &
will then be calleccontiguousalong the unigueommonface that corresponds tpandf;

(in the spac&,).
A third elements; can be contiguous tg along a facef, of T, ; we suppose that it

is different fromf, (the contrary case will be discarded in all of wlatows). The
primary edge that is common fp, f, will give an edge that is common &, &, &

whose points will be the same whether one deduces titamone or the other of the
elements considered.

Similarly, several elements can have an edge of higtakr in common (or a unique
summit). However, one must remark that an arbitrarmber of elements can further
have the same primary edge in common.

12. — Now consider an arbitrary finite number offold extended elements i
dimensional space that have contiguity relationsveeh each other of the sort that we
have just defined, but in such a manner that any facee@bf them can be common with
(at most) one other face. We will then have at@mfold varietythat is extended in-
dimensional spacé)(

Conforming to the preceding, two coupled parametric pamnmsthe face that is
common to two contiguous elements, or more generally,ar more coupled parametric
points on an edge (of arbitrary order) that is commamvtoor more elements (or rather,
a common summit to two or more elements) will be aersd to give only a single point
(X1, ..., Xy) of our variety. In any other situation in which tleare point Xy, ..., X,) in n-
dimensional space is found on our variety more thaa time [even though it
corresponds to two different parametric points of theesatement or two different

() More generally, one can assume there isdiitrary perfect, continuous correspondence between
the points; andf, such that the parametric points that provide the sanmépare the ones that correspond
under those new conditions. One shows that this somewbrat general case can be reduced to the one
that is treated in the text.

(®) Thevarieties thus-defined, are the ones that we consider in whata The question of knowing
whether one can give more general definitions to threessord is, of course, entirely reserved for later. It
will not be addressed here.
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parametric points of elements that are not cougigdthat point will be calledioubleor
multipleaccording to whether it occurs twicerar> 2 times, resp?).

13. — The same variety can be represented in the formathsitjust indicated in an
infinitude of ways, moreover. Indeed, we shall notsuder two varietie¥ andV’ of the
preceding type to be distinct if there exists a pertaattinuous correspondence between
the parametric points that generafeand the ones that genera# such that any
parametric point oY will give the same pointx(, ..., X,) as its corresponding one dfi
The continuity and perfection that we just spoke ofsangposed to exist only by means
of the previously-made convention that we consider coyménts to be identicaf), so
the decomposition 0¥’ into elements it not at all supposed to correspond tootfe
moreover, and the number itself of those elementbeatifferent.

If the two varieties have no multiple points thethét is to be true, it will suffice that
each point oV is also a point 0¥, and conversely.

In particular, we will not change a variety by subdivgd one or more of the
tetrahedroids that correspond to its various elements partial tetrahedroids, as was
explained above (nd.0).

14.— We add that one might have to consider twinld varietiesV andV’ between
whose point, there exists a correspondence of the tgpevs mentioned in that number,
but without the values ofbeing the same at the corresponding points, even if thgein
n were the same fov andV’. Two varieties of that type are calledmeomorphicand
the study of properties that are common to them corestumalysis situs.

() We then exclude the case in which an element is contigiaoitself (viz., two of its faces are
coupled to each other) from what we are expressing. tf dhse presents itself (which is not at all
impossible) then we can easily modify our definitiorsircth a manner as to take it into account. However,
one can also discard it by a convenient subdivisionglseee) of the element considered, as one can assure
oneself with no difficulty.

() One can haven = .

() In other words, here, contiguity signifies that:

1. A parametric point of an elemerftand only one point of ' correspond to a point that belongs to an
elements (and only one) oY/, so the values af that relate to one of those points are continuous fursctio
of the ones that relate to the other.

2. If a parametric poinP that belongs to just one elementf V corresponds to a poift’ that is

common to several elemens§, ¢, , ..., £ of V) and if one considers a second p@nef £ such that its
correspondingQ’ belongs tog; , for example (while still being able to be commone&o and to one or
more of the other elememnt , ..., £'), then the values af that correspond tQ’in & will be continuous

functions of the ones that correspondo
3. One has statements for the entirely general nashich a point that is common to several elements

&, ..., & of V corresponds to a point that is common to several elsmg, ..., £ of V’that are

analogous to the statements that one makes in thevbase a point that is common to several elements of
V corresponds to a point that is taken from just one eleafi&f,
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15. — The changes of parametric representation that wendsiated are attached to
the possibility of making a supplementary hypothesis that generally makes on the
varietiesV that we have envisioned, and which we shall make in vatiats.

No matter whaP is taken orV/, one assumes that among the various decompositions
of V into elements that one can carry out in conformityhwhe preceding conception,
there exists at least one of them in wHithelongs to only one element.

That hypothesis is distinct from the preceding one:dleddmissible varieties that
do not include it are excluded by its intervention (

16.— The varietyV will be a single piecef one can pass from an arbitrary element to
another likewise arbitrary element by a chain of elémerach of which is contiguous to
the preceding one along a face.

It is closedof every face is common to two elements. In thdreoy case, the set of
faces, each of which belongs to only one element titotes thefrontier Sof V.

That frontier, which is am — 1-times extended variety, might not be in just one
piece; however, it is necessarilpsed as one easily assures onesglf (

17.— In all of the preceding, the order in which one arrdritpe coordinates of the
parametric point in each element (or what amountsd#me thing, the order in which
one arranged the summits of the corresponding tetraidgdvas irrelevant.

We now agree to introduce such an order, but only tiotlosving extent:

We divide the ify + 1)! permutations to which one arrives by arranging the- (1)
summits of the tetrahedroid in all possible ways two classes according to the method
that is employed in the theory of determinants. Inroth@ds, we put all of the ones for
which the passage from one to the other is an altaghprmutation into the same class.

() For example, that is what happens for the volume @fctine that has a circular ring for its base.
Such a volume is decomposable into parts that each hpeefect, continuous correspondence with a
tetrahedron, but the summit of the cone must be comimanleast two of those parts.

Furthermore, let the torus be represented by theiegaat

X=cosy (r+acosg), y=sing(r+acosg), z=asing,

in which ¢ and ¢ are considered (mod72 One can deduce the three-fold extended variety in four-
dimensional space:

Xy =tcosy (r +acosg), x;=tsiny(r+acosg), x3=tasing, X4 =t coSg,

in whicht varies from 0 to 1. That variety is likewise decompasaitio elements, but the poixt=x, =
X3 =X, = 0 is forced to belong to several of them.

() If the elements$ of S are faces o¥ then the facea of S will be the primary edges &f. If one of
them belongs to only one element\6fthen the two faces that inclu@ewill belong toS and will be
contiguous. If it is common to a series of elemerds déine contiguous to each other (and the last of which
is not contiguous to the first at the moment wiaeon the frontier) then the two exterior faces of the
extreme elements will belong 8and will be contiguous aloray
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We shall not choose from the permutations of the sdass,cbut we shall choose
from the two classes, and that choice will be wha eall the orientation of the
tetrahedroid.

Furthermore, there is no loss of generality in supgotiat the chosen class is the
first one (i.e., the one that includes the naturdeor and that is what we shall do from
now on.

A well-defined orientation of the tetrahedrdidwill obviously correspond to a well-
defined orientation for each face, which will be called tésulting orientation: One
obtains it by arranging th@ summits of that face into an order such that whey Hre
preceded by the opposite summit, one will have a permatafithe first class of thex(

+ 1) summits ofl. We say that this orientation is the one tiesultsfrom that of the
tetrahedron for the face considered.

If two elements of a variety are contiguous along a face then we will say that the
orientations of the two elements a@ncordantf they do notimply the same orientation
for the common face (in the sense that was just equla

18. — After having oriented one of the elements/ah an arbitrary way, choose the
orientations of the elements that are contiguous tm isuch a way that they are
concordant with the first one, and then proceed silyilior the elements that are
contiguous to the ones whose orientation was just detedmand so on. W is in one
piece then one will arrive at an orientation forreatement oV in that way.

Since there generally exist several ways of passom fstne element to another by
the intermediary of contiguous elements, it can happan ttie orientations that are
obtained will differ according to the way of making theinsition that one adopts. In
that caseY will be calledunilateral. If, on the contrary, one never meets up with such a
contradiction then the variety will be callbdateral.

From now on, we shall suppose that our variétg bilateral and oriented in such a
manner that the orientations of all elements areamlant. That will be possible in only
two different ways (ilV is in one piece).

19. — Finally, we call am-fold extended variety that is supposed to have no double
point inn-dimensional spacewalumein that space.
We call am — 1-fold extended variety imdimensional spacesurface

20. — The notion of multiple integral, as well as itduetion to simple integrals and
the changes of variables that one can perform orait, likewise be presented in an
entirely arithmetic form. | will suppose that thosepeuies have been establish&d (

() Their proof can present some difficulty for the ingsneral domains. However, in what follows, the
domain of integration will also be a tetrahedroid, #relvolume of one tetrahedroid is interior to the othe
(which is a volume that can itself be decomposed intattetiroids).

Under those conditions, the formula for changingaldess will be established for only linear changes of
variables.
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Moreover, one can deduce Green’s formula from th&or. the sake of speed, | will
likewise be content to state that formula, whichasyeto prove by following the classical
route.

In the m-dimensional space that is the locus of the poiris.(., Xn), let V be a
volume that is bounded by a frontier surf&eand let there b continuous functionga
, oo W OF X1, ..., Xm in that volume that admit integrable derivatives of foder. The
position of a point on an element®Wwill be defined byn— 1 coordinates; , V2, ..., Vm;
for example, they might be the barycentric coordisabf the parametric point with
respect to the tetrahedroid that it described. We supihasethose coordinates are
arranged in an order such that the determinant:

al aZ am
ov. ov. ov,
(8) 1 1 1
o 0%  0x,
v, 0V, v,

is always positive whenever the directian, (..., an) is directed to the interior of (at
the point considered). We will then have:

v W,
oy, oy oY _ ov. v,
9 ot R i S S I s NI, N 1 1 .
©) j mj/[axl 0%, axnjxl & .[ .[ o Ay
Tl o,
aVm—l aVm—l

In that formula, then-tuple integral on the left-hand side is extended ovevoheme
V. The (m— 1)-uple integral on the right-hand side is extendest all elements 0§, in
which thev are coordinates that are arranged according to teehaid was just explained
in every case.

21.—In the case wheM is a tetrahedroid with summits:

XML, X k=1,2,..m+1),
the rule in question can be formulated in the followimgnner:

Agree to say that the orientation of the tetrahedvbabnforms to that of the system
of coordinates ¥ ..., X if the determinanfA that was considered above, namely:
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x® X0 1
(2) @ 1
(10) A=| ™ %
Xl(m+l) . X[gnmfl) 1
IS positive.

In order to obey the rule in question, the coordinates each face, which are then
supposed to be linear functions xf(for example,m — 1 of the absolute barycentric
coordinates), must be arranged in some order such thabtltation conforms to the
one that results (nd.7) from that ofV itself on the face in question. For example, on the
face that is opposite to the index 1, one must have:

R
@ .\
\ 1
(10) 1 m-1 > O,
Vl( m+l) V|§‘1 T{l) 1
in which v, ..., v are the values ofat the summit with indek

22.— A particular case of what we just said is the foifay one: If a parallel to the-
axis (i.e., a line whose equations age= const., ... xn = const.) meets a fade of a
tetrahedroidTl in such a way that; increases when one passes from the exterior to the
interior of T upon traversing that face then its orientation (whedults from that oT)

will or will not conform to that of the coordinate $gmx., ..., Xnaccording to whether
the orientation oT itself does or does not conform to that of the cootdisgstenx; , X,
.oy Xm, resp.

The opposite situation will take place whenincreases when one passes from the
interior to the exterior.

If the faceF is opposite to the summit with index 1 (as one can sugppsaans of
a permutation of the first class between the sumrtiish that is what one will get by
settingvy =Xz, Vo = X3, ..., Vm1 = Xmin the determinant (1Ipandar =+ 1, 0= ... =an =
0 in the determinant (8).

lll. - ORDER OF A POINT WITH RESPECT TO A SURFACE

23. — Having posed those preliminaries, we can defineotder of a point with
respect to &losedsurfaceS in then-dimensional spacg, .

Let such a surface be defined as was indicated in thedingc (and presenting
double points or not, moreover). Suppose, for the tinmgpé¢hat in each element, the
coordinatest , ..., X, of the spacede, admit continuous partial derivatives of the first
order with respect to the parametess..., u,-1. On the contrary, when one passes from
one element to another contiguous one,xthell be subject to only being continuous.
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Moreover, that will obviously imply the existence andhtouity of the (first) derivatives
of thex with respect to the parametergno. 20) on the face that is common to those two
elements.

Consider the integral then:

o 9
- 0 0
) I I S L T T
-
N S
aun—l aun—l

which extends over the entire surf&end in whichr denotes the positive quantity:

r= /)(12+...+)<,

while u, ..., Uy, are the coordinates of the parametric point in eéhent, when they
are arranged (n@1) in conformity to the orientation of the elemeht (

That integral will make sense as long as the coordovége in E, does not belong to
S One confirms immediately that it will not changevaiue:

a) When one multipliess , ..., X, by the same positive quantidy which is constant
or varies with the uprovided that it is continuous and differentiable under shme
conditions as the ones on tkje

b) When one performs any sort of orthogonal substitutidh constant coefficients
and a determinant equal to + 1 onxhe

Furthermore, letS and S’ be two closed surfaces that have a certain number of
elements in common. Suppose that they are bilateraba@dted in such a manner that
the orientation of each of the common elements in guest S is oppositeto the one in
S’ If one then forms a new surface (which is obviouklged and bilateral, like the first
one) by suppressing those common elements and combiningrti@nmg elements
(which is a surface that we shall call tesultantof SandS”) then when the integral (11)
is taken over that resultant, it will be the sumhaf integrals over each of the component
surfacesS andS’, which is an obvious consequence of the form of thagnal.

24. — The fundamental property of the integral (11), wheis iextended over the
closed surface, is the following one:
One has:

(12) | = WKy,

() 1. e., the orientation of the tetrahedroid thategese to them.
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in which K, is a numerical constant that depends upon or(®), and wis a (positive,
zero, or negative) integer.

In order to establish that, we suppose that the prodbdms made for every value of
n that is less than the one that one considers.

We then set:
ro=+ /X22+-~-+)§f,

and let@denote the angle that is defined by the two concordantieqsiat

cosf= ﬁ, sin@= 5,

r r

where that angle is supposed to be found between Oréwthich is possible, since its
sine is positive). The differential éfis coupled to that of by the relation:

2 -_— e
_singdg= o xl(xzt:;w tx dY

which will permit one to put the quantity under fhef sign inl into the form:

96 %
(13) _sin:je oy 0y o, :_sin:jez 06 W
r e r ou,
08  0x, 0X,
ou._, Ou._, 9 U,

in which, for example:

__ D)
(13) Aor = DU,,...,u )

Now letF (8) + h (whereh is an arbitrary constant) be the primitive of"irg, in
other words, let:

F (9 =sil?§,
so the quantity (13) can be written:
(14) _ awl+a¢/2 +.._+a¢/n—l ,
ou, du, ou,_,

with

() K, is nothing but the areas of the sphere-tlimensional space.
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[F(q)+h] { nlAzk n-1A3,k+“'+r_)§1—1Ah,kj'

The set of terms in (14) that do not enter into (13)eig

> [ -1Akj

T 0u,

is, in fact, zero (the indexvaries from 2 ta, while k varies from 1 tor — 1).
That will result from the identity [which is easy terify ()] for n — 1 arbitrary
(differentiable) functionxz, Xz, ..., Xn 0f X2, ..., X :

0 0
— (A1 Xo+ Az 1 Xz + ... + AL Xn) + — (Ao 2 Xo + Ao X + ...)
oy, ou,

(Azyn-]_ Xo + )

n-1

_ {axz L 9% +m+axnj D(%,..., %)
0x, 0% D(W,..., Y1)

when one setX; = x /™" and observes that one has:

(15) i( Xilj+ +i[ al j =0
X, \ 1y 0X,

The form (14) that is given to the integration elemmanmits one to apply Green’s
formula, as long as the functiong are continuous: With that reservation, and upon
transforming the result by the known theorem on théipfication of determinants, we
will have:

% %X,
(16) Zj '[ F(e)+h aVl 6V1 aVl dvi dv, ... AV .
0%, 0 0x,
Ny OV, OV,

() That identity, in which théy, are the quantities that are defined by (13), (13), is wellkknfor the
case of constant; , ..., X, : It enters into the theory of thmultiplier (see Jordan, Goursat, efEraités
d’Analyss.



Hadamard — Some applications of the Kronecker index. 16

The summation2. here relates to all faces of all the elementS.oOn each of those
faces, the coordinatasmust be defined and arranged as was explained in20p21,
with the orientation of each face being the one thatlts from the orientation of the
element from which it was taken.

Since the surfac8is closed, each face will then occur twice, and (ftbenpreceding
hypotheses and conventions) with the opposite orientatiotine two cases.

Therefore, the two terms that relate to that facthe expression (16) musancelif
at least the numbérhas the same value on one part and the other.

25. — However, all of that is subordinate to the legiay of formula (16). Up to
now, that was established only whgmever became zero; i.e., when the line:

a7 X2=...=% =0

did not cutS

In that case, when one séts 0 in all elements, one will see thas zero.

More generallythe integral(11) will be zero when one can draw an arbitrary line D
through the origin that has no point in common with S

That is because we can redube to the x;-axis by means of an orthogonal
transformation that does not charigei.e., to something that is represented by equations
@n.

25 (cont.).— We abandon the first case, and then we shall ndasshbegin to make
certain particular hypotheses.

We first suppose that no line that issues from therodgts the same element®at
points that are located on one side of the origin andttier. That first hypothesis does
not diminish the generality. In order to verify thiatwill suffice to make the elements
small enough (by subdivision, if that exists) for thetahce between two points on the
same element to always be less than twice the mmirdistance from the origin t8§
which is possible by virtue of the continuity of the

We then suppose the existence of a lhewhose intersection with the surface
satisfies the following conditions:

D does not meet any face.

Any element that is met Y is such that thg, y are linear functions of the (which
are generally non-homogeneous). Furthermore, it isognBtonly a single point'.

Such an element is obviously itself a tetrahedroid (artdonty in its parametric
representation), which can nonetheless be degenerate.

The conditions that were just enumerated will befredle, in particular, if thex are
linear inbtheu in any element ofS in which caseS will be called a closeg@olyhedral
surface ).

() Those suppositions are hardly essential. Their patpose is to avoid certain complications of the
general case.
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One can even subjebtto being as close as one desires to an arbitrarigndine Dy
that passes through the origin.

26.— We assume, as we just did, tBats nothing but they-axis, which is the locus
of points for whichrg is zero. 8 will be equal to zero orron that line according to the
sign ofx; .

From that, the elements 8ftan be divided into three categories:

1. The ones on whicBdoes not become equal to Omr The corresponding value
of h will be taken to be equal to zero.

2. The ones where one has (once and only ofice)0 (in such a way that one
cannot haved= 7). We then také =-F (0).

3. The ones where one has (once and only afieegx We then také = - F (73).

The formula (16) will be valid even whé&hcontains elements of the second or third
category by means of that choice lof although the functiong/ would cease to be
continuous in those two cases.

In order to prove that, suppose, for example, thatfahe elements belong to the first
category, except for just oz, which belongs to the seconé: will then contain a point
P; such that:

X1= ... =% =0, X1 > 0.

Let (u/,...,u’,) be the parametric point that correspond®itg which is interior to

the tetrahedroid’; that gave rise t& . The applicability of Green’s formula will be
assured when one subtracts the interior of a tetraidedrérom T, that likewise contains
the parametric poinu’, ...) (in its interior). One can then write down foemula (16)
if one assumes that:

1. The integral does not extend over the entire surf&eout only the (open)
surfaceS’that one deduces fro8by suppressing the part afthat corresponds tn .

() Ifthex are linear in the then the fact thad meets a face or the fact that it has more than ome poi
in common with an element (and consequently, and infinildd®mmon points) is expressed by a linear
equation that is not an identity (or sometimes sew&rahtions) and has the form:

AA&E+ . +AE=0,

in which &, ..., & are the coordinates of an arbitrary point on the &néd, theA are non-zero constants.
One can always choose théeven in the neighborhood of the given quantitiesjuch a manner that
they do not verify any of the relations that are teritin that way.
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2. One must add terms to the € 2)-tuple integral on the right-hand side that
correspond to the frontier af (each of those terms appears only once, contraryeto t
ones that correspond to the face$§)of

Leti be the set of terms in question. | must showitkall tend to zero when all of
the dimensions of the tetrahedraidtend to zero without ceasing to include the pBint
Indeed, we remark that an arbitrary half-line that isdum® the parametric point

(u?, ...) cuts the frontier of each of the tetrahedrdigsnd r; at a single point. In the

spacekE, , those points will give the points &f that are in a straight line with, , and
since the lash — 1 coordinates d?;, are zero, they are all deduced by multiplying each of
the coordinates in question by the same positive factann Wwhat we saw before, it will
then result that if one ignores the factér (6 + h] then the corresponding integral
elements on the frontier @ and on that ofy will be identical, because (always without
the factor F (6 + h]) the integral on the right-hand side has the sanma &s1 when one
simply changes inton — 1.

Now, the integral that relates to the frontierTafwill make sense even when one
replaces each of its elements with its absolute valiet .1y be the value that is obtained
under those conditions. One will have:

li | <loa,

in which a denotes the maximum df[(6) + h] — i.e., of F (6 —F (0)] — on the frontier
of . Now, that maximum will tend to zero with the dimemsi ofr; , sincedis equal
to O atP; .

Therefore, the formula (16) will remain valid undeoté conditions by means of the
choice ofh that was indicated, and that result will be likewistablished in the case of
an arbitrary number of elements of the second or thaitelgory. It will suffice to perform
the construction that we just made &rior each of them.

27.— On the other hand, we have seen that only the tiermsvill persist, while the
other will cancel on the closed surfeége
Hence, one will get:

(18) | =31 F (0) +J: F (79,

in whichJ; andJ, denote the integrals:

(17) 1| oy ov,
I B I R
n-2 0
o 9%
aVn—l aVn—l
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when they are extended, in the first case, over thefdeontiers of the elements of the
second category, and in the second, over the set digrerof elements of the third
category, respectively. One will have:

Jh+J=0,

moreover, as one sees upon noting that the right-hdad$(18) must be independent of
the additive constant that remains arbitrarf#inOne can then write:

== 0 [F (A —F (0)]=-J,[ sin"*6d6.

Now, as we have pointed out already, the integrd) (ids the same form &svhen
one changes inton— 1, and that integral is extended over a system oédlsgrfaces in
the spacé&,-1 , namely, the ones that one obtainphyjecting(}) onto E,; the frontiers
of the elements of the second categor$ afhich are nothing but the frontiers of thme<{(
2)-dimensional tetrahedroid, moreover. By virtue of our kiygses, it will result that:

h=Kn12 w

in which theware integers that correspond to the various closed sarfhat were just in
guestion, respectively.

That will indeed give a value tiothat has the form (12). It will suffice to defikg
by the relation:

Kn= K, [, sin" 6de.

Once the numbers, that are defined by that recurrence relation (With= 2), our
conclusion will have been proved by the preceding, sinca 02, the expression (11)

will reduce to:
1 0 0
B Ixf X (Xza—ﬁ‘ ﬂa—xljj du = Id(arctan%j ;

i.e., to thevariation of the argumerthat was considered previously. Consequently, tha
will verify our proposition.

28. — The integerwthat appears in the formula (12) is called ohger of the origin
with respect t&

The order of an arbitrary poinay(, ..., a,) (that is not located 08) is obtained by
replacingx; , ..., Xy withx; —az , ..., Xa — &, in formula (11) .

That order is zero, by virtue of the precedingsiderations if one can draw at least
one half-line through the point envisioned (and no longer evemrimtie line) that does
not meetS

() In analytical language, “projecting a figure in the spBgento the spacg,-,” means simply that
one drops one of the coordinates (hefe,
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If Sis the frontier of the tetrahedroid to which the orig interior then the half-line
that is defined by the equatigh= /rwill cut S at one and only one point. The order of
the origin will then be + 1 or — 1, according to whetiner determinant (10) is positive or
negative, resp.

One can verify that with no difficulty in the casenot 2 (whereSis the frontier of a
triangle). It is easy to pass from that valuenad other ones by recurrence by applying
what was said in nd22, since, as we have seeh,is always composed of orders that
relate somer(— 1)-dimensional tetrahedroids (here, there is just emahedroid).

Moreover, one obviously deduces an expression for therahat relates to an
arbitrary closed polyhedral surface from that. One has:

(19) w=N; —N,

in whichN; + N is the total number of points where a half-line teates from the point
(@, ..., an) cutsS and any of those point will be countedNa or N, according to
whether then summits of the element that contains that poirterathey have been
arranged in the order that results from the orientaifdhat element and is preceded by a
summit that is located at the origin, does nor does g a tetrahedroid whose
orientation conforms to that of the coordinate system.

29. — If the x are simply differentiable with respect toin each element without
verifying the particular hypotheses that we just made thervalue of the integralwill
once more have the form (12).

As we just saw, that fact is not entirely indisperesitd what follows, so we shall
simply summarize the proof by saying that any porfi@f Sthat is close'j to D can be
replaced with anothélr’that is slightly different from the first one, aisdsuch that in any
element ofl “that is met byD, thex are linear functions’( of theu. The integral, when
taken on the surface thus-modifi8d will have the same value that it has®nlIndeed,
the set ofT and T’ forms a closed surface such thatS can be considered to be the

() To be precise: One can introduce any elengénto T that has a point in common wifh and any
elements’that is contiguous to an element

() Replace each elemeabr £'with the tetrahedroié or e’that has the same summit. In other words,
replace the coordinatesof such an element with the quantitiéghat are defined by formulas (20) (see

below, no.30): We will get a new open surfade . On the other hand, join each point on the frontiéF of
(which is composed of the facEsthat are borrowed from the elememtg to the corresponding point of
the frontier of T'. The line segments thus-traced will form a new porbioie surfaceT, . T’ will be the

union of T" andT, .

If the subdivision of the elements is pushed much futtherx; will not be annulled on eith&ror T".
Moreover, leto be the minimum of, on the frontier off. If (after formingT, but before deducing’) one
subdivides the elemen&sin such a manner that the distance between any twdspiai each facé of the
frontier is less thapthen the parfl, will have no point in common witB.

As for the condition thaD must not meet the faces, as we saw, it will beizedlby giving a very
small displacement tD, if needed.
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resultant ofS”and the surface or surfacgsand the integral that relatesdwill be zero,
becauseo has no point in common with any lif2’ that hasx; = O for one of its
equations.

S’ satisfies the conditions by means of which the imrlatl2) was proved just now.
That relation is also true f@then.

30. — However, it is not necessary to insist upon evaigatie order in the case of
differentiable coordinates. Indeed, we can pass dirdotiyn the case that was the
subject of no.25 (cont.) to the completely general case in which xthare arbitrary
continuous functions of the parameters.

In order to do that, it will suffice to once mormepface the functions, ..., X, with
some other oneg, ..., X, that are close to them and are linear functions@ii in each

of the elements (after a convenient subdivision of jhem

In order to define those’, we suppose that the elements are made sufficiendyl sm
by subdivision that in each of them, the gap betwesh ®f the continuous functioms
will be smaller than a certain number

Having done that, we replace each element by the teb@te(which is or is not
degenerate) that has the same summits; in other wbrds,

x| x® k=1,2, ...n)

denote the coordinates of thasummits of an element then we will take:
(20) X =t X+t xP +...+t xO (=12, ..n

for an arbitrary point of the element, when one cdlle (absolute) barycentric
coordinates of the corresponding parametric point wispeet to the tetrahedroid that it
describegy, to, ..., tn.

It is clear (by virtue of the relation + ...+ t, = 1) thatx is found between the

smallest and largest of the quantiti8, ..., x™.
It obviously results from this that the absolute valtighe differencex — x is less

than 27 in the element considered.
In order to calculate the order, we substitute xheor thex; , which will bring us

back to the case that was treated previously. In othends, we substitute an
approximating polyhedrofor S and we define the order with respecttm be the order
with respect to that polyhedroh.(

In order to legitimize that definition, we shall shtvatthe value ofwis the same no
matter how one chooses the functionghat are substituted for the grovided thaty is
sufficiently small.

() For example, in ordinary space, one repl&w®éth an inscribed polyhedron with sufficiently-small
faces.
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More precisely, it will suffice thay is less than the smallest reduced distance (see no.
271in the text) from the point(, ...,a,) to S

Indeed, consider a second approximating polyhedron — in etbeits, a second
system of functions¢, X;, ..., X that are close to theand are defined in a manner that

is analogous to the’. Suppose that the absolute values of the differemtes x; are

likewise all less thanz.

The second approximating polyhedron will be deduced by a dewitropoof the
elements oEthat is different from the one that is provided byfirs one. For example,
let 7, ... be the tetrahedroids into whi¢hwas decomposed in the first case, andlet
... be the ones into which it was decomposed in the secaad dane can find a third
decomposition into tetrahedroitishat is a subdivision with an axis in common with the
other of the first twoj.

In each tetrahedroidr”, the x, like the x', are linear functions of, and

consequently, the same thing will be true for eachefjantities:

a:&+ﬂX’
1+u
in which g is an arbitrary positive parameter.
The locus of the pointé( , &, ..., &) is a new closed polyhedral surfakethat
depends upon the parameter
Due to the hypothesis that was mademp& will not pass through the poingy( ...,
a,) for any positive value qf.
Indeedx is found between< and x' (for m> 0), and consequently, betwegr 27

andx + 27. Now, by hypothesis, at least one of the quastipi —a; | is greater thans2
at each point o%.

Moreover, the order of our point with respecttes defined for every positive value
of 1, and will vary continuously witly [as one sees from the expression (11)].

Since that order is, in essence, a whole numbweill inecessarily remain constant. It
will then have the same value for= 0 andy = « ; i.e., for the two polyhedral surfaces
envisioned.

It likewise results from this that the result dbeal will be the same for another
closed surface whose points correspond to thoteedirst one in such a manner that the
reduced distance between two corresponding poiltenstantly be less than’ (7’
denotes no particular quantity that is found betw@ands, excluding the limits).

One then sees that the orders continuous of order zerwith the respect to the
expressions fox as functions of the; i.e., that it will be altered very little (and &v not
at all) when one alters theby quantities that are everywhere very small.

*) If the two tetrahedroids 7, 7;, for example — have a common region (i.e., they haneeswon-
frontier points in common) then that region will beanvex polyhedron (cf., page 6, note 2) that one can
decompose into tetrahedroids, and one proceeds simitarlgach tetrahedroid’, combined with each
tetrahedroidr”.
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The expression (11) exhibits only continuity of ordae in other words, in order to
affirm that wis altered very little, it will seem necessary tsw@e that not only the
functionsx, but also their derivatives with respecutexperience very small variations.

That is true thanks to the continuity of order O thatcould define foewby means of
an approximating polyhedral surfac® (

31. — w would not change if we were to employ another modepafametric
representation foiS either, since its definition by formula (19), when applieda
polyhedral surface that is closeSaoes not depend upon that representation.

In a word,wwill indeed be a completely well-defined quantity whewe @ given the
surfaceS and the pointds, ay, ..., &, that is not located on that surface.

It will remain constant while the point in questionigarcontinually without crossing
the surface.

One can easily assure, in a general manner, that itgsessthe properties that we
confirmed in the case where the are differentiable even when they are merely
continuous, and those are the properties that we mustanmavhat follows.

31 (cont.) — We add that the combination of formula (19) with @suits of no30
will permit us to evaluate the order in the simpleseca

That order is obviously equal to1 whenSis a convex polyhedron and;( a, ...,
a,) Is an interior point [since one of the numbBks N, in formula (19) would then be
equal to 1 and the other to zero].

It is likewise equal ta 1 for then-dimensional sphere whose centerais &, ..., a,),
as one will see upon replacing a portion of it with aiporof the plane.

IV. — THE KRONECKER INDEX

32. — One now passes from the definition of the order pbiat with respect to a
closed surface to that of the index of a system aftfans on that surface.

Once more, let the surfaBbe the locus of pointxy ..., X,) in n-dimensional space.
On the other hand, I¢t, f,, ..., f, be a system af continuous functions o, ..., X, that
have needed to be defined only§mp to now.

Theindexof the system of functiorfs, ..., f, is, by definition, the order of the origin
of the coordinates with respect to the surface that isrgetk by the points whose
coordinates arf, ..., f,.

From the foregoing, that definition supposes that.., f, are not simultaneously zero
at any point o5,

fi,f2, ..., fn can be regarded as the components of a vector, and \whdndicates
their values at each point 8f one will define a continuougectorial distributionthat is
attached to that surface.

() The area of a curved surface in ordinary space is consnofoorder 1 only with respect to the form
of the surface. One cannot define it by an approximgtihghedron without special precautions, either.
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Such a distribution will have a well-defined index onlased surface as long as the
vector is not zero at any point of the surface.

33. — The fundamental property of the index, thus-defined, e®l&d the case in
which Sis the frontier of a volum¥ in n-dimensional space.

This time, suppose that the functidns ..., f, are defined and continuous over all of
that volume, and not only d

Finally, suppose that the equations:

(21) =0, ....,fa=0

have no common solution inside\af

If that were true thethe index of the system of functions considered on S would be
zero.

In order to see that, we begin by pointing out thateflet F denote the largest of the
n absolute valuesf] |, |f2], ..., |fn | at an arbitrary point of then the quantit¥ will be
itself a continuous function that is never zero, antlirn, will admit a positive minimum
0.

Then subdivide the elements\in such a manner that the oscillation of each of the
functionsf in each of them is less thari(g’< g). Now let& be one of those elements,
and lets be its frontier. One can make each point of therlatterespond to a new point
whose coordinates afe, ..., f,. Let obe the closed surface that is described by that
second point. One can always make a half-line thas do¢ meeto start from the
coordinate origin, because fif, for example, is the largest in absolute value ofrthe
functions at a well-defined point efand it is positive (which will imply that > g) then
(sinceg’ < g) the functionf; will be likewise positive at any point afor s, in such a way
that the half-lind, = ...=f, = 0,f; < O will possess the stated property.

It will result from this that the index of the systém ..., f, is zero ors, since that is
true on each frontier of each elemenwvpaindS can be considered to be the resultant (no.
23) of all those frontiers, so the theorem is proved.

34. — On the contrary, the index will no longer be neadgsazero when equations
(21) have common solutions inside\of

By contrast, when one supposes that there are a fninber of them, to fix ideas,
and one let®,, .., P, denote the corresponding points\htthe index that relates ®will
be the algebraic sum of the partial indices, eachtothvis characteristic of one of the
solution points.

Indeed, if one decompos¥sinto elements in such a manner tRat for example, is
in the interior (and not on the frontier) of an elemg that does not contain any other
points P, and that the other points are similarly strictlyenor top — 1 other distinct
elementss , ..., & then the index with respect ®will be the sum of the indices with
respect to the frontiers, , s, ..., 5 of theé&, ..., & (all other elements will give zero
indices, from the foregoing). It is obvious, moreoveont this that the index with
respect tes; , for example, will be independent of the form and disi@ens of the element
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& under the single condition that it must contain thietgn pointP; in its interior, but
none of the other ones (and in particular, no matier $mallg is). That index will then
depend upon only the poir; and the way that the functiorfs behave in the
neighborhood of that point.

If the f have derivatives &,, and their functional determinant is non-zero, thea o
can show{) that the partial index will be equal to + 1 or — 1 acaaydb the sign of that
functional determinant.

However, we reach the following conclusion, aboveltlwdenotes the index of the
system f, ..., f, on S then the inequalitso# O will imply the existence of a common
solution to equationf1)in V.

35. — The calculation of the index of a system of functionsa surface is often
facilitated by the following theorem in a remarkable way:

Poincaré-Bohl theorem:

Let two systems of n functionst, ...,fx; 01, 02, ..., gn be given on the same closed
surface S, such that the elements of one system are not simultazeoo sy any point
on S.

If those two systems do not have the same index then therdswiltdgast one point
on S such that one has:

(22) hofo o

=2 = . =-1<
9 9 On

and if the ratios of their indices are ngt 1)" then there will exist at least one point such
that one has:

(22) holo

=—==..=-—">0.
g 9 9,

That theorem was established by Poincaré in 18Bérd obtained once more
independently by BohFJ in 1904.
In order to prove it, it will suffice to consider ttveo auxiliary systems:

f+pg, f,+ug, f + 419,

(23) , D e
1+u 1+u 1+u

and

() See PicardJraité d'analysevolume .

() POINCARE - “Sur les courbes définies par les équatidiéretitielles,” J. de Math. (4 (1886),
pp. 177.

() BOHL, J. fir Math.127 (1904). — The statements that the two cited authors gaee fildm each
other, as well the present text, in that they spieeih the choice of the functioms(and each, in a different
way). However, their arguments (which are likewise dkifeé, moreover) will extend to the case in which
those functions are taken arbitrarily. The proof thative here is that of Poincaré.
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(23) fi -4, f,-ug, o fmwe,

1+pu 1+u 1+ u

in which x is a positive parameter.

If the system of relations (22) is not verified aty point ofS then the system of
functions (23) will have an index for any positvalue ofz, and from an argument that
was already presented before, that index will bestant for any.. Upon successively
settingu = 0, +o, one will see thatf{, f2, ..., f,) has the same index ag (02, ..., On).

On the other hand, if the relations '(2&re not verified simultaneously at any point of
Sthen it will be the index of the system (RBhat remains constant for any value/oin
such a way thdt , f2, ..., f, will give the same index asg:, — g2, ..., = gn. It will then
result [as one will see from formula (11) by insfp@dg that the ratio of the indices &f,
fo, ...,faandg:, @2, ..., g, will be (- 1)".

The theorem is thus proved.

If the two indices considered are not equal inoalte value then it will result from
the relations (22), (22that the quantity:

flgl+fzgz+ +fngn

cannot have a constant sign®n

V. — APPLICATIONS.

36. The Schoenflies theorem- The proof that was just given of Jordan’s theore
(see nos306 and307 in the text and the beginning of this note) talisthat not only does
a closed curve with no double point divide the planto an exterior region and an
interior one, but also that the order of a poirthwespect to the curve is equal to 0 in the
former region and 1 in the latter.

As one sees, that will suffice to prove an impatrtheorem by Schoenflies, which is
stated thus:

Let:

(24) X=f(xy, Y=gkXy)

be two functions ok andy that are indeed different and continuous on therimt and
circumference of the circle:

(25) X +y <1,
Suppose that the equalities:

fxy)=ftx.y), g&xy=9X,y),
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cannot be verified simultaneously in the circle in go@sunless one has=x",y =y".

Let C be the curve that is described by the politY) when &, y) describes the
circumference of the circle.

One then has:

The equationg24), in which X, Y are considered to be given, will have a solution
(which is unique, from the hypothesshenever the poir{, Y) is taken inside of C.

That theorem will result immediately from some pmbies of the order and index
that were established in the preceding discussion.

Indeed, a pointX, Y) that is interior toC is characterized by the fact that its order
with respect taC is equal tat 1.

That amounts to saying that the index of the systam ¥) — X, g (x, y) —Y) has that
same value, and is consequently non-zero.

Hence, the equations (24) have a common solution imtéear of the circle (25).

Q. E.D.

37.— As | said before, | will now address Jordan’s theoremspace with more than
two dimensions. | will even suppose that the theoresnldeen proved, along with a
complement that is natural to give it, from the preagdionsiderations. | shall not only
assume that a closed surface with no double point aldi&ides n-dimensional space
into an exterior region and an interior region, bub akat the order of any interior point
will be equal tat 1.

Under those conditionfhe Schoenflies theorem is proved for an arbitrary number of
variables.

In other words, let:

(%, %)= X,
(24) f,(X,..0 %)= X,,
fa(Xen %) = X,

be a system of relations that define the quantXi@s continuous functions of tixein a
certain volumer in n-dimensional space. | suppose, to simplify (althoughhjmothesis
is not essential), that this volume is bounded by asenivith just one piece.

Suppose that one cannot have:

(26) fi (X ooy %) = £ (K X)) (=12 ..n)

in the volume in question, unless one kas X, X = X,, ..., X = X,.

Now let S be the surface (which is necessarily closed and hasulgle point) that is
described by the point when the poink describes the fronties of v. The equations
(24') have a solution whenever the point X is in the interior of S.
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The proof that was given for the case of two variabtegact persists without
modification once one assumes the propositions tkat wited above.

One can even point out that the proof of the existeofcat least one solution
supposes only that the relations (26) are impossibleviodistinct points on th&ontier
S.

One sees from what was just said that the Schogrtfisorem is not fundamentally
distinct from that of Jordan.

38. — The importance of that theorem is very great, maeowhich will emerge
when one compares that theorem to the classicatsesoim the theory of equations of
degree one.

Consider a system of linear equations for which thebaurof unknowns is equal to
the number of the equations.

Although such a system will generally admit one ang onk solution, it can happen
that such a solution is impossible or even indeterminate.

However, the condition for the system to admit sakition, no matter what values
are attributed to the right-hand sides, is not distireeh the condition that expresses the
idea that it cannot have more than one.

The Schoenflies theorem tells us that the latteditiom again implies the former
one, at least on a conveniently-chosen portion of spéi@n one envisions completely-
general equations of the form (Réhstead of linear equations.

39. - The following remark results immediately from treh&enflies theorem.

Suppose that a perfect, continuous correspondence extstsdn two volumey, V’
in n-dimensional space (each of which is bounded by a surfaheomly one piece). |
say that if that were true thémerior point of V will correspond to interior points of,V
and frontier points of V will correspond to frontier points df V

Indeed, suppose that the pdiitwhich is interior tov, corresponds to a poiRt’ that
is located on the frontie®” of V’ If that were true then the fronti& of V would
correspond to a surfa& (which is closed and has no double point) to wikakould
not belong. From Jordan’s theore®will bound a volumeé/’that is completely interior
to V and to whictP’ will consequently be exteriof)( in such a way that the poirfesthat
are interior toSwill not correspond to any poiRt’that is interior tc5".

That therefore contradicts the Schoenflies theoes,our conclusion is proved.

40. — The preceding considerations likewise permit us togBreuwer’'s theorem
for the volume of a sphere any dimension.

The volume of then-dimensional sphere that has its center at theroagd a unit
radius is the sé¥ of points that verify the inequality:

() The fact that a poir’of S’ is necessarily exterior to any surf&that is interior td/’ results from
the fact that one can joiR’ to infinity by a continuous path that has no point imomn withV’ or S’
besided?’ (which must, in turn, be considered to belong to imftiordan’s theorem).
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(27) XX+t <A,

The theorem that we shall prove is the following one:

Any perfect, continuous transformation of the volume V into itsellaalle at least
one point invariant, either in its interior or on its frontier.

Indeed, suppose thai , X2, ..., Xn ; X, X, ..., X, are the coordinates of two
corresponding points. Consider th&inctions:

(28) X =X, Xo— X2, oy X, Xn,

while first supposing that the pointi( ..., X,) describes the frontier of the sphere.

If thosen functions are annulled simultaneously then the theordimbes proved.
Otherwise, the system of functions that we justtesdown will have the same index as
the systemxg, ..., X,), because we always ha (

X (%= X)+ %( %= %)+-+ X(x— ¥ >0,

Since the latter index (i.e., the order of the centéh respect to the surface of our
sphere) is non-zero, there has to exist an interiant pghere the functions (28) are
simultaneously zero.

Q. E.D.

41. — Note further that the consideration of the index pe&rmite to generalize a
classical notion that relates to thenseof areas to an arbitrary bijective and continuous
transformation.

When thef in equations (24 have derivatives, one knows that such a transformatio
will preserve the senses of areas if its functionat¢mehant is positive and will change
them if it is negative.

While confining ourselves to equations (24), ety be a point on a closed curge
in the plane that has no double point and bounds thesaseahe points that are interior
to swill have an order equal to + 1 or — 1 with respeat to

c will correspond [if we suppose that the correspondencestiufined by equations
(24) is perfect and continuous] to a closed cutweith no double point that bounds an
areaS The points interior to it will have orderl with respect t&.

One can say that a curve lig®r C is described in thdirect sense if the order of the
interior points with respect to that curve is + 1 antharetrogradesense if that order is
equal to — 1.

) By virtue of Lagrange’s well-known identity, that qnelity is a consequence of the equations:
y grang

XX+t xX= X+ X+ X =1
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Now, the transformation (24) can preserve or changeehge thus-defined according
to the case. However, that will depend upon only thesformation itself (at the
moment when it is supposed to be perfect) and not upochbiee of the particular
closed curve.

In order to see that, it will suffice to deform th¢tér in a continuous manner.

In the case of the plane, one easily passes toi@mted, bilateral surface in the way
that was explained above.

42. — | will now point out, in summary form, another issrof applications of the
same principle’}.

Consider a variety that is closed and+fold extended im-dimensional spacen(>
m). That variety will be supposed to admit a well-defit@adgent planeat each of its
points that varies continuously with the position & goint.

The simplest case (which is, above all, the one tleahawve in mind to fix ideas) is
that of the surface of a sphere in ordinary space.

Imagine atangent vectorial distribution V; i.e., make each point &f correspond
to a vector that is tangent ¥ at that point. The components of that vector Wl
supposed to vary continuously, but not necessarily adntiapderivatives with respect
to the coordinates of their origin.

Above all, only its direction will be relevant. it essential to note that the direction
will be indeterminate when and only when the vectorie.ze

The direction parameters can be considered to be piopdrto a system of
differentialsdx, , ..., dx, of the x that correspond (in each element) to well-defined
differentialsdu, ..., duy of the parametens (while supposing that theare differentiable
with respect to the, which is legitimate, from the hypothesis that waslenanV).

Those differentialslu, ..., duy, or rather, of other (finite) quantitiek, ..., An that
are proportional to them withositiveproportionality factor, can, in turn, be regarded as
defining a direction vector in the space that is theudoof parametric points. That
direction vector will be indeterminate only if the diiectis. We assume that this is true
only at a finite number of points, and we suppose thatdégcomposition oV into
elements has been done in such a way that those poent®t on any face.

Under those conditions, the corresponding systém .(., An) will admit a well-
defined index.Consider the surzrof all those indices.

One proves? that it does not depend upon either the parametric epet®on that is
adopted foV or the choice of the tangent distribution.

When the numbem is odd, the sum in question will be zero, because frdat we
just said, it must not change when one simultaneouslygelsathe signs of all tha,
which will be multiplied by € 1)", as we saw.

Things are different for the even valueshof The integero will then be one of the
guantities that characterixéfrom the standpoint adnalysis situs.It will have the same

() On that subject, see the papers of Poincaré on thesctivat are defined by differential equations in
J. de Math. (3) t7, 8; ibid. (4), t. 1; those of Dyck in the Berichte der Ges. Wiss. Lei®ig1885), pp.
314;ibid. 38 (1886), pp. 53, and several recent works by Brouwer that iveluded in the minutes of the
Royal Academy of Sciences in Amsterdam.

(®) See the works that were cited above.
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value for two arbitrary homeomorphic varieties, even iwtieey are located in spaces
with different dimensions.

In order foroto have a value that is not zero, it will sufficetékeV to be the surface
of a sphere in three-dimensional space (or, more dgn@@+ 1). For the sphere in
ordinary space, one can, for example, take the tamyeation to be that of the tangent
to a meridian, which is supposed to be traversed towarwdsllalefined pole. Such a
distribution will be indeterminate at the two poles.tHa tetrahedroid (here, the triangle)
that surrounds one of them, one can take the paranteteesthe rectangular coordinates
of the point that is projected onto the equator, and alie¢h&n find that a sum of the
indices is:

(29) o= 2.

43. — A truly-remarkable consequence results immediately ftbenfact that the
integers is non-zero:

It is impossible to make each point of V correspond to a directionnahg®/ at that
point without that direction being indeterminate at one or more points of V.

That is because the index that relates to each elemlie zero, as we proved in
no. 33.

Consequently, such an impossibility will be true on tiig¢he sphere in ordinary
space.

44. — One can dedudBrouwer’s theorenon that surface from that result. In that
case, the theorem is confined to transformations tlesepve the sense of orientation (no.
41), moreover. It is stated as follows:

If any perfect, continuous transformation of the surface of a sphererpzesthe
sense of orientation then it will leave at least one point invariant.

In order to prove that'), let M be an arbitrary point of the surface, Mt be its
homologue, and leA be a fixed point. Take the tangent directioMatio be the tangent
to the circleMM ‘A; more precisely, the tangent to that one of the tws af that circle
that are determined by the poiftsandM that contains the poi¥l’. Such a direction
will become indeterminate only in the following thresest

If M coincides withA.
If M coincides withA.
If M coincides withM .

() The method of proof was communicated to me by Brouwer
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Each of the first two situations is realized oncd anly once. First, consider an
element of the sphere that surrounds the pAintlf the homologueA’ of the pointA
coincides withA then the theorem will have been proved. Otherwlse ctrcleAMM’
will be (for M close toA) very close to the circlaMA’”. It will then result that it will not
be very small at any moment. Sin&BI is, on the contrary, a small arc, it will make a
very small angle with the great cirodM at M. Under those conditions, the tangents to
those two arcs will have the same total rotation wieturns aroundA. It will result
from this that the index of the variable direction in quastalong the element that
containsA will be equal to + 1.

If, on the contrary, it is the poir¥l’ that coincides withA then the pointM will
become a poinB that is distinct fromA (since otherwise the theorem would have been
proved).

WhenM turns aroundB, M’ will turn aroundA, and in the same sense, by virtue of
the hypothesis that was made on our transformatidme circleAMM will be very close
to the circleAM B, anyway. Now, the tangent to the latteBair M will have a sense of
rotation that is inverse to that of the tangem\.afThose two lines are symmetric to each
other with respect to the plane that is perpendiculdheomidpoint ofAB.) That is, the
sense is inverse to the sense of rotatiod téroundB.

Therefore, the index along a small element thabsmds the poinB will be equal to
— 1, and will give a sum of zero with the first one.

Since, on the contrary, the total sum is non-zi®third hypothesis must be verified
at one or more points on the surface, as well.

Q. E.D.

As for the transformations that change the orignatthey cannot admit any
invariant point at all. That is the case in which oeglaces each point of the surface
with the diametrically-opposite one.




