
“Anwendung der Quantenmechanik auf das Problem der anomalen Zeemaneffekte,” Zeit. Phys. 37 (1926), 
263-277. 

 
 

Application of quantum mechanics to the problem of the 
anomalous Zeeman effect 

 
By W. Heisenberg and P. Jordan in Göttingen 

 
(Received on 16 March 1926) 

 
Translated by D. H. Delphenich 

 
 

Uhlenbeck and Goudsmit invoked Compton’s hypothesis of a rotating electron in order to explain the 
anomalous Zeeman effect.  The present paper examines the quantum-mechanical behavior of the atomic 
model that is characterized by that hypothesis.  The result is that the Zeeman effect and the fine structure of 
the double spectra can be explained completely by the aforementioned hypothesis. 
 
 
 An examination of the magnetic behavior of atomic systems teaches us that according 
to the laws of quantum mechanics atomic systems that are composed of point charges 
must also always exhibit the normal Zeeman effect. 
 In order to explain the anomalous Zeeman effect, Uhlenbeck and Goudsmit called 
upon the hypothesis (1) that every individual electron should be the carrier of a magnetic 
moment m and a corresponding mechanical angular impulse of s.  Moreover, m and s 

should be coupled by the relation: 

m = 
e

mc
s.     (1) 

 
The quotient of the magnetic and mechanical moments should then differ from the value 
e / 2mc that is valid for atomic systems with point charges by the factor of 2.  We shall 
not go into the question of which arguments can be cited for and against this hypothesis 
from the standpoint of electrodynamics here.  Rather, in what follows, the quantum-
mechanical behavior of the Uhlenbeck-Goudsmit model shall be investigated, and the 
result will be compared with experiment.  It is known that the application of the 
previously-commonplace quantum rules to that model will lead to contradictions with 
experiments. 
 
 

                                                
 (1) The hypothesis of a rotating electron already went back to A. Compton, Journ. Frankl. Inst. 192 
(1921), 145.  The application of that hypothesis to the problem that is of interest to us here − namely, the 
Zeeman effect − was first given by G. E. Uhlenbeck and S. Goudsmit, Naturwiss. 13, Heft 47, 1925. 
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 § 1.  The Hamiltonian function of the model. – In the sequel, we shall assume that 

the electron of charge – e, magnetic moment m, and angular impulse s (1) 
e

mc
 = 
 
m s  

circles a Z-fold positively-charged massive nucleus; the angular impulse of that motion 
will be called k.  An external magnetic field H might perturb the motion of an electron.  

Magnetically, this model obviously behaves precisely like the one that was proposed by 
Pauli and Landé, which has been of such great service in the formal organization of the 
complicated spectra.  In most cases, the fine structure and Zeeman effect that can appear 
by the combined effect of several valence electrons can be traced back to the fine 
structure and Zeeman effect of the simple model that is described above. 
 If one ignores the influence of relativity, the effect of the external field, and the effect 
of m, then the motion of the electron will be given by the Pauli-Dirac (2) theory of the 

hydrogen atom. 
 The additional perturbing energy decomposes into three parts: 
 

H = H1 + H2 + H3 . 
  
 1. The part that originates in the external field H is given by: 

 

H1 = H ⋅⋅⋅⋅ 
2 2

e e

mc mc
   +   
   

k H s = 
2

e

mc
H (k + 2s)   (2) 

using known rules. 
 
 2. If one considers the center of mass of the electron to be at rest and the nucleus as 
orbiting around the electron then the nucleus will generate the magnetic field: 
 

Hi = 
3

[ ]eZ

c r

rv
 = 

3

eZ

mc r

k
 

at the location of the electron. 
 That field will correspond to a Larmor precession of the impulse s of magnitude 

i

e

mc
H .  According to Thomas (3), we then have to observe that this is the Larmor 

precession only in the system that was just considered, in which the center of mass of the 
electron was at rest.  In order to get the precession in the system in which the nucleus – or 
even better, the center of mass of the entire atom – is at rest, a Lorentz transformation 

                                                
 (1) From the Compton-Uhlenbeck-Goudsmit hypothesis, the individual electron must be endowed 

with an entirely well-defined s-impulse, namely, the quantum-mechanical s
2 = 

2

2
h

π
 
 
 

 s (s + 1), s = 1 / 2.  

Here, however, we shall leave s undetermined in order to be able to also deal with several multiplets (i.e., 
triplets, quadruplets, etc.) that arise from coupling to electron magnets. 
 (2) W. Pauli, Jr., Zeit. Phys. 36 (1926), 336; P. Dirac, Proc. Roy. Soc. London 110, March 1926.   
 (3) L. H. Thomas, Nature 117 (1926), 514.  
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must still be performed.  Thomas then got the value of 
2

2 2 32

e Z

m c r

l
k  for the Larmor 

precession in this latter system, which is actually of interest to us.  That value obviously 
corresponds to a term: 

H2 =
2

2 2 32

e Z

m c r

l
k s       (3) 

in the Hamiltonian function. 
 
 3. According to Sommerfeld’s theory, the relativistic variation of mass gives rise to 
an additional energy of magnitude: 
 

H2 = − 2 2 4 2
0 02 2

1
2

2
W e ZW e Z

mc r r

 
+ + 

 

l l
.   (4) 

 
The overbar on the r independent terms signifies the mean of the unperturbed motion.  In 
what follows, we shall assume that the perturbing function H has the same form in 
quantum mechanics as in classical mechanics and electrodynamics.  As the basis for that 
assumption, one can state that all of the quantities that enter into H commute, and thus, 
from the correspondence principle, no forms can come under consideration in H that 
deviate from the ones that are derived here essentially.  An inevitable basis for the 
perturbing functions that are given here cannot be given as long as a concomitant 
rigorous quantum theory of electrodynamics is lacking. 
 
 
 § 2.  Line of reasoning for the perturbation calculations.  In the quantum-
mechanical calculations that will now follow, we can assume that the absolute values of k 

and s are quantized in the unperturbed system – i.e., they are diagonal matrices.  That 

assumption can be regarded as unjustified for: 
 

k  2 ( 1)
2

h
k k

π
  = +  

  
k , 

 
since the known degeneracy of k exists in the unperturbed system.  However, since only 
k, but not the perihelion length that is conjugate to k, appears in the perturbing energy H 

itself, the assumed quantization of | k | will enter into the accounting for H.  Physically, 

that means that the model of the Zeeman effect for hydrogen that will be examined here 
will be completely analogous to that of the alkali atoms.  For the alkali atoms, | k | is 

already established by the interaction with the other electrons.  An analogous 
consideration can be applied to the component Mz of the total impulse M of the atom in 

the direction of the field.  The starting system indeed degenerates with regard to Mz = 

2

h

π
m.  However, since only m, but not the angle variable that is conjugate to m, appears 
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in the perturbing energy H, the quantization of Mz will still enter into H.  We will then be 
able to simplify our calculations by the assumption that in the initial system | k |, | s |, Mz 

will not degenerate, and therefore they can be based upon diagonal matrices for the sake 
of quantum theory. 
 The initial system is then degenerate in regard to one coordinate [cf., the completely 
analogous treatment of the model in classical mechanics (1)].  We can characterize that 

coordinate by the component sz =
2

h

π
mz of the eigen-impulse s of the electron and the 

conjugate angle variable.  However, we can also characterize it by the total impulse M 

and the variable that is conjugate to it. 
 The perturbation process in quantum mechanics for degenerate systems can be 
sketched out as follows (2): 
 Let any solution p0, q0 of the unperturbed problem be given, and furthermore, the 
dependency of the perturbing function upon the coordinates of the unperturbed problem.  
If the initial system did not degenerate then the additional energy W that corresponds to 
the perturbation would be given by the temporal mean H of the perturbing function over 
the unperturbed motion.  That mean H would then itself be a diagonal matrix.  However, 
if the initial system does degenerate – e.g., the energy values of the states n + 1, …, n + r 
coincide – then the mean value H of the perturbing energy will contain terms that 
correspond to the transitions between the states n + 1, …, n + r; i.e., it would not be a 
diagonal matrix. 
 In that case, a canonical transformation of the p0, q0: 
 

1 0

1 0

,p S p S

q S q S

−

−

′ =
′ = 

     (5) 

 
shall be carried out in such a way that: 
 

W = S−1 H S      (6) 
 
becomes a diagonal matrix.  Like H, the transformation matrix S in this contains only 
terms that correspond to the transitions between states of the sequence n + 1, n + 2, …, n 
+ r and diagonal terms.  The transformation function S can be found when one seeks to 
solve the r equations in r unknowns: 
 

W Sk − kl l
l

H S∑  = 0  (k, l = n + 1, …, n + r).  (7) 

 
These solutions exist for r different values of W – viz., the “eigenvalues” of the problem 
– at the same time as the additional energies of the perturbed system.  If an * means the 
transition to the complex-conjugate quantities, and ~ means the exchange of indices then 
one will have: 

                                                
 (1) E. g., by W. Pauli, Zeit. Phys. 16 (1923), 155; 20 (1924), 371. 
 (2) M. Born , W. Heisenberg, and P. Jordan, Zeit. Phys. 35 (1926), 557.  See, esp., Chap. 3, § 2.  
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0,

0

n kn kl ln
l

n km kl lm
l

W S H S

W S H S∗ ∗ ∗

− =

− = 


∑

∑
    (8) 

for any two eigenvalues Wn, Wm, so: 
 

(Wn – Wm) 
1

n r

kn km
k n

S S
+

∗

= +
∑  = 0. 

 
If one then normalizes by way of: 

1

n r

kn kn
k n

S S
+

∗

= +
∑ = 1      (9) 

 

then one will have S ⋅⋅⋅⋅ S∗ɶ  = 1, and S will be the desired transformation matrix.  By 
substituting this into (5), one will obtain the coordinates of the perturbed system in this 
approximation. 
 
 
 § 3.  Performing the calculation.  The application of this process to the problem that 
is being treated here leads to the following general calculation: 
 
 1. Since it does not contain the degenerate coordinates, the part H3 of the perturbing 
energy can be ignored at first, and then added in later as an additive constant. 
 
 2. From the general rules of quantum mechanics (loc. cit.), one has the following 
relations for the impulse k and s (1): 

 
2 2

2 2( 1), ( 1),
2 2

,
2

or, more simply :

[  ] , [  ]

x y y x z

h h
k k s s

h
k k k k k

i

π π

ε ε
π

ε ε

   = + = +    
    

 − = − =  
  




= − = − 

k s

k k k s s s

   (10) 

 
(the square brackets mean the vectorial product).  Any component of k commutes with 

any component of s. 

 If one sets: 

                                                
 (1) In the aforementioned paper, the angular impulse was defined with the opposite sign, so one will 
have: 

Mx My − My Mx = ε Mz 
there. 



Heisenberg – Application of quantum mechanics to the problem of the anomalous Zeeman effect. 6 

kz = mk 
2

h

π
, sz = ms 

2

h

π
 

then one will have: 

( )( , 1; , ) ( 1) ( 1),
2

( )( , ; , 1) ( 1) ( 1)
2

( )( , 1; , ) ( 1) ( 1),
2

( )( , ; , 1) ( 1) ( 1).
2

x y k k k k

x y k k k k

x y s s s s

x y s s s s

h
k ik k m k m k k m m

h
k ik k m k m k k m m

h
s is s m s m s s m m

h
s is s m s m s s m m

π

π

π

π

+ − = + − − 

− − = + − −


+ − = + − −


− − = + − −


  (11) 

 
 If one now introduces the variable m in place of mk by way of the equation m = mk + 
ms then ms will now be canonically-conjugate to the difference between the “nodal 
lengths” (Knotenlängen) (cf., the calculation in classical mechanics that was cited above) 
that were canonically-conjugate to mk and ms up to now.  One will then have: 
 

H1 + H2 = 
2

2 2 3
( 2 )

2 2

e e Z

mc m c r
+ + ⋅lH k s k s .    (12)  

With the abbreviations: 

| |
2 2

e h

mc π
H  = µ 

and 
22

2 2 3

1

2 2

e Z h

m c r π
 
 
 

l
= λ, 

it follows that: 
 

H1 + H2 = m (kz + 2sz) + λ [kz sz + 1
2 (kx + i ky) (sx − isy) + 1

2 (kx − i ky) (sx + isy)] 

and 
 

1 2

1
1 2 2

1
1 2 2

( )( , ) ( ) ( ),

( )( , 1) [ ( 1) ( 1)][ ( 1) ( )( 1)],

( )( 1, ) [ ( 1) ( 1)][ ( 1) ( )( 1)].

s s s s s

s s s s s s

s s s s s s

H H m m m m m m m

H H m m s s m m k k m m m m

H H m m s s m m k k m m m m

µ λ

λ
λ

+ = + + − 


+ − = + − − + − − − + 
+ − = + − − + − − − + 

(13) 

 
The indices m, k, s can be omitted as constants on the left-hand sides of these equations. 
 
 3.  The number of values of ms that belongs to a given system of values k, s, m are 
determined by the conditions: 
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and

or

.

s

s

s

s m s

k m m k

k m m k m

− ≤ ≤ + 

− ≤ − ≤ + 



+ ≥ ≥ − + 

    (14) 

 
 One obtains the transformation function S from (7) by solving the linear equations: 
 

W Sr − ∑ Hrl Sl = 0,     (15) 
 
in which the indices r l run through all values of ms that are possible for a given system of 
values k, s, m.  The eigenvalues of W are obtained by setting the determinant whose terms 
are δrl W – Hrl equal to zero.  If one lets m1 denote the smallest value of ms that is possible 
for given k, s, m, and lets m2 denote the smallest one then that will yield equation (16) (†): 
 

0 = 

1 1 1 12

12 1 1 1 23

23 34

( ) ( ) 0 0 0

( 1) ( 1)( 1) 0 0

0 ( ) 0

W m m m m m H

H W m m m m m H

H W H

µ λ
µ λ

− + − −
− + + − + − −

−

ɶ ⋯

ɶ ɶ ⋯

ɶ ɶ… ⋯

⋯ ⋯ … ⋯ ⋯⋯

⋯ ⋯ ⋯ ⋯ ⋯⋯

⋯ ⋯ ⋯ ⋯ ⋯⋯

, (16) 

 
in which: 

 12Hɶ  = − 1
1 1 1 12 [ ( 1) ( 1)][ ( 1) ( )( 1)s s m m k k m m m mλ + − + + − − − − , 

 23Hɶ  = − 1
1 1 1 12 [ ( 1) ( 1)( 2)][ ( 1) ( 1)( 2)s s m m k k m m m mλ + − + + + − − − − − , 

 34Hɶ  = etc. 
 
 We thus have an algebraic equation of degree m2 – m1 + 1 for W with rational 
coefficients in k, s, m.  The sum of the roots is equal to the negative coefficients of the 
second terms, and is then given by: 
 

2

1

m

n
n m

W
=
∑ = 

2

1

1 1 1( ) ( )
m

n m

m m m m mµ λ
=

+ + −∑ .    (17) 

 

The fact that the sum 
2

1

m

n
n m

W
=
∑  is linear in λ and µ is a statement of the so-called 

“summation principle” of the Zeeman effect. 
 

                                                
 [†] Translator’s note: The original equation (16) was displayed in landscape mode, not portrait mode, so 
it was reset.  
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 4. In order to be able to pursue the result of the quantum-mechanical calculation in 
all of its details, it will be preferable to examine a special example.  We choose the 
doublet model; i.e., s = 1 / 2. 
 The possible values of ms here are ± 1

2 , in general, so for m = k + 1
2 , ms will be 

capable of assuming only the value +1
2 , while for m = k − 1

2 , ms will be capable of 

assuming only the value − 1
2 .  In general, the equation: 

 
1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1 1
2 2 2 2 2

( ) ( ) ( 1) ( )( )

( 1) ( )( ) ( ) ( )

W m m k k m m

k k m m W m m

µ λ λ

λ µ λ

− − + + − + − + −

− + − + − − + − −
= 0 (18) 

 
will then enter in place of (16), or: 
 

W2 − 
2

2 2 1
42 ( ) ( 1)

2 4
m W m m k k

λ λµ µ µλ − + − − ⋅ − + 
 

= 0,  (19) 

 

W = µ m − 2 2 21
2

1
2 ( )

4 2
m k

λ µ µλ λ± + ⋅ + + .  (20) 

 
By contrast, for m = k + 1

2 , one gets ms = 1
2  and: 

 

W = µ (m + 1
2 ) + 

2

λ
(m − 1

2 ),     (21) 

 
while for m = − k − 1

2 , it will follow that ms = − 1
2  and: 

 

W = µ (m − 1
2 ) − 

2

λ
(m + 1

2 ).     (22) 

 
If one introduces the abbreviation: 

v = 
λ
µ

(k + 1
2 ) 

then one will have: 
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2

1 1
2 2

1
1/2 21

2

1
2 1

2

1
1/2 21 1

2 2

1
2 1

2

1 2 ,

1
2 1

1
1 ,

1
2

1
1 .

m k

m k

v m
W m v v

k k

v v
W m

k k

k v
k

v v
W m

k k

k v
k

µ

µ

µ

µ

µ

= +

=− −

 
= − ± + +   + +  


   = + − +   + +  


   = + + −   +   
   = − − −   + +   
  

= − − + −   +    

   (23) 

 
 Equations (23) agree with the doublet formulas in Voigt’s well-known theory of 
coupling (1). 
 
 
 5. We now go on to the calculation of the intensities.  In order to determine the 
transformation function S, we solve the equation: 
 

W S−1/2 – (H1 + H2) ( )1 1
2 2,− −  S−1/2 − (H1 + H2) ( )1 1

2 2,− +  S+1/2 = 0.  (24) 

 
 That yields: 

1 1
1/ 2 2 2

2 1
1/ 2 4

( ) ( ) ,
2

( 1) ( ),
2

S C W m m

S C k k m

λµ

λ

+

−

 = ⋅ − − + +   

= ⋅ + − −


   (25) 

 
in which C represents an arbitrary constant, at first.  If one again distinguishes between 
the two values of W: 

“W+1/2”  and “W−1/2” 
then it will follow that: 

                                                
 (1) Cf., e.g., A. Sommerfeld, Zeit. Phys. 8 (1922), 257.  
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( )

( )

1 1 1 1
2 2 2 2

1
2

1 1 1
2 2 2

1 1 1
2 2 2

1 1 1
2 2 2

1 1
2 2,

2 2 21 1
2 2

2 1
4,

2 2 21 1
2 2,

2 1
4,

( ) ( )
2

2 ( ) ,

( 1) ( ),
2

2 ( ) ,

( 1) ( ).
2

S C W m m

C m m k

S C k k m

S C m m k

S C k k m

λµ

µ λ µ λµ λ

λ

µ λ µ λµ λ

λ

+ + + +

+

+ + +

+ − −

− − −

 = ⋅ − − + +  
  

= + + + + +


= + − −

= ⋅ + − + + + 

= + − −


  (26) 

 
 If finally follows from the normalization condition (9) that: 
 

( )

( )

1
2

1
2

2 2 2 2 2 21 1 1
2 2 2

2 2 2 2 2 21 1 1
2 2 2

1
,

2 ( ) 2 ( )

1
.

2 ( ) 2 ( )

C
m m k m k

C
m m k m k

µ λ µ λµ λ µ λµ λ

µ λ µ λµ λ µ λµ λ

+

−

= 
+ + + + + ⋅ + + + 



=
− − + + + + ⋅ + + + 

  (27) 

 
For the special case m = ± (k + 1

2 ), that will naturally yield [cf., (21) and (22)]: 

 

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

, ,

, ,

1, 0,

1, 0,

S S

S S

+ + + −

− − − +

= = 
= = 

    (28) 

 
since no degeneracy is present here. 
 The actual calculation of the intensities now comes about by substituting (26), (27), 
(28) in the transformation (5).  The solutions of the unperturbed system are to be used for 
p0, q0.  In that, we must observe that the coordinates q0 of the electron are diagonal 
matrices relative to ms . 
 Moreover, it suffices to consider the transition k → k – 1, since the transition k → k + 
1 will give nothing new. 
 We deduce from the work of Born, Heisenberg, and Jordan [loc. cit., Chap. 4, eq. 
(33)] that: 

0 2 2

0 0

0 0

( , , ; 1, , ) ( ) ( ) ,

( )( , 1, ; 1, , ) ( ) ( )( 1),

( )( , , ; 1, 1, ) ( ) ( )( 1).

z s s s

x y s s s s

x y s s s s

q k m m k m m A k k m m

q iq k m m k m m A k k m m k m m

q iq k m m k m m A k k m m k m m

− = − −
+ − − = − + − + + 
− − − = + − + − − 

  (29) 

 
A(k) means a quantity that depends upon only k. 
 One will obtain the desired intensities by substituting (26) to (29) into (5) and 
elementary computations.  However, the general formulas are rather complicated.  In 



Heisenberg – Application of quantum mechanics to the problem of the anomalous Zeeman effect. 11 

what follows, we will give the result for the special case of the D line type, and thus 
consider the transition k = 1 → k = 0.  From (5), that will yield: 
 

1
2 2 21 1 1 1 1

2 2 2 2 2 2 29
4

1
2 2 21 1 1 1 1

2 2 2 2 2 2 29
4

1
2 2 21 1 1 1 1

2 2 2 2 2 2 29
4

2 1 1 1 1 1
2 2 2 2 2

(1, , ;0, , ) | (1) | 1 ,

(1, , ;0, , ) | (1) | 1 ,

(1, , ;0, , ) | (1) | 1 ,

(1, , ;0, , )

z

z

z

z

q A

q A

q A

q

µ λ
µ λµ λ

µ λ
µ λµ λ

µ λ
µ λµ λ

 +
 ′ = +
 + + 

 +
 ′ − = −
 + + 

 +
 ′ = +
 + + 

′ − − − − =
1

2 2

2 29
4

12 2 21 1 1 1
2 2 2 2 2 29

4

12 2 21 1 1 1
2 2 2 2 2 29

4

2 23 1 1 1
2 2 2 2

| (1) | 1 ,

(1, , ;0, ; ) | (1) | 1 ,

(1, , ;0, , ) | (1) | 1 ,

(1, , ;0, , ) | (1) | 2,

x y

x y

x y

x

A

q iq A

q iq A

q iq A

q

µ λ
µ λµ λ

µ λ
µ λµ λ

µ λ
µ λµ λ

 − +
 −
 − + 

 −
 ′ ′+ − = +
 − + 

 −
 ′ ′+ − − = −
 − + 

′ ′+ − − − = ⋅

′
2 23 1 1 1

2 2 2 2

12 2 21 1 1 1
2 2 2 2 2 29

4

12 2 21 1 1 1
2 2 2 2 2 29

4

(1, , ;0, , ) | (1) | 2,

(1, , ;0, , ) | (1) | 1 ,

(1, , ;0, , ) | (1) | 1 .

y

x y

x y

iq A

q iq A

q iq A

µ λ
µ λµ λ

µ λ
µ λµ λ





























′− = ⋅ 


  +
 ′ ′− − − = − 
  + + 


  +
 ′ ′− + − + − = + 
 + +   

 (30) 

 
 These intensity formulas also agree with the ones that are derived in Voigt ’s theory 
(cf., A. Sommerfeld, loc. cit, pp. 286). 
 
 
 § 4.  Special treatment of the limiting cases λ ≪  µ and µ ≪  λ.  In order to ease 
the comparison of the empirical results with the theory, it will be convenient to derive the 
results of the theory for the special cases λ ≪  µ and λ ≫  µ, especially.  The limiting 
case λ ≪  µ can be obtained from the calculations of the previous section with no further 
assumptions.  For example, in the first approximation (up to quantities of order λ2), the 
determinant (16) will decompose into the product of diagonal terms, and one will have: 
 

W = (H1 + H2) (ms, ms). 
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However, in order to calculate the limiting case µ ≪  λ, some new analysis will be 
necessary.  We next set µ = 0; we will then have H1 = 0, and a term that is proportional to 
k s will remain in H2 . It will now be convenient to introduce the total impulse M of the 

atoms: 
M = k + s. 

 
Due to the commutability of k and s, one will then have: 

 
M

2 = k2 + s2 + 2 k s.     (31) 

Since, on the other hand: 

 M
2 = 

2

2

h

π
 
 
 

j (j + 1), 

one will have: 

[ ]

[ ]

2

1
2

1
2 2

2
( 1) ( 1) ( 1) ,

and

( 1) ( 1) ( 1) .

j j k k s s
h

H j j k k s s

π

λ

  = + − + − +  
  



= + − + − +



k s

   (32) 

H is a diagonal matrix as a function of j. 
 For small values of µ, we can now consider the system that is characterized by (32) to 
be “unperturbed.”  In the unperturbed system, the atom will then exhibit a precession 
around the axis of the total impulse.  The energy values of the perturbed system are given 
by the temporal mean of H1 over the unperturbed motion.  If one thinks of k and s as 

having been decomposed into a component that is parallel to M and one that is 
perpendicular to it then the latter will drop out, because of precisely that precession, and 
only the former will contribute to H1 . 
 We can adapt this line of reasoning, which is borrowed from classical mechanics, to 
quantum mechanics, since all of the quantities that come under consideration commute. 
 In the direction of M, one takes the: 

 

 (component of k) = 
2

( )⋅M k

M
 ⋅⋅⋅⋅ M 

and the 

 (component of s) = 
2

( )⋅M s

M
 ⋅⋅⋅⋅ M, 

so 
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1 2 2

2

( ) ( )
2

2

( )
1

2

( 1) ( 1) ( 1)
1 ,

2 ( 1)

e
H

mc

e

mc

j j k k s s
m

j j
µ

 = ⋅ +  
  

 = ⋅ +  
  

 + − + + +
= ⋅ + +   

Mk Ms
H M

M M

Ms
H M

M
  (33) 

 
so finally, one will generally have for µ ≪λ: 
 

1 2H H+  = ( )1
2

( 1) ( 1) ( 1)
1 ( 1) ( 1) ( 1)

2 ( 1)

j j k k s s
m j j k k s s

j j
µ λ + − + + +⋅ + + + − + − + + 

.    (34) 

 
Equation (34) agrees with the Landé formula (the values of g and γ are “interval 
proportions”). 
 
 
 § 5.  Calculation of the fine structure with no field.  The calculations up to now 
have generally provided the proof that the Uhlenbeck-Goudsmit hypothesis will lead to 
the Zeeman effect, as well as the interval proportions that agree with experiments. 
 In order to resolve the question of whether the hypothesis that we have established 
also leads to the correct absolute values of the intervals, the values of λ and H3 will still 
need to be calculated. 
 One then deals with the mean values: 
 

r

l
, 

2r

l
, 

3r

l
, 

 
in the calculations.  We will base that calculation on the two-dimensional hydrogen atom 
(1); one then has: 

H0 = 
2

2 21
( )

2 x y

e Z
p p

m r
+ −  

 
for the energy of the unperturbed atom and: 
 

, ,
2 2
0, 0.

x x y y

x y y x

h h
p x xp p y yp

i i
xy yx p p p p

π π
− = − = 

− = − = 

   (35) 

 
 If one introduces polar coordinates by way of the formulas: 

                                                
 (1) The exact calculations of the mean values for the three-dimensional case were carried out by W. 
Pauli and gave the same result as the calculations above.  
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2 2 2

2

, , arctan ,

( )

r

y
r x y p mr

x
p m xy yx mrϕ

ϕ

ϕ

= + = = 

= − = 

ɺ

ɺɺ ɺ

   (36) 

then one will have: 
2 2

2 2
0 2

1 1 1
,

2 4 2

, ,
2 2
0, 0.

r

r r

r r

h e Z
H p p

m r r

h h
p r rp p p

i i
r r p p p p

ϕ

ϕ ϕ

ϕ ϕ

π

ϕ ϕ
π π

ϕ ϕ

   
= + − −          


− = − = 

− = − = 

   (36a) 

 
According to the repeatedly-cited paper “Quantenmechanik II” [pp. 600, equation (17)], 
pϕ is quantized: 

pϕ  = m0
2

h

π
, 

 
in which we assume that m0 is a half-integer, in order to come into harmony with Pauli’s 
results (loc. cit.), and in fact m0 – 1

2  will be identical with the k that was introduced 

above.  Namely, for Pauli, the Hamiltonian function for the three-dimensional problem 
has the form: 

H0 = 
2

2 21 1

2 r

e Z
p

m r r
 + − 
 

k .    (37) 

 
If one would like to bring (36a) and (37) into agreement then it will follow that: 
 

k2 = 
2

2

h

π
 
 
 

 k (k + 1) = 
2

2 1

4 2

h
pϕ π

 −  
 

 = 
2

2
0

1

2 4

h
m

π
   −   
   

. 

 

The mean value 
r

l
 next gives from the equation [“Quantenmechanik II,” pp. 577, 

equation (17)]: 

− 
2Ze

r
= potE  = − 2 kinE  = 2 W0 .    (38). 

In this, one has: 

W0 = H0 = −
2

2

R h Z

n
, 

 
in which n means a whole number.  Furthermore, according to Pauli, one concludes from 
the equations of motion that: 
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d

dt
pr = − 0H

r

∂
∂

= − 
2 2

2
3 2

1 1

4 2

h e Z
p

mr rϕ π
  − +  

   
;   (39) 

 
hence, in the temporal mean: 

2

2

e Z

r
= 

2
2

3

1 1

4 2

h
p

mr ϕ π
  ⋅ −  

   
.    (40) 

Finally, from (36), one has: 
2

2

,

.

mr p

p

mr

ϕ

ϕ

ϕ

ϕ

=



= 


ɺ

ɺ

    (41) 

 
If one now imagines introduces the angle variable that is conjugate to the principal 
quantum number (to the corresponding angle variable J = n h, resp.) (1) then, analogous 
to the classical theory, one will have: 
 

ϕɺ  = 2 wπ ɺ  = − 2π 0H

J

∂
∂

 = + 
2

3

4 RZ

n

π
.    (42) 

 

Finally, equations (38), (40), (41), and (42), with the use of the relation pϕ = 
2

h

π
(k + 1

2 ), 

yield: 

2 2

2 2 2

2 3 31
1 2
2

2 2 2 3 4

23 2 3 31
22

1 1 2
,

1 4 8
,

( )( )
2

1 1 32
.

( )( 1)1
4 2

RhZ

r e n

m m RZ RZ
hr p n h k nk

e Zm m e RZ

r r k k k n hh
p

ϕ

ϕ

π πϕ

π
π

π




= ⋅ 

= ⋅ = ⋅ = + +

⋅ = ⋅ =

+ +  −   
  

ɺ    (43) 

 
In the absence of an external magnetic field, from (2) to (4), (34), and (43), the total 
perturbing energy will be given by: 
 

                                                
 (1) The justification for the introduction of such a variable is proved in the paper of Born and Wiener 
[Zeit. Phys. 36 (1926), 174] and the paper by Dirac that was cited above. 
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2 2 2 2 3

2 3 2 2 31
2

2 2 4 2 4 4

2 4 31
2

2 2 4

3 2 1 1
2 2

1 4 ( ( 1) ( 1) ( 1))

2 ( )( 1)

1 3 8

2 ( )

2 ( 1) ( 1) ( 1) 1 3
.

2 ( )( 1) 4

e Z m e RZ j j k k s s
H H

m c hk k k n

R h Z me RZ

mc n h k n

R h Z j j k k s s

n mc k k k k n

π

π

+ − + − ++ = ⋅ 
+ + 

  − − +  +  
 + − + − + = − + 
+ + +  

  (44) 

 
 A precise, empirical test of this formula is possible for doublet atoms (s = 1 / 2) – 
e.g., for the hydrogen, alkali, and Röntgen spectrum: Experimentally, (if one neglects the 
mutual interaction of the electrons), two energy levels with different k, but equal j will 
coincide.  The distance between two levels of equal k and different j will be given by the 
Sommerfeld fine structure formula. 
 The values s = 1

2 , j = k ± 1
2  must be substituted in equation (44); that will yield: 

 
1
2

2 2 4

2 3 3 2 1
2

2 2 4

3 2 1
2

1
2

2 2 4

2 3 3 2 1
2

2 2 4

3 2 1
2

for :

2 1 1 3

2 ( ) 4

2 1 3
,

4

for :

2 1 1 3

2( )( 1) 1 4

2 1 3
.

4

k j

R h Z
H H

n mc j j j n

R h Z

n mc j n

k j

R h Z
H H

n mc j j j n

R h Z

n mc j n

= − 


  + = − +  +  
 

= − +  +  
= + 
 
+ = − − + + + +  


  = − +  +  

  (45) 

 
Thus, in general, for s = 1

2 : 

 

H2 + H3 = 
2 2 4

3 2 1
2

2 1 3

4

R h Z

n mc j n

 
− + + 

.     (46) 

 
 Formula (46) reproduces the facts of experiment completely.  In particular, it follows 
from the absence of k in equation (46) that the “screening doublets” can be explained by 
the Uhlenbeck-Goudsmit theory.  Moreover, the splitting of the magnetic doublet agrees 
with the one that is obtained from the Sommerfeld fine structure formula. 
 Whether or not the question of how far the basic assumptions (2) to (4) in the theory 
is presented here are free of arbitrariness can still not be decided, but one can still regard 
the results of our calculations as important support for the Compton-Uhlenbeck-
Goudsmit hypothesis, on the one hand, and quantum mechanics, on the other. 


