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CHAPTER IX

NON-HOLONOMIC SYSTEMS WITH
A FINITE NUMBER OF DEGREES OF FREEDOM

228. Introduction and method.— We restrict ourselves to systems with a finite number of
degrees of freedom, so ones for which one has:

r=r(@&aqy...,0n;t. (D

However, theyy shall not vary freely, but will be subject to constraints offte:
f,(a.9,t) =0, u=12, ...m<n,

which cannot be reduced to finite equations betweeq,thadt alone.
Initially, we shall assume that the equations of constrainlirsgar in theq, ; i.e., they take

the form:
>b,q+c=0. (2)

8 1. — The parametric method.

Corresponding to (2), one has:
wa 0q,=0 (3)

for the virtual displacementd.agrange’s principle:

S dmw dr = A
remains valid, and with:
A=K, dq, (4)
and
Sdmw dr =>w, dq,, (5)
in which:
_doT 0T
V_aﬁ_ﬁ’

that principle will imply that:
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> W, -K,)dq,=0. (6)
Together with (3), that will give:

W, -Kv=>"A,b,,,
H=1

or

d oT 0T
— T =S Ab,+K,. |
dtag, dgq, % pone v 0

The proof is precisely as it was in Chap. 16,8 T is the kinetic energy:
1Sdmv’=1>'a,q 9+ hg+c
7 v

One can regard, b, as the_agrangian reaction force that is assigned to pifeconstraint.

i

Figure 109.

229. The blade— Example 1: Thelade(cf., Chap. Il, 8% and6). Let its contact point with
the xy-plane beB, whose coordinates we shall denotexpy, in particular, and let it be regarded
as a rigid body whose center of masdéies at a distance affrom B in the direction of the blade.
From Chap. Ill, 8, the kinetic energy of the motion, which is assdriteebe planar, will be:

T=4im(¢+ )+ mi[ Y X- X"k y- W+15 4,
or, sincexX’ - x=scosd,y —y=ssing:
T=1m(¥+ )+ ms[ gosd- sind F15 J.
However, the constraint equation reads:

ycosd - xsind= 0.
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The impulses are:

:a—T:mX—msinﬂﬁf’,
oX
py:Z—T:my+ mscosd [,
oT . - :
pZZE:mS(WOSﬂ_ XSII’).?)"‘ |319,
which is why:
_d

W (Mmx- msind @),

dt
Wy = %(m Y+ msosd ),

W19=%[ms( yeosd - xsind )i 9+ me (ysind+ xcod .

In parametric form, the equations of motion wikthread:

%(mx— msindF)=- Asind + X, (a)
%(m'y+ moosI )= cosd +Y, (b)
%[ms( yeosd - xsind )i 9+ me? (ysind+ xcod =M (c)

when we set the virtual work done by the appliedds to:
Pe=XIX+YIYy+M 9. (d)
That must be combined with the constraint equation:
ycosd - xsing= 0.

Naturally, after exhibiting the equations of motieve can make use of that constraint equation,
and thus simplify the third equation by dropping tinst term. However, up to now, we have not
been able to work with the expression for the kinehergy that has been simplified by that
constraint equation:

T=1m(2+ y¥)+3 L5

It clearly gave false equations (cf., Chap. VB)§
We eliminated by multiplying (a) and (b) by cag and sing, resp., and adding them, which
will give:
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co&?% M x— mssind @ W siri9d£t (My msofP FXcosd+Ysind,
or
mcosd mx- me? sind+ msind "y Z,

in whichZ means the traction in the direction of the bladeich also implies that:

|, +msd(ysind+ xcos? )= M,
as well as:
ycosd - xsind= 0.

If we want to ge# itself then we multiply (a) and (b) by — sfhand + cos’, resp., and get:
A=Xsingd-Ycosd— mxsind+ mycosd+ m¢.

In this, — X sin 4 + Y cos ¢ means the applied force perpendicular to the blauhel
ycosd - X sing + s is the acceleration of center of mass in the sdineetion, since the first two

terms mean the acceleration of the p@into which one adds the relative acceleratigh for M.

y

M
e

— X

Figure 110.
We now introduce the velocityin the direction of the blade by setting:

X=vcosd, y=vsind,
and then:
X= vcosd—vsind [, Y= vsind+vcos?F.

With that, the equations of motion will become:

mv-ms¥? =Z,
|, d+msdv=M.
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The constraint equation is fulfilled by itselN.is not a total derivative of a coordinate constraint,
because:
v dt=dxcosZ —dysin

is not a total differential. We shall call such a quantity ihased to represent the velocitgan-
holonomic velocity parameter

We would now like to work through the casefarfce-free motion.Z andM are zero in that
case, so the equations of motion will read:

mv- ms% =0,
|, d+msdv=0.

They will then have the energy equation (cf., Chap. I8), &s a first integral:

T=3imV+md(ysosd- xsind 3 J#=h
or
mV+1,9*=2h.

This equation can be seen to be as a consequence of the equationerobyndifferentiating it.
We infer from it that:

and substitute that in the first equation of motion, which is the @m that we have to consider.
We then get the first-order differential equationvfor

\'/—£S+£Sv2 =0.

B I B

If we set the positive-definite quantith2m = v then we will get:
. _ms , 1.,
v =—I(Y -V) = —(% _V2)7
I, a

when we setg / ms=a. That will be a positive or negative length adiag to the sign os.
(When one does not have= vo) integration will give:

_ dv
t= aIvg—vz’

or when v | <|w]|:
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A
vV =Vo Tan .
a

We will see thatVy | > |wo | is impossible. The velocity will certainly become zerooates point
in time; we have sdt= 0 to be that moment. Fe¥, we get:

92= m(\é_\f):mg 1

ls s gos? V0!
a

Since we must hav#® > 0,v? > V is excluded.

- m 1
d =y, R o,
B Q:OEL
a
gives:
_ /m dt
=y, I—I T
a

which is an elementary calculation.

For the sake of discussion, we can assumesifaend therefor@, as well) is positive. We can
also takev to be positive, since the signwfdrops out of the formula for. We will then have
thatv> 0 fort>0 andv< 0 fort<O;i.e., fort > 0, the center of mass is in front®f(in the
direction of the motion) and far< O, it lies behind it.v - Vo fort - + o, butv - — v fort -
— .

The velocity then increases fronvethrough zero to o .  will always be positive or always
be negative according to the sign that we givg/ta/ I; . Fromt = 0 tot = w, the blade rotates

m /
AF = v, '[ = BIT
Bo¢05Vt CosT

The same value will come about from the time frem to 0. Since the velocityis zero fort =

0, but not?, the curve must have a cusp there; by contrast,.as o, it will have an asymptote,
sinced tends to a finite value, like Naturally, the rectilinear motion with= 0,v=./2h/m =

Vo is also a possible motion. However, one can edswlude that: If the center of mass lies in
front of B, in the direction of motion, in this then the nootiwill be stable, since a perturbed
motion will asymptotically approach the old motiddowever, ifM lies behindB then the motion
will be unstable, because a perturbed motion nisstgass through the cusp, at which point, an
inversion of the sequence will take place, and ftbem on, the motion will be connected with an

through the angle:




8 1. -The parametric method. 7

asymptotic line that is generally different. [See Carathéodaligussion of the sled (= blade)

()]

Figure 111.

Naturally, one can also represent the coordinasesly by integrals:

x:jvcosﬂdt, y:jvsinﬁdt.

In the vicinity oft = 0, one has:

O<|\)
—

If one makes thg-axis tangential to the cusp then one will hé&#0 or cosd = 1 close to it, and:

X = jv—gtdtZ Ev_gtz
o a 2a
whereas:
t
m /m
79:V0 rjdt: V0 l—t
B 0 B
and

3
y:ﬁ mjtzdtzévgms mtszé\/gs m ]_3
a\l, 31, {1, 3 I,

The curve is close toldeil parabola, so the existence of a cusp is proved omare.

The blade is the simplest example of a non-holoa@tieronomic system, insofar as it has
the lowest number of degrees of freedom. In faabd, degrees of freedom cannot give a non-
holonomic system, since it is known that any déféral expression:

() C. Carathéodory, “Der Schlitten,” Z. angew. Math. Mech3 (1933), 71-76.
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P (xy) dx+Q (xy) dy

is associated with a multiplidd such thatv (P dx+ Q dy) will be a total differentiatlz, so P dx
+ Q dy= 0 can be replaced wittz= 0 ; i.e.,z (X, y) = const.

230. The tire.— Example 2The tireon a planar floor. We think of it as a circularg that
rolls without slipping on a plane. In itself, tegstem has five degrees of freedom, namely, the
coordinates, y of the contact point, the direction angtef the contact tangent with respect to
the x-axis (just like with the blade), then the anglaraflination ¢ between the plane of the tire

and the normal to the base plane, and fifth, tHengoangle¢ in the
y {'% Y. plane of the tire, which is measured from a markhancircle to the
L point of tangency. However, there exist the follogv two
differential conditions, which express the rollwghout slipping:

N,
o

dx=r d¢ cossd, dy=rdgsind, (2)
T X if r means the radius of the circle, because if tlgertitls without
Figure 112. slipping then the contact point will displace thgbu d¢ further in

the direction? . The conditiordy = tan dxfor the blade is included
in (1). Itis easy to prove that the conditionsdannot be replaced with finite equations:

f(xy. 4 ) =0,

which is already due to the fact that one cantt@l tire from any initial position to any final
position.

We would not like to treat this example with thergmetric method, but we shall treat it by
some other methods later. However, we shall calleihe kinetic energy. The center of the tire,
which shall also be the center of mass, has thedowies:

X =X —rsingsindg,
y =y+rsincoss,

Z =rcosy.
As a result:
x” = X—r cosysing y—r sinycosd I,
vy’ = y+rcosycosd Y—rsinygsind I,
X'=-rsingy.
Hence:

XP+ Y2+ 2% =+ P+l +risin’y b’
=2Xyrcoxy sind+ FYr cog cad
—2x9rsing cosd— XIr sig sid.
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The tire possesses the following rotational veiesi

1. ¢ around the axis perpendicular to it.

2. ¢ around the tangent to the contact point, and/for 0, it appears to be directed to the
left when one looks in the direction of rolling.

3. & around the vertical through the contact point. 3 2
The gives the componentsy in the direction of the tangend,
cosyin the plane of the tire (as seen from above), @nd Jsin \‘\
wperpendicular to the tire. (In the figur,is regarded as a vectc </ ?
that points up, whilgp points down and left. One’s line of sigt
points in the direction of rolling, s¢ points forward as a vector. 4\‘\_

As aresult, ifA, B=A, C are the principal moments of inerti o

the kinetic energy will be (cf., Chap. VII,3:
Figure 113.

T=1im(X+ ¥+ P+ r’sin’y§?
—2Xx¢rcogy sind+ JYr cog cad- R9r sih cbs yBr gin &in )
+ LA +coSY P H1C @ -9 sinp .

Figure 114.

231. The cart.Example 3:The two-wheeled carivhich shall also roll on a plane without
slipping. It is also similar to the blade.

Letx, y be the coordinates of the intersection of the ikmgignal axis with the transverse axis,
along which the wheels are located. The angtFops out, but we now have two rolling angles,
namely,¢: for the right-hand wheel angh for the left-hand one. Thus, we again have fivgrdes
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of freedom. We will ignore the bobbing of the wagon around the transweissevhich would
then be a sixth degree of freedom. Let the distance from iiber ¢e the wheels g and let their
radii ber. We will then have:

Xcosd+ y sind+bd+ rg, =0 (1)
for the velocity of the contact point for the right wheel and:
Xcosd+ y sind—bd+rg, =0 (2)
for the left. They must be combined with the old condition the absdnc@nsverse sliding:
xsind-ycos? = 0. (3)

There will then be three non-holonomic constraints for five degreesexdfdm.
The kinetic energy of the wagon itself is the same as thhedaféd, namely:

T=1m, (¥+ y¥)- m s¥sind+ m s§cosd+1 J9,
if Iwis the moment of inertia of the wagon alone around the vertical ththagiointx, y . That
must be combined with the kinetic energy of the wheels. If each Waga moment of inertia of

Cr around the rotational axis and the moment of indgiaround a transverse axis to the wheel,
then one will have:

T, = Im[( xcosd+ ysind+ bd §+ (xsind- ycod ) 1 G@Z+1 AI?
= imy[($ + ¥ +2 b¥(cosd+ ysind 4 Qo7 +1 A +1 md? t

for the right-hand wheel and:

Ty = imy[(xcosd+ ysind— I §+ (xsind— ycod 3 1 Go2+1 AS®
= 1M [ + ¥ =2 b9(cosd+ ysind v BS* i Gpr+1 AD?

for the left-hand one. Wity + 2mg = m (viz., the total mass of the wagon) dadr 21 b? +
2Ar =1 (viz., the total moment of inertia around the axis thraxjgh, that will give:

=im, (2+¥)-m, s¥sind+ ) s§cosd+i F+1 CP2+¢?)

for the total kinetic energy. One can also replagswith m g if ais the distance from the center
of mass to the poing y. Hence:
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T=1m (¥ + ¥)- maxsind+ maycosd+i £ +1 CH2+p?2)

Thebicyclepresents a more complicated problem, which was considered inoaghastudy
by Carvallo [J. Ec. poly215(1901)]. There are references to older literature in tizylopadie
d. math. Wiss. IV, Il. 1t would be desirable to treat alieomobilesimilarly. One sees that non-
holonomic systems are in no way rare, since almost all sg$tarwhich rolling without slipping
takes place are non-holonomic.

8 2. — The transition equations.

232. Deriving the equations— We shall now develop a method that does not work with
parameters, so it does not work with reaction forces, eitheiit gigdds the desired replacement
for theLagrange equations, which might indeed be false (cf., Chap. \3), &e shall come back
to that point. We might then prescritmeequations of the type:

w=)b,, q+cu=0, £=1,2,..m. (1)
v=1
In addition, it can be preferable to further introduce:
w=)b,, 0+, u=1,2,..n (2)
v=1

which do not all have to be zero, so they imply no further conditioasexample, for the blade,
we introduce:
V = XCcosSg + Yy sing

as anon-holonomic velocity parameteiWe extend that term to aty,. Furthermore, we already
know of suchwfrom thep, g, r of the top.
We shall also write:

ddy= ey dt=)"b,, dg +cudt. (3)
v=1
However, thadd, are not generally total differentials. We correspondingly introdueeittual
displacement®d, according to:

&9/1 = Zby,v Jq/ : (4)
v=l

The w, shall be independent; i.e., let the determinant obthebe non-zero:
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|1y v % O,

such that we can solve equations (1) and (2) foqgghe

qv = Z Bv,,u a),u +Cy, (5)
4=
and correspondingly:
av= ZBV,;,&%#CV- (5)
p=1

Naturally, we can also take tlag to be theq,. Now, if:

r=r(;gy,d, ...0n; t)
then

dr = Za—rdq, +%dt

v

and we will then find the transition equations:

dor —Jdr = Z%(ddq, ~3dg).

If we assume (as we can always do) that, — ddq, = 0 then:
dor —ddr =0,
and conversely, the first equation will follow from the second one \tiresap are not redundant.
However, we would not like to make that assumption now with no fudibeussion, but instead,
we shall calculate the relationship of the:
dor —-odr and ddgy—-9Jdg, tothe ddd—oddy.
We can spare ourselves some work in writing if we introduce arl§" coordinate by way of:
On+1 =1,

which belongs to then(+ 1) constraint equation:
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Qn+1 = 1

with
d:{n+1 =0.

If we replacen + 1 withn that we can proceed as if the system were scleronomicvoMe then

have:

ddy=adt=>b,, dqg,, (7)
v=1

oy = wa aq, , (8)
v=1
and the inverses:
dgv = Z B, dﬂy , (9)
v=1
= Z B, dﬁ’y . (10)
v=1
The constraint equations read:
o3,=0, u=1,2,...m, (11)
and
(12)

@y, = const.,

resp., in which one of those constants can be 1, while the otheerarelt follows from (9) and

(10) that:

3B, 9B,

d &y —dda,= > B, (d39,-3d9,)+> —~ dg 33, - > —%£3 g &,
u uo aq uo aan

o

0B,
= 2B,(d08, - 0d5,)+ X~ (dq 85, -0 ¢ &),
u uo

for which we can also write:

aBVll anr
ddqu—équZZBW(dd?ﬂ—ddﬂﬂH z — B, - 34, dgd?l,. (13)
U aq, 0q,

uo,r

If one switches the summation indiceandy in the second term of the triple sum then one can

also write:
0B,
d &y-oddg.= Y B, (ddg,-ddd,)+ za_ﬂ B,(dqdd, - dgos,). (13b)
U

H.O0,T o

In a completely analogous way, we can also stam f{7), (8) and get the solution of (13):
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db
d&?;,—édz?y:Zbﬂv(d&?V—ddﬁVHZ[i—ab”jdq,dg, (14)
% v,o aqg aq/
or also:
—_ abﬂV abva
déﬂy—ddﬂy—Zbﬂv(ddq—équ z — - | B, I%, (ﬁrdﬁ’p, (15)
v v,or,p aqg’ aq/
and with the abbreviation:
db ah,
&~ B = B, 16
V,Zg[aqg aqvj B = B, (16)
we can also write:
d&?;,—ddz?y:wa(ddq—ddqﬂz,ﬁ;*p d9rd9p. (15a)
v T,p

If we assume that &g, — ddg, = 0 (which, as we said, we can always do) thenvillgyet:

d&f,—odd, = Z,B;*" dd a9, , (15b)
7,0
or, since we clearly have:
,3;’" — _ﬁ;,p
[by switching the summation indices in the sumnratio(16)], we can also write:

d 38— 3dJu="Z B (d8, &9, -39, d3,) , (15¢)

in which the sum is now extended over the comlnatr, o only once, which is suggested by the
mark on the .

Now, one should notéf 9, is a true coordinate — i.e. &} is a total differential — then all of
the 5,” will be zero, and one will have:

d &3,—o0dd,=0,
when one assumes tlthdgy — odq, = 0, because one will then have:

bwzﬂ and w90 _ 0’9, 99, 0
aq, oq, 0q, 0q,0q, 0000

One then recognizes that the non-holonomity of wa4rcoordinate” (which is what we say
when ay, is a non-holonomic velocity parameter) means that 5;” are not all zero in the

transition equatior(15a).
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233. Critique. — Furthermore, the following should be observed:
If dJ, / dt = const. is a (generally non-holonomic)
a+da condition equation thedd, = 0, and naturallypd?, =
TTTTTT——————— 0, as well. By contrast, it would be false to dade that
dod, = 0 with no further assumptions.
Naturally, when the)xy, are functions of they, the
dogy are also defined. By contrast, tédg, are by no

P means given from the outset by way of tegp. The
same thing is true for thédr and theddJ ; i.e., itis not
o _ necessary to combine the neighboring po@itsQ>, ...
\/dr +oar into a path and denote the change- ddr by Q1 Q2 ; as
Q Fig. 115 suggests, that can be assumed in some way.

Under the stated assumption, (15a) will imply that:
Figure 11t

- 3dJu= Y b, (ddq -3dg)+ > B* &, 39,
v 7,p

If one assumes thatq, — dqgy = 0 then it will follow that:

- 3ddu=Y B dd. 39,
7.0

and that shows that omannotgenerally regar@dd, as zero. In the literature, one often finds
the remark that one cannot sefq, — ddgy = 0 for non-holonomic systems. That false asserti
comes about because the authors tacitly assumerthatlso hagdd, = 0. Naturally, one must
assume that the condition:

0= wa(dé'q —5dq)+z,8;’p & od,
v T,p

is true ford &qv — ddqv, which generally excludes the possibility tdalg, — ddgy = 0. The tacit
assumption thad dJ, = 0 mostly arises from the fact that the authasdt introduce they, at
all, but solve the constraint equations for somtabledqy, so, e.g., for the blade, one has:

dy =dxdand, (@)
oy =ox[dand. (b)

It would then seem to follow from this that:

d dy - ddy=tand [d & - 5dx) +

1
dd X - 3 dx) .
co§z9( )
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If the author then makes the assumption tha — odx = 0 then the foregoing equation will
naturally exclude the assumption tllady — ddy = 0, which obviously contradicts our assertion.
We will say about this that: (a) and (b) are correct. t fdows from (b) that:

1
cos 9

doy=dxtand + xdd,

but (a) cannot be varied with no further assumgti@inced d4: is not zero. (Here, we have
assumed that: = dy — dxtan£.) For that reason already, the entirely generdéy thad o —
odr ord &, — ddgy are not to be set equal to zero is to be prefer@ke will then be completely
free. That is especially necessary when one datesish to corrupt the transition kae’s theory
of infinitesimal transformations.

With Lie, we would also like to regard:

or or
a=L105q=S-"202B a9
;aqv v %6% A

as aninfinitesimal transformation.However, in the theory of those transformatighe,dd, are
regarded as constants, as well adte. But then, theddd,, as well as thd 39, will both be
zero. However, in general, tdeXy, — ddqg., and therefore also thier — ddr, cannot be assumed
to be zero now.

We then see that equations (15a):

d 9, - 5d9,= 3, (d5q, -5dg) +> B d9, 89, ,
v 7,0
along with:
d& - ddr = Z%(ddq, ~3dg),

are the definitive equations of transition.

234. Example—Example 1: The bladelf we set:

d$ =dycosd— dxsin Z,
d$» =dxcosd + dxsin g =v dt,
dds =d9,
and correspondingly:
O = 0y cosI — oK sing,
0F> = X cosd+ dysing,
5193 = o
then:
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d s —odd = (d dy —ddy) cosd— (d x —odX) sind - dy dF sin - X dF cosF
+dy &7 sind + dx & cosd,

dod - 0dd =(d X —-9dX cosd+ (d oy —ody) sind - dx dI sind + dy dJ cosI
+dx & sind + dy & cosd,

ddds - ddds =d &9 -0odJ,

or
d 39— 3dd =— (d & —JdX) sind + (d &y —Ady) cosd — ds 5%+ 395 Az,

d 39 — 3d9 = (d & —FdX) cosd + (d &y —Ady) sin I + dds 91— 595 A,
d 69— 5dds=d 69— 5dS .

One sees from this that @llare constants that are eithet or zero. All5; are zero, sincés
= Jis a true coordinate 3= - >*= 1, f'= - B°= 1, all otherB are zero. According tbie,

the constancy gf means that the associated infinitesimal transformations defineup; viz., the
group of motions of the blade. We shall not go into that, though.

Example 2: The tireOne can perhaps set:

dx —r dp cosd =d,
dy —rdpsing=d,
dJd = dJs,

dg =ddJs,

dxcosZ +dysing =dds.

Sinceds andd, are true coordinates, #with the index 3 or 4 will be zero. However, it is simpler,
here as well (as with the blade), to set:

—dxsind+dycosd=dd =0
and
rdg —dxcos# —dysind =d5. = 0.

Those constraint equations are equivalent to the old ones. NoW; are the same as they were
for the blade, and:s is the same a8 in that example. Hence, as before, one will have:

d 39— 3dd =— (d & —Jdx) sind + (d Iy —Ady) cosd — ds 35 + 395 ds,

dods—0dds= (dx—-0dxX) cosd+ (ddy—ady) sind+dds & — I3 dd.



18 Chapter IX — Non-holonomic systems with a finite number of degregeedom.

Sinced$, =r d¢ —dJs, we find that for the new., we have:

d 39, - 3dd =r (d 5p — 5d@) — d 395 — 3 dx)
=1 (d 3¢ — 5dd) — d 695 — 5dIs) — (d Sy —Ady) — ds 591 + 595 dS.

All of the S are constant again, nametyl or zero.
Example 3: The two-wheeled wagddere, we also set:

—dxsin g +dycosd=dd =0,
dxcosd +dysind =d& =0,
dd =dJs.
We further set:
r (dg. +dgp) + 2 dxcos?+dysind) =dds =0
or
r (dg. +dgp) +2d5=d9 =0
or
2bd?+r (dgr +dg2) =dIs=0.

Those two constraint equations are equivalent to the older ones (B)amtbfurally, we get the
same transition equations fét, &, 73 that we did for the blade, namely:

d 39— 5d9 =1 (d o1 — 5dgy) +r (d Oz — 5dg) + 2 d 2 — 5d,)

=1 (d og1 — dd¢) +r1 (d O¢2 — d¢)
+2dX-9dx)cosd+ 2 (dady—ody) singd+2dd5- odd),

d 39— 5dd =20 (d 39— 5d) +r (d o1 — 5dgy) .

One sees thatds = 0 is an integrable combination, 80=2b J +r (¢ — ¢-) is a true coordinate.
All Bare also constant here.

8 3. — Deriving the equations of motion.

235. The Lagrange-Euler equations- We havd.agrange's principle as our foundation, and
together with the generalized central equation that will yield:

dor-od

iSclmv dt-0T-S dnv
dt dt

= A=Y K, dq, .
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Now, T=T (qv, q,, 1), andS dmv & :Z p, 99, , wherep, = 0T /d¢, are the components of

the impulse.
However, since:

d& —ddr = Z%(d g, -4 dg)

from the transition equations, and:

py=S dmv 6_r
0q,
we will have:
Sdmv doi z d 5q 5dq
We can then write the central equation as:
d ddg,-od
_z pvaq/ - m-_z va: Z Kv 5qv :
dt< v dt
If we now set:
d:lv = Z BWI g

from §2, formula (10), and conveftinto T (qQv, @), with:
4= 2.8,

(we have set = one of theg !) then we might set:
;pvéow; P, B, 09,=2.F, 85,
> K, dq, =ZKV B,d,=> K, d5,.

v v

Theorem:
One has:
o= T
aa)ﬂ
Proof:
P/f = z pv BV
but

0T _ 0T 09,
= =Py,.
0w, zaq 0w, ZV: P, By =Pu

(]
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In order to find the equations of motion, we can (and we would likseta) g, — d dg, = 0.
The central equation will then give:

d oT oT
—>YP & - —ow, -> —o9, =) K 359, ,
dtZﬂ H szﬂ H ZGq/ q/ Z H H
or since:
oT
P,=—,
“ aa)ﬂ
we will have:
dd? _5d9

o9, + YR [dt jz B, 85, =3 K, 59, 0

We now introduce the transition equations:

dod,—odd, = 2,8;*" dd, &d,
7,0
and get:

dP,
dtaﬁ+2&9(PﬁW@) 2 avﬂw YK, 5,

Now, we havedd, =0 foru=1, 2, 3, ...m. The corresponding terms then drop out. By contrast,
the o9, are free foy=m+ 1, ...,n. Hence, one has the equations:

dP
—E+Y B Pw - L =Ku (U=m+1, ..,n). (I
t o7 09,
oT oT | . . .
We have allowed ourselves to erga—B =135 in this. Namely, ifd, were a true
q, y

coordinate then from the chain rule, one would have:

_ydrog _ oT
dq, 95, 03,

aqv "
ou
04,

Analogously, we can write:
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in the case of a potentiél. Just to be careful, we put the expression in parentheses,itsince
certainly does not need to be a true derivative.

In v. 50 of the Zeit. f. Math. u. Physik, 1904, we referred to topug (ll) as thd.agrange-
Euler equations, because they include lthgrange equations as a special case, namely, for the
case in which alB are zero, and therefore &lare true coordinates, as well asHuer equations
for the rigid body, which we still have to prove (ibg

Equations (Il) were exhibited independently by the Italfafterra, the RussiarvYoronetz,
and byPoincaréfor the case of constafit. Boltzmann also come close to exhibiting them. The
methods of those authors differ in places.

236. The casen = 0. — Naturally, it can happen that= 0, so there are no non-holonomic
constraints present, but one must still introduce non-holonomic velocitywetma. That is the
case for, e.g., the rigid body.

In complete generality, one can use a linear transformatidre @f, t

qv = Z va wﬂ
U
to transform the positive-definite form:
T= EZ apr qJ q’

T35

into the form:

One will then have:

Pu=au,
and the equations of motion (1) will read:

da)ﬂ
dt

+> B w0 =Ky (l1a)
p.T

However, thef will still depend upon they, in general. Equations (lla), together with the
equations:

4= B,d,,
U

define a simultaneous system of #rst-order differential equations for the, andq, . Their
validity is completely general.

237. Warning and remark. — If condition equationgy, = 0, £ =1, 2, ...,m are present then
the sum ovet in (Il) will extend from onlym + 1 ton. However, one must be careful to set the
@, @, ... equal to zero i =T from the outset and to use the riskythat arises in that way.
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Since one needs the derivatives with respeatm order to calculate thi@,, one must let them
be variable. One can probably set quadratic terms with vaniah&agial to zero from the outset.
If one setgy, =t (for rheonomic systems), sa, = 1, thendd, = 0, and the'" equation must
be dropped in order for one to set= 1. However, one must also only do that afterwards, since
one must differentiate with respectdmsin order to construd®, .
If one would like to employ the generalized central equation then oné Wwaué to set:

dod,—odd, = wa(ddq —5dq)+z,8;*" & oF,
1% 7,0
and then get:
ddg,-oddq

> P,b,(ddg-ddg)-> p o
)75 v

in addition. However, that is zero, since one ha®, b,, = pv, since that is the solution to:

P/IZZBV,U P, -

§ 4. — Examples.

238. The blade- If one would like to exhibit the equations of motion (Il) then nasalways
perhaps practical to exhibit the table/$, but much simpler to revert to the form:

dP dog, o oT
Tugg,+3p| e %% | v g 59 =Sk, 59, |
; dt H ; p[ dt dt j zaq a/// H Z H H ()

after calculatingl and the impuls€, = dT / da), , and to look for the terms witdd, in the
expression fod &9, — ddJ, . That is how we shall proceed.

Example 1: The blade: From 81, one has:

T=1mvV+ms}( yxosd- wind 3 |,
T=4ma+msww+3 Lk,
Hence:
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oT
Ps3=—— =msawm +lsas =g ws.
o,

23

Since one hagd = 0, we only have to exhibit the two equations that belongfoand &5 .

Since:
X =% cosd — oA sind,
oy = &% sind + o091 cosF,
one will haveK; = X cosZ+ Y sind =27, and:

Ks=M.

From 82, o9 belongs to- as P1, and d%; belongs toawr P1— a» P1 = aw» P1 .

independent of the coordinates, the equations of motion will then read:

dR da,
—_— = P.=Z m—-:=- ms=27
ot s P or at &f

o] d
d_t3+@pl:|\/| IBd—?+a)2msa%:M.

However, since = a», 9 = a, those are the same equations asin §

SinceT is

Remark: We must actually writetm(¥ + ") = im(V+af) in T instead of 1m\2

However, we can drop the purely-quadratic t%rmaf, since it contributes the termc to Py,

which vanishes.

We will devote a special paragraph to Example 2, namely réhddr now, we shall turn to:

239. Example 3: the two-wheeled wagor. With:

=— xsing+ y cos? =0,

xcos?+ Yy sing =0,
3,
(g +¢,) +2aw =0,
= 208 +1(4,-4,)=0,

w
W
(43}
ay
(03

one has:

T=1maf + maw,w +1 I(l)g+%%(_2w2w4+ 20— 2bw gt 2ws3).
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One then has:
2rg =+ as— 2w — 2 s,
2rp, = —ws— 20 + 20 s,
and as a result:
o7+ 5 = [(cn — 2a)* + (w5 - 2a2)7] .

We have dropped the termsdg, «f, «f from our calculations. As a result:

_ 0T _
2]
— aT — B B
Pz—a——ma)z——za)4+2 w, m@+2—a)2 w, m+2—,
w
oT Cq 2
Ps—a——mawnlas— bw5+2 B o, = a){|+22bJ
W,
P4_6T _ C_ZB ,
ow, r
|::’5:a—-r:——;3 b
ow, r

From the transition equations, one can associate:

o%  with -Pray,
0% with Piar— arP1—2e0P1 =P1 .

SinceT is once more independent of the coordinates, and:

XOX+YOo y+ MAF = Xcosddd, — siddd, t Y(cogdd, + siddd, ¥ MAS,
=725, +M &5,

the equations of motion (II) will then read:

d dw,

P s Tm mauf = Z
q or

a%‘”:iwz:'\/' T‘?I’+maaga)2:M.

We have sem + 2C—§ =m, | +2(:—§b2 =1".
r r
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The equations are essentially identical to thdsbheoblade.

240. A rheonomic example- As afourth examplewe
shall treat aheonomic systemPlace wheels of radius

andr» be placed along the axis of a sliding shaft ofalde V2
cross-section that rotates with an angular veloaftyw , Vi

such that they inevitably rotate with it (perhagsnbeans o a b
of gears), as well as raising and lowering. T o )*(-2 ------------ -

displacement along the longitudinal axis happerasgiven

1
way, but by contrast leiy not be given. i1, ¢ are the
angles of rotation and;, x> are the distances from th

centers to the rotational axis then: Figure 116.

neg, =aia, g, =az w,

sog, = f(t)g,, ifwe setﬁk =f (t) . Althoughry, r> are fixeda anda are, however, dependent
1

upont by way of the given displacement of the shaftthis, we have a system with four degrees
of freedom that is nonetheless rheonomic. If wesethen we will have the equations of motion:

x1=ay (t) +r1, X1=ay (t) +r1,
SO
A =aw, % =aa,
dgr —f () dgo=dh =0.
We let:

==
in this. The kinetic energy is:

T=im X +im X+ L@ +3 1,95

T

$F(@) e +31[w+ f(a)w]*+3 1,05,
with

F=m&+m3§.
Thus:

P =T =1 [+ (0) ] = 111 (0B) o,
0w

pZ::_J)zzf(qs)|l[a)l+f(q3) @]+ 12 ap=11f(0p) @+l w,
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Ps =T = F () @ =F (a9) .
oa,

The transition equations read:

d 591 — 51 =d oy — Sdghs — T () (d 2 — 5dg) — f (A Oz — 5 s deho)
=d 31— 5dér —  (qs) (d Oz — 5d@) — | (A5 592 — 555 ),

d 59, — 5, = d o — 5,
d 595 — 595 = d dps — Sds.

Therefore, &% is associated with:

-P fw=-Rf.
Moreover, one has:
oT oT oT : -
— =0, —=0, —=2F(0,) + | [w, + () w)] f(q) w
5%, 20, R (G) + I[w, + T(g) w] f(q) w,

=1Ft)+LfM)aE T .

However, the relations:

qv :Z Bwl w/l
read

G=g=wm+fw,

0, =9,= @,

4= as
here. As aresult:

a_T:a_T:O, a_T:a_Tf+a_T:O, a—T:a—T:%F+|lffa)22
04, ) 0q, 04,) o0q,  0q, 04, ) 0q,

If forces X1 and Xz act upon the system, along with momevitsandM:, then the virtual work
done will be:
OA =X1 I+ X2 X+ M1 @1 + M2 O =M1 (091 + T OF) + M2 &5 .
Hence:
Ko=M1f+Mz.
The equation of motion then reads:

%Pz—ef:Kz or %(llf%ﬂmg—llff'¢2=M1f+Mz-

However, it would wrong to use the illegitimaterfoof the kinetic energy:
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T*=1F@)+11, %7 +31 07

and construct theagrange equation from that:

such that:

%(|lf2+|2)¢2: Ko=Mif+Ms>.

This equation is clearly different from the one aho The difference lies in the ter, f f ¢,
which drops out because of the illegitimate — pegmature — use of the equations of constraint.

Remark: We have treated the shaft as merely a masslas®kelement.

241. A holonomic example— As afifth example, we shall take one that is intrinsically
holonomic, but into which we would like to introdua non-holonomic velocity parameter in such

away thafl = 1> «f, .
With two degrees of freedom, let:

T=3[4 +20 g 4+ (4 +D) ).

If cx=¢ +0q 0, ar = (,, whose inverses aig, = ar, ¢,= a1 — 1 ap, then:

T=3 +a).

The transition equations read:

dod—odd=ddop—oda +ou (d oo — odep) +dap oo — dar dp
=da—-oda + o (d dp —ddp) + (dF1 — 1 dF) O — (65 — 1 &F) dFa,
=da—-odq + h (d dp —ddp) + dd dF> — o9 dF»
and
dds—9ddI=ddp—IJda.

091 is then associated withar P2 = — a» ar , 9. is then associated witln Py = af . Now, if
the forceK; andK: act then:

A=Ky a1 +Kz dp =K1 (09 — op 051) + Kz 02
=K1 0 + Kz &% with  Ki=K; and Ko=-q K1 +K>,
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and the equations of motion will read:

d _
awl_wlwz - Kl’
and (1

d

—a + =K..

Sardd =K,
ThelLagrange equations, which are entirely legitimate here, read:

9 @-am)-a6-q6= K
dt . (I
St (G al= K,

The first equations are identical. If one adds the first of emmsatll) to the second one, multiplied
by q1, then one will get:

6+(+q&)°+q(9+ g9+ 99-('g¢- g4 g =Ko
or
G +A+ ) Q+2qq g=Kz;

i.e., the second equation in (lll). Naturally, both (II) and @te identical. However, since tjfe
are constant, the form (ll) is certainly more convenient to iatedor force-free motion, which is
then the same as for the blade. Huwer equations of the rigid body also belong to this case,
which we would like to treat in a special section asth example.

8 5. — The rigid body.

242. New derivation of Euler's equations— The rigid body shall rotate about a fixed point,
such that its kinetic energy will be:
T=i(ApP+Bd+Cnr).

In order to have precisely the forgnwa, , we need only to sel’Zp =, \/Ep =, \/Ep =

axs, but that is not inessential, so we shall not do that.
We now need the transition equations for phe, r. We can derive them from the given
relations (Chap. Il, 8):

p=xcosy+¢ siny sig, g=—-xsing+@siny copp, r=g@cosy+y;
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however, it is more convenient to recall thgler formulas:
dr=dd xr, and Or =99 xr,
It follows directly from this that:

dor—-0dr=dM-9dY) xr +AD xdr —dd xor
=dB-0dd) xr +03 x(d¥ xdr)—-dd x (B xr).

However, from the known formukax (b x c) +b x (c x a) + ¢ x (a x b) =0, that is also:
(d®-0d¥) xr—r x (M xdY) .
If one assumes thdtdr — ddr = 0 then (since is arbitrary) the transition formula:
dd®-50dd =— M xdd
will follow. However, that refers to the rest coordinate systelf we denote our derivatives
relative to the moving coordinate system, which is fixed in the bogyputting primes o (J,

resp.) then from Chap. VIII, &
dd=d’'dD+dI xD

and
o =0'dd + xdj .
Hence:
dRB -0 =d’'P-0'd)+2dI x® .
Therefore:

d’®-0dd=dD-0dd -2d) x D
=-Nxd-2d x XD,
=-d¥ xd.
Lagrange already found this.
Therefore, when the equations of motion are referred to a syisa¢ms fixed in the body:

(la—Tjaa—(wxaa)a—T -M ®,
ot dw ow

or, withD =0T /dw:

£D+w><D:M,
ot

and that is theeuler equation, which also represents a special case ofageange-Euler
equations.
We shall now take up treecond example.
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8§ 6. — The tire.
243. Exhibiting the equations of motion— From 81, with:

df1 =-dxsing +dycosd =0,
d = rd¢-dxcos?—-dycosZ=rdy—ddb =0,
dd; =dJ,
dd: =dy,
dds =dxcosd +dysinJ,
one will have:

T =im(af +af + r’wi+r’sin’y w’+ 2 coy ww,~ 2 siy w,w,

+%A<wf+cos2ww;>+%c[% @+ w,)- smwag} |

or, when we drop the terms witif ,

T =im(af + r*a} +r’sinY wi+ 2 coyy ww,— B sy w,w,
AT 005 6f 1 C| S (o, 0d e STy -2 0,0, )i @,

Therefore:

P1 :a—sz rcosy an,
0y

oT _ C C .
P2=——=—w —-—sIn ,
2 3 rzag., . Yy

P3 ::—T:m P Sir? (¢ ax —m rsin ¢ ax + A cog ¢ ax — C sir? l/las—%sin Y,

P4:6T =mPrPw+Aw,
ow,

Ps :a—szas—m rsin z/lazs+Aaz;+£2w5—ESin Yas.
o, r r

We have now dropped the vanishing terms. From the transition equat®Bsdé is associated
with:
Prax+P2ar —Ps ah =P1 aws
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nothing is associated wis, anddds is associated with Py as .
Therefore, since only:

S—L:mrzsinz//cosﬂaﬁ—mrcowag%—A cag sifiak+C sip W‘% W0

is non-zero, the three equations of motion wilbkea

d oy
—P,+Bw,- Ks,
dt ° 0 aw[aﬁj ’
EFZ‘ 64[1 =Ks,

dt aw 95,

EI:) Pa)3— 64[1 =Ks.
dt ° 64[1 09,

However, one hasty/ = dJs, so one will hav W =0, oy =1, W =0. Letgravity be
09, 09, 05,

the only applied force, so it will have the potahti
U=magrcosy.

HenceKs =0,Ka=-0U/d¢=m g rsin g, Ks =0, and we will get thequations of motion:
d, , ., : : C :
a(mr sSin’ @ aw, —mrsing w, + Aco$y w,+ C sify w,—— w, Siy +mrcosy ar ws =0,
r
%(mrzwag+ Aw,) - mr*sing cogy w’+ mr cog w,w,+ A cag sinai—- C sin  aps;
+Ecos¢/a)5 @, =mgrsin ¢,
r
C
—(mazj mrsmwa)3+ 5 W~ —smgﬂw )- mrco® w,w,= 0.

Hence,as =3, as =, s =r ¢ .

244, Question of stability.— Naturally, those equations have the solution0, as = 0, as =
r ap = const: The tire rolls upright with constant gphebs thatmotion stable?
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In order to clarify this question usihggrange’'s method of small oscillations, we now regard
¢, ¢, 9 as small first-order quantities and neglect higher-order teWitieen will then remain is:

%(—mrl//ws + Aﬁ—%wswh mry = 0,
2
(A+ mrz)?j—tlf+ mrmsz9+%a)sz9: mgry,

d C
a(m%+7%): 0.

The last equation gives constant. With the abbreviations:

Ea,g:B, mrag+9a)5:D, A+mr=E, mgr=F,
r r

we can write:
Ad-By =0,
DS+E@-Fy=0.

The Ansatz? = Q€”, = Y™ gives:

O(-AdF)-¥Bia=0,
O (H+Dia)+W¥ (Ba*-F) =0.

Hence, one must have that the determinant:

-Ax® -Bia
+Dia —EaZ—F‘
or

Aa?Ea?+F)-DBa?=0.

In addition to the double roat = 0, this equation also has the root:

b= BD- AF
AE

a will be real wherBD > AF — i.e.,E(mHEJwg > A m g r— so when the tire moves fast
r r

enough. There is a small oscillation in that case.
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The double root corresponds to a possible solution gvithconst. 7 = const. One can find it
as follows: When the first equation is integrated, that will .give

Ad -By=kA (integration constant).

When that is substituted in the second one, that will give:
B ,
DK+ZDI//+E¢/ -Fy=0.

WhenBD > AF, this equation will have not only the small oscillation, but asosolutiony =
AD«k
AF -BD
tire can also rotate with a corresponding constanivhich does not affect the stability. For an

exact solution of the differential equations, see Problems 180 and 181.

= const., which also corresponds to constantFor a small, constant inclination, the

8 7. — The principle of least action.

245. First proof.— We already said that the principle of least action isyevrae in the form:

JT(T—U)dtZO

4

(in case a potential is present), when we treat the vidisplacements as possible, but that might
make the neighboring motions impossible for non-holonomic constraintsnoWesee how that
is quite obvious. If the constrainkg = O exist /=0, 1, ...,m), so we also havéd, = 0, then the
possible displacements will be characterize®8y= 0, from which, it will follow thatddd, = 0.
However, should the neighboring path be possible, one would need tayhawk as well a®awy

= 0, which would be impossible for a non-holonomic system under the assartiyatt:

dor —odr =0.
We would now like to ask whether it is possibléotonulate the principle by comparing with

possible neighboring paths.
To that end, we start from the generalized central equation:

d doq-5d
T2P00 Y S - aT= -,

and when we integrate frotnto t2, and setq, = 0 at the ends of the interval, that will give:
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t

j[aa—uyz RW} dt= 0.

We then convert this with the transition equation:

d39-0d9 =3'b,,(ddq -3 dg)+> B &, 39, .
v )

We solve this fod &g, — 0 dgv, which we do by multiplying b, and summing ovet, since
w@.= Y h, ¢, has the solutiong, = » B,, w,; hence:
H H

q, = Z BV;I bllU @, -
Y%

Hence,)_ B, b, = dwis equal to th&ronecker symbol. One will then get:
U

., dJ
ZBW (dod, -0 df,)=dagv—odag, + Z B, p B —*F
u

UY,r,o dt

39, .

However, one had B, p, = P. (see 8). We then get:

U
ddg -od dog,-od .
z va = Zpﬂy—ql_ z Puﬁy’pwr d9;7'
y dt m dt oy
However, with that, the principle will assume toenh:
p ddq,-od
[lor-u)+yp 22T 5 b gew as, |di=o.
U

1%
dt H=1,2,..n,

o]
T,p=m+l,...n

We can now arrange the virtual displacements tsumd that not only the displacements are
possible for which:

but also the ones for the neighboring paths:

owy, =0, M=12 ..m.

We must now only arrange that, from (1), thég, — d dgy must satisfy:
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doy-odg= Y B, (dd,-5d3)- > B, Brd A, 2)

H=m+l....n M p=mtl,..n
Indeed, forz > m, we can even establish the commutation relation:
dod,—90dd,=0

[which will make the first sum on the right in (2) drop out], whwill imply no restriction on the
od, for p>m, and is otherwise a proper definition for i@,. We will then get the variational
principle:

j5(r - P, B*e 89, |dt=0

In this form, the least-action principle is now gib¢e for not only the displacements, but also the
neighboring paths; We can replaceith T *.

246. Second proof—- There is @econd proothat is probably simpler. In:

")
5j(T—U)dt:o
4

one sets:

m

n m 9T

Now, one can make use of the non-holonomic comégram the second and third terms from the
outset; i.e., one can repla€evith T*. The second and third terms together then give, and
one will get:

t

J[JT*—5U+Zm:F;5a@Jdt -0
v=l

Y

That is then the desired form, since the conssaimre indeed used h*, so the neighboring
paths were possible. Using the transition equation

d
Sy 8%u=- Y Brw a,,

dt 7,p=m+l,..,n
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m
we can convert the correction tefn B, dw, into:
v

B Z Pﬂ ﬁ;ypwr wp’

H=1,2,..n,
7,p=m+l,...n

and thus get the principle:

t

f[lem-u)- ¥ B Brwas,|d=0.

t H=1,2,..m,
7,0=m+l....n

There is an obvious difference between the two $ordm the first formulation, the sum extends
over allx from 1 ton, while in the second, it only goes from Inia However, the difference is
zero, because as we know we indeed have:

dog
- > B w 3, :[&uﬂ— dtﬂj’
T,p

and fory > m, that is set equal to zero. That theorem goels tae¢oronetz, and the method of
proof is partly found in Math. Anr@2 (1924). For more details, see Math. Ahhl (1935).

8 8. — Nonlinear constraint equations.

247. The first form. — Now, one can prescribe nonlinear constraint eqoatiand also
introduce nonlinear velocity parameters. Hence:

f(q,, ) =w, v=1,2, ..n. (1)
Let it be established that:
w =0, v=12,..m<n (2)
in that.
Let those equations be mutually independent alublsofor theq :

q,=Fu(awq). (3)
Correspondingly, one has:

of . .
=Y aq” oq,=> f,,94,, (4)
Y
oq, = zaw o, = > F,, ow,. (5)
(]

It then follows that:
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z fv,UFU,,u = 5I/,,u ’ (6)

Z FJ,,u fv,a = 5‘7uu1 (7)
u

in which dis theKronecker symbol. Solubility assumes the non-vanishing of the determinant
f

7
We also write:
dgd

ot
However, &7, must now be redefined, because if one would like to write, &pys Fu (9, Q)
then that would make no sense in the nonlinear dasgrange's principle will then break down,
but Gauss's principle of least constrainwill help us further. That demands that:

S (dmw — JKe) dw =0,

and since:
dr or .
wW=—-= > — (@ +terms with noj, ,
dt? Z“6qv 4 4
or _.
S (dmw — 6Ke) —4J4, = 0.
0q,
By contrastLagrange:
S (dmw - 5Ke) :r Jg, = 0.
a,

Now, if (3) is true then one will also have:

oF
d,= > —* ), + terms with no,

(2

o)
a4,= > F,,09,.
Gauss's principle then implies that:
or X
S (dmw - J5Ke) g o 8 =0,
q

If one of thea is to be zero then that must mean that it must not erteff in so it will not enter
into o4, , either. However, that means thib, must be set to zero.

The foregoing equation can be brought intolthgrangian form when we define thé by
way of:
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qu = z FV,U dBﬂ' ’ (8)

and conversely:
&9/1 = z fU,r 5qr ) (9)

in whichd,=0forv=1, 2, ... m

In order to remain consistent witkauss's principle, one can then define virtual displa@aits
to be the differential variations of the velocitie®ne will then gekagrange's principle. This
new definition of virtual displacements includes @hd one for linear constraints.

We can easily exhibit the equations of motion now. As féoragis concerned, we get:

A=) K, dq,=>K,F_0%,=>K,3,,
v 7

with

K,u: ZKV Fv,,u: (10)
We then recalculate thenetic energy:

T@g)=T@F=T@ o
and the work done by momentum:

oT aq oT
— =) —3a,. 11
va 4= za , 0w, %y 0w, (11)

Hence, we introduce thmpulse components:

P,= o : (12)

0w,
We now needransition equations.lt follows from:
dJg of
~=w =1,(q,0), oy = 06
" (4,0 2 2, 0%
that:
dag, odJf, of, dd¢ d 6f of of,
S E B Y S0, - Y 8, =Y S 5
dt dt og, dt dtaq, 04 0g

or, if we now demand that:

ddgo—90dg,=0

that
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(13)

daj, 5dz9 z d of, of, 5
dt dtoq, oq, )

TheLagrangian central equation:
d
— E 0q, - T = A
at p, 0q,

now vyields:

dp, dd,-0d9, T oF,
2 dt 39, + 2, dt Zaq 0w,

“ 39, =Y K, o9,

or, with the use of (13):

dP d of, of, |dF, 0T OF, _
zd_:&9#+ze[_ o j O, =7~ wﬂ_ZKﬂéﬁﬂ'

dtag, 09g )oiw, 0q 0w,

Now, since the firstd, are equal to zero, while the others are arbitraryy/fom + 1, ...,n, that
will yield the equations of motion:

dP
_;,+ZPV gafv _afv oF, _ZGT aF”:K/,. 0
dt 75 "\dtdg, 09 )ow, T0q 0w,

However, thdirst form has the disadvantage that theand ¢ still enter into the calculation of

the second term. For that reason, we would like to give a convdnsiondludes only thg, and
thew.
We start from (3) and (8) and then obtain:

déq, -5dg _ 439, -5d9, «dF, . < oF
TP M e et

:zFu,add? -o0dJd, Z < O0F F o9,
o T /,un

hence, withd &g, — odgy = 0, we will have:

Z das, 5dz9 _z{dzvtyg_ aF”FV,ng?g-

g H aq/j

When one uses (8) to symbolically write:
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Fuvo= aFV )
33,

one can also write the foregoing transition equation as:

das, 5dz9 d oF, (oF,
R e |

We can likewise write:
z 0T oF, _ oT
- 0q, 0w, | 99,

in (1).

248. The second form- A second form of the transition equatiqt8) follows by multiplying
(6) byf, and summing ovev :

dag,-5ds, _
499,209, _ 5 d oF, [ oF, 5, (132)
dt = dtdw, (09,

However, (14) will then imply that:

Uv,o

d oF oF, oT
- — | |08 od,= ) K, &9,
z z “ "{dtawg [aﬂgﬂ “ Z{aﬁ J 2K,
and we will then have th&econd form of the equations of motion:

daFV_ aFV B a_T: __ a_U _
ot ;y y{dta% [aﬂgﬂ Z(MJ Ky {MJ, w=m+1,...n), (I

in case a potential exists.

These equations are found in the workkeif Johnson, but their derivation is flawed)( In
regard to that, see a paper by the autfor (

Indeed, these equations still inclugde , which is a function ofy andq, but it follows from:

dwr= Y f,, 04,

(® JOHNSON, Leif, “Dynamique générales des systémes non holonomes, Narake Vid. Selskab. Skrifter.
() HAMEL , Georg, “Nichtholonomer Systeme hoherer Art,” Sitz. M&hs. Berlin, v. XXXVII.
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and
o6,= > F,, dw,

that thef,, , are the sub-determinants of}| , ||, divided by the total determinant, so they are
obtained by means of linear algebra and can be converted into furaftionandg, . One does
not need to revert to equations (1) and (3).

. . T
Special caself one taked itself to bean thenT = an, Pn =1, all otheP are zero, anE:?J
U

= 0. Hence, the equations of motion will read:

d oF, _(oF
N | 22w - v =Ky, =m+1,..,n
2 ”’{dtawﬂ (aﬂﬂﬂ S

in this case.

249. Example.— There do not seem to be any examples from daily life, as im#sr tase.
The value of such nonlinear constraints lies not so much in thegrgegion as in the possibility
of introducing some sort of combinatibfq, q) that might be useful as a variable, if perhaps an

integral = const. exists. We shall satisfy ourselves withrtiicial example.
Let the object be a point in three-dimensional space. dake be:

T=10¢+56+5).
Let:
@w=3(%6-%-%)=0

SENEEES

i.e., the velocity in the vertical direction is equal to the onthé horizontal direction. In other
words: The angle of inclination is 45vhich can indeed be achieved by means of wh&edsiéri.
It follows from:

be prescribed, i.e.:

36+ 2w,
X 45~ 5=~ 20
that
X =wta, %=y W +a
We then set:

X =,/ &, — @, cosax ,
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X, =+ G =@ Sinap .

= =306 -5 -5,
fo=w= arctan:ﬁ,
%

fa=ay =30+ +X).

Fi=x=\ @ —-w cosa,
Fo=%=\ w-w sinw,
Fs=X%=Ja+aq .

Therefore:

The inverses are:

It follows from this that:

_ cosw, _ . __cosw,
Fi1,1=—- —=—, Fi2=-\w,-wsina, Fi13=- ,
2 w,-w 2| W -
_ sinw, _ _ sinw,
Fo1=— —/—=—, F2,2= Jw-wcosar, F23= —————,
2 w,-w 2| W -
Fs 1= _tr Fs,2= O, Fs 3= !

2Jw+a’ | T 2fwta

Since one does not further partially differentiate with respect , one can already seh = O.
The determinant is then:

_cosa, - & sinw, 0%
2w 2,/ w,
_| sinw . sinw, | _ 1
A=|- J il ) S
ofw VO STa T 2.

1 1
2a 2w

One only need,, . One finds it the fastest here from the fact:tha

=30 +X+ %),

fa,1=% =@, cosa,

which leads to:
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f32=% :\/Z sinax ,

f3,3=% :\/a.

One can now write down the two equations of motion. They read:

_\/a oS, (\/Esma) ¥ sinw, ;’t(@, coa)z}):Kz,

—\/acosa)d cosw, | dcosu d 2}:K3,

dt2fa o dtagw Atz

because th&, are independent of the coordinates. One can get the forces from:

Kz 0% + K3z 0F3 = X1 O + X2 05 + X3 O3

- x, oF, ¥ X, oF, ¥ X, oF, 59+ aFl N X26F2 N X36F3 59.
ow, 0w, ‘0w, 6w3 0w, ow,)

namely:
K2 == X/ @ Sinw, = X 4/ w, coOw,,

Ks = ch S“’Zsma)+x S'm’2+x

R o K

Differentiating these will give the simple equason

Naturally, in the force-free case, that will giveetenergy integral:
s = const.

If perhapsX: = 0,X2 = 0,X3 = K = const. then it will follow that:

K2=0, K3—— dwZ_O 1 day_ K

2w “Tat 20, &t 2w

SO

«» = const., \/Z:%Kt+\/a’ T=w= %Kt+\/a)2,

43
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%= o cosar = (AKt+./ap)cosar,
%= assina = Kt+, @) cosa,
X, = & :%Kt+m,

which can be integrated by elementary methodse sinés constant.

250. Linearization.— One can often treat nonlinear problems like:
d¥ + dy? + dZ

in a different way by linearizing it using the iatluction of auxiliary variables, which are initiall
only apparent. Indeed, one can introduce the ianxivariable by that fact:

dx=dzcos#,
dy=dzsing.
One will then have:
2c0s9- zsindd,

2sind+ zcos3 9.

%
g

However, in constructingd%, dy, one must now vary?, since the position has nothing to do

with 4 at all, which first makes its appearance in thpeesentation of the velocityd is a quantity
that is meaningful for the acceleration, and musintvaried according tGausss principle.
Hence:

OX = 02¢089 - zsind o,
0y = d2sind+ zcos? 9.
Form=1, that now gives:

XOX+ Yoy+z0z=Xcosd+Ysind—Z— Xzsind+ yzcosd
=-X zsind + Y zcosy .

Since z= 0 does not come into question (except for the cdgest), two equations farand
will follow by subsequently introducing and droppingz that:

27=XcosF+Ysingd+Z
and

79 =-Xsing+Ycoss.
ForX =0,Y = 0, that will yield:
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9=0 and 22=2Z.
However, if one eliminate# instead then one will get:

Z=x+V,

22= x_)'z(+Yl'z/ +Z and -Xy+Xy=- X y+Y X
One easily proves the agreement between this and the old results.

Up to now, was an auxiliary mathematical quantity. However, one can alsatcgaveeal
interpretation upon completing the system with additional massesrté@an allow to go to zero.
[For this, see various notes Bypell, et al, in the Rendiconti di Palermo 1911 and 1912, as well
asDelassus especially “Sur les liaisons et les mouvements...” in the Aeole normale (329
(1912). Appell’s 1913 book on the dynamics of material systems also includes thaasdeht
true linearization will then be realized in that way.

In our example, we can think of the horizontal plane as playing;detfes; be the coordinates
of the contact poinB, and let? be the angle of inclination of the plane of rolling with respect t
thex-axis. At a distance gf from the poinB, the rolling object (which is supported by the plane
without friction) carries a vertical along which a mass-poican move. Let its coordinatese
y, z. For constant, that will be the blade, in essence. Now however, the massmpahall be
coupled to the rolling body by a cord such that it rises in proportidretarigle of rotatiog, so
one will have:

dz=bdg. ()

The non-holonomic constraints are then:

x=<¢+ pcosd, y=n+psind, (2)
dé =acosd dg, dn=asinddg; (3)

ais the radius of the rolling body. With:

X =&-psindd,  y=n+pcosdI, 4)
one will have:
1

m,. ) H, 0 . 1 .,
T=—(X+V+ D)+ (E2+n9)+= A%+
SO+ + )+ T n° > 5

B,

when the rolling body, which is thought to be ceste has a mass pfand moments of inerti,
B.
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©) ?
y’
/// m
B (< 1)
ya @)\
p
H( X B _
Figure 117 Figure 118

When one substitutes the valuesxafy in (4), as will as the value of in (1), that will give:

T=1(m+p)(E2+7%) - méJ psind+ myd pcosd+3 (A mp® 1 (B mby?.
The further examination proceeds similarly to theecof the blade. We set:
df =-désingd+dncosd =0,
df = décosd+dnsind—-adg=0,
dds =dJ,
dds=dg.

We then get the transition equations:

d &1 — 0dH = (dF2 OF2 — 09> dFe) + a (dFs O0F3 — OFa dFs),
d &% —odd =dFs 091 —dd dFs

d 093 —ddI: =0,

ddds—90dd:=0.

When we drop the termsf, «f, the kinetic energy will become:

T=l(Mm+) 2w a+mpwr a+ic(A+mpeA) +[(m+ ) a2 +B+ml].

We then have:

Pi=mpw,
Po=(m+4) a,
Ps=(A+mp) ws,

Ps=[(m+ ) +B+miF] w.
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Now, if gravity Z = — m gacts upomm, along withX, Y, and forces, H, and the momeri¥l act
upon the rolling body then:

OA=—mgaz+=0f+HM+MIF+XX+Ydy
=[(X+Z)acosd+ (Y+H)asind-mgl d¢+[M +p(— Xsing +Y cosd)] &F.

We will then get:
(A+mA) d+mpdag=M+p(-Xsind+Y cosd), (5)

which comes fromJ;, and:
[(m+ ) &@+B+mb] g-mpad*=(X+Z)acosd+(Y+H)asind-mgh (6)

which comes from®J:. Those are the two equations of motion.

251. Passing to the limit— If we now neglect the mass of the rolling body, i.e., set:

u=0, A=0, B=0,
then we will get:
mpe*d+mp ad¢=M + p (- Xsind +Y cosd),
m @ +b? $-mapd*= (X+Z)acosd+ (Y+H)asind—mgh

This is all still quite normal. However, if we further get 0 then we must hawd = 0 in order
for no contradiction to arise, and the first equation will drop ouprdg the second one will
remain:

m@+b% ¢ =(X+=)acosd+ (Y+H)asind-—mgh

The problem is now indeterminate.
If M = 0is given, bup# 0, then it will follow from (5) that:

mpd+mad¢ =—Xsind+Ycoss.

If one now passes to the limit:
p-0
then that will give:
mad@ =-Xsind+Ycossd.
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However, that equation, together with the second equatiog feith = = 0,H = 0, is the same

system of equations that we will get by eliminatihffom the constraint equation that arises from

(3) in that way, namely:
2

dE2+drf = a2d¢2:%dzz ,
which will go to:
2
e + dy? = %dzz

for p=0.
We first setm = 0,A = 0,B = 0, so we have neglected the mass of the rolling body, and then
let o — 0. However, if one lets those four quantities go to zero simultayesms one has:

M=pM’
then one will arrive at:
. A
Iim —=a.
yo,
One will then get:
ad+made =M’-Xsind+Y cosd,

instead of eq. (5). The indeterminacy has vanished, but the paramiessr appeared, which
depends upon the passage to the limit that one carries out witlassedmtribution, A, B of the
rolling body and the geometric quantgy. Appell seta = 0, which implies a generalization of
our way of doing things. However, that is not intrinsically necgss@ne must then be careful
with any assumptions that involve setting masses and lengths of cdetnaeinés equal to zero
when the control element is important for the motion of the sys{@h, Problem 151et seqon
this.)

8 9. — Second-class non-holonomic systems.

252. A questionable state of affairs— Let us point out the systems in which the constraint
equations also include the acceleratigns

f,(4,9,09) =0, v=1,2,..m. (D

At best, one will again work witsausss principle, which will yield:

d oT 0T | .. _ N
a5 0T

or also
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JS= Za_§5qv = > K, dq, .
o4,
(Sis Appell’s acceleration function; cf., Chap. VII,78) One now eliminates some of tijewith

the help of (1), such that only the free ones will still remain.

Example:Let a point in space that is initially free be subject toctrition thatk, =X X,. It
will then follow fromS= 1 (¢ + 3¢ + 5¢) that:

S=4(¢+ %+ %)
3
and )" X, d%, will become:
1
X 0%+ X,0%+ X %0 %+ %3").
As a result, the equations of motion will read:

R+ ) =X+ X, %,
KAL) =X+ X, K.

However, that system has two solutions:

1) X =0,% =0,% =0; despite the fact thatK # 0.
o _ v %
2 =K ,
) % 1+ %
or when substituted in the second equation:
o2 o
s 1+ K2 X2 - X2 ’
X{ (1+x§)2j 1+
or whenX, # 0 :
WLV +KPE =KW+ %) or  (1+%)=K?

% =|K[|-1, %= 1K |-1,
JIKI-1

. |
7K

K K
% =R (K |-1)=K - <
STy K|

(This assumes thak|| > 1.)
What is the correct solution? If one calculates:
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2
S dm(w-9e | = 452+ (5 K

then the first solution will b&?2, while the second one will be:

[K|-1+|K|-1+1=2K|-1.
Now, one has:
K2—2|K|+1=(K|-1?>0;

hence, the second solution gives the true minimum. However, whethet Gausss principle
can be extended in that way is still unproven physically. We thenupeeith the fact that this
entire situation is questionable. Just as we already would noliatieato think of the forces as
depending upon the accelerations (at most improperly by a procesmiobébn), constraints in
which the accelerations factor will also seem to be debataiteabove all, ones in which even
higher derivatives are involved.




