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Uhlenbeck and Goudsmit invoked Compton’'s hypothesis of a rotating electron in order to explam th
anomalous Zeeman effect. The present paper examingsidinéum-mechanical behavior of the atomic
model that is characterized by that hypothesis. Thdtrisghat the Zeeman effect and the fine structére o
the double spectra can be explained completely by thenadoteoned hypothesis.

An examination of the magnetic behavior of atomid¢eys teaches us that according
to the laws of quantum mechanics atomic systems tieat@mposed of point charges
must also always exhibit the normal Zeeman effect.

In order to explain the anomalous Zeeman effgblenbeck and Goudsmit called
upon the hypothesig)(that every individual electron should be the camiea magnetic
momentm and a corresponding mechanical angular impulse oMoreover, m and s

should be coupled by the relation:
m= is. (D
mc

The quotient of the magnetic and mechanical momentsdlioen differ from the value
e/ 2mcthat is valid for atomic systems with point chargedhgyfactor of 2. We shall
not go into the question of which arguments can be étednd against this hypothesis
from the standpoint of electrodynamics here. Ratimemyhat follows, the quantum-
mechanical behavior of thdhlenbeck-Goudsmitmodel shall be investigated, and the
result will be compared with experiment. It is knowrat the application of the
previously-commonplace quantum rules to that model waldlto contradictions with
experiments.

() The hypothesis of a rotating electron already wesk to A.Compton, Journ. Frankl. Inst192
(1921), 145. The application of that hypothesis to thélpno that is of interest to us herenamely, the
Zeeman effect was first given bys. E. UhlenbeckandS. Goudsmit Naturwiss13, Heft 47, 1925.
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8 1. The Hamiltonian function of the model- In the sequel, we shall assume that

the electron of charge & magnetic moment, and angular impulse () (m :isj

mc
circles aZ-fold positively-charged massive nucleus; the angular inepafsthat motion
will be calledt. An external magnetic fieléh might perturb the motion of an electron.
Magnetically, this model obviously behaves precisely thie one that was proposed by
Pauli andLandé, which has been of such great service in the formal arg@on of the
complicated spectra. In most cases, the fine struadeZeeman effect that can appear
by the combined effect of several valence electrons bmarraced back to the fine
structure and Zeeman effect of the simple model thdegsribed above.

If one ignores the influence of relativity, the etfef the external field, and the effect
of m, then the motion of the electron will be given by Bauli-Dirac (°) theory of the
hydrogen atom.

The additional perturbing energy decomposes into threégs: par

H=H;+H,+Hs.
1. The part that originates in the external fi§les given by:
Hl:g[(igjﬂﬁ(_eﬁj:iﬁ(“.zg) 2)
2mc 2mc 2mc

using known rules.

2. If one considers the center of mass of thetrelado be at rest and the nucleus as
orbiting around the electron then the nucleus gelherate the magnetic field:

_ezlvd _ezt
c r mc r

i

at the location of the electron.
That field will correspond to a Larmor precessminthe impulses of magnitude

ij_ai, According toThomas (%), we then have to observe that this is the Larmor
mc

precession only in the system that was just consijen which the center of mass of the
electron was at rest. In order to get the pregasaithe system in which the nucleus — or
even better, the center of mass of the entire atasat rest, a Lorentz transformation

() From theCompton-Uhlenbeck-Goudsmit hypothesis, the individual electron must be endowed
2
with an entirely well-defined-impulse, namely, the quantum-mechanicat (%Tj S(s+1),s=1/2.

Here, however, we shall leave s undetermined in ordee t@ble to also deal with several multiplets (i.e.,
triplets, quadruplets, etc.) that arise from coupling éotebn magnets.

() W. Pauli, Jr., Zeit. Phys36 (1926), 336f. Dirac, Proc. Roy. Soc. Londahl0, March 1926.

() L.H. Thomas, Naturel17(1926), 514.
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2
must still be performed. Thomas then got the value ofze—zzcz%é for the Larmor
mc r

precession in this latter system, which is actuaflynterest to us. That value obviously
corresponds to a term:

ez I

Hy=—— — s 3

2T oM 3)

in the Hamiltonian function.

3. According tcSommerfelds theory, the relativistic variation of mass givese to
an additional energy of magnitude:

___ 1 e ! L
Hz = 2mc{W° +2ézwr+ ézrz] (4)

The overbar on theindependent terms signifies the mean of the uodsti motion. In
what follows, we shall assume that the perturbiagcfion H has the same form in
guantum mechanics as in classical mechanics anttedgnamics. As the basis for that
assumption, one can state that all of the quasititiat enter intdéd commute, and thus,
from the correspondence principle, no forms caneamder consideration iH that
deviate from the ones that are derived here esdignti An inevitable basis for the
perturbing functions that are given here cannotgh@n as long as a concomitant
rigorous quantum theory of electrodynamics is lagki

8 2. Line of reasoning for the perturbation calculations. In the quantum-
mechanical calculations that will now follow, wencassume that the absolute valueg of
ands are quantized in the unperturbed system — i.ey #re diagonal matrices. That
assumption can be regarded as unjustified for:

2N
: {e —(ank(k+1)]

since the known degeneracyloéxists in the unperturbed system. However, sindg
t, but not the perihelion length that is conjugaté,tappears in the perturbing eneidy
itself, the assumed quantization df || will enter into the accounting fét. Physically,

that means that the model of the Zeeman effedhydrogen that will be examined here
will be completely analogous to that of the allkatbms. For the alkali atomsg || is

already established by the interaction with theeptkrlectrons. An analogous
consideration can be applied to the compomé&ndf the total impulséit of the atom in

the direction of the field. The starting systerdead degenerates with regardMe =

h . . . .
2—m. However, since onlyn, but not the angle variable that is conjugatent@ppears
Vg
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in the perturbing energyt, the quantization d¥1, will still enter intoH. We will then be
able to simplify our calculations by the assumption thahe initial system#{ |, |s |, M;

will not degenerate, and therefore they can be baseddipganal matrices for the sake
of quantum theory.

The initial system is then degenerate in regard to onedmate [cf., the completely
analogous treatment of the model in classical meché&bics We can characterize that

coordinate by the componest :ZimZ of the eigen-impulse of the electron and the
Vg

conjugate angle variable. However, we can also claraetit by the total impulsgt

and the variable that is conjugate to it.

The perturbation process in quantum mechanics for degensyatems can be
sketched out as follows$)(

Let any solutionp®, o of the unperturbed problem be given, and furthermore, the
dependency of the perturbing function upon the coordindtdsainperturbed problem.
If the initial system did not degenerate then the amlthli energyw that corresponds to
the perturbation would be given by the temporal méaof the perturbing function over
the unperturbed motion. That medrwould then itself be a diagonal matrix. However,
if the initial system does degenerate — e.g., the enages of the states+ 1, ...,n +r
coincide — then the mean vall¢ of the perturbing energy will contain terms that
correspond to the transitions between the statedl, ...,n +r; i.e., it would not be a
diagonal matrix.

In that case, a canonical transformation ofthe:

1 - S—]_
Pesps ©
qg=S'ds
shall be carried out in such a way that:
W=S'HS (6)

becomes a diagonal matrix. Lik& the transformation matri$ in this contains only
terms that correspond to the transitions betweeasstdtthe sequenee+ 1,n+ 2, ...,n

+ r and diagonal terms. The transformation funcocan be found when one seeks to
solve ther equations im unknowns:

W&-> H,S§ =0 kl=n+1,..n+r). (7)

These solutions exist fardifferent values oW — viz., the “eigenvalues” of the problem
— at the same time as the additional energies of ttiarped system. If an * means the
transition to the complex-conjugate quantities, and ~nsiélae exchange of indices then
one will have:

() E.g., byw. Pauli, Zeit. Phys16 (1923), 15520 (1924), 371.
() M. Born, W. Heisenberg andP. Jordan, Zeit. Phys35 (1926), 557. See, esp., Chap. 3, § 2.
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\A41Sin _-zzz riH E% ::(L
' (8)
\A41Sii1__:E: P{EIE$; ::()
|
for any two eigenvalued/,, W, so:
(\A41'_ \AAQ :E: Ei«1£§; =0.
k=n+1
If one then normalizes by way of:
Y SaS=1 9)

k=n+1

then one will haveS 0S” = 1, andS will be the desired transformation matrix. By
substituting this into (5), one will obtain the coordesabf the perturbed system in this
approximation.

8 3. Performing the calculation. The application of this process to the problem that
is being treated here leads to the following general @tlout

1. Since it does not contain the degenerate coordirthgepartHs of the perturbing
energy can be ignored at first, and then added in laten additive constant.

2. From the general rules of quantum mechanas €it), one has the following
relations for the impulseands (%):

92:(1j k(k+1), ﬁzz(ij s(st1),

2T 2
oo~k =ek (=50 ), (10

or, more simply :
[E€]=—¢ct [ss]=-¢s

(the square brackets mean the vectorial product). Anyopent oft commutes with
any component of.
If one sets:

() In the aforementioned paper, the angular impulse wasetefiith the opposite sign, so one will
have:
My My =My M, = £ M,
there.
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k -mkL sz-msL
‘ 2’ 21T

then one will have:

(k +ik )k m =3 k m)=— Kl D= (D),

(.= ik (k. m; k m-1=-" Kl D= m( gr
(11)

(s *is)(s m-1; srp):%J 68— of ml),

(s,—is)(s m; srp—l):%\/ 681)- i m1).

If one now introduces the variabiein place ofm by way of the equatiom = my +
ms then ms will now be canonically-conjugate to the differenbetween the “nodal
lengths” Knotenlangeh (cf., the calculation in classical mechanics thas cited above)
that were canonically-conjugaterg andms up to now. One will then have:

e ez |
Hi+Hy= — 9(6+25)+—— —[Bs. 12
1 22mc55( s) anéﬁﬁ (12)
With the abbreviations:
e h _
2—|53|2—n—,u

and

it follows that:

HitHo=m (o + 25) + Ak s+ 3 ket k) (c—is) + 3 (ke iky) (sc+is)]
and

(Hy+H)(m, m)=u(m+ m)+A ng m m,
(H+H)(m, m-D)=2AJ/ [ st)- m( -] k kD-( m o m m1], [(13)
(Hy+H)(M=-1,m)=3A/[{s+D)- m( np-DI[ k kI)-( m 9 m gmI)].

The indicean, k, s can be omitted as constants on the left-hand sitlé®se equations.

3. The number of values af that belongs to a given system of valkes, m are
determined by the conditions:

6
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-SSmM<+s
and
-ksm-ms<+k (14)
or
k+mzm=2-k+ m

One obtains the transformation functi®from (7) by solving the linear equations:

WS- HiS=0, (15)

in which the indices | run through all values of that are possible for a given system of
valuesk, s, m. The eigenvalues & are obtained by setting the determinant whose terms
ares W—H, equal to zero. If one lets; denote the smallest valuerof that is possible

for givenk, s, m, and letam, denote the smallest one then that will yield equation((lﬁ)

W-pu(mt m)-Am( m m H 0 0 -0
Ha W-p(m+ m+)-A(m+)(m 1) B 0 - 0
0= 0 H,, W-(.) H, - 0/, (16)
in which:

H, =— $AJI(s+) - m( m+D][ k k) -( m p( m i),
Hy == 3AJ[S(s+D) - (m+)(m+2)][ k kD)-( m m1)( m m2),
H,, = etc.

We thus have an algebraic equation of degree- my + 1 for W with rational
coefficients ink, s, m. The sum of the roots is equal to the negatiaffiments of the
second terms, and is then given by:

m m
W= > p(m+m)+Am(m . (17)
n=m n=m
n‘b - . - -

The fact that the sumZWn is linear inA and i is a statement of the so-called
n=m

“summation principle” of the Zeeman effect.

[l Translator's note: The original equation (16) wapldiged in landscape mode, not portrait mode, so
it was reset.
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4. In order to be able to pursue the result of the quambecihanical calculation in
all of its details, it will be preferable to examinespecial example. We choose the
doubletmodel; i.e.s=1/2.

The possible values of here arets, in general, so fom =k + 1, ms will be
capable of assuming only the valué ,+while for m = k — 1, ms will be capable of

assuming only the value;. In general, the equation:

W-p(m-+A(med  3AKRD-(mHmY|_ o
“3AVk(k+D) = (me)(m-)  Wep(mrg)-A( m)
will then enter in place of (16), or:
A A?
W — (Zym—EjW+,u2(n?—%)—,u)l Dmr? K k1)=0, (19)
W:,um—%i%\/,uz+2,u)lﬁm+)lz(k+%)2. (20)
By contrast, fom=k +1, one getsns =1 and:
A
W=p(m+3) + 2 (m-3), (21)
while form=-k- 3, it will follow that ms=-3 and:
— 1 A 1
W=pu(m=-3) - E(m+ 3)- (22)

If one introduces the abbreviation:
V= i (k+ 1)
7

then one will have:
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W=l m-
Hl M=

0 v Y
Wm:k+1/2 =H VT(1+ 2k+1j_ K % +%}
} , (23)

+
_ 1
=u k+1+v{%_k+lj

Wm:—k—llz_:u ’T{l 2k+;j k+% %:|

_ 1
=u —k—1+v[%—k+lﬂ.

Equations (23) agree with the doublet formulasvoigt’s well-known theory of

coupling ).

5. We now go on to the calculation of the intensities1 otder to determine the

transformation functio$, we solve the equation:
W S12— (Hi + H2)(=%,-3) Suz— (Hi +Hz)(-%,+1) S =0. (24)

That yields:
A
Sz = Cféw—u( rr'r%)+§( M%)j,
(25)

S.y2 = C K ke D= (1A-2),

in which C represents an arbitrary constant, at first. If again distinguishes between

the two values ofV:
[13 W+1/211 and IW_1/211

then it will follow that:

() Cf., e.g.A. Sommerfeld Zeit. Phys8 (1922), 257.
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N e )

=iC, (,u+)lm+\/,uz+2)l,um+)lz( k+%)2),

S, .= Q%%\/ K k+1)—(M-1), (26)

+3

5%_% =1 C_% [e,u+)l m—\/,u2+2)l,u mk A% ( kk%)z),

S, .= C_%%\/ K k1) - (mi-1).

-1_1
2

If finally follows from the normalization conditiof®) that:

1
C+i = H
‘ 2 \/;(y+)lm+\/,u2 +2)l,um+)l2(k+;)2)g/,u2+ A mrA%(ke1)?
1 (27)
\/;(—y—)lm+\/y2+2;|ym+)|2(k+;)2)51/;12+ 2h A2k 1)?
For the special casa =+ (k + ), that will naturally yield [cf., (21) and (22)]:
S-f-l +1 :1’ S+,l —1 = 1
2 2 2" 2 (28)
S—l,—i :11 S_,l'+,1 =y,

since no degeneracy is present here.

The actual calculation of the intensities now comlesut by substituting (26), (27),
(28) in the transformation (5). The solutions of the unwbed system are to be used for
p°, o”. In that, we must observe that the coordinafesf the electron are diagonal
matrices relative tons .

Moreover, it suffices to consider the transitlon. k — 1, since the transitido - k +
1 will give nothing new.

We deduce from the work &orn, Heisenberg andJordan [loc. cit., Chap. 4, eq.

(33)] that:
gGkmm; kL, mm)= Ak % (m pf,
(@ +ig)(k,m-Lm; k-1, mm)= AK (k m B« m mi), (29)
(@ -ig)(kmm; k-1, 1, m)= AK (k m p( k m mi).

A(k) means a quantity that depends upon &nly
One will obtain the desired intensities by substitutigg) to (29) into (5) and
elementary computations. However, the general forsnata rather complicated. In
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what follows, we will give the result for the spec@dse of theD line type, and thus
consider the transitioh=1 - k= 0. From (5), that will yield:

1
@@ 3. 30, 3. 3)=3 1K@ w ik
W+ A+
] +lA
@@ 1-3:0, 4, =114 @ W Z’i/]2+9/]2 :
K+ A+
+1
W+ Apu+2
- 1
A M-3,-3:0-3 ~3)=3 Q| r——H2A |
NP REVE
-1
q +ig [ @-3, 30, 45 D=8 @) r A4 |
U —Au+3A
-1
qo+id, [ 1-3.-3:0, 4, H=IA O W zlquje;lz ,
U — AUt

1 (30)
g -iq, @ 3, 3;0-11)= 8@ r-—EEA |
\/ﬂ2+A/J+%A2
1
g ~iq, | L +2,-3:044 ~3)= |A @] 3£
N+ A+ 5 A

These intensity formulas also agree with the dhas are derived iVoigt’s theory
(cf., A. Sommerfeld, loc. cit, pp. 286).

8 4. Special treatment of the limiting cased <« g and ¢ < A. In order to ease
the comparison of the empirical results with theatty, it will be convenient to derive the
results of the theory for the special cadesc 1 andA > y, especially. The limiting
cased <« W can be obtained from the calculations of the pnevisection with no further
assumptions. For example, in the first approxiomafup to quantities of ordel), the
determinant (16) will decompose into the produatiafjonal terms, and one will have:

W= (Hl + Hz) (ms, ms)
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However, in order to calculate the limiting cgge< A, some new analysis will be
necessary. We next set= 0; we will then havéld, = 0, and a term that is proportional to
t s will remain inH; . It will now be convenient to introduce the total ingailt of the
atoms:

M=¢+s.

Due to the commutability dfands, one will then have:

M2 =¢° +5° + 2¢ s. (31)
Since, on the other hand:
2
mzz(ij iG+1),
217

one will have:
(2{} es=4[(j +D-kk+D-s(s+ 1],
and (32)
H, =3A[i(j +D)—k k+1)-s(s+1).

H is a diagonal matrix as a functionjof

For small values off, we can now consider the system that is charaetétby (32) to
be “unperturbed.” In the unperturbed system, ttoemawill then exhibit a precession
around the axis of the total impulse. The energyes of the perturbed system are given
by the temporal mean d¢i, over the unperturbed motion. If one thinkstcdnds as

having been decomposed into a component that iallpato M and one that is
perpendicular to it then the latter will drop obicause of precisely that precession, and
only the former will contribute tél; .

We can adapt this line of reasoning, which is é®aed from classical mechanics, to
guantum mechanics, since all of the quantities¢bate under consideration commute.

In the direction oft, one takes the:

(O

2

o

(component of) =

and the
(s

2

(component o$) = o,

SO
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— e
Y 2me

5m((m§)+2(m§)j
m m
__e

2mc

2

(s
ﬁ@ﬁ(ﬂ - j (33)

2j(j+1

:ﬂmn(H (5 +1)~k k +D+s(s+ 1))

so finally, one will generally have far <« A:

H,+H, =l

14 JUDHOEDESST D) (e -kk+D-s(sv2). (39)
2j(j +1)

Equation (34) agrees with tHeandé formula (the values of) and y are “interval

proportions”).

8§ 5. Calculation of the fine structure with no field. The calculations up to now
have generally provided the proof that thielenbeck-Goudsmithypothesis will lead to
the Zeeman effect, as well as the interval proportibasagree with experiments.

In order to resolve the question of whether the hygmshthat we have established
also leads to the correct absolute values of theveiterthe values of andHs will still
need to be calculated.

One then deals with the mean values:

1
1_21

[
2 s

I
r r

in the calculations. We will base that calculationtbe two-dimensional hydrogen atom
(*); one then has:

1 4
H -_— 2+ 2y _~ =
0 2m(IDX P,) -
for the energy of the unperturbed atom and:
p X— X :L y— y :i
BT B 27 (35)
Xy— yx=0, RR- R R=0.

If one introduces polar coordinates by way offorenulas:

() The exact calculations of the mean values for theetdimensional case were carried outViy
Pauli and gave the same result as the calculations above.
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r2=x2+y? =mr, = arctar’. ,

y o} ¢ ” (36)
p, =M Xy- yy= mfg
then one will have:
1 1 1 hY)| €z
H =—|p+=| p2—-| 2= -=Z
0 Zm{pr rz(p¢ 4(277) H r

h (36a)

h
r-rp. =—, - =,
pr pr 277| p¢¢ ¢p¢ 277[

rg-¢r=0, p.p,-pP;R =0.

According to the repeatedly-cited paper “Quantenmechdhfpp. 600, equation (17)],
py IS quantized:

Dp = Mo
¢ 21T’

in which we assume thaty is a half-integer, in order to come into harmony ViAtuli’'s
results [oc. cit), and in factmy — 1 will be identical with thek that was introduced

above. Namely, foPauli, the Hamiltonian function for the three-dimensiopadblem
has the form:

2
Ho:i(pf+%ézj—e—rz. 37)

If one would like to bring (36a) and (37) into agmeent then it will follow that:

_(hY _ e (WY _(hY( . 1
e=(5n) ke =3 o] =[5 ] (m-3].

The mean valueL next gives from the equation [*Quantenmechanik gp. 577,
r

equation (17)]:

Ze
- === B =72, =2W. (38).
In this, one has:
RhZ
Wo=Hop=- 2 )

in whichn means a whole number. Furthermore, accordiiRptdi, one concludes from
the equations of motion that:
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d oH, 1|, 1(h)]| €z
DD =——L== — - ] — +— 39
a” " o mr{pv’ 4(277} } r2 (39)
hence, in the temporal mean:
€z 11, 1(hY
-—= =1 . 40
2 mr3[%p¢ 4(277} } (40)
Finally, from (36), one has:
mr’g = p,,
D (41)
mr?2

If one now imagines introduces the angle variabilgt is conjugate to the principal
quantum number (to the corresponding angle varidbien h, resp.) ¥) then, analogous
to the classical theory, one will have:

_ 2
5 = omiy = — 2 Mo _, 4RZ

42
0J n® (42)

Finally, equations (38), (40), (41), and (42), wikie use of the relatiopy = ZL(k +1),
T

yield:

1_1 _2RhZ

—:—292—2’

r e n

%:m@: m D4ITEQZ:8772I§Z’ (43)

r’ p, L(k+%) n h(k+1)
2

11 e€Zm _ m é RZB2r

= =50 2 = ek

ré o 2_1(hj k(k +1)(k+)n’H’

P "4l on

In the absence of an external magnetic field, fi@nto (4), (34), and (43), the total
perturbing energy will be given by:

() The justification for the introduction of such a vat&is proved in the paper Born andWiener
[Zeit. Phys.36 (1926), 174] and the paper Byrac that was cited above.
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H,+H, =1 €Z Arnfé RZ({ fr1)- Kk 1)- ¢s1)
2 mPc? hi( k+3)( k+1) A
1 3R*Z' 8r’mé RZ
- 2m@ (_ "R h( k+ 1) ﬁj (44)
_2RIZYj(j+D)-k(k+D-g(s+1) 1 .3
n’mc 2 K k+1)( k+1) kt1 4

A precise, empirical test of this formula is possitde doublet atomsg(= 1/ 2) —
e.g., for the hydrogen, alkali, and Réntgen spectrum: kxpetally, (if one neglects the
mutual interaction of the electrons), two energy Ileweith different k but equal jwill
coincide. The distance between two levels of efuadd differeni will be given by the
Sommerfeld fine structure formula.

The values = 1, j =k* 1 must be substituted in equation (44); that will yield:

fork=j—1:
H _2RKZ" 1.3
a n’mc 2](J+1) J' 4n
_ 2R Z*
n’mc j+l
(45)
fork=j+31:
_2rRmZ 1 3
H,+ +—
n’mc 2( +1)(J+1) j+1 4n
_2RZY 1
n’mc +%
Thus, in general, fos = 3:
2R’ Z* 1 3
H, + H - — 46
270s n3mc2[ j+i 4nj (46)

Formula (46) reproduces the facts of experiment conipleta particular, it follows
from the absence d&fin equation (46) that the “screening doublets” can be expldge
the Uhlenbeck-Goudsmittheory. Moreover, the splitting of the magnetic detblgrees
with the one that is obtained from tSemmerfeld fine structure formula.

Whether or not the question of how far the basiaragsions (2) to (4) in the theory
is presented here are free of arbitrariness can stibbealecided, but one can still regard
the results of our calculations as important support tier Compton-Uhlenbeck-
Goudsmit hypothesis, on the one hand, and quantum mechanics, othéne



