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CHAPTER IX 
 

NON-HOLONOMIC SYSTEMS WITH  
A FINITE NUMBER OF DEGREES OF FREEDOM  

 
 

 228. Introduction and method. – We restrict ourselves to systems with a finite number of 
degrees of freedom, so ones for which one has: 
 

r  = r  (a; q1, …, qn ; t) .    (1) 
 
However, the qν shall not vary freely, but will be subject to constraints of the form: 
 

( , , )f q q tµ ν νɺ  = 0, µ = 1, 2, …, m < n, 

 
which cannot be reduced to finite equations between the qν and t alone. 
 Initially, we shall assume that the equations of constraint are linear in the qνɺ ; i.e., they take 

the form: 

;b q cµ ν ν µ
ν

+ ɺ = 0 .     (2) 
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 Corresponding to (2), one has: 

;b qµ ν ν
ν

δ = 0      (3) 

 
for the virtual displacements.  Lagrange’s principle: 
 

S dm w δ r  = δA 
 
remains valid, and with: 

δA = K qν νδ      (4) 

and 

S dm w δ r  = W qν νδ ,               (5) 

in which: 

Wν =
d T T

dt q qµ µ

∂ ∂−
∂ ∂ɺ

, 

that principle will imply that: 
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( )W K qν ν νδ− = 0.      (6) 

Together with (3), that will give: 

Wν – Kν = 
1

m

bµ µν
µ

λ
=
 , 

or 
d T T

dt q qµ µ

∂ ∂−
∂ ∂ɺ

= b Kµ µν ν
ν

λ + .    (I) 

 
 The proof is precisely as it was in Chap. II, § 6, if T is the kinetic energy: 
 

21
2 dmvS = 1

2
,

a q q b q cνµ ν µ ν ν
ν µ ν

+ + ɺ ɺ ɺ . 

 
One can regard λµ bµν as the Lagrangian reaction force that is assigned to the µth constraint. 

 
 

Figure 109. 
 
 229. The blade. – Example 1:  The blade (cf., Chap. II, §§ 5 and 6).  Let its contact point with 
the xy-plane be B, whose coordinates we shall denote by x, y, in particular, and let it be regarded 
as a rigid body whose center of mass M lies at a distance of s from B in the direction of the blade.  
From Chap. III, § 3, the kinetic energy of the motion, which is assumed to be planar, will be: 
 

T = 2 2 21 1
2 2( ) [ ( ) ( )] Bm x y m y x x x y y Iϑ ϑ∗ ∗+ + − − − +ɺ ɺɺ ɺ ɺ ɺ , 

 
or, since x* − x = s cos ϑ, y* – y = s sin ϑ : 
 

T = 2 2 21 1
2 2( ) [ cos sin ] Bm x y m s y x Iϑ ϑ ϑ ϑ+ + − +ɺ ɺɺ ɺ ɺ ɺ . 

 
However, the constraint equation reads: 
 

cos siny xϑ ϑ−ɺ ɺ = 0. 

ϑ 

y 

x 

B 
M 

s 

y 

x 
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The impulses are: 

 px = 
T

x

∂
∂ɺ

 = sinm x m s ϑ ϑ− ⋅ ɺɺ , 

 py = 
T

y

∂
∂ɺ

 = cosm y m s ϑ ϑ+ ⋅ ɺɺ , 

 pz = 
T

z

∂
∂ɺ

 = ( cos sin ) Bms y x Iϑ ϑ ϑ− + ɺɺ ɺ , 

which is why: 

 Wx = ( sin )
d

m x m s
dt

ϑ ϑ− ⋅ ɺɺ , 

 Wy = ( cos )
d

m y m s
dt

ϑ ϑ+ ⋅ ɺɺ , 

 Wϑ = [ ( cos sin )] ( sin cos )B

d
m s y x I m s y x

dt
ϑ ϑ ϑ ϑ ϑ ϑ− + + +ɺɺ ɺɺ ɺ ɺ ɺ . 

 
In parametric form, the equations of motion will then read: 
 

( sin )
d

m x m s
dt

ϑ ϑ− ⋅ ɺɺ = − λ sin ϑ + X,       (a) 

( cos )
d

m y m s
dt

ϑ ϑ+ ⋅ ɺɺ  = λ cos ϑ + Y,        (b) 

[ ( cos sin )] ( sin cos )B

d
m s y x I m s y x

dt
ϑ ϑ ϑ ϑ ϑ ϑ− + + +ɺɺ ɺɺ ɺ ɺ ɺ = M    (c) 

 
when we set the virtual work done by the applied forces to: 
 

δAe = X δ x + Y δ y + M δϑ .     (d) 
 
That must be combined with the constraint equation: 
 

cos siny xϑ ϑ−ɺ ɺ = 0. 

 
Naturally, after exhibiting the equations of motion, we can make use of that constraint equation, 
and thus simplify the third equation by dropping the first term.  However, up to now, we have not 
been able to work with the expression for the kinetic energy that has been simplified by that 
constraint equation: 

T = 2 2 21 1
2 2( ) Bm x y I ϑ+ + ɺɺ ɺ . 

 
It clearly gave false equations (cf., Chap. VI, § 3). 
 We eliminate λ by multiplying (a) and (b) by cos ϑ and sin ϑ, resp., and adding them, which 
will give: 
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cos ( sin ) sin ( cos )
d d

m x m s m y m s
dt dt

ϑ ϑ ϑ ϑ ϑ ϑ− ⋅ + + ⋅ɺ ɺɺ ɺ  = X cos ϑ + Y sin ϑ , 

or 
2cos sin sinm m x m s m yϑ ϑ ϑ ϑ− +ɺɺɺ ɺɺ= Z, 

 
in which Z means the traction in the direction of the blade, which also implies that: 
 

( sin cos )BI m s y xϑ ϑ ϑ ϑ+ +ɺɺ ɺ ɺ  = M, 

as well as: 
cos siny xϑ ϑ−ɺ ɺ = 0. 

 
If we want to get λ itself then we multiply (a) and (b) by – sin ϑ and + cos ϑ, resp., and get: 
 

λ = X sin ϑ – Y cos ϑ – sin cosm x m y m sϑ ϑ ϑ+ + ɺɺɺɺ ɺɺ . 

 
In this, – X sin ϑ + Y cos ϑ means the applied force perpendicular to the blade, and 

cos siny x sϑ ϑ ϑ− + ɺɺɺɺ ɺɺ  is the acceleration of center of mass in the same direction, since the first two 

terms mean the acceleration of the point B, to which one adds the relative acceleration sϑɺɺ  for M. 

 
Figure 110. 

 
 We now introduce the velocity v in the direction of the blade by setting: 
 

xɺ = v cos ϑ, yɺ = v sin ϑ, 

and then: 
xɺɺ= cos sinv vϑ ϑ ϑ− ⋅ ɺɺ , yɺɺ= sin cosv vϑ ϑ ϑ+ ⋅ ɺɺ . 

 
With that, the equations of motion will become: 
 
 2mv m sϑ− ɺɺ  = Z, 

 BI m s vϑ ϑ+ɺɺ ɺ = M . 

 

y 

x 

B 

M s 
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The constraint equation is fulfilled by itself.  v is not a total derivative of a coordinate constraint, 
because: 

v dt = dx cos ϑ – dy sin ϑ 
 
is not a total differential.  We shall call such a quantity that is used to represent the velocity a non-
holonomic velocity parameter. 
 We would now like to work through the case of force-free motion.  Z and M are zero in that 
case, so the equations of motion will read: 
 
 2mv msϑ− ɺɺ  = 0, 

 BI ms vϑ ϑ+ɺɺ ɺ = 0 . 

 
They will then have the energy equation (cf., Chap. IV, § 3) as a first integral: 
 

T = 2 21 1
2 2( cos sin ) Bmv m y s x s Iϑ ϑ ϑ ϑ+ − +ɺ ɺɺ ɺ = h 

or 

m v2 + 2
BI ϑɺ = 2h . 

 
This equation can be seen to be as a consequence of the equations of motion by differentiating it.  
We infer from it that: 

2ϑɺ  = 22

B B

h m
v

I I
−  

 
and substitute that in the first equation of motion, which is the only one that we have to consider.  
We then get the first-order differential equation for v : 
 

22

B B

h s m s
v v

I I
− +ɺ  = 0 . 

 

If we set the positive-definite quantity 2h / m = 2
0v  then we will get: 

 

vɺ  = 2 2
0( )

B

m s
v v

I
−  = 2 2

0

1
( )v v

a
− , 

 
when we set IB / ms = a .  That will be a positive or negative length according to the sign of s.  
(When one does not have v = v0) integration will give: 
 

t = 
2 2
0

dv
a

v v− , 

or when | v | < | v0 | : 
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v = v0 Tan 0v t

a
. 

 
We will see that | v | > | v0 | is impossible.  The velocity will certainly become zero at some point 
in time; we have set t = 0 to be that moment.  For 2ϑɺ , we get: 
 

2ϑɺ = 
2 2
0( )

B

m v v

I

−
 = 2

0
2 0

1

B

m
v

v tI
a

Cos

. 

Since we must have 2ϑɺ  ≥ 0, v2 > 2
0v  is excluded. 

 

ϑɺ  = 0
0

1

B

m
v

v tI
a

Cos

 

gives: 

ϑ = 0
0B

m dt
v

v tI
a


Cos

, 

which is an elementary calculation. 
 For the sake of discussion, we can assume that s (and therefore a, as well) is positive.  We can 
also take v0 to be positive, since the sign of v0 drops out of the formula for v.  We will then have 
that v > 0 for t > 0 and v < 0 for t < 0 ; i.e., for t > 0, the center of mass is in front of B (in the 
direction of the motion) and for t < 0, it lies behind it.  v → v0 for t → + ∞, but v → − v0 for t → 
− ∞ . 

 The velocity then increases from – v0 through zero to + v0 .  ϑ will always be positive or always 

be negative according to the sign that we give to / Bm I .  From t = 0 to t = ∞, the blade rotates 

through the angle: 

∆ϑ = 0
00B

m dt
v

v tI
s

∞


Cos

 = 
0B

m d
a

I

τ
τ

∞


Cos

 = 
1 BI

s m
π . 

 
The same value will come about from the time from − ∞ to 0.  Since the velocity v is zero for t = 
0, but not ϑɺ , the curve must have a cusp there; by contrast, as t → ± ∞, it will have an asymptote, 

since ϑ tends to a finite value, like v.  Naturally, the rectilinear motion with ϑ = 0, v = 2 /h m  = 

v0 is also a possible motion.  However, one can also conclude that: If the center of mass lies in 
front of B, in the direction of motion, in this then the motion will be stable, since a perturbed 
motion will asymptotically approach the old motion.  However, if M lies behind B then the motion 
will be unstable, because a perturbed motion must first pass through the cusp, at which point, an 
inversion of the sequence will take place, and from then on, the motion will be connected with an 
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asymptotic line that is generally different.  [See Carathéodory’s discussion of the sled (= blade) 
(1).] 

 
Figure 111. 

 
 Naturally, one can also represent the coordinates x and y by integrals: 
 

x = cosv dtϑ ,  y = sinv dtϑ . 

 
In the vicinity of t = 0, one has: 

v ≈ 
2
0v t

a
. 

 
If one makes the x-axis tangential to the cusp then one will have ϑ ≈ 0 or cos ϑ ≈ 1 close to it, and: 
 

x ≈ 
2
0

0

t v
t dt

a
= 

2
201

2

v
t

a
, 

whereas: 

ϑ ≈ 0

0

t

B

m
v dt

I 
= 0

B

m
v t

I
 

and 

y ≈ 
2

20

B

v m
t dt

a I 
=

3
301

3 B B

v ms m
t

I I
 = 

3

3 3
0

1
3 B

m
v s t

I

 
  
 

. 

 
The curve is close to a Neil parabola, so the existence of a cusp is proved once more. 
 The blade is the simplest example of a non-holonomic scleronomic system, insofar as it has 
the lowest number of degrees of freedom.  In fact, two degrees of freedom cannot give a non-
holonomic system, since it is known that any differential expression: 
 

 
 (1) C. Carathéodory, “Der Schlitten,” Z. angew. Math. Mech. 13 (1933), 71-76. 
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P (x, y) dx + Q (x, y) dy 
 
is associated with a multiplier M such that M (P dx + Q dy) will be a total differential dz, so P dx

+ Q dy = 0 can be replaced with dz = 0 ; i.e., z (x, y) = const. 
 
 
 230. The tire. – Example 2: The tire on a planar floor.  We think of it as a circular ring that 
rolls without slipping on a plane.  In itself, the system has five degrees of freedom, namely, the 
coordinates x, y of the contact point, the direction angle ϑ of the contact tangent with respect to 
the x-axis (just like with the blade), then the angle of inclination ψ between the plane of the tire 

and the normal to the base plane, and fifth, the rolling angle ϕ in the 
plane of the tire, which is measured from a mark on the circle to the 
point of tangency.  However, there exist the following two 
differential conditions, which express the rolling without slipping: 
 

dx = r dϕ cos ϑ ,  dy = r dϕ sin ϑ , (1) 
 
if r means the radius of the circle, because if the tire rolls without 
slipping then the contact point will displace through r dϕ further in 
the direction ϑ .  The condition dy = tan ϑ dx for the blade is included 

in (1).  It is easy to prove that the conditions (1) cannot be replaced with finite equations: 
f (x, y, ϑ, ϕ) = 0, 

 
which is already due to the fact that one can roll the tire from any initial position to any final 
position. 
 We would not like to treat this example with the parametric method, but we shall treat it by 
some other methods later.  However, we shall calculate the kinetic energy.  The center of the tire, 
which shall also be the center of mass, has the coordinates: 
 
 x* = x – r sin ψ sin ϑ, 
 y* = y + r sin ψ cos ϑ, 
 z* = r cos ψ . 
As a result: 
 x∗

ɺ  = xɺ − r cos ψ sin ϑ ψɺ – r sin ψ cos ϑ ϑɺ , 
 y∗

ɺ  = yɺ + r cos ψ cos ϑ ψɺ – r sin ψ sin ϑ ϑɺ , 
 x∗

ɺ  = − r sin ψ ψɺ . 

Hence: 
 2 2 2x y z∗ ∗ ∗+ +ɺ ɺ ɺ  = 2 2 2 2 2 2 2sinx y r rψ ψ ϑ+ + + ɺɺɺ ɺ  

 − 2 cos sin 2 cos cosx r y rψ ψ ϑ ψ ψ ϑ+ɺ ɺɺ ɺ  

 − 2 sin cos 2 sin sinx r y rϑ ψ ϑ ϑ ψ ϑ−ɺ ɺɺ ɺ . 

 

y 

x 

Figure 112. 
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 The tire possesses the following rotational velocities: 
 
 1. ϕɺ  around the axis perpendicular to it. 

 
 2. ψɺ  around the tangent to the contact point, and for ψɺ > 0, it appears to be directed to the 

left when one looks in the direction of rolling. 
 
 3. ϑɺ  around the vertical through the contact point. 
 
The gives the components − ψɺ  in the direction of the tangent, ϑɺ

cos ψ in the plane of the tire (as seen from above), and ϕɺ  − ϑɺ sin 

ψ perpendicular to the tire. (In the figure, ϑɺ  is regarded as a vector 
that points up, while ϕɺ  points down and left. One’s line of sight 

points in the direction of rolling, so ψɺ  points forward as a vector.) 

 As a result, if A, B = A, C are the principal moments of inertia, 
the kinetic energy will be (cf., Chap. VII, § 3): 
 Figure 113. 

 T = 2 2 2 2 2 2 21
2 ( sinm x y r rψ ψ ϑ+ + + ɺɺɺ ɺ  

 − 2 cos sin 2 cos cos 2 sin cos 2 sin sin )x r y r x r y rψ ψ ϑ ψ ψ ϑ ϑ ψ ϑ ϑ ψ ϑ+ − −ɺ ɺɺ ɺɺ ɺ ɺ ɺ  

 + 2 2 2 21 1
2 2( cos ) ( sin )A Cψ ψ ϑ ϕ ϑ ϕ+ + −ɺ ɺɺ ɺ . 

 

 
Figure 114. 

 
 231. The cart. Example 3: The two-wheeled cart, which shall also roll on a plane without 
slipping.  It is also similar to the blade. 
 Let x, y be the coordinates of the intersection of the longitudinal axis with the transverse axis, 
along which the wheels are located.  The angle ψ drops out, but we now have two rolling angles, 
namely, ϕ1 for the right-hand wheel and ϕ2 for the left-hand one.  Thus, we again have five degrees 

r 
ϕ1 

x 

ϑ 

y 

ψ 
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of freedom.  We will ignore the bobbing of the wagon around the transverse axis, which would 
then be a sixth degree of freedom.  Let the distance from the center to the wheels be b, and let their 
radii be r.  We will then have: 
 

1cos sinx y b rϑ ϑ ϑ ϕ+ + +ɺ ɺɺ ɺ  = 0     (1) 

 
for the velocity of the contact point for the right wheel and: 
 

2cos sinx y b rϑ ϑ ϑ ϕ+ − +ɺ ɺɺ ɺ  = 0     (2) 

 
for the left.  They must be combined with the old condition the absence of transverse sliding: 
 

sin cosx yϑ ϑ−ɺ ɺ  = 0.         (3) 

 
There will then be three non-holonomic constraints for five degrees of freedom. 
 The kinetic energy of the wagon itself is the same as that of the sled, namely: 
 

T = 2 2 21 1
2 2( ) sin cosw w w wm x y m s x m s y Iϑ ϑ ϑ ϑ ϑ+ − + +ɺ ɺ ɺɺ ɺ ɺ ɺ , 

 
if Iw is the moment of inertia of the wagon alone around the vertical through the point x, y .  That 
must be combined with the kinetic energy of the wheels.  If each wheel has a moment of inertia of 
CR around the rotational axis and the moment of inertia AR around a transverse axis to the wheel, 
then one will have: 
 

 RT′  = 2 2 2 21 1 1
12 2 2[( cos sin ) ( sin cos ) ]R R Rm x y b x y C Aϑ ϑ ϑ ϑ ϑ ϕ ϑ+ + + − + +ɺ ɺɺɺ ɺ ɺ ɺ  

 = 2 2 2 2 2 21 1 1 1
12 2 2 2[( 2 ( cos sin )]R R R Rm x y b x y C A m bϑ ϑ ϑ ϕ ϑ ϑ+ + + + + +ɺ ɺ ɺɺɺ ɺ ɺ ɺ  

 
for the right-hand wheel and: 
 

 RT′′  = 2 2 2 21 1 1
22 2 2[( cos sin ) ( sin cos ) ]R R Rm x y b x y C Aϑ ϑ ϑ ϑ ϑ ϕ ϑ+ − + − + +ɺ ɺɺɺ ɺ ɺ ɺ  

 = 2 2 2 2 2 21 1 1
22 2 2[ 2 ( cos sin ) ]R R Rm x y b x y b C Aϑ ϑ ϑ ϑ ϕ ϑ+ − + + + +ɺ ɺ ɺɺɺ ɺ ɺ ɺ  

 
for the left-hand one.  With mw + 2mR = m (viz., the total mass of the wagon) and Iw + 2mR b2 + 
2AR = I (viz., the total moment of inertia around the axis through x, y), that will give: 
 

T = 2 2 2 2 21 1 1
1 22 2 2( ) sin cos ( )R w w Rm x y m s x m s y I Cϑ ϑ ϑ ϑ ϑ ϕ ϕ+ − + + + +ɺ ɺ ɺ ɺ ɺɺ ɺ ɺ ɺ  

 
for the total kinetic energy.  One can also replace mw s with m a, if a is the distance from the center 
of mass to the point x, y .  Hence: 
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T = 2 2 2 2 21 1 1
1 22 2 2( ) sin cos ( )R Rm x y ma x ma y I Cϑ ϑ ϑ ϑ ϑ ϕ ϕ+ − + + + +ɺ ɺ ɺ ɺ ɺɺ ɺ ɺ ɺ . 

 
 The bicycle presents a more complicated problem, which was considered in a thorough study 
by Carvallo [J. Éc. poly. 215 (1901)].  There are references to older literature in the Enzyklopädie 
d. math. Wiss. IV, II.  It would be desirable to treat the automobile similarly.  One sees that non-
holonomic systems are in no way rare, since almost all systems for which rolling without slipping 
takes place are non-holonomic. 
 
 

§ 2. – The transition equations. 
 

 232. Deriving the equations. – We shall now develop a method that does not work with 
parameters, so it does not work with reaction forces, either, and it yields the desired replacement 
for the Lagrange equations, which might indeed be false (cf., Chap. VI, § 3); we shall come back 
to that point.  We might then prescribe m equations of the type: 
 

ωµ ≡ ,
1

n

b qµ ν ν
ν =
 ɺ + cµ = 0, µ = 1, 2, …, m .    (1) 

 
In addition, it can be preferable to further introduce: 
 

ωµ ≡ ,
1

n

b qµ ν ν
ν =
 ɺ + cµ ,  µ = 1, 2, …, n,     (2) 

 
which do not all have to be zero, so they imply no further conditions.  For example, for the blade, 
we introduce: 

v = cos sinx yϑ ϑ+ɺ ɺ  

 
as a non-holonomic velocity parameter.  We extend that term to all ωµ .  Furthermore, we already 
know of such ω from the p, q, r of the top. 
 We shall also write: 

dϑµ ≡ ωµ dt = ,
1

n

b dqµ ν ν
ν =
 + cµ dt .     (3) 

 
However, the dϑµ are not generally total differentials.  We correspondingly introduce the virtual 
displacements δϑµ according to: 

δϑµ ≡ ,
1

n

b qµ ν ν
ν

δ
=
 .     (4) 

 
The ωµ shall be independent; i.e., let the determinant of the bµ, ν be non-zero: 
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|| bµ, ν || ≠ 0, 
 
such that we can solve equations (1) and (2) for the qνɺ : 

 

qνɺ  = ,
1

n

Bν µ µ
µ

ω
=
 + Cν ,     (5) 

and correspondingly: 

δqν = ,
1

n

Bν µ µ
µ

δϑ
=
 + Cν .     (5) 

 
Naturally, we can also take the ωµ to be the qνɺ .  Now, if: 

 
  r = r  (a ; q1, q2, … qn ; t) 
then 

 d r  = dq dt
q tν

ν

∂ ∂+
∂ ∂

r r
 

 δ r  = q
q ν

ν

δ∂
∂

r
, 

 
and we will then find the transition equations: 
 

dδ r  – δ d r  = ( )d q dq
q ν ν

ν

δ δ∂ −
∂

r
. 

 
If we assume (as we can always do) that d δqν – δ dqν = 0 then: 
 

dδ r  – δ d r  = 0, 
 
and conversely, the first equation will follow from the second one when the qν are not redundant.  
However, we would not like to make that assumption now with no further discussion, but instead, 
we shall calculate the relationship of the: 
 

dδ r  – δ d r  and d δqν – δ dqν to the d δϑν – δ dϑν . 
 
We can spare ourselves some work in writing if we introduce an (n + 1)th coordinate by way of: 
 

qn+1 = t, 
 
which belongs to the (n + 1)th constraint equation: 
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1nq +ɺ  = 1 

with 
δqn+1 = 0 . 

 
If we replace n + 1 with n that we can proceed as if the system were scleronomic.  We would then 
have: 

dϑµ = ωµ dt = ,
1

n

b dqµ ν ν
ν =
 ,     (7) 

δϑµ = ,
1

n

b qµ ν ν
ν

δ
=
 ,      (8) 

and the inverses: 

dqν = 
1

n

B dνµ µ
ν

ϑ
=
 ,      (9) 

δqν = 
1

n

Bνµ µ
ν

δϑ
=
 .                (10) 

The constraint equations read: 
 

δϑµ = 0, µ = 1, 2, …, m,     (11) 
and 

ωµ = const.,       (12) 
 
resp., in which one of those constants can be 1, while the others are zero.  It follows from (9) and 
(10) that: 

 d δqν – δ dqν = 
, ,

( )
B B

B d d dq q d
q q

νµ νµ
νµ µ µ σ µ σ µ

µ µ σ µ σσ σ

δϑ δ ϑ δϑ δ ϑ
∂ ∂

− + −
∂ ∂    

 = 
,

( ) ( )
B

B d d dq q d
q

νµ
νµ µ µ σ µ σ µ

µ µ σ σ

δϑ δ ϑ δϑ δ ϑ
∂

− + −
∂  , 

 
for which we can also write: 
 

d δqν – δ dqν = ,
, ,

( )
B B

B d d B B dq
q q

νµ ντ
νµ µ µ σ τ σµ σ µ

µ µ σ τ σ σ

δϑ δ ϑ δϑ
∂ ∂− + − ∂ ∂ 

  . (13) 

 
If one switches the summation indices τ and µ in the second term of the triple sum then one can 
also write: 

d δqν – δ dqν = 
, ,

( ) ( )
B

B d d B dq dq
q

νµ
νµ µ µ στ τ µ µ τ

µ µ σ τ σ

δϑ δ ϑ δϑ δϑ
∂

− + −
∂  .  (13b) 

 
In a completely analogous way, we can also start from (7), (8) and get the solution of (13): 
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d δϑµ – δ dϑµ = 
,

( )
b b

b d d dq q
q q

µν νσ
µν ν ν σ ν

ν ν σ σ ν

δϑ δ ϑ δ
∂ ∂− + − ∂ ∂ 

  ,   (14) 

or also: 

d δϑµ – δ dϑµ = 
, , ,

( )
b b

b d q dq B B d
q q

µν νσ
µν ν ν στ νρ τ ρ

ν ν σ τ ρ σ ν

δ δ ϑ δϑ
∂ ∂− + − ∂ ∂ 

  ,  (15) 

 
and with the abbreviation: 

,

b b
B B

q q
µν νσ

στ νρ
ν σ σ ν

∂ ∂− ∂ ∂ 
 = ,τ ρ

µβ ,    (16) 

we can also write: 
d δϑµ – δ dϑµ = ,

,

( )b d q dq dτ ρ
µν ν ν µ τ ρ

ν τ ρ
δ δ β ϑ δϑ− +  .  (15a) 

 
If we assume that d δqν – δ dqν = 0 (which, as we said, we can always do) then we will get: 
  

d δϑµ – δ dϑµ = ,

,

dτ ρ
µ τ ρ

τ ρ
β ϑ δϑ ,     (15b) 

or, since we clearly have: 
,τ ρ

µβ = − ,τ ρ
µβ  

 
[by switching the summation indices in the summation in (16)], we can also write: 
 

d δϑµ – δ dϑµ = , ( )` d dτ ρ
µ τ ρ τ ρβ ϑ δϑ δϑ ϑ−Σ ,   (15c) 

 
in which the sum is now extended over the combinations τ, ρ only once, which is suggested by the 
mark on the Σ . 
 Now, one should note: If ϑµ is a true coordinate – i.e., dϑµ is a total differential – then all of 
the ,τ ρ

µβ  will be zero, and one will have: 

d δϑµ – δ dϑµ = 0, 
 
when one assumes that d δqν – δ dqν = 0, because one will then have: 
 

bµν = 
q

µ

ν

ϑ∂
∂

 and  
b b

q q
µν µσ

σ ν

∂ ∂
−

∂ ∂
= 

2 2

q q q q
µ µ

σ ν ν σ

ϑ ϑ∂ ∂
−

∂ ∂ ∂ ∂
 = 0. 

 
 One then recognizes that the non-holonomity of a “quasi-coordinate” (which is what we say 
when ωµ is a non-holonomic velocity parameter) means that the ,τ ρ

µβ  are not all zero in the 

transition equation (15a).  
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 233. Critique. – Furthermore, the following should be observed: 
 If dϑµ / dt = const. is a (generally non-holonomic) 
condition equation then δϑµ = 0, and naturally, δ dϑµ = 
0, as well.  By contrast, it would be false to conclude that 
dδϑµ = 0 with no further assumptions. 
 Naturally, when the δqν are functions of the qµ , the 
dδqν are also defined.  By contrast, the δdqν  are by no 
means given from the outset by way of the dqν .  The 
same thing is true for the δ dr  and the δ dϑ ; i.e., it is not 
necessary to combine the neighboring points Q1, Q2, … 
into a path and denote the change dr  + δ dr  by Q1 Q2 ; as 
Fig. 115 suggests, that can be assumed in some way.  
Under the stated assumption, (15a) will imply that: 
 

− δ dϑµ = ,

,

( )b d q dq dτ ρ
µν ν ν µ τ ρ

ν τ ρ
δ δ β ϑ δϑ− +  . 

If one assumes that dδqν − δdqν = 0 then it will follow that: 
 

− δ dϑµ = ,

,

dτ ρ
µ τ ρ

τ ρ
β ϑ δϑ , 

 
and that shows that one cannot generally regard δ dϑµ as zero.  In the literature, one often finds 
the remark that one cannot set d δqν − δ dqν = 0 for non-holonomic systems.  That false assertion 
comes about because the authors tacitly assume that one also has δ dϑµ = 0.  Naturally, one must 
assume that the condition: 

0 = ,

,

( )b d q dq dτ ρ
µν ν ν µ τ ρ

ν τ ρ
δ δ β ϑ δϑ− +   

 
is true for d δqν − δ dqν , which generally excludes the possibility that d δqν − δ dqν = 0.  The tacit 
assumption that δ dϑµ = 0 mostly arises from the fact that the authors do not introduce the ωµ at 
all, but solve the constraint equations for some suitable dqν , so, e.g., for the blade, one has: 
 

dy = dx ⋅⋅⋅⋅ tan ϑ ,      (a) 
δy = δx ⋅⋅⋅⋅ tan ϑ .      (b) 

 
It would then seem to follow from this that: 
 

d δy − δ dy = tan ϑ ⋅⋅⋅⋅ (d δx − δ dx) + 2

1

cos ϑ
(dϑ δx − δϑ dx) . 

 

P 

Q 

δr 
dr + δ dr 

δr  + d δr 

Figure 115. 
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If the author then makes the assumption that d δx − δ dx = 0 then the foregoing equation will 
naturally exclude the assumption that d δy − δ dy = 0, which obviously contradicts our assertion.  
We will say about this that: (a) and (b) are correct.  It also follows from (b) that: 
 

d δy = d δx tan ϑ + 2

1

cos ϑ
δx dϑ , 

 
but (a) cannot be varied with no further assumptions, since δ dϑ1 is not zero. (Here, we have 
assumed that dϑ1 = dy – dx tan ϑ.) For that reason already, the entirely generally idea that d δr  − 
δ dr  or d δqν − δ dqν are not to be set equal to zero is to be preferred.  One will then be completely 
free.  That is especially necessary when one does not wish to corrupt the transition to Lie’s theory 
of infinitesimal transformations. 
 With Lie, we would also like to regard: 
 

δr  = q
q ν

ν ν

δ∂
∂

r
= 

,

B
q νµ µ

ν µ ν

δϑ∂
∂

r
 

 
as an infinitesimal transformation.  However, in the theory of those transformations, the δϑµ are 
regarded as constants, as well as the dϑµ .  But then, the δ dϑµ , as well as the d δϑµ , will both be 
zero.  However, in general, the d δqν − δ dqν , and therefore also the d δr  − δ dr , cannot be assumed 
to be zero now. 
 We then see that equations (15a): 
 

d δϑµ − δ dϑµ = ,

,

( )b d q dq dτ ρ
µν ν ν µ τ ρ

ν τ ρ
δ δ β ϑ δϑ− +  , 

along with: 

d δr  − δ dr  = ( )d q dq
q ν ν

ν

δ δ∂ −
∂

r
, 

are the definitive equations of transition. 
 
 
 234. Example. – Example 1: The blade.  If we set: 
 
 dϑ1 = dy cos ϑ – dx sin ϑ , 
 dϑ2 = dx cos ϑ + dx sin ϑ = v dt , 
 dϑ3 = dϑ , 
and correspondingly: 
 δϑ1 = δy cos ϑ – δx sin ϑ , 
 δϑ2 = δx cos ϑ + δy sin ϑ , 
 δϑ3 = δϑ 
then: 
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 d δϑ1 − δ dϑ1 = (d δy – δ dy) cos ϑ − (d δx – δ dx) sin ϑ − δy dϑ sin ϑ – δx dϑ cos ϑ 
 + dy δϑ sin ϑ + dx δϑ cos ϑ , 
 
 d δϑ2 − δ dϑ2 = (d δx – δ dx) cos ϑ + (d δy – δ dy) sin ϑ − δ x dϑ sin ϑ + δy dϑ cos ϑ 
 + dx δϑ sin ϑ + dy δϑ cos ϑ , 
 
 d δϑ3 − δ dϑ3 = d δϑ – δ dϑ , 
or 
 d δϑ1 − δ dϑ1 = − (d δx – δ dx) sin ϑ + (d δy – δ dy) cos ϑ − dϑ3 δϑ2 + δϑ3 dϑ2 , 
 
 d δϑ2 − δ dϑ2 = (d δx – δ dx) cos ϑ + (d δy – δ dy) sin ϑ + dϑ3 δϑ1 − δϑ3 dϑ1 , 
 
 d δϑ3 − δ dϑ3 = d δϑ – δ dϑ . 
 

One sees from this that all β are constants that are either ± 1 or zero.  All ,
3
τ σβ  are zero, since ϑ3 

= ϑ is a true coordinate.  2,3
1β = − 3,2

1β = 1, 3,1
2β = − 1,3

2β = 1; all other β are zero.  According to Lie, 

the constancy of β means that the associated infinitesimal transformations define a group; viz., the 
group of motions of the blade.  We shall not go into that, though. 
 
 Example 2: The tire. One can perhaps set: 
 
 dx – r dϕ cos ϑ = dϑ1 , 
 dy – r dϕ sin ϑ = dϑ2 , 
 dϑ = dϑ3 , 
 dϕ = dϑ4 , 
  dx cos ϑ + dy sin ϑ = dϑ5 . 
 
Since ϑ3 and ϑ4 are true coordinates, all β with the index 3 or 4 will be zero.  However, it is simpler, 
here as well (as with the blade), to set: 
 

− dx sin ϑ + dy cos ϑ = dϑ1 = 0 
and 

r dϕ – dx cos ϑ – dy sin ϑ = dϑ2 = 0. 
 
Those constraint equations are equivalent to the old ones.  Now, ϑ1 , ϑ3 are the same as they were 
for the blade, and ϑ5 is the same as ϑ2 in that example.  Hence, as before, one will have: 
 
 d δϑ1 − δ dϑ1 = − (d δx – δ dx) sin ϑ + (d δy – δ dy) cos ϑ − dϑ3 δϑ5 + δϑ3 dϑ5 , 
 
 d δϑ5 − δ dϑ5 =    (d δx – δ dx) cos ϑ + (d δy – δ dy) sin ϑ + dϑ3 δϑ1 − δϑ3 dϑ1 . 
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Since dϑ2 = r dϕ − dϑ5 , we find that for the new ϑ2 , we have: 
 
 d δϑ2 − δ dϑ2 = r (d δϕ – δ dϕ) – (d δϑ5 – δ dϑ5) 
 = r (d δϕ – δ dϕ) – (d δϑ5 – δ dϑ5) – (d δ y – δ dy) − dϑ3 δϑ1 + δϑ3 dϑ1 . 
 
All of the β are constant again, namely, ± 1 or zero. 
 
 Example 3: The two-wheeled wagon.  Here, we also set: 
 
 − dx sin ϑ + dy cos ϑ = dϑ1 = 0, 
    dx cos ϑ + dy sin ϑ = dϑ2 = 0, 
  dϑ = dϑ3 . 
We further set: 

r (dϕ1 + dϕ2) + 2 (dx cos ϑ + dy sin ϑ) = dϑ4 = 0 
or 

r (dϕ1 + dϕ2) + 2 dϑ2 = dϑ4 = 0 
or 

2b dϑ + r (dϕ1 + dϕ2) = dϑ5 = 0 . 
 
Those two constraint equations are equivalent to the older ones (1) and (2).  Naturally, we get the 
same transition equations for ϑ1 , ϑ2 , ϑ3 that we did for the blade, namely: 
 
 d δϑ4 − δ dϑ4 = r (d δϕ1 − δ dϕ1) + r (d δϕ2 − δ dϕ2) + 2 (d δϑ2 − δ dϑ2) 
 
 = r (d δϕ1 − δ dϕ1) + r (d δϕ2 − δ dϕ2)  
 + 2 (d δx − δ dx) cos ϑ + 2 (d δy − δ dy) sin ϑ + 2 (d δϑ − δ dϑ), 
 
 d δϑ4 − δ dϑ4 = 2b (d δϑ − δ dϑ) + r (d δϕ1 − δ dϕ1) . 
 
One sees that dϑ5 = 0 is an integrable combination, so ϑ5 = 2b ϑ + r (ϕ1 − ϕ2) is a true coordinate.  
All β are also constant here. 
  
 

§ 3. – Deriving the equations of motion. 
 
 235. The Lagrange-Euler equations. – We have Lagrange’s principle as our foundation, and 
together with the generalized central equation that will yield: 
 

d d d
dm dt T dm

dt dt

δ δδ −− − r r
v vS S = δA = K qν νδ . 
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Now, T = T (qν , qνɺ , t), and S dm v δr  = p qν νδ , where pν = /T qν∂ ∂ ɺ  are the components of 

the impulse. 
 However, since: 

d δr  – δ dr  = ( )d q dq
q ν ν

ν

δ δ∂ −
∂

r
 

from the transition equations, and: 

pν = S dm v 
qν

∂
∂

r
, 

we will have: 
d d

dm
dt

δ δ−r r
vS = 

d q dq
p

dt
ν ν

ν
δ δ−

 . 

 
We can then write the central equation as: 
 

d
p q

dt ν ν
ν

δ − δT − d q dq
p

dt
ν ν

ν
ν

δ δ−
 = K qν νδ . 

If we now set: 
δqν = Bνµ µδϑ  

 
from § 2, formula (10), and convert T into T (qν , ωµ), with: 
 

qνɺ = Bνµ µω  

 
(we have set t = one of the q !) then we might set: 
 
 p qν ν

ν
δ =

,

p Bν νµ µ
ν µ

δϑ = Pν ν
ν

δϑ , 

 K qν ν
ν

δ =
,

K Bν νµ µ
ν µ

δϑ = µ µδϑK . 

 Theorem: 
 
 One has: 

Pµ = 
µω

∂
∂

T
. 

 Proof: 
Pµ = p Bν νµ

ν
 , 

but 

µω
∂

∂
T

= 
qT

q
ν

ν ν µω
∂∂

∂ ∂
ɺ

ɺ
 = p Bν νµ

ν
 = Pµ . 
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 In order to find the equations of motion, we can (and we would like to) set d δqν – δ dqν = 0.  
The central equation will then give: 
 

d
P q

dt qµ µ µ ν
µ ν

δϑ δω δ
ω
∂ ∂− −

∂ ∂  
T T

= µ µδϑK , 

or since: 

Pµ = 
µω

∂
∂

T
, 

we will have: 

dP d d
P B

dt dt dt q
µ µ µ

µ µ νµ ν
ν

δϑ δ ϑ
δϑ δϑ  ∂+ − −  ∂ 

  
T

= µ µδϑK .  (I) 

 
We now introduce the transition equations: 
 

d δϑµ – δ dϑµ = ,

,

dτ ρ
µ τ ρ

τ ρ
β ϑ δϑ  

and get: 

,

, ,

( )
dP

P B
dt q

µ τ µ
µ µ ρ ρ τ νµ ν

µ ρ τ ν

δϑ δϑ β ω δϑ∂+ −
∂  

T
= µ µδϑK . 

 
Now, we have δϑµ = 0 for µ = 1, 2, 3, …, m .  The corresponding terms then drop out.  By contrast, 
the δϑµ are free for µ = m + 1, …, n .  Hence, one has the equations:   
 

,

,

dP
P

dt
µ τ µ

ρ ρ τ
ρ τ µ

β ω
ϑ

 ∂+ −   ∂ 


T
 = Kµ   (µ = m + 1, …, n).  (II) 

 

We have allowed ourselves to write B
q νµ

ν ν

∂
∂

T
= 

µϑ
 ∂
  ∂ 

T
 in this.  Namely, if ϑµ were a true 

coordinate then from the chain rule, one would have: 
 

B
q νµ

ν ν

∂
∂

T
= 

q

q
ν

ν µϑ
∂∂

∂ ∂
T

= 
µϑ

∂
∂

T
. 

Analogously, we can write: 

Kµ = − U

µϑ
 ∂
  ∂ 
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in the case of a potential U.  Just to be careful, we put the expression in parentheses, since it 
certainly does not need to be a true derivative. 
 In v. 50 of the Zeit. f. Math. u. Physik, 1904, we referred to equations (II) as the Lagrange-
Euler equations, because they include the Lagrange equations as a special case, namely, for the 
case in which all β are zero, and therefore all ϑ are true coordinates, as well as the Euler equations 
for the rigid body, which we still have to prove (in § 5). 
 Equations (II) were exhibited independently by the Italian Volterra , the Russian Voronetz, 
and by Poincaré for the case of constant β .  Boltzmann also come close to exhibiting them.  The 
methods of those authors differ in places. 
 
 
 236. The case m = 0. – Naturally, it can happen that m = 0, so there are no non-holonomic 
constraints present, but one must still introduce non-holonomic velocity parameters.  That is the 
case for, e.g., the rigid body. 
 In complete generality, one can use a linear transformation of the qνɺ : 

 
qνɺ = Bνµ µ

µ
ω  

to transform the positive-definite form: 
T = 1

2 a q qρτ σ τ ɺ ɺ  

into the form: 
T = 21

2 µω . 

One will then have: 
Pµ = ωµ , 

and the equations of motion (II) will read: 
 

,

,

d

dt
µ τ µ

ρ ρ τ
ρ τ

ω
β ω ω+  = Kµ .      (IIa) 

 
However, the β will still depend upon the q, in general.  Equations (IIa), together with the 
equations: 

qνɺ = Bνµ µ
µ

ω , 

 
define a simultaneous system of 2n first-order differential equations for the ωµ and qµ .  Their 
validity is completely general. 
 
 
 237. Warning and remark. – If condition equations ωµ = 0, µ = 1, 2, …, m are present then 
the sum over t in (II) will extend from only m + 1 to n .  However, one must be careful to set the 
ω1, ω2, … equal to zero in T = T from the outset and to use the risky T+ that arises in that way.  
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Since one needs the derivatives with respect to ωρ in order to calculate the Pρ , one must let them 
be variable.  One can probably set quadratic terms with vanishing ω equal to zero from the outset. 
 If one sets qn = t (for rheonomic systems), so ωn = 1, then δϑn = 0, and the nth equation must 
be dropped in order for one to set ωn = 1.  However, one must also only do that afterwards, since 
one must differentiate with respect to ωn in order to construct Pn . 
 If one would like to employ the generalized central equation then one would have to set: 
 

d δϑµ – δ dϑµ = ,

,

( )b d q dq dτ ρ
µν ν ν µ τ ρ

ν τ ρ
δ δ β ϑ δϑ− +   

and then get: 

,

( )
d q dq

P b d q dq p
dt

ν ν
µ µν ν ν ν

µ ν ν

δ δδ δ −− −  , 

 
in addition.  However, that is zero, since one has P bµ µν = pν , since that is the solution to: 

 
Pµ = B pνµ ν

ν
 . 

  
 

§ 4. – Examples. 
 
 238. The blade. – If one would like to exhibit the equations of motion (II) then it is not always 
perhaps practical to exhibit the table of β’s, but much simpler to revert to the form: 
 

dP d d
P B

dt dt dt q
µ ρ ρ

µ ρ νµ µ
µ ρ ν

δϑ δ ϑ
δθ δϑ  ∂+ − −  ∂ 

  
T

= µ µδϑK ,  (I) 

 
after calculating T and the impulse Pµ = ∂T / ∂ωµ , and to look for the terms with δϑµ in the 
expression for d δϑµ  − δ dϑµ .  That is how we shall proceed. 
 
 Example 1: The blade. – From § 1, one has: 
 

 T = 2 21 1
2 2( cos sin ) Bmv ms y x Iϑ ϑ ϑ ϑ+ − +ɺ ɺɺ ɺ , 

 T = 2 21 1
2 3 1 32 2 Bm ms Iω ω ω ω+ + . 

Hence: 

 P1 = 
1ω

∂
∂

T
= m s ω3 , 

 P2 = 
2ω

∂
∂

T
= m ω2 , 
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 P3 = 
3ω

∂
∂

T
 = m s ω1 + IB ω3 = IB ω3 . 

 
Since one has δϑ1 = 0, we only have to exhibit the two equations that belong to δϑ2 and δϑ3 .  
Since: 
 δx = δϑ2 cos ϑ – δϑ1 sin ϑ , 
 δy = δϑ2 sin ϑ + δϑ1 cos ϑ , 
 
one will have K2 = X cos ϑ + Y sin ϑ = Z, and: 
 
  K3 = M . 
 
From § 2, δϑ2 belongs to − ω3 P1 , and δϑ3 belongs to ω2 P1 − ω2 P1  = ω2 P1 .  Since T is 
independent of the coordinates, the equations of motion will then read: 
 

 1dP

dt
− ω3 P1 = Z or 22

3

d
m m s

dt

ω ω−  = Z, 

 

 3dP

dt
+ ω2 P1 = M 3

2 3B

d
I ms

dt

ω ω ω+  = M . 

 
However, since v = ω2 , ϑɺ  = ω3 , those are the same equations as in § 1. 
 

 Remark: We must actually write 2 21
2 ( )m x y+ɺ ɺ  = 2 21

12 ( )m v ω+  in T instead of 1
2 mv2.  

However, we can drop the purely-quadratic term 21
12 mω , since it contributes the term m ω1 to P1 , 

which vanishes. 
 
 We will devote a special paragraph to Example 2, namely, the tire; for now, we shall turn to: 
 
  
 239. Example 3: the two-wheeled wagon. – With: 
 
 ω1 = − sin cosx yϑ ϑ+ɺ ɺ  = 0, 

 ω2 =    cos sinx yϑ ϑ+ɺ ɺ  = 0, 

 ω3 = ϑɺ , 
 ω4 = 1 2( )r ϕ ϕ+ɺ ɺ  + 2ω2 = 0, 

 ω5 = 1 22 ( )b rϑ ϕ ϕ+ −ɺ ɺ ɺ = 0, 

one has: 

T = 2 2 2 2 21 1
2 3 1 3 2 4 2 3 5 32 2 2

1
( 2 2 2 2 )

2
BC

m ma I b b
r

ω ω ω ω ω ω ω ω ω ω+ + + − + − + . 
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One then has: 
 12r ϕɺ  = ω4 + ω5 – 2ω2 – 2b ω3 , 

 22r ϕɺ  = ω4 − ω5 – 2ω2 + 2b ω3 , 

and as a result: 
2 2
1 2ϕ ϕ+ɺ ɺ  = [(ω4 − 2ω2)2 + (ω5 − 2ω3)2] . 

 

We have dropped the terms in 21ω , 2
2ω , 2

3ω  from our calculations.  As a result: 

 

 P1 = 
1ω

∂
∂

T
 = m a ω3 , 

 P2 = 
2ω

∂
∂

T
 = m ω2 − 4 22 2

2B BC C

r r
ω ω+  = m ω2 + 22

2 BC

r
ω = 2 2

2 BC
m

r
ω  + 

 
, 

 P3 = 
3ω

∂
∂

T
 = m a ω1 + I ω3 − 2

5 32 2
2B BC C

b b
r r

ω ω+  = 2
3 2

2 BC
I b

r
ω  + 
 

, 

 P4 = 
4ω

∂
∂

T
 = − 22

BC

r
ω , 

 P5 = 
5ω

∂
∂

T
 = − 32

BC
b

r
ω . 

 
From the transition equations, one can associate: 
 
 δϑ2 with   − P1 ω3 , 
 δϑ3 with  P1 ω2 − ω2 P1 – 2ω2 P1 = P1 ω2 . 
 
Since T is once more independent of the coordinates, and: 
 

2 1 1 2 3

2 3

(cos sin ) (cos sin )

,

X x Y y M X Y M

Z M

δ δ δϑ ϑ δϑ ϑ δϑ ϑ δϑ ϑ δϑ δϑ
δϑ δϑ

+ + = − + + +
 = +

 

 
the equations of motion (II) will then read: 
 

2 1 1

3 1 2

,
d

P P Z
dt
d

P P M
dt

ω

ω

− = 

+ =


  or 

22
3

3
3 2

,

.

d
m ma Z

dt
d

I ma M
dt

ω ω

ω ω ω

 ′ − =

 ′ + =


 

 

We have set m + 2
2 RC

r
 = m′, I + 2

2
2 RC

b
r

 = I′ . 
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 The equations are essentially identical to those of the blade. 
 
 
 240. A rheonomic example. – As a fourth example, we 
shall treat a rheonomic system.  Place wheels of radius r1 
and r2 be placed along the axis of a sliding shaft of variable 
cross-section that rotates with an angular velocity of ω0 , 
such that they inevitably rotate with it (perhaps by means 
of gears), as well as raising and lowering.  The 
displacement along the longitudinal axis happens in a given 
way, but by contrast let ω0 not be given.  If ϕ1 , ϕ2 are the 
angles of rotation and x1, x2 are the distances from the 
centers to the rotational axis then: 
 

1 1r ϕɺ  = a1 ω0 ,  2 2r ϕɺ  = a2 ω0 , 

 

so 1ϕɺ  = 2( )f t ϕɺ , if we set 1 2

2 1

a r

a r
 = f (t) .  Although r1, r2 are fixed, a1 and a2 are, however, dependent 

upon t by way of the given displacement of the shaft.  In this, we have a system with four degrees 
of freedom that is nonetheless rheonomic.  If we set q3 then we will have the equations of motion: 
 

x1 = a1 (t) + r1 , x1 = a1 (t) + r1 , 
so 

1xɺ  = 1 3a ωɺ , 2xɺ  = 2 3a ωɺ , 

dϕ1 – f (q3) dϕ2 = dϑ1 = 0 . 
We let: 

ϕ2 = q2 = ϑ2 
in this.  The kinetic energy is: 
 

 T = 2 2 2 21 1 1 1
1 1 2 2 1 1 2 22 2 2 2m x m x I Iϕ ϕ+ + +ɺ ɺɺ ɺ , 

 

 T = 2 2 21 1 1
3 3 1 1 3 2 2 22 2 2( ) [ ( ) ]F q I f q Iω ω ω ω+ + + , 

with 

F (q3) = 2 2
1 1 2 2m a m a+ɺ ɺ . 

Thus: 

 P1 =
1ω

∂
∂

T
= I1 [ω1 + f (q3) ω2] = I1 f (q3) ω2 , 

 P2 =
2ω

∂
∂

T
= f (q3) I1 [ω1 + f (q3) ω2] + I2 ω2 = I1 f (q3) ω2 + I2 ω2 , 

ω0 a2 

x2 x1 
a1 

y1 
y2 

Figure 116. 
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 P3 =
3ω

∂
∂

T
= F (q3) ω2 = F (q3) . 

 
The transition equations read:  
 

 d δϑ1 – δ dϑ1 = d δϕ1 – δ dϕ1 − f (q3) (d δϕ2 – δ dϕ2) − fɺ ( dq3 δϕ2 – δ q3 dϕ2) 

 = d δϕ1 – δ dϕ1 − f (q3) (d δϕ2 – δ dϕ2) − fɺ ( dϑ3 δϑ2 – δ ϑ3 dϑ2), 

 d δϑ2 – δ dϑ2 = d δϕ2 – δ dϕ2 , 
 d δϑ3 – δ dϑ3 = d δϕ3 – δ dϕ3 . 
 
Therefore, δϑ2 is associated with: 

− 1 2P f ωɺ = − 1P fɺ . 

Moreover, one has: 
 

 
1ϕ

∂
∂

T
= 0, 

2ϕ
∂
∂

T
= 0, 

3ϕ
∂
∂

T
= 1

3 1 1 3 2 3 22 ( ) [ ( ) ] ( )F q I f q f qω ω ω+ + ɺɺ  

 = 21
1 22 ( ) ( )F t I f t fω+ ɺɺ . 

However, the relations: 
 qνɺ = Bνµ µω  

read 
 1qɺ = 1ϕɺ = ω1 + f ω2 , 

 2qɺ = 2ϕɺ = ω2 , 

 3qɺ = ω3 

here.  As a result: 
 

1ϑ
 ∂
 ∂ 

T
=

1q

∂
∂

T
= 0, 

2ϑ
 ∂
 ∂ 

T
=

1 2

f
q q

∂ ∂+
∂ ∂

T T
= 0, 

3ϑ
 ∂
 ∂ 

T
=

3q

∂
∂

T
= 21

1 22 F I f f ω+ ɺɺ . 

 
If forces X1 and X2 act upon the system, along with moments M1 and M2 , then the virtual work 
done will be: 

δA = X1 δx1 + X2 δx2 + M1 δϕ1 + M2 δϕ2 = M1 (δϑ1 + f δϑ2) + M2 δϑ2 . 
Hence: 

K2 = M1 f + M2 . 
The equation of motion then reads: 
 

2 1

d
P P f

dt
− ɺ  = K2 or 2

1 2 2 2 1 2( )
d

I f I I f f
dt

ϕ ϕ ϕ+ − ɺɺ ɺ ɺ  = M1 f + M2 . 

 
However, it would wrong to use the illegitimate form of the kinetic energy: 
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T + = 2 2 21 1 1
1 2 2 22 2 2( )F t I f Iϕ ϕ+ +ɺ ɺ  

 
and construct the Lagrange equation from that: 
 

2 2

d T T

dt ϕ ϕ
∂ ∂−
∂ ∂ɺ

= K2 , 

such that: 

2
1 2 2( )

d
I f I

dt
ϕ+ ɺ = K2 = M1 f + M2 . 

 

This equation is clearly different from the one above.  The difference lies in the term − 1 2I f f ϕɺ ɺ , 

which drops out because of the illegitimate – i.e., premature – use of the equations of constraint. 
 
 Remark: We have treated the shaft as merely a massless control element. 
 
 
 241. A holonomic example. – As a fifth example, we shall take one that is intrinsically 
holonomic, but into which we would like to introduce a non-holonomic velocity parameter in such 
a way that T = 21

2 µω . 

 With two degrees of freedom, let: 
 

T = 2 2 21
1 1 1 2 1 22 [ 2 ( 1) ]q q q q q q+ + +ɺ ɺ ɺ ɺ . 

 
If ω1 = 1 1 2q q q+ɺ ɺ , ω2 = 2qɺ , whose inverses are 2qɺ  = ω2 , 1qɺ = ω1 − q1 ω2 , then: 

 

T = 2 21
1 22 ( )ω ω+ . 

The transition equations read: 
 
d δϑ1 – δ dϑ1 = d δq1 – δ dq1 + q1 (d δq2 – δ dq2) + dq1 δq2 – δq1 dq2 
 = d δq1 – δ dq1 + q1 (d δq2 – δ dq2) + (dϑ1 − q1 dϑ2) δϑ1 – (δϑ1 – q1 δϑ2) dϑ2 , 
 = d δq1 – δ dq1 + q1 (d δq2 – δ dq2) + dϑ1 δϑ2 − δϑ1 dϑ2 , 
and 

d δϑ2 – δ dϑ2 = d δq2 – δ dq1 . 
 

δϑ1 is then associated with – ω2 P2 = − ω2 ω1 , δϑ2 is then associated with ω1 P1 = 2
1ω .  Now, if 

the forces K1 and K2 act then: 
  
 δA = K1 δq1 + K2 δq2 = K1 (δϑ1 − q1 δϑ1) + K2 δϑ2 
 = K1 δϑ1 + K2 δϑ2  with K1 = K1    and    K2 = − q1 K1 + K2 , 
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and the equations of motion will read: 
 

and     
1 1 2 1

2
2 1 2

,

.

d
K

dt
d

K
dt

ω ω ω

ω ω

− = 

+ =


          (II) 

 
The Lagrange equations, which are entirely legitimate here, read: 
 

2
1 1 2 1 2 1 2 1

2
1 2 2 2 2

( ) ,

[ ( 1) ] .

d
q q q q q q q K

dt
d

q q q q K
dt

− − − = 

+ + =


ɺ ɺ ɺ ɺ ɺ

ɺ ɺ

     (III) 

 
The first equations are identical.  If one adds the first of equations (II) to the second one, multiplied 
by q1, then one will get: 
 

2
2 1 1 2 1 1 1 2 1 2 1 1 2 2 1( ) ( ) ( )q q q q q q q q q q q q q q q+ + + + + − +ɺɺ ɺ ɺ ɺɺ ɺɺ ɺ ɺ ɺ ɺ ɺ  = K2 

or 
2 2

1 2 1 1 2 1 2 1(1 ) 2q q q q q q q q+ + + +ɺɺ ɺ ɺɺ ɺ ɺ  = K2 ; 

 
i.e., the second equation in (III).  Naturally, both (II) and (III) are identical.  However, since the β 
are constant, the form (II) is certainly more convenient to integrate for force-free motion, which is 
then the same as for the blade.  The Euler equations of the rigid body also belong to this case, 
which we would like to treat in a special section as a sixth example. 
 
 

§ 5. – The rigid body. 
 
 242. New derivation of Euler’s equations. – The rigid body shall rotate about a fixed point, 
such that its kinetic energy will be: 

T = 1
2 (A p2 + B q2 + C r2) . 

 

In order to have precisely the form 21
2 µω , we need only to set Ap = ω1, B p = ω2, C p = 

ω3, but that is not inessential, so we shall not do that. 
 We now need the transition equations for the p, q, r.  We can derive them from the given 
relations (Chap. II, § 8): 
 

p = cos sin sinχ ψ ϕ χ ϕ+ɺ ɺ ,      q = − sin sin cosχ ψ ϕ χ ϕ+ɺ ɺ ,      r = cosϕ χ ψ+ɺ ɺ ; 
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however, it is more convenient to recall the Euler formulas: 
 

dr  = dϑϑϑϑ × r , and δ r  = δ ϑϑϑϑ × r , 
 
It follows directly from this that: 
 
 d δ r  − δ d r  = (d δϑϑϑϑ − δ dϑϑϑϑ) × r  + δϑϑϑϑ × d r  − dϑϑϑϑ × δ r 
 = (d δϑϑϑϑ − δ dϑϑϑϑ) × r  + δ ϑϑϑϑ × (dϑϑϑϑ × d r ) − d ϑϑϑϑ × (δϑϑϑϑ  × r ) . 
 
However, from the known formula a × (b × c) + b × (c × a) + c × (a × b) ≡ 0, that is also: 
 

(d δϑϑϑϑ − δ dϑϑϑϑ) × r  – r  × (δϑϑϑϑ × dϑϑϑϑ) . 
 

If one assumes that d δr  − δ dr  = 0 then (since r  is arbitrary) the transition formula: 
 

d δϑϑϑϑ − δ dϑϑϑϑ = − δϑϑϑϑ × dϑϑϑϑ 
 
will follow.  However, that refers to the rest coordinate system.  If we denote our derivatives 
relative to the moving coordinate system, which is fixed in the body, by putting primes on d (δ, 
resp.) then from Chap. VIII, § 1: 

d δϑϑϑϑ = d′ δϑϑϑϑ + dϑϑϑϑ × δϑϑϑϑ 
and 

δ dϑϑϑϑ = δ′ dϑϑϑϑ + δϑϑϑϑ × dϑϑϑϑ . 
Hence: 

d δϑϑϑϑ − δ dϑϑϑϑ = d′ δϑϑϑϑ − δ′ dϑϑϑϑ + 2 dϑϑϑϑ × δϑϑϑϑ . 
Therefore: 

d′ δϑϑϑϑ − δ′ dϑϑϑϑ = d δϑϑϑϑ − δ dϑϑϑϑ − 2 dϑϑϑϑ × δϑϑϑϑ 
 = − δϑϑϑϑ × dϑϑϑϑ − 2 dϑϑϑϑ × δϑϑϑϑ    , 
 = − dϑϑϑϑ × δϑϑϑϑ    . 
Lagrange already found this. 
 Therefore, when the equations of motion are referred to a system that is fixed in the body: 
 

( )
t

δ δ∂ ∂  − × ∂ ∂ 

T Tωωωω
ω ωω ωω ωω ω

d

d
ϑ ϑϑ ϑϑ ϑϑ ϑ  = M  δϑϑϑϑ, 

or, with D = ∂T / ∂ωωωω : 

t

d

d
D + ωωωω × D = M , 

 
and that is the Euler equation, which also represents a special case of the Lagrange-Euler 
equations. 
 We shall now take up the second example. 
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§ 6. – The tire. 
 
 243. Exhibiting the equations of motion. – From § 1, with: 
 
 dϑ1 = − dx sin ϑ + dy cos ϑ = 0, 
 dϑ2 =    r dϕ − dx cos ϑ − dy cos ϑ = r dψ – dϑ5 = 0, 
 dϑ3 = dϑ , 
 dϑ4 = dψ , 
 dϑ5 = dx cos ϑ  + dy sin ϑ, 
one will have: 
 

 T = 2 2 2 2 2 2 21
1 5 4 3 1 4 5 32 ( sin 2 cos 2 sin )m r r r rω ω ω ψ ω ψ ω ω ψ ω ω+ + + + −  

 +
2

2 2 21 1
4 3 2 5 32 2

1
( cos ) ( ) sinA C

r
ω ψ ω ω ω ψ ω + + + −  

, 

 

or, when we drop the terms with 21ω , 2
2ω : 

 

 T = 2 2 2 2 2 21
5 4 3 1 4 5 32 ( sin 2 cos 2 sin )m r r r rω ω ψ ω ψ ω ω ψ ω ω+ + + −  

 + 2 2 2 2 2 21 1
4 3 2 5 3 3 2 3 32 2 2

1 2
( cos ) (2 ) sin ( )sinA C

r r
ω ψ ω ω ω ω ψ ω ω ω ψ ω + + + + − +  

. 

Therefore: 
 

 P1 =
1ω

∂
∂

T
= m r cos ψ ω4 , 

 P2 =
2ω

∂
∂

T
= 52

C C

r r
ω − sin ψ ω3 , 

 P3 =
3ω

∂
∂

T
= m r2 sin2 ψ ω3 – m r sin ψ ω5 + A cos2 ψ ω3 − C sin2 ψ ω3 −

C

r
sin ψ ω5 , 

 P4 =
4ω

∂
∂

T
= m r2 ω4 + A ω4 , 

 P5 =
5ω

∂
∂

T
= m ω5 – m r sin ψ ω3 + A ω4 + 52

C

r
ω − C

r
sin ψ ω3 . 

 
We have now dropped the vanishing terms.  From the transition equations in § 2, δϑ3 is associated 
with: 

P1 ω5 + P2 ω1 – P5 ω1 = P1 ω5 , 
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nothing is associated with δϑ4 , and δϑ5 is associated with – P1 ω3 . 
 Therefore, since only: 
 

ψ
∂
∂

T
= 2 2 2 2

3 5 3 3 3 5 3sin cos cos cos sin sin cos cos
C

mr mr A C
r

ψ ψ ω ψ ω ω ψ ψ ω ψ ψ ω ψ ω ω− − + −  

 
is non-zero, the three equations of motion will read: 
 

 3 1 5
3

d
P P

dt

ψω
ψ ϑ
 ∂ ∂+ −  ∂ ∂ 

T
= K3 , 

 4
4

d
P

dt

ψ
ψ ϑ
 ∂ ∂−  ∂ ∂ 

T
= K4 , 

 5 1 3
5

d
P P

dt

ψω
ψ ϑ
 ∂ ∂− −  ∂ ∂ 

T
= K5 . 

 

However, one has: dψ = dϑ4 , so one will have 
3

ψ
ϑ

 ∂
 ∂ 

= 0, 
4

ψ
ϑ

 ∂
 ∂ 

= 1, 
5

ψ
ϑ

 ∂
 ∂ 

= 0 .  Let gravity be 

the only applied force, so it will have the potential: 
 

U = m g r cos ψ . 
 
Hence, K3 = 0, K4 = − ∂U / ∂ψ = m g r sin ψ, K5 = 0, and we will get the equations of motion: 
 

2 2 2 2
3 5 3 3 5( sin sin cos sin sin )

d C
mr mr A C

dt r
ψ ω ψ ω ψ ω ψ ω ω ψ− + + − + mr cos ψ ω4 ω5 = 0, 

 

2 2 2 2 2
3 4 3 5 3 5 3( ) sin cos cos cos sin sin cos

d
mr A mr mr A C

dt
ψ ω ω ψ ψ ω ψ ω ω ψ ψ ω ψ ψ ω+ − + + −  

 + 5 3cos
C

r
ψ ω ω  = mgr sin ψ, 

 

5 3 5 3 3 42
( sin sin ) cos

d C C
m mr mr

dt r r
ω ψ ω ω ψ ω ψ ω ω− + − − = 0. 

 
Hence, ω3 =ϑɺ , ω3 = ψɺ , ω3 = r ϕɺ . 
 
 244. Question of stability. – Naturally, those equations have the solution ψ = 0, ω3 = 0, ω5 = 
r ω0 = const: The tire rolls upright with constant speed.  Is that motion stable? 
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 In order to clarify this question using Lagrange’s method of small oscillations, we now regard 
ψ, ψɺ , ϑɺ  as small first-order quantities and neglect higher-order terms.  When will then remain is: 

 

 5 5 5( )
d C

mr A mr
dt r

ψ ω ϑ ω ψ ψ ω− + − +ɺ ɺ = 0, 

 

 
2

2
5 52

( )
d C

A mr mr
dt r

ψ ω ϑ ω ϑ+ + +ɺ ɺ = m g r ψ , 

 

 5 52
( )

d C
m

dt r
ω ω+ = 0 . 

 
The last equation gives constant ω5 .  With the abbreviations: 
 

5

C

r
ω = B, mr ω5 + 5

C

r
ω = D, A + mr2 = E, mgr = F, 

we can write: 
A Bϑ ψ−ɺɺ ɺ  = 0, 

D E Fϑ ψ ψ+ −ɺ ɺɺ ɺ = 0. 

 
The Ansatz ϑ = i teαΘ , ψ = i teαΨ gives: 

 
 Θ (− A α2) – Ψ B iα = 0, 
 Θ (+ D iα) + Ψ (Bα2 − F) = 0. 
 
Hence, one must have that the determinant: 
 

2

2

A Bi

Di E F

α α
α α

− −
+ − −

 = 0, 

or 
A α 2 (E α 2 + F) – D B α 2 = 0. 

 
In addition to the double root α = 0, this equation also has the root: 
 

 α 2 = 
BD AF

AE

−
. 

 

 α will be real when BD > AF – i.e., 2
5

C C
mr

r r
ω + 

 
 > A m g r – so when the tire moves fast 

enough.  There is a small oscillation in that case. 
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 The double root corresponds to a possible solution with ψ = const., ϑ = const.  One can find it 
as follows: When the first equation is integrated, that will give: 
 

Aϑɺ  − B ψ = κ A (integration constant). 

 
When that is substituted in the second one, that will give: 
 

D κ + 
B

D E
A

ψ ψ+ ɺɺ  − F ψ = 0 . 

 
When BD > AF, this equation will have not only the small oscillation, but also the solution ψ = 

AD

AF BD

κ
−

 = const., which also corresponds to constant ϑɺ .  For a small, constant inclination, the 

tire can also rotate with a corresponding constant ϑɺ , which does not affect the stability.  For an 
exact solution of the differential equations, see Problems 180 and 181. 
 

 
§ 7. – The principle of least action. 

 
 245. First proof. – We already said that the principle of least action is always true in the form: 
 

2

1

( )
t

t

T U dtδ −  = 0 

 
(in case a potential is present), when we treat the virtual displacements as possible, but that might 
make the neighboring motions impossible for non-holonomic constraints.  We now see how that 
is quite obvious.  If the constraints ωµ = 0 exist (µ = 0, 1, …, m), so we also have δϑµ = 0, then the 
possible displacements will be characterized by δϑµ = 0, from which, it will follow that dδϑµ = 0.  
However, should the neighboring path be possible, one would need to have ωµ = 0, as well as δωµ  
= 0, which would be impossible for a non-holonomic system under the assumption that: 
 

d δ r  – δ dr  = 0. 
 
We would now like to ask whether it is possible to formulate the principle by comparing with 
possible neighboring paths. 
 To that end, we start from the generalized central equation: 
 

d q dqd
p q p

dt dt
ν ν

ν ν ν
δ δδ −−  − δT = − δU, 

 
and when we integrate from t1 to t2, and set δqν = 0 at the ends of the interval, that will give: 
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2

1

( )
t

t

d q dq
T U p dt

dt
ν ν

ν
δ δδ − − +  

 = 0. 

 
We then convert this with the transition equation: 
 

d δϑ – δ dϑ  = ,
,

, ,

( )b d q dq dτ ρ
µ ν ν ν µ τ ρ

µ ν τ ρ
δ δ β ϑ δϑ− +  . 

 
We solve this for d δqν – δ dqν , which we do by multiplying by Bνµ and summing over µ , since 
ωµ = b qνµ µ

µ
 ɺ  has the solution  qνɺ  = Bνµ µ

µ
ω ; hence: 

 
qνɺ  = B bνµ µσ µ

µ
ω . 

 
Hence, B bνµ µσ

µ
 = δνσ is equal to the Kronecker symbol.  One will then get: 

( )B d dνµ µ µ
µ

δϑ δ ϑ− = d δqν – δ dqν + ,

, , ,

d
B p

dt
τ ρ τ

νµ ν µ ρ
µ ν τ σ

ϑβ δϑ . 

 
However, one has B pνµ ν

µ
 = Pµ (see § 3).  We then get: 

d q dq
p

dt
ν ν

ν
ν

δ δ−
  = ,

, ,

d q dq
P P

dt
µ µ τ ρ

µ µ µ τ ρ
µ µ τ ρ

δ δ
β ω δϑ

−
−  . 

 
However, with that, the principle will assume the form: 
 

2

1

,

1,2, , ,
, 1, ,

( )
t

nt
m n

d q dq
T U P P dt

dt
µ µ τ ρ

µ µ µ τ ρ
µ µ

τ ρ

δ δ
δ β ω δϑ

=
= +

 − − + −
 
  

 
…

…

 = 0. 

 
We can now arrange the virtual displacements to be such that not only the displacements are 
possible for which: 

δϑµ = 0, µ = 1, 2, …, m, 
 
but also the ones for the neighboring paths: 
 

δωµ = 0, µ = 1, 2, …, m . 
 
We must now only arrange that, from (1), the d δqν – δ dqν must satisfy: 
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d δqν – δ dqν = ,

1, , , , 1, ,

( )
m n m n

B d d B dτ ρ
νµ µ µ νµ µ τ ρ

µ µ τ ρ
δϑ δ ϑ β ϑ δϑ

= + = +

− − 
… …

.  (2)  

 
Indeed, for µ > m, we can even establish the commutation relation: 
 

d δϑµ – δ dϑµ = 0 
 
[which will make the first sum on the right in (2) drop out], which will imply no restriction on the 
δϑρ for ρ > m, and is otherwise a proper definition for the δωµ .  We will then get the variational 
principle: 

2

1

,

1,2, ,
, 1, ,

( )
t

nt
m n

T U P dtτ ρ
µ µ τ ρ

µ
τ ρ

δ β ω δϑ
=

= +

 
 − −
 
  


…

…

 = 0. 

 
In this form, the least-action principle is now possible for not only the displacements, but also the 
neighboring paths; We can replace T with T +. 
 
 
 246. Second proof. – There is a second proof that is probably simpler.  In: 
 

2

1

( )
t

t

U dtδ − T = 0, 

one sets: 

δ T = 
1 1 1

m m m

m

q
qν ν ν

ν ν νν ν ν

δω δω δ
ω ω= = + =

∂ ∂ ∂+ +
∂ ∂ ∂  

T T T
. 

 
Now, one can make use of the non-holonomic constraints in the second and third terms from the 
outset; i.e., one can replace T with T +.  The second and third terms together then give δ T +, and 
one will get: 

2

1
1

t m

t

T U P dtν ν
ν

δ δ δω+

=

 − + 
 

  = 0. 

 
That is then the desired form, since the constraints were indeed used in T +, so the neighboring 
paths were possible.  Using the transition equations: 
 

δωµ − 
d

dt
δϑµ =  − ,

, 1, ,m n

τ ρ
µ τ ρ

τ ρ
β ω δϑ

= +


…

, 
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we can convert the correction term 
m

Pν ν
ν

δω  into: 

 

− ,

1,2, ,
, 1, ,

n
m n

P τ ρ
µ µ τ ρ

µ
τ ρ

β ω δϑ
=

= +


…

…

, 

and thus get the principle: 

2

1

,

1,2, ,
, 1, ,

( )
t

mt
m n

T U P dtτ ρ
µ µ τ ρ

µ
τ ρ

δ β ω δϑ+

=
= +

 
 − −
 
  


…

…

 = 0. 

 
There is an obvious difference between the two forms.  In the first formulation, the sum extends 
over all µ from 1 to n, while in the second, it only goes from 1 to m .  However, the difference is 
zero, because as we know we indeed have: 
 

− ,

,

τ ρ
µ τ ρ

τ ρ
β ω δϑ  = 

d

dt
µ

µ

δϑ
δω 

− 
 

, 

 
and for µ > m, that is set equal to zero.  That theorem goes back to Voronetz, and the method of 
proof is partly found in Math. Ann. 92 (1924).  For more details, see Math. Ann. 111 (1935). 
 
 

§ 8. – Nonlinear constraint equations. 
 
 247. The first form. – Now, one can prescribe nonlinear constraint equations and also 
introduce nonlinear velocity parameters.  Hence: 
 

fν (qµɺ , q) = ων , ν = 1, 2, …, n .    (1) 

Let it be established that: 
ων = 0,  ν = 1, 2, …, m < n    (2) 

in that. 
 Let those equations be mutually independent and soluble for the qɺ : 

 
qµɺ = Fµ (ω, q) .      (3) 

Correspondingly, one has: 

δων = 
f

q
q

ν
σ

σ

δ∂
∂ ɺ
ɺ

= ,f qν σ σδ ɺ ,     (4) 

qσδ ɺ  = 
Fσ

µ
µ

δω
ω

∂
∂ = ,Fσ µ µδω .     (5) 

It then follows that: 
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, ,f Fν σ σ µ
ν
 = δν, µ ,      (6) 

, ,F fσ µ ν σ
µ
 = δσ, µ ,      (7) 

 
in which δ is the Kronecker symbol.  Solubility assumes the non-vanishing of the determinant 

,fν µ . 

 We also write: 

ων = 
d

dt
νϑ

. 

However, δϑν must now be redefined, because if one would like to write, say, δqµ = Fµ (δϑ, q) 
then that would make no sense in the nonlinear case.  Lagrange’s principle will then break down, 
but Gauss’s principle of least constraint will help us further.  That demands that: 
 

S (dm w – δ K e) δ w = 0, 
and since: 

w =
2

2

d

dt

r
= q

q ν
ν

∂
∂

r
ɺɺ + terms with no qνɺɺ , 

S (dm w – δ K e) q
q ν

ν

δ∂
∂

r
ɺɺ = 0. 

By contrast, Lagrange: 

S (dm w – δ K e) q
q ν

ν

δ∂
∂

r
= 0. 

Now, if (3) is true then one will also have: 
 

qµɺɺ = 
Fµ

σ
σ

ω
ω

∂
∂ ɺ + terms with no ωɺ , 

so 
qµδ ɺɺ = ,Fν σ σ

σ
δϑ . 

Gauss’s principle then implies that: 
 

S (dm w – δ K e) ,F
q ν σ σ

ν

δω∂
∂

r
ɺ = 0. 

 
If one of the ων is to be zero then that must mean that it must not enter into Fµ , so it will not enter 
into qµδ ɺɺ , either.  However, that means that σδωɺ must be set to zero. 

 The foregoing equation can be brought into the Lagrangian form when we define the δϑ by 
way of: 
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δqν = ,Fν σ σ
σ

δϑ ,      (8) 

and conversely: 
δϑµ = ,f qσ τ τ

σ
δ ,       (9) 

in which δϑν = 0 for ν = 1, 2, …, m. 
 In order to remain consistent with Gauss’s principle, one can then define virtual displacements 
to be the differential variations of the velocities.  One will then get Lagrange’s principle.  This 
new definition of virtual displacements includes the old one for linear constraints. 
 We can easily exhibit the equations of motion now.  As far as force is concerned, we get: 

δA = K qν ν
ν

δ = ,
,

K Fν ν µ µ
ν µ

δϑ = µ µδϑK , 

with 

Kµ = ,K Fν ν µ
ν
 = 

F
K ν

ν
µω

∂
∂ .     (10) 

 
We then recalculate the kinetic energy: 
 

T (q, qɺ ) = T (q, F) = T (q, ω) 

and the work done by momentum: 
 

p qν ν
ν

δ = 
qT

q
ν

µ
ν ν µ

δϑ
ω

∂∂
∂ ∂

ɺ

ɺ
 = µ

µ

δϑ
ω
∂

∂
T

.    (11) 

 
Hence, we introduce the impulse components: 
 

Pµ = 
µω

∂
∂

T
.       (12) 

 
We now need transition equations.  It follows from: 
 

d

dt
νϑ

 ≡ ων = fν (qɺ , q),  δϑν = 
f

q
q

ν
σ

σ

δ∂
∂ ɺ
ɺ

 

that: 
d d

dt dt
ν νδϑ δ ϑ− = 

f d q f f fd
q q q

q dt dt q q q
ν σ ν ν ν

σ σ σ
σ σ σ σ

δ δ δ δ∂ ∂ ∂ ∂+ − −
∂ ∂ ∂ ∂   

ɺ
ɺ

ɺ ɺ ɺ
, 

or, if we now demand that: 
  d δqσ – δ dqσ = 0 
that 
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d d

dt dt
ν νδϑ δ ϑ− = 

f fd
q

dt q q
ν ν

σ
σ σ

δ
 ∂ ∂− ∂ ∂ 


ɺ

.    (13) 

 
The Lagrangian central equation: 

d
p q

dt ν νδ − δT = δA 

now yields: 
dP d d F

P
dt dt q

µ µ µ ν
µ µ µ

ν µ

δϑ δ ϑ
δϑ δϑ

ω
− ∂∂+ −

∂ ∂  
T

 = µ µδϑK , 

 
or, with the use of (13): 
 

dP f f F Fd
P

dt dt q q q
µ ν ν σ ν

µ ν µ µ
σ σ µ ν µ

δϑ δϑ δϑ
ω ω

 ∂ ∂ ∂ ∂∂+ − − ∂ ∂ ∂ ∂ ∂ 
  

ɺ ɺ

T
 = µ µδϑK . 

 
Now, since the first δϑµ are equal to zero, while the others are arbitrary, for µ = m + 1, …, n, that 
will yield the equations of motion: 
 

,

dP f f F Fd
P

dt dt q q q
µ ν ν σ ν

ν
ν σ νσ σ µ ν µω ω

 ∂ ∂ ∂ ∂∂+ − − ∂ ∂ ∂ ∂ ∂ 
 

ɺ ɺ

T
= Kµ .   (I) 

 
However, the first form has the disadvantage that the qɺ  and qɺɺ  still enter into the calculation of 

the second term.  For that reason, we would like to give a conversion that includes only the qν and 
the ω . 
 We start from (3) and (8) and then obtain: 
 

 
d q dq

dt
ν νδ δ−

 = ,
,

dFd d F
F q

dt dt q
ν σσ σ ν

ν σ σ µ
σ σ µ µ

δϑ δ ϑ δϑ δ− ∂+ −
∂    

  

 = ,
, ,

dFd d F
F F

dt dt q
ν σσ σ ν

ν σ ν σ σ
σ σ µ µ

δϑ δ ϑ δϑ
 − ∂+ −  ∂ 

   ; 

 
hence, with d δqν – δ dqν = 0, we will have: 
 

,

d d
F

dt
σ σ

ν σ
σ

δϑ δ ϑ−
  = − ,

,

dF F
F

dt q
ν σ ν

ν σ σ
σ µ µ

δϑ
 ∂−  ∂ 

  . 

 
When one uses (8) to symbolically write: 
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Fν, σ = 
Fν

σϑ
 ∂
 ∂ 

, 

 
one can also write the foregoing transition equation as: 
 

,

d d
F

dt
σ σ

ν σ
σ

δϑ δ ϑ−
  = −

F Fd

dt
ν ν

σ
σ σ σ

δϑ
ω ϑ

  ∂ ∂−   ∂ ∂  
 . 

We can likewise write: 

F

q
ν

ν ν µω
∂∂

∂ ∂
T

= 
µϑ

 ∂
  ∂ 

T
 

in (I). 
 
 
 248. The second form. – A second form of the transition equations (13) follows by multiplying 
(6) by fµν and summing over ν : 
 

d d

dt
µ µδϑ δ ϑ−

= − ,
,

F Fd
f

dt
ν ν

µ ν µ
ν σ σ σ

δϑ
ω ϑ

  ∂ ∂−  ∂ ∂  
 .   (13a) 

 
However, (14) will then imply that: 
 

,
, ,

dP F Fd
P f

dt dt
µ ν ν

µ µ µ ν µ µ
µ ν σ σ σ µ

δϑ δϑ δϑ
ω ϑ ϑ

   ∂ ∂ ∂− − −      ∂ ∂ ∂    
  

T
= µ µδϑK , 

 
and we will then have the second form of the equations of motion: 
 

,
,

dP F Fd
P f

dt dt
µ ν ν

µ µ ν
σ ν σ σ µω ϑ ϑ

   ∂ ∂ ∂− − −      ∂ ∂ ∂    
 

T
= Kµ = − 

U

µϑ
 ∂
  ∂ 

, (µ = m + 1, …, n), (II) 

 
in case a potential exists. 
 These equations are found in the works of Leif Johnson, but their derivation is flawed (2).  In 
regard to that, see a paper by the author (3). 
 Indeed, these equations still include fµ, ν , which is a function of qɺ  and q, but it follows from: 

 
 δωσ = ,f qσ ν νδ ɺ  

 
 (2) JOHNSON, Leif, “Dynamique générales des systèmes non holonomes,” Kon. Norske Vid. Selskab. Skrifter. 
 (3) HAMEL , Georg, “Nichtholonomer Systeme höherer Art,” Sitz. Math. Ges. Berlin, v. XXXVII. 
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and 
 qνδ ɺ = ,Fν µ νδω  

 
that the fσ, ν are the sub-determinants of || Fν, µ ||, divided by the total determinant, so they are 
obtained by means of linear algebra and can be converted into functions of ωµ and qν .  One does 
not need to revert to equations (1) and (3). 
 

 Special case: If one takes T itself to be ωn then T = ωn , Pn = 1, all other P are zero, and 
µϑ

 ∂
  ∂ 

T

= 0.  Hence, the equations of motion will read: 
 

− ,n

F Fd
f

dt
ν ν

ν
ν µ µω ϑ

  ∂ ∂−   ∂ ∂   
  = Kµ , µ = m + 1, …, n 

in this case. 
 
 
 249. Example. – There do not seem to be any examples from daily life, as in the linear case.  
The value of such nonlinear constraints lies not so much in their presentation as in the possibility 
of introducing some sort of combination f (qɺ , q) that might be useful as a variable, if perhaps an 

integral = const. exists.  We shall satisfy ourselves with an artificial example. 
 Let the object be a point in three-dimensional space.  Take ω3 to be: 
 

T = 2 2 21
1 2 32 ( )x x x+ +ɺ ɺ ɺ . 

Let: 

ω1 = 2 2 21
3 1 22 ( )x x x− −ɺ ɺ ɺ = 0 

be prescribed, i.e.: 

3xɺ = 2 2
1 2x x± +ɺ ɺ ; 

 
i.e., the velocity in the vertical direction is equal to the one in the horizontal direction.  In other 
words: The angle of inclination is 45o, which can indeed be achieved by means of wheels (Steuern).  
It follows from: 

  2 2 2
1 2 3x x x+ +ɺ ɺ ɺ =    2ω3 , 

  2 2 2
1 2 3x x x+ −ɺ ɺ ɺ = − 2ω3 

that 
2
3xɺ  = ω2 + ω1 ,  3xɺ = 3 1ω ω+ . 

We then set: 

 1xɺ = 3 1ω ω− cos ω2 , 
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 2xɺ = 3 1ω ω− sin ω2 . 

Therefore: 

 f1 = ω1 = 2 2 21
3 1 22 ( )x x x− −ɺ ɺ ɺ , 

 f2 = ω2 = arctan 2

1

x

x

ɺ

ɺ
, 

 f3 = ω3 = 2 2 21
1 2 32 ( )x x x+ +ɺ ɺ ɺ . 

The inverses are: 

 F1 = 1xɺ = 3 1ω ω− cos ω2 , 

 F2 = 2xɺ = 3 1ω ω− sin ω2 , 

 F3 = 3xɺ = 3 1ω ω+ . 

It follows from this that: 
 

 F1, 1 = − 2

3 1

cos

2

ω
ω ω−

, F1, 2 = − 3 1ω ω− sin ω2 , F1, 3 = − 2

3 1

cos

2

ω
ω ω−

, 

 

 F2, 1 = − 2

3 1

sin

2

ω
ω ω−

, F2, 2 =    3 1ω ω− cos ω2 , F2, 3 =    2

3 1

sin

2

ω
ω ω−

, 

 

 F3, 1 =     
3 1

1

2 ω ω+
, F3, 2 =     0 , F3, 3 =    

3 1

1

2 ω ω+
. 

 
Since one does not further partially differentiate with respect to ω1 , one can already set ω1 = 0.  
The determinant is then: 

∆ = 

2 2
3 2

3 3

2 2
3 2

3 3

3 3

cos cos
sin

2 2

sin sin
sin

2 2

1 1
0

2 2

ω ωω ω
ω ω
ω ωω ω
ω ω

ω ω

− −

−  = − 
3

1

2 ω
. 

 
One only needs f3, ν .  One finds it the fastest here from the fact that: 
 

  f3 = 2 2 21
1 2 32 ( )x x x+ +ɺ ɺ ɺ , 

which leads to: 

  f3, 1 = 1xɺ  = 3ω  cos ω3 , 
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  f3, 2 = 2xɺ  = 3ω  sin ω3 , 

  f3, 3 = 3xɺ  = 3ω . 

 
One can now write down the two equations of motion.  They read: 
 

 − 3 2 3 2 2 3 2cos ( sin ) sin ( cos )
d d

dt dt
ω ω ω ω ω ω ω − +  

 = K2 , 

 − 2 2
3 2 2

3 3 3

cos cos 2
cos sin

2 2 2

d d d

dt dt dt

ω ωω ω ω
ω ω ω

 
+ + 

  
 = K3 , 

 
because the Fν are independent of the coordinates.  One can get the forces from: 
 

K2 δϑ2 + K3 δϑ3 = X1 δϑ1 + X2 δϑ2 + X3 δϑ3 
 

= 3 31 2 1 2
1 2 3 2 1 2 3 3

2 2 2 3 3 3

F FF F F F
X X X X X Xδϑ δϑ

ω ω ω ω ω ω
  ∂ ∂∂ ∂ ∂ ∂+ + + + +  ∂ ∂ ∂ ∂ ∂ ∂   

, 

namely: 

 K2 = − 1 3 2 2 3 2sin cosX Xω ω ω ω− , 

 K3 =    2 2
1 2 2 3

3 3 3

cos sin 1
sin

2 2 2
X X X

ω ωω
ω ω ω

+ + . 

 
Differentiating these will give the simple equations: 
 

2
3

d

dt

ωω  = K2 and 3

3

1

2

d

dt

ω
ω

 = K3 . 

 
Naturally, in the force-free case, that will give the energy integral: 
 

ω3 = const. 
 
If perhaps X1 = 0, X2 = 0, X3 = K = const. then it will follow that: 
 

K2 = 0,  K3 = 
32

K

ω
,  2

3

d

dt

ωω = 0,  3

3

1

2

d

dt

ω
ω

= 
32

K

ω
, 

so 

 ω2 = const., 3ω = 1
02 K t ω+ , T = ω3 = 21

02( )K t ω+ ,  
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 1xɺ = ω3 cos ω2 = 1
02( )K t ω+ cos ω2 , 

 2xɺ = ω3 sin ω2 = 1
02( )K t ω+ cos ω2 , 

 3xɺ = ω3  = 1
02 K t ω+ , 

 
which can be integrated by elementary methods, since ω2 is constant. 
 
 
 
 250. Linearization. – One can often treat nonlinear problems like: 
 
  dx2 + dy2 + dz2 
 
in a different way by linearizing it using the introduction of auxiliary variables, which are initially 
only apparent.  Indeed, one can introduce the auxiliary variable ϑ by that fact: 
 
 dx = dz cos ϑ , 
 dy = dz sin ϑ . 
One will then have: 
 xɺɺ  = cos sinz zϑ ϑϑ− ɺɺɺ ɺ , 

 yɺɺ  = sin cosz zϑ ϑϑ+ ɺɺɺ ɺ . 

 
However, in constructing xδ ɺɺ , yδ ɺɺ , one must now vary ϑɺ , since the position has nothing to do 

with ϑ at all, which first makes its appearance in the representation of the velocity.  ϑɺ  is a quantity 
that is meaningful for the acceleration, and must then varied according to Gauss’s principle.  
Hence: 
 xδ ɺɺ  = cos sinz zδ ϑ ϑδϑ− ɺɺɺ ɺ , 

 yδ ɺɺ  = sin cosz zδ ϑ ϑδϑ+ ɺɺɺ ɺ . 

For m = 1, that now gives: 
 

x x y y z zδ δ δ+ +ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ  = X cos ϑ + Y sin ϑ – Z − sin cosx z y zϑ ϑ+ɺɺ ɺɺɺ ɺ  

= − sin cosX z Y zϑ ϑ+ɺ ɺ . 

 
Since zɺ = 0 does not come into question (except for the case of rest), two equations for z and ϑ 
will follow by subsequently introducing ϑ and dropping zɺ that: 
 

2zɺɺ= X cos ϑ + Y sin ϑ + Z 

and 
zϑɺɺ  = − X sin ϑ + Y cos ϑ . 

For X = 0, Y = 0, that will yield: 
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ϑɺ= 0      and 2zɺɺ  = Z . 

 
However, if one eliminates ϑ instead then one will get: 
 

2zɺ = 2 2x y+ɺ ɺ , 

 

2zɺɺ= 
x y

X Y
z z

+
ɺ ɺ

ɺ ɺ
 + Z and − x y x y+ɺɺ ɺ ɺ ɺɺ  = − X y Y x+ɺ ɺ .  

 
One easily proves the agreement between this and the old results. 
 Up to now, ϑ was an auxiliary mathematical quantity.  However, one can also give it a real 
interpretation upon completing the system with additional masses that one can allow to go to zero. 
[For this, see various notes by Appell, et al., in the Rendiconti di Palermo 1911 and 1912, as well 
as Delassus, especially “Sur les liaisons et les mouvements…” in the Ann. École normale (3) 29 
(1912).  Appell’s 1913 book on the dynamics of material systems also includes the essentials.] A 
true linearization will then be realized in that way. 
 In our example, we can think of the horizontal plane as playing a role; let ξ, η be the coordinates 
of the contact point B, and let ϑ be the angle of inclination of the plane of rolling with respect to 
the x-axis.  At a distance of ρ from the point B, the rolling object (which is supported by the plane 
without friction) carries a vertical along which a mass-point m can move.  Let its coordinates be x, 
y, z .  For constant z, that will be the blade, in essence.  Now however, the mass-point m shall be 
coupled to the rolling body by a cord such that it rises in proportion to the angle of rotation ϕ, so 
one will have: 

dz = b dϕ .      (1) 
 
The non-holonomic constraints are then: 
 

x = ξ + ρ cos ϑ , y = η + ρ sin ϑ,    (2) 
dξ = a cos ϑ dϕ, dη = a sin ϑ dϕ ;    (3) 

 
a is the radius of the rolling body.  With: 
 

xɺ  = sinξ ρ ϑϑ−ɺ ɺ , yɺ = cosη ρ ϑϑ+ ɺɺ ,    (4) 

one will have: 

T = 2 2 2 2 2 2 21 1
( ) ( )

2 2 2 2

m
x y z A B

µ ξ η ϑ ϕ+ + + + + +ɺ ɺɺ ɺɺ ɺ ɺ , 

 
when the rolling body, which is thought to be centered, has a mass of µ and moments of inertia A, 
B. 



46 Chapter IX – Non-holonomic systems with a finite number of degrees of freedom. 
 

 
 
 When one substitutes the values of xɺ , yɺ  in (4), as will as the value of zɺ  in (1), that will give: 

 

T = 2 2 2 2 21 1 1
2 2 2( )( ) sin cos ( ) ( )m m m A m B mbµ ξ η ξ ϑ ρ ϑ ηϑ ρ ϑ ρ ϕ+ + − + + + + +ɺ ɺ ɺ ɺɺ ɺ ɺ . 

 
The further examination proceeds similarly to the case of the blade.  We set: 
 
 dϑ1 = − dξ sin ϑ + dη cos ϑ = 0, 
 dϑ2 =    dξ cos ϑ + dη sin ϑ − a dϕ = 0, 
 dϑ3 = dϑ, 
 dϑ4 = dϕ . 
 
We then get the transition equations: 
 
 d δϑ1 – δ dϑ1 = (dϑ2 δϑ2 – δϑ2 dϑ2) + a (dϑ4 δϑ3 – δϑ4 dϑ3), 
 d δϑ2 – δ dϑ2 = dϑ3 δϑ1 – dϑ1 dϑ3 , 
 d δϑ3 – δ dϑ3 = 0, 
 d δϑ4 – δ dϑ4 = 0 . 
 

When we drop the terms 21ω , 2
2ω , the kinetic energy will become: 

  

T = 1
2 (m + µ) 2ω2 ω4 + m ρ ω2 ω4 + 21

32 ω (A + m ρ2) + [(m + µ) a2 + B + m b2] . 

 
We then have: 
 P1 = m ρ ω2 , 
 P2 = (m + µ) ω4 , 
 P3 = (A + mρ2) ω3 , 
 P4 = [(m + µ) + B + mb2] ω4 . 

y 

ϑ 

x 

B (ξ, η) 

Figure 117, 
B 

ρ 

m 

Figure 118 
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Now, if gravity Z = − m g acts upon m, along with X, Y, and forces Ξ, Η, and the moment M act 
upon the rolling body then: 
 
 δA  = − mg δz + Ξ δξ + Η δη + M δϑ + X δx + Y δy 
 = [(X + Ξ) a cos ϑ + (Y + Η) a sin ϑ – mg b] δϕ + [M + ρ (− X sin ϑ + Y cos ϑ)] δϑ . 
 
We will then get: 

(A + m ρ2) m aϑ ρ ϑ ϕ+ɺɺ ɺ ɺ = M + ρ (− X sin ϑ + Y cos ϑ),    (5) 

 
which comes from δϑ3 , and: 
 

[(m + µ) a2 + B + mb2] 2m aϕ ρ ϑ− ɺɺɺ = (X + Ξ) a cos ϑ + (Y + Η) a sin ϑ − mg b, (6) 

 
which comes from δϑ4 .  Those are the two equations of motion. 
 
 
 251. Passing to the limit. – If we now neglect the mass of the rolling body, i.e., set: 
 

µ = 0,  A = 0,  B = 0, 
then we will get: 
 2m m aρ ϑ ρ ϑ ϕ+ɺɺ ɺ = M + ρ (− X sin ϑ + Y cos ϑ), 

 m (a2 + b2) 2maϕ ρ ϑ− ɺɺɺ = (X + Ξ) a cos ϑ + (Y + Η) a sin ϑ – mg b. 

 
This is all still quite normal.  However, if we further set ρ = 0 then we must have M = 0 in order 
for no contradiction to arise, and the first equation will drop out, so only the second one will 
remain: 
 m (a2 + b2) ϕɺɺ  = (X + Ξ) a cos ϑ + (Y + Η) a sin ϑ – mg b. 

 
The problem is now indeterminate. 
 If M = 0 is given, but ρ ≠ 0, then it will follow from (5) that: 
 
 m maρ ϑ ϑ ϕ+ɺɺ ɺ ɺ  = − X sin ϑ + Y cos ϑ . 

 
If one now passes to the limit: 

ρ → 0 
then that will give: 

maϑ ϕɺ ɺ  = − X sin ϑ + Y cos ϑ . 
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However, that equation, together with the second equation for ϕɺ  with Ξ = 0, Η = 0, is the same 

system of equations that we will get by eliminating ϑ from the constraint equation that arises from 
(3) in that way, namely: 

dξ 2 + dη2 = a2 dϕ 2 = 
2

2
2

a
dz

b
 , 

which will go to: 

dx2 + dy2 = 
2

2
2

a
dz

b
 

for ρ = 0. 
 We first set m = 0, A = 0, B = 0, so we have neglected the mass of the rolling body, and then 
let ρ → 0.  However, if one lets those four quantities go to zero simultaneously and one has: 
 

M = ρ M′ 
then one will arrive at: 

lim 
A

ρ
= α . 

One will then get: 
maα ϑ ϑ ϕ+ɺɺ ɺ ɺ  = M′ − X sin ϑ + Y cos ϑ, 

 
instead of eq. (5).  The indeterminacy has vanished, but the parameter α has appeared, which 
depends upon the passage to the limit that one carries out with the mass distribution µ, A, B of the 
rolling body and the geometric quantity ρ .  Appell set α = 0, which implies a generalization of 
our way of doing things.  However, that is not intrinsically necessary.  One must then be careful 
with any assumptions that involve setting masses and lengths of control elements equal to zero 
when the control element is important for the motion of the system.  (Cf., Problem 151, et seq. on 
this.) 
 

 
§ 9. – Second-class non-holonomic systems. 

 
 252. A questionable state of affairs. – Let us point out the systems in which the constraint 
equations also include the accelerations qɺɺ : 

 
( , , )f q q qν ɺɺ ɺ  = 0, ν = 1, 2, …, m .    (1) 

 
At best, one will again work with Gauss’s principle, which will yield: 
 

d T T
q

dt q q µ
µ µ

δ
 ∂ ∂−  ∂ ∂ 

 ɺɺ
ɺ

 = K qν νδ ɺɺ  

or also 
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δ S ≡ 
S

q
q ν

ν

δ∂
∂ ɺɺ
ɺɺ

 = K qν νδ ɺɺ . 

 
(S is Appell’s acceleration function; cf., Chap. VII, § 7.) One now eliminates some of the qɺɺ  with 

the help of (1), such that only the free ones will still remain. 
 
 Example: Let a point in space that is initially free be subject to the condition that 3xɺɺ  = 1 2x xɺɺ ɺɺ .  It 

will then follow from S = 2 2 21
1 2 32 ( )x x x+ +ɺ ɺ ɺ  that: 

 

S = 2 2 2 21
1 2 1 22 ( )x x x x+ +ɺ ɺ ɺ ɺ  

and 
3

1

X xν νδ ɺɺ will become: 

1 1 2 2 3 2 2 3 3( )X x X x X x x x xδ δ δ δ+ + +ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ . 

 
As a result, the equations of motion will read: 
 

 2
1 2(1 )x x+ɺɺ ɺ  = X1 + 3 2X xɺɺ , 

 2
2 1(1 )x x+ɺɺ ɺ  = X2 + 3 1X xɺɺ . 

 
However, that system has two solutions: 
 
 1)  1xɺɺ  = 0, 2xɺɺ  = 0, 3xɺɺ  = 0 ; despite the fact that K ≠ 0. 

 2)     1xɺɺ  = 2
2
21

x

x+
ɺɺ

ɺɺ
K , 

or when substituted in the second equation: 
 

2
2 2

2 2 2
2

1
(1 )

x
x

x

 
+ + 

ɺɺ
ɺɺ

ɺɺ
K  = 2

2
21

x

x+
ɺɺ

ɺɺ
K , 

or when 2xɺɺ  ≠ 0 : 
2 2 2 2
2 2(1 )x x+ +ɺɺ ɺɺK  = 2 2

2(1 )x+ ɺɺK   or 2 2
2(1 )x+ ɺɺ = K2, 

 2
2xɺɺ  = | K | − 1,  2xɺɺ = | | 1−K , 

 1xɺɺ  = 
| | 1

| |

−K
K

K
, 

 3xɺɺ  = (| | 1)
| |

−K
K

K
 = K − 

| |

K
K

. 

(This assumes that | K | > 1.) 
 What is the correct solution?  If one calculates: 
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S dm 
2

ed

dm
 − 
 

K
w = 2 2 2

1 2 3( )x x x+ + −ɺɺ ɺɺ ɺɺ K  

 
then the first solution will be K2, while the second one will be: 
 

| K | − 1 + | K | − 1 + 1 = 2 | K | − 1. 
Now, one has: 

K2 – 2 | K | + 1 = (| K | − 1)2 > 0 ; 
 

hence, the second solution gives the true minimum.  However, whether or not Gauss’s principle 
can be extended in that way is still unproven physically.  We then meet up with the fact that this 
entire situation is questionable.  Just as we already would not actually like to think of the forces as 
depending upon the accelerations (at most improperly by a process of elimination), constraints in 
which the accelerations factor will also seem to be debatable, and above all, ones in which even 
higher derivatives are involved. 
 

___________ 
 
 

 
 
 
 
 


