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 I. Intuitive theory of matter waves. 
  1. The inhomogeneous differential equation of the density matrix. 
  2. The conservation laws. 
  3. Applications (polarization of the vacuum). 
 
 II. Quantum theory of the wave field. 
  1. Presentation of the field equations. 
  2. Applications (the self-energy of light quanta). 
 
 
 The purpose of the present paper 1) is to construct the Dirac theory of the positron 2) 
in the formalism of quantum electrodynamics.  Thus, we shall demand that the symmetry 
in nature between positive and negative charge should be expressed in the basic equations 
from the outset, and that in addition to the well-known difficulties with the divergences 
that quantum electrodynamics leads to, no new infinities should appear in the formalism, 
moreover; i.e., that the theory should provide an approximation for the treatment of the 
circle of problems that have been treated by quantum electrodynamics up to now.  By the 
latter postulate, one distinguishes the present effort from the investigations of Fock 3), 
Oppenheimer and Furry 4), and Peierls 5), the last of which is similar to it; he is closely 
linked with the paper of Dirac 6), moreover.  In contrast to the Dirac treatment, one has 
the work on the meaning of the conservation law for the total system of radiation-matter 
and the necessity of formulating the basic equations of the theory in a way that grows out 
of the Hartree approximation. 
 

                                                
 1) The paper originated in some discussions that I had with Herren Pauli, Dirac, and Weisskopf, in part 
written and in part oral, and to them I am deeply grateful. 
 2) E. g.: P. A. M. Dirac, The Principles of Quantum Mechanics,” Oxford (1930), pp. 255. 
 3) V. Fock. C. R. Leningrad (N. S.) no. 6 (1933), 267-271.  
 4) W. H. Furry and J. R. Oppenheimer, Phys. Rev. 45 (1934), 245.  
 5) R. Peierls, to appear.  
 6) P. A. M. Dirac, Proc. Camb. Phil. Soc. 30 (1934), 150 (in what follows, this is always referred to by 
loc. cit.).  



I.  Intuitive theory of matter waves. 
 

 1. The inhomogeneous differential equation for the density.  Let the most 
important result of the aforementioned Dirac paper be briefly summarized as follows: A 
quantum-mechanical system of many electrons that fulfill the Pauli principle and move in 
a given force field without back-reaction can be characterized by a “density matrix:” 
 

(x′, t′, k′ | R | x″, t″, k″) = ( , , ) ( , , )n n
n

x t k x t kψ ψ∗ ′ ′ ′ ′′ ′′ ′′∑ ,   (1) 

 
when ψn(x′, t′¸ k′) means the normalized eigenfunctions of the states that possess one 
electron, and x′, t′, k′ (x″, t″, k″, resp.) are position, time, and spin variables.  All 
physically-important properties of quantum-mechanical systems like charge density, 
current density, etc., can be read off from the density matrix.  In general, this is always 
true in the approximation in which the interaction of the electrons can be ignored; i.e., in 
which the typical quantum-mechanically intuitive course of events does not enter.  The 
density matrix thus mediates an intuitive, corresponding picture of the actual process that 
is similar to what the classical-mechanical atomic model does.  The demand that the ψn in 
(1), which, according to Dirac, can also be expressed in the form (t′ = t): 
 

R2 = R,      (2) 
 
 should be normalized can be posed in parallel to the quantum conditions of the previous 
semi-classical theory. 
 The temporal change in the density matrix will be determined by the Dirac 
differential equation: 

HR = 0( ) ( )s s
s

e e
i A x i A x mc R

c t c x c
α β

  ∂ ∂′ ′+ + − +  ′ ′∂ ∂  
ℏ ℏ  = 0. (3) 

 
From now on, the following notations shall be applied throughout: 
 

0
0

0
0

0
0

01 02 03 23 31 12

0
0

Coordinates : , , , ,
2

Potentials : , ,

Field strengths : , ,

( , , ) , ( , , ) ,

Spin matrices : 1, 1, .

i
i

i
i

s
s

i
i

x x
ct x x x x x x

A A A A

A A
F F F

F F F F F F

λ λ
λ λ λ

µ ν
νµ

ν µ

ξ

ξ ξ

α α α α

′ ′ ′ ′′+ ′ ′ ′ ′= = − = − = 


= − = 
∂ ∂ − = = −
∂ ∂


= = 
= = − = 

E H

 (4) 

 
Greek indices always run from 0 to 3 and Latin ones from 1 to 3.  The raising or lowering 
of indices shall result from the usual formulas of the theory of relativity.  Doubled indices 
shall always be summed over.  Since the αν do not transform simply like a vector, the 
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chosen notation only amounts to a convenient abbreviation for these quantities.  Equation 
(3) now assumes, e.g., the form: 
 

( )s
s

e
i A x mc

x c
λα β

  ∂ ′− +  ′∂  
ℏ  R = 0. 

 
If, as the Dirac theory of holes requires, all states of negative energy are occupied, except 
for finitely many of them, and also only finitely many positive energy states are occupied 
then the matrix R will be singular on the light-cone that is defined by: 
 

xρ x
ρ = 0.      (5) 

 
Following Dirac, one then suitably considers the new matrix 1): 
 

RS = R – 1
2 RF ,       (6) 

 
in place of the matrix R, in which RF refers to the value of R for the state of the system in 
which every electron level is occupied.  As one easily confirms, for t′ = t, RF goes to the 
Dirac δ-function of the variables x′, k′, x″, k″.  The matrix RS already has a symmetry 
relative to the sign of the charge that will be important in the formalism that follows: 
Under the addition of 12 RF , it goes to the corresponding matrix R of “hole” theory.  

Under subtraction of 12 RF, it goes to the negative density matrix of a distribution in which 

the states of positive energy are occupied and the positive energy states are free.  
Permuting the points x′, t′, k′ and x″, t″, k″ and switching the sign of RS are equivalent to a 
change of sign in the electric charge.  The singularity of the matrix RS on the light-cone 
was investigated by Dirac; one can represent the matrix in the form: 
 

(x′, k′ | RS | x″, k″) = 
2( )

x v
u

x x x x
ρ ρ

λ λ
λ λ

α
−  + w log | xλ xλ |,  (7) 

in which: 

u = − 
22

P

P

ei
A dx

ci
e

λ
λ

π

′′

′

− ∫ℏ
.     (8) 

 
(The integral is to be taken along the straight line from P′ to P″.) 
 The quantity w is determined uniquely by a differential equation, but v is determined 
only up to an additive term of the form xλ xλ ⋅⋅⋅⋅ g.  One ordinarily deduces the charge 
density, current density, etc., from the density matrix R when one makes the Ansatz, e.g., 
for the charge density: 

ρ(x) = ( , | | , )
k

e x k R x k∑ ;    (9) 

 

                                                
 1) The doubled matrix RS is the matrix that Dirac denoted by R1 . 
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corresponding statements are true for the other physical quantities.  Now, due to the 
singularity of the matrix R, this conclusion is obviously incorrect – e.g., when no external 
field is present − since only the deviation of the density matrix from the matrix of the 
state in which all of the negative energy levels are filled contributes any charge and 
current density.  From Dirac, one would then have to subtract from the density matrix, 
another density matrix that is determined uniquely by the external field in order to obtain 
the “true” density matrix – we call it (x′, k′ | r | x″, k″) – that is definitive for the charge 
and current densities, energy densities, etc., corresponding to equation (9).   We set: 
 

r = RS – S,      (10) 
 

in which S shall be a function of ,xλ′ k′ and xλ′′ , k″ that is uniquely determined by the 

potentials Aλ. 
 In place of the differential equation (3), one now has the equation: 
 

Hr = − HS.     (11) 

 
The right-hand side is a function of the electromagnetic field that must be determined 
more precisely; the original homogeneous Dirac equation (3) will then be replaced with 
the inhomogeneous equation (11).  Such an equation is the natural expression for the fact 
that matter can be created and destroyed.  The type of creation and annihilation will be 
established by the form of the quantity HS.  If no other external fields are present then S 
shall be given by the value of RS for the distribution in which all negative energy states 
are occupied.  We then assume that the matrix r vanishes everywhere in field-free space.  
The set of all matter that is collectively created when an external field is imposed and the 
again removed can be ascertained without any closer approximation on S by the presence 
of external fields.  Then, when RS (and therefore r) is known before the imposition of any 
sort of field the value of RS can be ascertained from equation (3) after the field is again 
removed.  However, after the field is removed, S again has its original value, so r can also 
be calculated.  Nonetheless, conversely, the result of the matter created by the imposition 
and removal of the fields gives the general reference point for the form of the right-hand 
side of (11) in the presence of fields.  For example, a simple perturbative calculation 
shows that the total set of matter that is created by the imposition and removal of the field 
is, in general, already infinite when the temporal differential quotient of the electric or 
magnetic field strength is sometimes discontinuous in the process of imposing and 
removing it, and first becomes correct when the field strengths or potentials are 
themselves discontinuous.  From this, one concludes that the right-hand side of (11), 
along with the potentials and field strengths, must also contain the first and second 
derivatives. 
 Dirac (loc. cit.) carried out the determination of S in the presence of external fields in 
such a way that he described a certain mathematical process that gave the matrix RS from 
the sequence of singular parts; Dirac identified the sum of the singular parts thus obtained 
by S.  However, the mathematical process that was chosen by Dirac did not deliver the 
aforementioned value of S in the field-free case, but one that differed from it by a matrix 
that was regular on the light-cone.  Whether or not a unique determination of the 
inhomogeneity in (11) is therefore hardly possible using formal arguments, by 
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considering the conservation laws for charge, energy, and impulse, one can restrict the 
possibilities for S in such a way that a definite value can be distinguished as a first 
hypothesis.  We denote the value of S that is valid in the absence of external forces and 
potentials (cf., above) and the one that is calculated by Dirac, loc. cit., by equations (20) 
to (22) by S0 .  If no fields are indeed present, but potentials whose rotations vanish enter 
into equation (3), then S0 is to be replaced with: 
 

0

P

P

ei
A dx

c
e S

λ
λ

′′

′

− ∫
⋅ℏ

. 

 
The quantity S then becomes the most important term that possesses the highest 
singularity on the light-cone and includes these quantities, where the integral should 
again be taken along the straight line from P′ to P″.  We set: 
 

S = 0

P

P

ei
A dx

c
e S

λ
λ

′′

′

− ∫
⋅ℏ

 + S1 .     (12) 

 
If one develops S1 for small xλ then, from (7), it must be capable of being represented in 
the form: 

S1 = log
x xa

b
x x C

λ
λ

λ
λ

+ .    (13) 

 
The tail end of the density matrix is important only for the calculation of the charge, 
current, and energy densities, so (cf., 2) for the development of the quantity a in xλ it 
suffices to know only the terms up to third order in xλ inclusively and for b, only the 
terms up to first order in xλ .  Furthermore, on the same grounds, it suffices to calculate 
only the terms that include the αλ only linearly.  Expressions for a and b that are 
compatible with equation (7) and Dirac’s results on the singularities of the density matrix 
read (up to higher-order terms): 
 

2

2 2

2

2 2

,
24 48

1
.

24 48 4

F Fei e
a u x x x x x F F

c c

Fei e
b u x F F F F

c c

σ λ ρ τ ρ µσλσ τσ
ρ λ ρ σ µτ

ρ τ

λ µ τλ λ τστλ
λ τµ µ τσ

τ

α δ α
ξ ξ

α α δ
ξ

  ∂ ∂ 
= − −   ∂ ∂    


  ∂  = + −   ∂    

ℏ ℏ

ℏ ℏ

 (14) 

 

Here, the field strengths are always to be taken at the position 
2

l lx ix′ ′′+
 = ξl .  The quantity 

u is given by equation (8). 
 If one defines S by means of equations (12) to (14) then the difference RS – S can 

become singular on the light cone by way of terms of type 
x x x x

x x
λ µ ν π

ρ
ρ

⋅⋅⋅⋅ Aλµνπ, xλ xµ Aλµ log 
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| xρ x
ρ |, or 

( )A

x x

λ µ µ λ
µλ

ρ
ρ

α α α α−
.  In these cases, one can, however, deduce the current and 

charge density, and the energy and impulse density from the density matrix when one 
goes to the limit xλ → 0, not on the light-cone, but in spacelike or timelike directions.  
The aforementioned singular terms then contribute nothing. (The terms that are not linear 
in αλ already drop out under the passage to the limit.) 
 The matrices R, RS , S, and S0 are all Hermitian; i.e., under an exchange of x′, k′ with 
x″, k″ (and thus, under a change of sign for x) they go to the conjugate values. 
 The calculation of formulas (14) results most simply from the process that was given 
by Dirac (loc. cit.).  The mathematical form of the expression (14) shows that the 
arbitrariness that comes about due to the choice of quantities a and C, if one would like to 
allow no essential complications in the expression for (14), actually only consists in the 

fact that an expression of the form xρ xραλ 
Fλσ

σξ
∂
∂

 can be added to a, along with another 

one of the form xρ xρ xλ αλ Fτσ Fτσ , without changing the singularities of the matrix S; C 
is, moreover, completely arbitrary.  For the charge and current densities that follow from 
the density matrix, the two indeterminacies (in a and C) give rise to an additive charge 
and current density in the same way.  One can therefore establish the first term in a in the 
manner that was given by (14), and all of the indeterminacy in the charge density is 
pushed onto C.  The second term in a is then, as was shown in 2, determined by the 
conservation law that was given in equation (14).  The arbitrariness in the choice of the 
constant C is ultimately uninteresting due to the fact that, from Dirac, the equation Hw = 

0 is true for the matrix w that is defined in (7); i.e., the quantity C drops out of the right-
hand side of (11) (up to terms that include αλ or xλ  quadratically).  This is therefore only 
true when the electromagnetic field, along with all of its derivatives, is continuous and 
the matrix w can be developed in xλ and ξλ .  If one makes these assumptions then one 
accepts the disadvantage that one cannot simply connect the theory with the special of 
field-free space (e.g., by perturbative calculations).  If one allows discontinuous changes 
in the higher differential quotients of the fields or other singularities then the equation 
Hw = 0 is no longer true at the singular places in question, and the choice of the quantity 

C becomes important.  In this case, the suitable choice of the quantity C will be found by 
the following argument: One thinks of a field that is generated by a given external charge 
density as emerging adiabatically from a “null” field.  A matter field will arise from this 
process that is given by the matrix r.  As equations (13) and (14) teach us, according to 
the choice of C, this matter field will completely or partially compensate for the external 
charge density or increase it.  We will now choose C such that the total charge of the 
matter field that is given by r vanishes for the process considered.  If this were not the 
case then under the “imposition” the external charge density could not, in fact, be 
separated from the existing electron density; i.e., one would already have to define the 
“external” charge density to be the sum of the two densities.  We will come back to the 
mathematical treatment of this question in 3.  There, we will also make good the 
calculation of C, which indeed, from the statements above, has more mathematical than 
physical meaning.  Here, only its value shall be given: 
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C = 
2

2/3 24 e
mc

γ− − 
 
 

ℏ
,      (15) 

 
where γ refers to the Euler constant: γ = 0.577… 
 With that, the determination of the inhomogeneity in the differential equation (11) is 
completed.  In regard to the current that follows from the density matrix r, our 
assumptions are equivalent to those of Dirac (loc. cit.).  On the other hand, as Herr Dirac 
cordially communicated to us, the choice of matrix S that was made here delivers a 
different energy and impulse density than Dirac’s choice does. 
 
 2.  The conservation laws.  The charge and current density follows from the density 
matrix r in the usual way, and from an investigation by Tetrode 1), the energy and 
impulse tensor of the matter waves can be derived from the following equations: 
 

,

0

,

( ) ( , | | , ),

( ) lim
2 2 2

, | | , .
2 2

k k
k k

x

k k
k k

s e k r k

e x x
U ic A A

x

x x
k r k

λ
λ

µ µ µ
ν

µ

λ

ξ α ξ ξ

ξ ξ ξ

α ξ ξ

′ ′′
′ ′′

→

′ ′′
′ ′′

′ ′′ =



 ∂       = − + + −      ∂        

 ′ ′′+ −  

  



∑

∑

ℏ

  (16) 

 
In order to show that the conservations laws for the quantities thus defined have the usual 
form, we shall first prove the following equation: 
 

,
,

, | | ,
2 2 2 2k k

k k

e x e x x x
i A A k r k

c c
λ λ λ

λα ξ ξ ξ ξ
ξ′ ′′

′ ′′

 ∂      ′ ′′− + + − + −      ∂       
∑ ℏ  = 0, (17) 

 
up to terms that are at least quadratic in the xλ .  Equation (17) is equivalent to the 
assertion that: 
 

,
,

, | | ,
2 2 2 2k k

k k

e x e x x x
i A A k S k

c c
λ λ λ

λα ξ ξ ξ ξ
ξ′ ′′

′ ′′

 ∂      ′ ′′− + + − + −      ∂       
∑ ℏ  = 0, (18) 

 
up to quadratic terms in xλ .  The equation HRS = 0 is then indeed true for the matrix RS , 

and certainly so is equation (17).  Now, one has: 
 

                                                
 1) H. Tetrode, Zeit. Phys. 49 (1928), 858.  
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2 2

P P

P P

ei ei PA dx A dx
c c

P

e x e x e
i A A e e F dx

c c c

λ λ
λ λ

λ λ λµ
µλ ξ ξ

ξ

′′ ′′

′ ′

′′− −

′

∫ ∫ ∂    − + + − = ⋅    ∂     
∫

ℏ ℏ

ℏ   (19) 

 

and 0S
λξ

∂
∂

 = 0.  If one then observes that S0 can be written in the form: 

αλ xλ f(xρ xρ) + βmcg(xρ xρ) 
 

then it follows that equation (18) is true in any event for the first part of S, namely: 
 

0

P

P

ei
A dx

c
e S

λ
λ

′′

′

− ∫
⋅ℏ

. 

 
Thus, we still have to show that equation (18) is true for the S1 part.  Its validity for the b 

log 
x x

C

ρ
ρ  part of S1 is then self-explanatory, because, from Dirac, the matrix w satisfies 

Hw = 0 (cf., on this, pp. 6).  Thus, it remains for us to discuss the a / xλ x
λ part.  

Calculation shows that, from (14), the terms that arise from the differentiation with 
respect to ξλ in the first part of a, due to equation (19), cancel those of the second part 
precisely.  With that, the validity of equation (17) is proved. 
 The law of conservation of charge follows from equation (17), when one takes it to 
the limit xλ → 0: 

,
,

( , | | , )k k
k k

e k r kλ

λ

α ξ ξ
ξ ′ ′′

′ ′′

∂ ′ ′′
∂ ∑  = 

sλ

λξ
∂
∂

 = 0.   (20) 

 
From the remarks regarding equation (14), the passage to the limit xλ → 0 is to be carried 
out, not on the light-cone, but on either a spacelike or timelike direction. 
 For the conservation of energy and impulse, one finds in the same way: 
 

 
( )U µ

ν

ν

ξ
ξ

∂
∂

 =  

 

  ,0
,

lim , | | ,
2 2 2 2 2k k

x
k k

e x x x x
ic A A k r k

x
µ µ ν

µ ν

ξ ξ α ξ ξ
ξ′ ′′→ ′ ′′

 ∂   ∂      ′ ′′− + + − + −       ∂ ∂        
∑ℏ  

  −  ,0
,

lim , | | ,
2 2 2 2 2k k

x
k k

e x x x x
A A k r kµ µ ν

ν ν

ξ ξ α ξ ξ
ξ ξ′ ′′→ ′ ′′

 ∂   ∂     ′ ′′+ + − + −       ∂ ∂       
∑ , 

 
and, from (17): 
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0

,
,

,0

( )

lim
2 2 2 2 2

, | | ,
2 2

lim
2 2 2

x

k k
k k

k
x

U

e x x e x e x
ic A A A A

x ic ic

x x
k r k

e x x
A A

µ
ν

ν

µ µ ν ν

µ

ν

ν

µ µ

ν

ξ
ξ

ξ ξ ξ ξ

α ξ ξ
ξ

ξ ξ α
ξ

→

′ ′′
′ ′′

′ ′→

∂ =
∂

 ∂            − + + − − + + −           ∂             

∂  ′ ′′+ − ∂  

∂     − + + −    ∂     

∑

ℏ
ℏ ℏ

( )
,

,
,

, | | ,
2 2

( ) , | | , .

k
k k

k k
k k

x x
k r k

eF k r k F s

ν

νµ ν νµ
ν

ξ ξ

ξ α ξ ξ

′
′ ′′

′ ′′
′ ′′











 ′ ′′+ −  

  
′ ′′ = − = −



∑

∑

(21) 

 
If one adds the energy-impulse tensor of the Maxwell field: 
 

V µ
ν  = 

1 1

4 4
F F F Fτµ µ τσ

τν ν τσδ
π
 − + 
 

    (22) 

 
to U µ

ν  and sets down the Maxwell equations in the form: 

 
Fτν

νξ
∂
∂

 = − 4π sτ      (23) 

then the tensor: 
T µ

ν  = U µ
ν  + V µ

ν      (24) 

obeys the relation: 
T µ

ν

νξ
∂
∂

 = 0.      (25) 

 
From Tetrode (loc. cit.), the difference Uµν − Uνµ is a tensor whose divergence vanishes, 
moreover.  One can also symmetrize the energy-impulse tensor of the matter field 
without disturbing the validity of (25). 
 One can also briefly summarize the results up to now in the following way: If one 
restricts oneself to an intuitive analogue theory of matter fields then the well-known 
difficulty with the appearance of negative energy levels in the Dirac theory can be 
avoided in such a way that one replaces the homogeneous Dirac differential equation (3) 
with an inhomogeneous equation, where the inhomogeneity is indicative of “pair 
creation.”  The usual conservation laws are valid for the matter field that satisfies this 
equation, as well as the Maxwell field, and at the same time the energies of the matter 
and the radiation field are always individually positive. 
 One can recognize the invariance of the theory under a change of sign of the 
elementary charge most simply in the following way: One replaces + e with – e in 
equations (11) and (16), as well as (x′, k′ | r | x″, k″) with − (x″, k″ | r | x′, k′).  The 
original equations (11) and (16) are then valid once more for the matrix r. 
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 3.  Applications.  Two simple examples shall illustrate the application of the 
methods that were depicted in 1 and 2.  We first assume that a scalar potential A0, which 
is regarded as a small perturbation, is slowly introduced and then kept constant, and then 
ask what sort of matter is created by it from originally empty space; thus, the charge 
density that gives rise to the potential A0 shall be referred to as the “external charge 
density” 1). 
 We next solve the Dirac differential equation for an electron whose state is 
represented by a plane wave before the imposition of the field.  Its eigenfunction is called 
ψn and before the imposition of the field one has: 
 

ψn(x′) = un(x′) 
0

0n
i

p x
e

′
ℏ .     (26) 

We set: 

ψn(x′) = 0( )nm
m

c x′∑ um(x′) 
0

0m
i

p x
e

′
ℏ ,   (27) 

and from: 

( )l e
i A x mc

x c
λ

λ

α β ψ
  ∂ ′− +  ′∂   

ℏ  = 0 

 
it follows in the usual way that: 

0
nm

d
c

dx′
= 

( )0 0
0n m

i
p p x

nm

i
H e

′−
ℏ

ℏ
,    (28) 

where: 

Hnm = ( ) ( ) ( )m n

e
u x A x u x dx

c
λ λα∗ ′′′ ′′′ ′′′ ′′′∫ .  (29) 

 
Here, ∫ dx″′ means integration over the position variables and summation over the spin 
indices. 
 From (28), one deduces, when the Hnm are constant in time, that: 
 

cnm = Hnm 

( )0 0
0

0 0

n m
i

p p x

nm

n m

e

p p

ε
−

−
−

ℏ

 + δnm .   (30) 

 
The constants εnm thus depend upon the type of temporal increase in Hnm ; we would like 
to assume that the increase happens so slowly and uniformly that the εnm vanish in a 
sufficient approximation.  One then has: 

cnm = Hnm 

( )0 0
0

0 0

n m
i

p p x

n m

e

p p

−

−

ℏ

 + δnm . 

and 

                                                
 1) This problem has essentially already been treated by Dirac in his report to the Solvay Congress in 
1933. 
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ψn(x′) = 
0

0

0 0( ) ( )
n

i
p x

nm
m n

m n m

H
u x u x e

p p

′ 
′ ′+ − 

∑ ℏ .   (31) 

 
Terms of order higher than the first in Hnm will always be neglected in what follows.  
From its definition, the matrix RS satisfies: 
 

(x′, k′ | RS | x″, k″) = 
0 0, 0 , 0

1
( , ) ( , ) ( , ) ( , )

2
n n

n n n n
n p n p

x k x k x k x kψ ψ ψ ψ∗ ∗

> <

 
′ ′ ′′ ′′ ′ ′ ′′ ′′− 

  
∑ ∑ . (32) 

 
We can now divide the sum over all states into an integral over the impulse and a sum 
over four possible states for each impulse.  The operator: 
 

0| |

l lp mc

p

α β+
, 

 
in which the number l is to be summed from 1 to 3 (as always for Latin indices), has the 
property that it yields + 1 when it is applied to any state of positive energy and – 1 for a 
state of negative energy.  With the help of this operator, the summations over the spin 
states may then be easily performed, and all that remains is the integral over the impulse.  
Thus, in the following, one will always set t′ = t″; i.e., x0′ = x0″: 
 
(x′, k′ | RS | x″, k″) = 
 

− 
( ) [ ( ) ]

3 0 3 3

1 1

2 | | 8

l l
l

i il l
p x x x p p p x p xd p mc d d

e dx e
h p h h

ρ λ λ
ρ ρ ρ ρα β ′′ ′′′′ ′ ′′′ ′ ′′ ′ ′− − + −′ ′′+ ′′′−∫ ∫ ∫ ∫ℏ ℏ

p p p
 

 

0

0 0 0 0

( )
1 1

| | | | | | | |

l l l l
e

A xp mc p mcc

p p p p

α β α β
 ′′′    ′′ ′+ ++ −      ′′ ′ ′′ ′+   


 

 

0

0 0 0 0

( )
1 1

| | | | | | | |

l l l l
e

A xp mc p mcc

p p p p

α β α β
′′′   ′′ ′+ +− +      ′′ ′ ′′ ′+    


 

 
+ conj.         (33) 

 
The first term in (33) represents the matrix S0 and will be subtracted from RS , from the 
definition of r.  The next two terms go to: 
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− 
0 0 2 20( )

3 3 0 0 0 0

| |1 ( )

4 | | | | | |

l l l l
l l l

i
x p p p x p x

l lp p p p m cd d e A x
dx e

h h c p p p p

 ′′′ ′ ′′ ′′ ′′ ′ ′− + −
 

′ ′′ ′ ′′′ ′′ ′′′ − −′′′ ⋅
′ ′′ ′ ′′+∫ ∫ ∫ ℏ

p p
. (34) 

 
For the evaluation of this expression, one now sets, as appropriate: 
 

p′ = t +
2

g
, p″ = t −

2

g
, r′ − r″ = r, 

2

′ ′′+r r
 = R.  (35) 

It then reads: 

− 
0 0 2 2( )0

3 3 0 0 0 0

1 | |
( )

4 (| | | |) | |

i id d p p p p m c
dx A e e

h h p p p p

′′′− ′ ′′ ′ ′′− −′′′ ′′′
′ ′′ ′ ′′+∫ ∫ ∫ℏ ℏ

r R g trg t
r . (36) 

 
The fraction under the integral signs is best developed in g for g ≪  mc, and takes on the 

value: 
2 2 4 2 2 2

2 2 2 4 6
0 0 0 0 0

1 ( ) 3 5( ) 7( )

2 2 2 16 2 16

g g g

k k k k k

 
− − + − + 

 
⋯

tg tg tg
,  (37) 

 
in which we have set 20k  = k2 + m2c2.  A lengthy calculation leads to the following result 

for (36) (for small values of | r | = r): 

 

− 
( )0

3
( )

4

id
dx A e

h

π ′′′−
′′′ ′′′∫ ∫ ℏ

r R gg
r ⋅ 

2 4
2

3 2 2 2

1 2 2 2 1 ( )
log

9 3 3 3 15

mcr g
g

h r m c
γ  − − + −  

  ℏ

gr
 

 

= 2 2
2

1 2 1 1
log (grad ) (  grad )

16 3 3 3

mcr

h r
γ

π
  − − + 
  ℏ

R Rr  

 
2

2 2 01
(grad ) (grad ) ( )

15

e
A

mc c

 +  
  

ℏ

R R
R .   (38) 

 
 The first two terms − when one doubles them, since the complex conjugate must be 
added to (36) − represent the part: 

log
x xa

b
x x C

λ
λ

λ
λ

+  

 
of equation (13), and are thus dropped when one goes from RS to the matrix r.  Formally, 
(38) also subsequently gives the basis for the fact that the constant C in equation (15) was 

set equal to 
2

2/3 24 e
mc

γ− − 
 
 

ℏ
.  We thus arrive at the fact that it is unnecessary to correct 



Heisenberg – Remarks on the Dirac theory of the positrons                         13 

the perturbation calculations of the total charge that generates the field at each new step.  
Finally, for | r | = 0, the density matrix (x′, k′ | r | x″, k″) becomes: 

 

(ξ′, k′ | r | ξ″, k″) = 
2

01
( )

120

e

h c mc
ξ

π
  ∆∆ 
 

ℏ
,   (39) 

 
and the charge density itself [∆A0(ξ) = −4πρ0, where ρ0 refers to the external charge 
density]: 

ρ = − 
22

0

1

15

e

c mc
ρ

π
  ∆ 
 

ℏ

ℏ
,    (40) 

 
which was already computed by Dirac 1).  This additional density, whose total charge 
vanishes, also has no physical significance.  It is then inseparable from the “external” 
density and will therefore be calculated automatically along with the “external” density. 
 The “polarization of the vacuum” first becomes a physical problem for the temporal 
variation of external densities; one imagines, e.g., a charge distribution that moves back 
and forth periodically.  In such a case, one can distribute the external charge density in its 
temporal mean value and a second density that oscillates periodically around the null 
value.  The spatial integral of the second part vanishes when the external charge density 
moves back and forth in a finite spatial domain.  The considerations up to now are valid 
for the part, so for them, the “polarization” plays no physical role.  The total charge of a 
particle can thus never change by means of the polarization of the vacuum.  In order to 
ignore what happens for the second part, we consider, in place of the temporally constant 
scalar potential A0 in equations (26) to (29), a potential that varies periodically, and set: 
 

A0(x′) = B0(r′) 0
i

f x
e

′
ℏ + conj.    (41) 

 
The only change that must be made to the expressions (34) to (36) consists in the fact that 
the fraction: 

0 0 0 0

1

(| | | |) | |p p p p′ ′′ ′ ′′+
 

is replaced with: 
0 0

0 0 2 0 0

| | | |

[(| | | |) ] | |

p p

p p f p p

′ ′′+
′ ′′ ′ ′′+ −

. 

 
The new formulas thus go over to the old ones quite simply – we take f ≪  mc – in such a 
way that the expression under the integral sign in (36) is multiplied by 1 + f2 / 4 2

0k .  In 

addition, terms in αl generally appear in the density matrix; we would like to restrict 

                                                
 1) P. A. M. Dirac., Report to the Solvay Congress 1933.  Dirac’s value differs from the one above by a 
factor of 2, which, as Dirac graciously informed me, is due to an oversight in his equations.  
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ourselves to the calculation for the charge density, for which the terms in αl play no role.  
If one considers only the terms that are proportional to g2 in (37) then the expression: 
 

2 2 2

2 2 2
0 0 0

1 ( )

2 2 2 4

g f

k k k

 
− 

 

tg
     (42) 

 
now gets added to (37).  The part of the density in question then becomes: 
 

− 
0

2 2( )0
3 3 2( ) conj.

4 15 ( )

i i
f xd e f g

dx B e e
h c h mc

π ′′′ ′′′− 
′′′ ′′′ + ⋅  

∫ ∫ ℏ ℏ
r R gg

r   (43) 

 
and one thus has the extra density: 

ρ = − 
2 2

02

1

15 ( )

e f

c mc
ρ

π
⋅

ℏ
.    (44) 

 
Here, the periodically oscillating density is denoted by ρ0, which gives rise to the field 

B0(x)
0

i
f x

e
′

ℏ , and whose spatial integral vanishes.  Equation (44) teaches us that the dipole 
moment that is coupled to an oscillating charge will be reduces by the polarization of the 
vacuum, and indeed even more so as the frequency of oscillation increases.  As Dirac has 
already suggested, this situation necessitates a change in the scattering formula of Klein 
and Nishina, which generally amounts to perhaps one-tenth of a percent in the realm of 
the Compton wavelength. 
 If one carries out an analogous calculation, in order to compute, say, the matter 
density that is induced by a light wave then this gives the result that the periodically 
varying field of a monochromatic plane light wave generates either charge or current 
density.  One can easily see that this result also remains true to an arbitrary 
approximation: One cannot distinguish any sign for the charge by means of an 
electromagnetic field in empty space, so the induced charge density must vanish.  On the 
grounds of invariance, the current density also vanishes then.  Certainly, the vanishing of 
the energy density does not follow even from this, and in fact two plane waves that pass 
through each other can already give rise to the creation of matter.  The intuitive theory of 
matter waves is thus no longer appropriate for the treatment of such problems (pair 
creation and annihilation), and we thus go on to the quantum theory of waves. 



II. Quantum theory of wave fields. 
 

 1.  Presentation of the basic equations.  In the quantum theory of matter waves, the 
Dirac density matrix corresponds to the product of wave functions with their conjugates; 
we then set: 

R = ψ*(x′, k′) ψ(x″, k″).    (45) 
The commutation relation: 
 

ψ*(x′, k′) ψ(x″, k″) + ψ(x″, k″) ψ*(x′, k′) = δ(x″, k″) δk′k″  (46) 
 
is true for the wave function (for 0x′  = 0x′′ ).  If one considers the Maxwell field as a given 

c-field then the Dirac matrix is simply the expectation value for the matrix that is defined 
by (45).  Due to the commutation relation (46), one has, in the quantum theory of waves: 
 

RS = 1
2 [ψ*(x′, k′) ψ(x″, k″) − ψ(x″, k″) ψ*(x′, k′)].   (47) 

The equations: 
HRS = 0     (3a) 

 
and RS = r + S remain unchanged and only in the form of the inhomogeneity HS in: 

 
Hr = − HS     (11a) 

 
can a change become necessary due to the non-commutation of field strengths with 
potentials.  Now, no non-commuting functions appear in the first term: 
 

P

P

ei
A dx

c
e

λ
λ

′′

′

− ∫ℏ ⋅⋅⋅⋅ S0 . 
 

Terms enter into S1 [cf., (13) and (14)] that are quadratic in the field strengths and play a 
role when one calculates energy and impulse density from the density matrix.  As long as 
one restricts oneself to the calculation of charge and current density these terms will 
longer appear.  Now, since the Maxwell equations, together with the inhomogeneous 
equation (11a), determine the physical evolution completely, the reasoning of the 
formalism that was depicted in I in the context of quantum theory results from a process 
that was given for ordinary quantum electrodynamics in a note of the author 1) in 
connection with previous research of Klein 2).  This process starts with the Maxwell 
equations and the wave equation, which are treated as q-number relations and are 
integrated according to the usual methods of the intuitive theory.  Ordinarily, a 
perturbation process is applied to the integration of the basic equations, in which one 
assumes that the interaction between light and matter is small and is developed in powers 
of the charge.  The plane light waves in empty space and the plane electron waves in 
field-free space then take the form of the unperturbed system.  Such a perturbation 
                                                
 1) W. Heisenberg, Ann. d. Phys. 9 (1931), 338.  
 2) O. Klein, Zeit. Phys. 41 (1927), 407.  
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process is also applicable in the present theory with no further assumptions.  It is then 
necessary only to also develop the matrix S that is appropriate for the inhomogeneity in 
the wave equation in powers of charge, and to consider the individual terms in the 
development that are produced by the perturbation process in turn at the successive 
degrees of approximation.  In order to deduce RS and r − and therefore, the charge and 
current density, in the zeroth order approximation − one will then only have to subtract 
the matrix S0 from RS .  If one represents the wave function in the form: 
 

ψ(x, k) = ( , )n n
n

a u x k∑ ,     (48) 

where the equations: 

n m m na a a a∗ ∗+ = δnm     (49) 

 
are valid, then one has (in the sequel, we shall always set 0x′  = 0x′′ ): 
 
   RS  = 1

2 [ψ*(x′, k′) ψ(x″, k″) − ψ(x″, k″) ψ*(x′, k′)] 
= 1

2
,

( ) ( , ) ( , )n m m n n m
n m

a a a a u x k u x k∗ ∗ ∗ ′ ′ ′′ ′′−∑ .    (50) 

 
From this, it follows for r, when one considers the definition of S0 , that: 
 

r = 
0

1
2 0

,

( , ) ( , )
| |

n
n m m n nm n m

n m n

p
a a a a u x k u x k

p
δ∗ ∗ ∗ 

′ ′ ′′ ′′− + ⋅ 
 

∑ .  (51) 

 
From Jordan and Wigner 1), one represents the operators an in the form: 
 

na∗  = Nn ∆n Vn , an = Vn ∆n Nn ,    (52) 

 
in which ∆n converts the number Nn into 1 – Nn, and one sets: 
 

Vn = Πt<n(1 – 2Nt). 
 
For the states of negative energy, one can now introduce 2): 
 

,

.
n n n n n n n n

n n n n n n n n

a a V N V N

a a N V N V

∗

∗

′ ′ ′ ′ ′ = = ∆ = ∆
′ ′ ′ ′ ′= = ∆ = ∆ 

    (53) 

 
 One will then have nN ′ = 1 – Nn . 

 One finally obtains for the matrix r: 
 

                                                
 1) P. Jordan and E. Wigner, Zeit. Phys. 47 (1928), 631.  
 2) Cf., e.g., W. Heisenberg, Ann. d. Phys. 10 (1931), 888.  
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r  =  
 =

0 0, 0 , 0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )n n n n n n n n n m n m
p n p n n m

a a u x k u x k a a u x k u x k a a u x k u x k∗ ∗ ∗ ∗ ∗ ∗

> < ≠

′ ′ ′′ ′′ ′ ′ ′ ′ ′′ ′′ ′ ′ ′′ ′′− +∑ ∑ ∑  

 
 = 

0 0, 0 , 0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )n n n n n n n m n m
p n p n n m

N u x k u x k N u x k u x k a a u x k u x k∗ ∗ ∗ ∗

> < ≠

′ ′ ′′ ′′ ′ ′ ′ ′′ ′′ ′ ′ ′′ ′′− +∑ ∑ ∑ . 

(54) 
 
This representation of the density matrix agrees with the representation that was chosen 
by Pauli and Peierls 1), Oppenheimer and Furry, Fock (loc. cit.).  Nn means the number of 
electrons, nN ′ , that of the positrons, and the symmetry in the theory on the sign of charge 

is assumed from the outset.  This representation is, however, only correct in the zeroth-
order approximation.  If one goes on to the first-order approximation then, on the one 
hand, the coefficients an will also contain, as functions of time, terms that are linear in the 
field strengths [cf., e.g., loc. cit., Ann. d. Phys. 9, pp. 341, equation (9)], and on the other 
hand, the terms that are linear in e in the definition of r must be subtracted from the 
matrix S, and thus the terms: 
 

0 2
log

48

P

P

x x F x xF Fei e
A dx S

c c x x C

σ ρ
ρ µσ ρλ λ ρ λλσ τλ

λ λτ
τ ρ µ τ

α δ α
π ξ ξ ξ

′′

′

  ∂∂ ∂ ⋅ + ⋅ − +   ∂ ∂ ∂   
∫

ℏ ℏ
. (55) 

 
These terms, together with the terms in the coefficients an that are linear in e, then give a 
contribution to the matrix r that leads to a finite charge and current density (in the first 
approximation) and which can therefore assist in the calculation of the electromagnetic 
field in the second approximation, etc. 
 Instead of this process, which is closely connected with the integration methods of 
the intuitive theory, one can, however, also define a Hamiltonian function in the usual 
way and then carry out the perturbation theory for the associated Schrödinger equation.  
To this end, we employ the expression for the total energy that follows from equation 
(16), so we do not go to the limit xλ = 0.  The total energy takes the form: 
 

E = 
2 2 2

l l

l

e x x
d ei A A

x
ξ ξ ξ
  ∂      − − + + −      ∂       

∫ ℏ  

 

× 1
2

, ,

( ) , ,
2 2

l
k k n m m n n m

k k n m

x x
a a a a u k u kα ξ ξ∗ ∗ ∗

′ ′′
′ ′′

   ′ ′′− + −   
   

∑ ∑  

 

 − 2 1
2

, ,

( ) , ,
2 2k k n m m n n m

k k n m

x x
mc a a a a u k u kβ ξ ξ∗ ∗ ∗

′ ′′
′ ′′

   ′ ′′− + −   
   

∑ ∑ .  

 
 

                                                
 1) I would like to cordially thank Herrn W. Pauli for the written communication of this result. 
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− 0 0 2 2

0

1
, | | , ( )

2 2 2 2 2 8k

e x x x x
ci A A k S k

x
ξ ξ ξ ξ

π′

 ∂        ′ ′− + + − − − + +        ∂         
∑ ℏ E H . 

(56) 
 

If one again develops the Hamiltonian function in powers of the elementary charge and 
additionally drops the terms E2 + H2, as well as the corresponding terms in the expression 

(14) for the zero-point energy for radiation, then in the limit x → 0 one gets for the zero-
order Hamiltonian: 

H0 = , ,
0 0 ,n n

n n n n
E E

N E N E M hν
> <

′− +∑ ∑ ∑ g e g e

g e

,   (57) 

 
where one has set En = − c 0

np  and Mge means the number of light quanta in the state g 

with polarization e.  Likewise, this yields for the perturbation energy of first order in the 

limit x → 0 (for the sake of simplicity, A0 is set to zero): 
 

  H1 = 
, 0

( ) ( , ) ( , )
n

l l
k k n n n

k k E

d eA N u k u kξ ξ α ξ ξ∗
′ ′′

′ ′′ >


′ ′′


∑ ∑∫  

−
0

1
( , ) ( , ) ( ) ( , ) ( , )

2
n

n n n n m m n n n
E n m

N u k u k a a a a u k u kξ ξ ξ ξ∗ ∗ ∗ ∗

< ≠


′ ′′ ′ ′′+ − 


∑ ∑ .  (58) 

 
The present theory thus agrees with the results of Oppenheimer and Furry in the 
expressions for H0 and H1.  We thus obtain terms of higher order that come from the 
matrix S.  The passage to the limit x → 0 cannot be performed immediately in these 
terms, either.  Moreover, in carrying out the perturbation calculations to the second order, 

the terms in H2 must be combined with the terms of type 1 1
nl lr

n l

H H

W W−
that originate in H1 

before one can then carry out the passage to the limit x → 0 and yield a definite result for 
the energy to second order. 
 In this way, the perturbation process can be, in principle, performed when no infinite 
self-energy, as in quantum electrodynamics up to now, leads to a divergence in the 
process 1).  The perturbation energy H2 has the following form: 
 

H2 = ( )
2 22

0
2

0 0

1

48

x x F Fe e
d i A dx A

c x c x x

σ
λ λλ σ τσ

λ ρ
ρ τ

ξ
π ξ ξ

  ∂ ∂∂ + −  ∂ ∂ ∂  
∫ ∫

ℏ ℏ
 

 

− 
2 2

0
02 2

1 1 1
log

96 48 2

x x x xe e
F F F F F F

c x x c C

τ τ
µσ τ τµσ σ

µτ τ τµρ
ρπ π

 + ⋅ − 
 ℏ ℏ

. (59) 

                                                
 1) Cf., on this, V. Weisskopf, Zeit. Phys. 89 (1934), 27; furthermore, on the search for ways to avoid 
the infinite self-energy of the electron, see M. Born, Proc. Roy. Soc. (A) 143 (1934), 410; M. Born and L. 
Infeld, ibid., 144 (1934), 425. 
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Due to the integration over ξ, H2 gives rise to only matrix elements that correspond to the 
creation or annihilation of light quanta of the same impulse.  For the ordinary processes 
in which light quanta are emitted or absorbed or scattered, these matrix elements then 
play no role in the first approximation.  In the perturbation energy H3 , which has the 
form: 

H3 = 
4

0

0

1

24

Sie
d ic A x

c x
λ

λξ
 ∂ − −   ∂   

∫ ℏ
ℏ

 = 
2 42

2 2

( )1 1

48 ( )

A xe
d

c c x x

λ
λ
ρ

ρ

ξ
π

 
 
 

∫
ℏ ℏ

,  (60) 

 
and gives rise to matrix elements that lead to the scattering of light by light (the 
annihilation and creation of two light quanta with equal impulse sums).  Halpern 1) and 
Debye 2) have independently proved the fact that the Dirac theory of the positron has the 
scattering of light by light a consequence – even when the energy of the light quanta is 
not sufficient for pair creation.  However, the matrix elements in H4 give no accounting 
of the magnitude of this scattering, since it must have been previously combined with the 
contributions that originated in the lower-order approximations in order produce a 
measure for the probability of a scattering process.  Higher perturbation terms than H4 do 
not appear; H5, H6, etc. all vanish in the limit x = 0. 
 
 
 2.  Applications.  For the most practical applications – e.g., pair creation, 
annihilation, Compton scattering, etc. – the theory described here does not yield anything 
new compared to the formulation of the Dirac theory all along.  Thus, in all of the cases 
mentioned, one can break off the perturbation calculation at the second-order 
approximation and the new terms in H2, due to their special form, contribute nothing to 
the transition probabilities that were sought.  Things are different for the aforementioned 
problem of the scattering of light by light and for the coherent scattering of γ-rays from 
fixed charge centers that was discussed by Delbrück 3); the calculations in these problems 
are so complicated that they will not be attempted here. 
 We would therefore like to restrict the applications to an example in which the term 
H2 in equation (59) becomes important; we shall treat the matter density that is linked to a 
light quantum, and in particular, the self-energy of the light quantum that is given on the 
basis of this matter density.  If one first ignores the term H2 and calculates with the usual 
methods heretofore then the process can be represented as follows: Since matrix elements 
appear in H1 [equation (58)] that correspond to the conversion of a light quanta into a 
pair, a light quantum generates a matter field in its neighborhood in a manner that is 
similar to the way that an electron generates a Maxwell field.  The energy of this matter 
field becomes infinite in complete analogy to the infinite self-energy of electrons.  Now, 
part of the singular terms in the infinite self-energy of the light quantum vanishes when 
one considers the perturbation term H2 .  They are then arranged such that no infinite self-
energy would appear for a classical light wave.  Nevertheless, the following calculation 

                                                
 1) O. Halpern, Phys. Rev. 44 (1934), 885. 
 2) I am deeply grateful to Herrn Debye for cordially communicating his reasoning. 
 3) M. Delbrück, Discussion of the experimental results of L. Meitner and her colleagues, Zeit. Phys. 84 
(1933), 144.  
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shows that an infinite part of the self-energy that is required by the application of 
quantum theory remains. The analogy with the self-energy of the electrons is complete 
now.  In the Maxwell theory, a continuous charge distribution would also lead to a finite 
self-energy; it is the “quantization” that leads to the infinite self-energy.  If one represents 
the quantization of the electromagnetic field by point-like light quanta then the infinitude 
of the self-energy also emerges in the intuitive theory of matter waves, since the 
inhomogeneity in equation (11) includes the field strengths and their first and second 
derivatives, which become singular in the context of light quanta. 
 For the calculation of the desired self-energy, one can start from a known formula of 
perturbation theory for the energy of second order: 
 

W2 = 2
0 1H s  − s1 H0 s1 + s1 H1 − H1 s1 + H2 .   (62) 

 
In this, H0, H1, H2 mean the various terms in the Hamiltonian function, and s1 is the first 
term of the characteristic matrix for the canonical transformation: 
 

W = sHs−1,      (63) 
namely: 

s = 1 + s1 + …      (64) 
 

The sense in which the methods described in the previous section are to be used is in the 
sense that the matrices H in equation (62) are first taken at a finite distance xλ and then it 
is only at the conclusion that one first takes the limit as xλ → 0.  The matrix s1 is to be 
calculated from H1 in the limit xλ = 0 in the usual way: 
 

1
lms  = 1

0 0

( 0)lm

l m

H x

W W

=
−

.     (65) 

 
The element of the matrix H1 (x = 0), which belongs to the simultaneous creation of an 
electron of impulse p″ and a positron of impulse p′ and the annihilation of a light 

quantum of impulse g (and polarization e), has the form: 

 

1/2
0 0 ,( , 0 | | , 0)

e e
p e p M

gV
α′ ′′ ′′< > ⋅ℏ

g ep p ,   (66) 

 
where V represents the volume that the periodic boundary conditions is given on and Mg,e 

means the number of light quanta in the state g, e.  Furthermore, one sets: 

 

(p′, 0p′ < 0 | α e | p″, 0p′′  > 0) = 
0 0, 0 , 0( )l

p l p
k k

d u uα∗
′ ′ ′′ ′′< >

′ ′′
∑∫ p pr e .  (67) 

 If one now introduces the expressions for s1 that follow from (65) and (66) into 
equation (62) – in which one must consider not only the matrix elements (66), but the 
ones that correspond to the process of the simultaneous creation of an electron, positron, 
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and light quantum – then one obtains contributions from the term s1H1 – H1s1 that remain 
finite as long as xλ xλ does not vanish, and which also yield a finite contribution to W2 in 
the limit xλ → 0 when one combines them with the corresponding terms in H2 .  This is 
therefore not true for the part (H0 s1 – s1H0) s1 .  If one decomposes H0 into a part that 
belongs to the matter waves and one that belongs to the light waves then the first one, in 
fact, also gives a finite contribution for xλ xλ ≠ 0 that contributes finitely to W2 when 
combined with H2 in the limit xλ → 0.  The part that belongs to the electromagnetic field 
thus does not depend upon xλ , so it leads to the sum: 
 

2
1| ( | | ) |s gc

′ ′′+ =

′ ′′∑
p p g

p p .     (68) 

 
This sum diverges; one can immediately refer to the expression (68) as the infinite self-
energy of the light quantum.  If one carries out the summation in (68) only up to large, 
but finite, values | p′ | = P and considers only the part in (62) that is proportional to Mg,e 

then one obtains an expression of the form: 
 

g ⋅⋅⋅⋅ c ⋅⋅⋅⋅ Mg,e ⋅⋅⋅⋅ 
2

log
e P

c mcℏ
.    (69) 

 
In the quantum theory of wave field, the domain of applicability of the Dirac formulation 
of the theory of positrons is therefore not essentially larger than the domain of 
applicability for the elementary formulas of Pauli, Peierls, Fock, Oppenheimer, and 
Furry.  Equations (48) to (61) then show how these formulas can be regarded as the first 
step in a sequence of approximations that satisfy the requirements of relativistic and 
gauge invariance.  Furthermore, the formalism that is described here also yields finite 
expectation values for present and energy densities in the first approximation where the 
elementary formulas would give infinite values.  The fact that divergences would appear 
in the second approximation of the quantum theory of wave fields was to be expected 
from results of quantum electrodynamics up to now. 
 The situation that the application of the quantum theory first leads to divergences that 
do not appear in the intuitive theory of wave fields suggests that this intuitive theory, in 
fact, already contains the essence of the correct, corresponding description of how things 
happen, so one cannot carry out the transition to quantum theory in the original way that 
was sought for in the current theory heretofore.  In the Dirac theory of positrons, 
moreover, a pure separation of the fields that are involved into matter fields and 
electromagnetic fields is scarcely possible any more.  In particular, this comes from the 
fact that in the quantum theory of waves it is the matrix RS – not the matrix r – that can be 
represented simply by the matter wave functions ψ.  It is therefore only a unified theory 
of matter and light fields that gives the Sommerfeld constant e2/ cℏ a definite value that 
will make possible a contradiction-free union of the demands of quantum theory with 
those of a correspondence with intuitive field theory. 
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