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WEISS’s molecular forces will be attributed to a quantum-mechanical exchange phenomenon, and indeed, 
it will be treated as the exchange process that was successfully enlisted in recent times by HEITLER and 
LONDON in order to interpret homopolar valence forces. 
 
 
 Introduction.   Ferromagnetic phenomena have be interpreted in a formally satisfying 
way by the well-known WEISS theory (*).  That theory is based upon the assumption that 
every atom in a crystal experiences a directed force from the remaining atoms of the 
lattice that should be proportional to the number of already-directed atoms.  By contrast, 
the origin of these atomic fields was unknown, and several obstacles stood in the way of 
any interpretation of the WEISS forces on the basis of classical theory: Magnetic 
interactions between atoms are always a few orders of magnitude smaller than the atomic 
fields that follow from ferromagnetic experiments.  Indeed, electric interactions lead to 
the correct order of magnitude; however, one would rather expect that the electrical 
interactions of two atoms would be proportional to the square of the cosine of their 
mutual angle of inclination, rather than the cosine, which contradicts the assumptions of 
WEISS’s theory.  Other complications were discussed more thoroughly by LENZ (** ), 
and ISING (*** ) succeeded in showing that the assumption of directed, sufficiently large 
forces between any two neighboring atoms of a chain did not suffice to generate 
ferromagnetism. 
 The ferromagnetic complex of questions has entered a new arena with the 
UHLENBECK-GOUDSMIT theory of spin electrons.  In particular, it follows from the 
known factor g = 2 in the EINSTEIN-DE HAAS effect (which was, in fact, measured for 
ferromagnetic substances) that in a ferromagnetic crystal only the magnetic eigenmoment 
of the electrons is oriented, but not, by any means, the atoms.  Thus, the possibility of 
interpreting the WEISS forces as electrical interactions, independent of the relative spin 
directions of the electrons, goes away, since we know that such forces do not exist.  
Furthermore, by applying PAULI-FERMI-DIRAC statistics, PAULI ( **** ) has been able 
to show that paramagnetism or diamagnetism will always result from neglecting the 
interaction of the electrons in a metal. 
 

                                                
 (*) P. WEISS, Journ. de phys. (4) 6 (1907), 661 and Phys. Zeit. 9 (1908), 358.  
 (** ) W. LENZ, Phys. Zeit. 21 (1920), 613.  
 (*** ) E. ISING, Zeit. Phys. 31 (1925), 253.  
 (**** ) W. PAULI, Zeit. Phys. 41 (1927), 81.  
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 § 1.  A model for the foundations of the theory.  The basic idea of the theory that 
we seek here is this: Empirical results exhibit ferromagnetism as an entirely similar state 
of affairs to what was previously observed in the spectrum of the helium atom.  At the 
time, it seemed to follow from the levels in the helium atoms that a powerful interaction 
prevailed between the spin directions of two electrons that led to the splitting of the level 
structure into systems of singlets and triplets.  At the time, this difficulty could be 
resolved by verifying that the apparently large interaction would emerge indirectly from a 
resonance or exchange phenomenon that would be characteristic of all quantum-
mechanical systems of identical particles.  This is also closely related to explaining 
ferromagnetic phenomena as being implied by this exchange phenomenon.  We will 
attempt to show that the COULOMB interaction, together with the PAULI principle, will 
succeeds in evoking the same effects as the molecular field that WEISS postulated.  It 
was only in recent times that mathematical methods were developed for the treatment of 
such a complicated problem in the important investigations of WIGNER (*), HUND (** ), 
HEITLER and LONDON (*** ). 
 Before I go into the actual calculations, I would like to give a brief overview of the 
methods of approximation that can come to be applied in the treatment of electronic 
motions in metals. 
 
 Method. I.  From PAULI (loc. cit.) and SOMMERFELD (**** ), in the first 
approximation, electrons can be assumed to be completely free.  In the second 
approximation, one might, perhaps, add in the interactions with the lattice points 
[HOUSTON (†)].  The interaction of electrons with each other is neglected completely. 
 
 Method II.   As a first approximation, one calculates the motion of an electron in a 
force field (that, by no means, needs to be small) that is periodic (in three directions).  In 
the next approximation, one might perhaps consider the perturbations that arise from the 
deviations from periodicity in the lattice.  The treatment of the interaction of electrons 
with each other encounters the same difficulties here as it does in method I. 
 
 Method III.   In the first approximation, one thinks of the lattice separations as being 
very large and assumes that every electron thus belongs to its own atom.  In the next 
approximation, one considers the exchange of electrons that move in the unperturbed 
system with equal energies at different points, which was first considered by HEITLER 
and LONDON (loc. cit. I).  States in which more electrons are found in comparison to the 
number that is found in one atom in the unperturbed system will not be considered in this 
approximation. 
 
 The difference between these three methods becomes clearer when we explain it by 
another example, namely, the hydrogen molecule, which was treated rigorously by 
                                                
 (*) E. WIGNER, Zeit. Phys. 40 (1927), 883; 43 (1927), 624.  
 (** ) F. HUND, ibid., 43 (1927), 788. 
 (*** ) W. HEITLER and F. LONDON, ibid. 44 (1927), 455, cited as I in what follows; W. HEITLER, 
ibid. 46 (1927), 47 (cited as II); ibid., 47 (1928), 835 (cited as III); F. LONDON, ibid., 46 (1928), 455. 
 (**** ) A. SOMMERFELD, ibid., 47 (1928), 1; cf., also W. V. HOUSTON, ibid., 47 (1928), 33, and C. 
ECKART, ibid., 47 (1928), 38. 
 (†) W. V. HOUSTON, ibid. 48 (1928), 449. 



Heisenberg – On the theory of ferromagnetism. 3 

HEITLER and LONDON (loc. cit. I).  In method I, the electrons were, once more, first 
treated as free, which would naturally not yield any suitable starting solution for the 
calculation.  In method II, one starts with the solutions of the two-center problem [cf., 
HUND (*)].  A level that describes electron 1 as being in a 1s state around nucleus a and 
electron 2 as being a 1s state around nucleus b in the limiting case of infinite nuclear 
separations would split into four levels (1 to 4) that might be characterized by the table: 
 

 Nucleus a Nucleus b 
1 1 2 
2 2 1 
3 1,2 − 
4 − 1,2 

 
 The interaction of the two electrons will first be considered in higher-order 
approximations.  Method II will be directly identical to the method that was employed by 
HEITLER and LONDON.  Only levels 1 and 2 included in an unperturbed system.  It 
will be assumed that levels 3 and 4 lead to substantially higher-lying energy values.  The 
diversity of levels in unperturbed systems will then be more meager for method III than it 
is for methods I or II. 
 There is, indeed, no argument, a priori, for preferring any of the three approximation 
procedures over the other ones.  Method I will be most closely applicable to metals of 
very large conductivity, while method III is most applicable to metals of very feeble 
conductivity.  Method II is in the middle between these two limiting cases. 
 I have based the following calculations upon method III, since only it can permit a 
quantitative treatment of the electron interactions. 
 
 
 § 2.  The distribution of the level values.   The following calculations define a 
simple generalization of the HEITLER-LONDON investigations (loc. cit. I) to the case of 
2n electrons in a state of interaction (the number of electrons is now assumed to be even, 
upon purely formal grounds).  One will then find 2n electrons in 2n different (indeed, 
they are not different energetically, but positionally) quantum cells. 
 We shall first assume only that the quantum numbers of the electrons in their atoms 
are the same for all atoms.  Other stationary states of the unperturbed system will not be 
considered, since it will be assumed that they would lead to much high energy values. 
 One is then dealing with the determination of the energy values of the stationary 
states of the total system, which will belong to the state that was described above when 
the COULOMB interaction of the charges in an atom with the charges of any other atom 
is considered to be a perturbation.  Due to the great computational complications that 
have appeared up to now, it will only be possible for us to attempt the perturbation 
calculations up to the first approximation.  Whether this first approximation will actually 
be successful for the cases that nature presents must remain undecided.  We take the 
eigenfunctions of the unperturbed system to be, say, products of the SCHRÖDINGER 
eigenfunctions of the hydrogen atom, or better yet, the eigenfunctions that correspond to 

                                                
 (*) F. HUND, Zeit. Phys. 40 (1927), 742.  
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the rest of the atoms considered, just like in the cited paper of HEITLER and LONDON; 
it is entirely superfluous to repeat those Ansätze here explicitly.  These eigenfunctions are 
certainly not orthogonal, but the deviation from the usual treatment that is required first 
differs in the terms of order two, so we can apply the usual method of treating things in 
the case of orthogonal eigenfunctions.  The electrons of an atom can be exchanged with 
those any other atom as a result of perturbations.  As long as one overlooks the perturbing 
terms of order two, only simple transpositions between two neighboring atoms will occur.  
If one chooses the simplest case to be the one in which any atom in the unperturbed 
system possesses one valence electron then the “exchange terms” for the perturbing 
energy will reduce to the expressions that were given by HEITLER and LONDON: 
 

J(kl) = 
2 2 2 2 21 2 2

2 k k l l
kl k l l

e e e e e

r r r r r
κ λ κ λ

κλ κ κ λ

ψ ψ ψ ψ
 

+ − − − 
 

∫  dτk dτl .   (1) 

 
Here, k and l mean the numbers of two electrons, while κ and λ mean the numbers of the 
remaining atoms to which k and l belong in the unperturbed state.  A very important 
constant that enter into the perturbation calculations is the purely “static” interaction: 
 

JE = 
2 2 2

1 2 2 2 2 2
1 2 2 1 2 2

, , ,

( ) ( ) ( )n
n n

k l kkl k
k l k

e e e
d d d

r r rκ λ λκλ λ
κ λ λ

τ τ τ ψ ψ ψ

> > ≠

 
 + − 
 
 

∑ ∑ ∑∫ ⋯ ⋯ .  (2) 

 
 Due to their smallness, we can leave the magnetic interactions completely outside of 
consideration.  Nevertheless, the spin moments of all electrons will become partly 
parallel and partly anti-parallel as a result of the exchange processes.  If one adds the 
fundamental Pauli principle to this, viz., that the eigenfunctions of the total system should 
be anti-symmetric in all electrons, then an entirely well-defined total magnetic moment 
will belong to each level value of the perturbed system that will be characterized by the 
rotational moment sh / 2π of the system.  In all, there will be (2n)! levels in the 
unperturbed system (if one ignores the Pauli principle and spin).  A statistical treatment 
of ferromagnetism will be possible when all energy values that belong to a given value of 
s have been calculated.  This problem is generally not soluble in this form, since 2n is a 
very large number.  We can only hope to obtain a general insight into the distribution of 
the eigenvalues for a given s.  In what follows, we will calculate the number of levels, the 
center of mass of the energy (thus, the mean value of energy for a given s), and the mean-
square variance of the energy about that mean value.  We shall then make the generally 
somewhat arbitrary assumption that, in the first approximation, the energy values are 
distributed around the mean in a GAUSSIAN error curve, such that the breadth of the 
error curve is calculated from the mean-square variance. 
 From the investigations of WIGNER, HUND, and HEITLER (loc. cit.) and the 
assumption of the PAULI principle, every value s of the total spin moment belongs to one 
system of levels (“σ”) that are characterized by the well-defined partitioning of 2n into 
summands: 
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2n = 
( ) times 2 times

2 2 2 1 1 1
n s s−

+ + + + + + +⋯ ⋯������� �����  .    (3) 

 
 The partition of the “reciprocal” system is then called simply: 
 

2n = (n – s) + (n + s).     (4) 
 
 HEITLER (loc. cit. II) has given the following formula for the mean value – i.e., the 
“center of mass of energy” − of the system σ: 
 

Eσ = 
1 P

P
P

J
f σ
σ

χ∑ .     (5) 

 
 In this, P

σχ  means the group character that belongs to the permutation P, and fσ = E
σχ  

is the number of levels in the system.  The energy of the unperturbed levels is omitted, as 

an additive constant.  We further calculate the mean-square variance 2E∆  of the energy 
about the value Eσ : The energy value is given by the square root of an equation of degree 
fσ that one obtains when one sets the following determinant equal to zero: 
 

11 12 1

21 22

1

P P P
P P f P

P P P

P P
P P

P P

P P
f P ff P

P P

b J x b J b J

b J b J x

b J b J x

−

−

−

∑ ∑ ∑

∑ ∑

∑ ∑

⋯

⋯ ⋮

⋮ ⋯ ⋯ ⋮

⋯ ⋯

 = 0.   (6) 

 
The sum of the roots of this equation nx∑  is given by the coefficients of xf−1, so 

,

P
ii P

i P

b J∑ = P
P

P

Jσχ∑ , which leads to equation (5).  The sum n m
n m

x x
>
∑  is given by the 

coefficients of xf−2 in (6), and one then has: 
 
 n m

n m

x x
>
∑  = 

, ,

P P P P
ii kk P P ik ki P P

i k P P i k P P

b b J J b b J J′ ′
′ ′

′ ′> >

−∑∑ ∑∑  

 

= 
, , , ,

1

2
P P P P
ii kk P P ik ki P P

i k P P i k P P

b b J J b b J J′ ′
′ ′

′ ′

 
− 

 
∑∑ ∑∑ .   (7) 

 
In the last expression, one sums over all independent values of i, k.  P P

ik ki
k

b b ′∑  is now the 

i th diagonal term of the product matrix bP ⋅⋅⋅⋅ bP′.  Since the matrices b define a 
representation of the group, one will have: 
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bP ⋅⋅⋅⋅ bP′ = bP ⋅⋅⋅⋅ P′. 
 
If one then observes that χP = P

ii
i

b∑  then it will follow that: 

 

n m
n m

x x
>
∑  = 1

2
,

( )P P P P
P P

P P

J Jχ χ χ′ ′⋅
′

′
−∑ .   (8) 

 
 If we set xn = Eσ + ∆En (here, the index σ properly belongs to xn , ∆En , as well; we 
shall drop it, for the sake of clarity in our notation) then we will have: 
 
 n m

n m

x x
>
∑  = ( )( )n m

n m

E E E Eσ σ
>

+ ∆ + ∆∑   (n, m = 1, …, fσ) 

 = 2( 1)

2 n m
n m

f f
E E Eσ σ

σ
>

− + ∆ ∆∑ ;      (9) 

 

since ∑ ∆En = 0, one will have: 

2

1

f

n
n

E
σ

=
∆∑ = − 2 n m

n m

E E
>

∆ ∆∑ .     (10) 

 
 It ultimately follows from (5), (8), (9), (10), and the equation fσ = E

σχ  that: 

 

2

1

f

n
n

E
σ

=
∆∑ = 

,

1
( )E P P P P

P P
P P

J J
f σ σ σ σ
σ

χ χ χ χ′ ′⋅
′

′
−∑     (11) 

and 
2Eσ∆  = 

2
,

1
( )E P P P P

P P
P P

J J
f σ σ σ σ
σ

χ χ χ χ′ ′⋅
′

′
−∑ .   (12) 

 
 In order to be able to apply this formula, we must calculate the group characters of 
the permutations of the various classes.  Since all JP vanish, with the exception of the 
cases P = E and P of the class (12) (viz., transpositions), only the following types will 
come under consideration for P P

σχ ′⋅ : 

 
E
σχ , (12)

σχ , (123)
σχ , (12)(34)

σχ . 

 
 These group characters can be calculated by a method of SCHUR that was described 
by HEITLER (loc. cit. III).  It next yields for the reciprocal system of levels (*): 
 

                                                
 (*) The values for fσ and (12)

σχ  that were given by HEITLER [loc. cit., III, equation (32)] are marred by 

printing errors.  
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,

(12) 2 2
,

(123) 2 2 2
,

(12)(34)
,

(2 )!(2 1)
,

( )!( 1)!

(2 2)!(2 1)
( 2 ),
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( )!( 1)!

4(2 4)!
{
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n s n s
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n n
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n
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χ

χ

χ

χ
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− +

− +

− +

+=
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− −= + + − + + −
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−=
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2 4 2 2 2 2

4 3 2

4 3 2

2 5 4 ( 5 4) (6 30 19)

2 ( 6 15 14 3)

6 14 9 }.

s s s n n s n n

s n n n n

n n n n












+ + − + + − + 

+ − + − +
+ − + − 

 (13) 

 
The characters of the system of levels that actually is present differ from the characters of 
their reciprocals that are employed here only by their signs.  Indeed, the character of the 
reciprocal system is equal to (equal and opposite to, resp.) that of the system itself when 
the permutation P arises from an even (odd, resp.) number of transpositions. 
 Up to this point, everything is true in complete generality, with no relationship to any 
special assumptions that we might make about the crystal lattice or the atomic structure 
of the ferromagnetic substance. 
 In order to be able to calculate, we must now specialize our assumptions somewhat 
further.  It follows from formula (1) and the calculations of HEITLER and LONDON that 
J(12) decreases exponentially with increasing distance.  For the most part, one can 
exchange an atom in a lattice only with its “neighbors”; exchanges with atoms that lie 
further away that the “neighboring atoms” will then be neglected.  The number of 
“neighbors” of an atom is, e.g., 1 in a molecular lattice of diatomic molecules, 2 in a 
linear chain, 4 in a quadratic surface lattice, 6 in a simple cubic lattice, 8 in a cubic, 
space-centered lattice, and 12 in a cubic, face-centered lattice. 
 We shall make only the assumption that all non-vanishing exchange terms JP should 
be equal (we call that value J0).  That must be case when the remaining atoms are non-

magnetic; i.e., centrally-symmetric.  We then now calculate Eσ and 2Eσ∆  for a lattice in 

which every atom z has neighbors.  Thus, we will consider only the highest powers in n 
and s and drop the lower terms; that means that we shall overlook the effects on the 
boundary surface of the crystal. 
 The number of transpositions that lead to the value J0 (i.e., the number of atom-pairs 
of least separation) is z ⋅⋅⋅⋅ 2n / 2 = z ⋅⋅⋅⋅ n.  Thus, it follows from (5) and (13) that: 
 

Eσ = − z ⋅⋅⋅⋅ 
2 2

2

s n

n

+
J0 + JE .    (14) 

 

 In order to calculate the values of 2Eσ∆ , we next need the value of the expression: 

 

AP,P′ = 
2

1

fσ

(χEχP⋅⋅⋅⋅P′ − χEχP⋅⋅⋅⋅P′)     (15) 
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for the various possible combinations of P and P′.  That yields (up to lower powers of n 
and s): 

2 2 2 2

(12)(12) 4

2 2 2

(12)(13) 4

2 2 2

(12)(34) 5

( )(3 )
1. : ,

4

( )
2.  and  have a common element : ,

4

( )
3.  and  have no common element : .

2

n s n s
P P A

n

n s s
P P A

n

n s s
P P A

n

− +′= = 


− ′ = 

− −′ = 


 (16) 

 
 If an atom has z neighbors then type 1 will occur z ⋅⋅⋅⋅ n times, type 2, z (z – 1) n times, 
and type 3, z2 n2 / 2 times. 

 It finally follows from equation (12) that 2Eσ∆  is: 

 

2Eσ∆  = 
2 2

2
0 (12)(12) (12)(13) (12)(34)2 ( 1) 2

2

z n
J zn A z z n A A
 

⋅ + − + 
 

 

and 

2Eσ∆  = 
2 2 3 2

2
0 3

( )(3 )

4

n s n s
J z

n

− −
.    (17) 

 
 The mean deviation of the energy from the mean (14) then has order of magnitude 
∆Eσ ~ J0 n .  In the foregoing formulas, – σ means always means the system of levels 

that belongs to the partition (3) and thus to the total spin moment s. 
 
 
 § 3.  Statistics: connection with WEISS’s formulas.  The following arguments will 
be founded upon the aforementioned, generally somewhat arbitrary, assumption that the 
distribution of energy values about the mean has the approximate form of a GAUSSian 
error curve.  Since the total number of levels that belong to the spin moment s amounts to 
fσ (

*), we shall thus assume that: 
2

22

22

E

Ef
e d E

E

σσ

σπ

∆−
∆⋅ ∆

∆
 

 
levels lie between Eσ + ∆E and Eσ + ∆E + d ∆E. 
 From the calculations up to now, the direction of the total spin moment s in a crystal 
will remain completely undetermined when, as we can conclude from the result of the 
EINSTEIN-DE HAAS effect, the orbital moments of the electrons in the crystal 

                                                
 (*) Without the Pauli principle, due to the fσ-fold degeneracy of the total number of levels in all systems 

that belong to the partition would be equal to 2fσ .  However, that degeneracy will be removed by the Pauli 

principle. 
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compensate for each other.  From known formulas, one will have for this total energy (g 
= 2 for the spin!): 

E′ = − 
2

e h

cµ π
H ⋅⋅⋅⋅ m  (s ≥ m ≥ − s)   (18) 

(m = electron mass). 
 The problem now arises of calculating the most probable value of m for a given 
temperature and a given value of H.  To abbreviate, we then introduce: 
 

0

1
,

2

.

e h
H

kT c

z J

kT

α
µ π

β

= ⋅ ⋅ 

=


    (19) 

 
 One then defines the state sum (up to an inessential factor that is independent of α): 
 

2 2

22 2

20 2

s E E
mn s

kT E

s m s

f
d E e

E

σ

α β
πσ

σπ

∆ ∆+ − −+ +∞ ∆

−∞
= =−

∆ ⋅
∆

∑ ∑ ∫  = 

22

2 22 2

0

Esn s m
k T

s m s

f e
σα β

π
σ

∆+ + +

= =−
∑∑ . 

 
Finally, it follows from (17) (again, while dropping unimportant factors) that: 
 

S = 

2 2 2 2
2

3

(4 )
2 8

0

s s n sn s m
n z

s m s

f e
α β β

π
σ

−+ + −

= =−
∑∑ .   (20) 

 

If one denotes the expression 

2 2 2 2
2

3

(4 )

2 8

s s n s

n ze
β β

π
−−

 by g(s) and considers that fσ = 
2 2

1

n n

n s n s

   
−   + + +   

 then after substituting the summation series will become: 

 

S = 
| |

2 2
( )

1

n n
m

m n s m

n n
e g s

n s n s
α

+

=− =

    
⋅ −    + + +    

∑ ∑ , 

 
and a transformation that is analogous to partial integration will make: 
 

 S = S1 + S2  = 
| |

2 2
( ) [ ( 1) ( )]

1

n n n
m m

m n m n s m

n n
e g m e g s g s

n s n s
α α

+ +

=− =− =

   
⋅ + + −   + + +   

∑ ∑ ∑ , 

 

 S2  = 
( 1)

0

2
[ ( 1) ( )]

11

s sn

s

ne e
g s g s

n se

α α

α

+ −

=

 − ⋅ + −  + +−  
∑ . 
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Since g(s) is an even function of s, one can drop the term in S2 in e−αs in the 
approximation that is employed here and extend the sum in it from s = − n to s = + n.  
One will then see that up to factors of order of magnitude 1, S2 will also assume the form 
of S1 (if one replaces the summation symbol s in S2 with m). 
 It ultimately follows that: 

S = F ⋅⋅⋅⋅ 
2

( )
n

m

m n

n
e g m

n m
α

=−

 
 + 

∑ ,    (21) 

 
where F is a function of the quantities α and β that has order of magnitude 1 (when α and 
β are of that order of magnitude). 
 For our later calculations, it will be assumed that the expression under the summation 
sign in S exhibits a steep maximum at the location m = m0 (m0 ≈ mean value of m), which 
shall be verified later.  We set m = m0 + (m – m0) and develop the exponent of g(m) in 
powers of (m – m0).  That will yield: 
 

g(m) ≈ 

2 2
2 2 4 2 30 0

0 0 0 0 0 0 03
( ) (4 8 ( ) 4 ( )]

2 8

m m
m m m n m m n m m m m m

n n n ze
ββ β+ − − + + − − −

. 
 

Thus, S again becomes, up to inessential factors that do not depend upon α: 
 

 S  = F 

3
2 20 0 0

32 2
m m m

mn
n nz n z

m n

n
e

n m

α β β β
 

+ − +  
 

=−

 
 + 

∑  

 

= F 

2
3

2 20 0 0
322cos

2

n

m m m

n nz n z
α β β β

  
+ − +  

  
  

    

.    (22a) 

 
We obtain the most probable value m0 from S using the equation: 
 

m0 = 
α
∂

∂
log S = n tan 

3
2 20 0 0

32
2

m m m

n nz n z
α β β β+ − +

.   (22) 

 
The term that originates from the differentiation of log F can be neglected in comparison 
to n.  In this, one also finds the belated justification for the fact that have considered only 
the highest powers in n and s in the exponent in the state sum, and thus neglected factors 
whose order of magnitude was 1. 
 Formula (22) is, in essence, identical with the known WEISS formula for 
ferromagnetism.  The fact that tan x appears in (22), instead of cot x – 1 / x (as in WEISS) 
originates in the fact that only two orientations for the spin moment in an external field 
are possible.  If one sets: 
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0m

n
 = y; a + 

3
2 20 0 0

32

m m m

n n z n z
β β β− +  = 2x    (23) 

 
then one will get the equations: 
 

2 2
3

I. tan ,

II. 2 .
2

y x

x y y
z z

β βα β

= 


  = + − +  
  

    (24) 

 
This formula differs from the WEISS formulas by the cubic term on (24.II).  Once more, 
one can construct the solutions of (24) most simply graphically.  Fig. 1 is drawn for the 
values α = 0.2, β = 2, z = 8. 
 For small or negative values of the constant β, one will get paramagnetism.  
Ferromagnetism enters in when the tangent of the curve II for y = 0 subtends a smaller 
angle with the x-axis than the tangent of I; the influence of the cubic terms is first ignored 
in this.  The condition for ferromagnetism then reads: 
 

β 1
z

β − 
 

≥ 2.      (25) 

 
This condition can be fulfilled only for high values of z.  The maximal value on the left-

hand side of (25) is (βmax = z / 2) 
1

1
2 2

z  − 
 

, and it follows that: 

 
z ≥ 8.       (26) 

 
 Ferromagnetism is then possible only for lattice types for which an atom has at least 
eight neighbors.  That is the case for Fe, Co, 
Ni, whose lattices are all cubic, some of 
which are space-centered (z = 8) and some 
of which are face-centered (z = 12).  By also 
considering the terms of third degree in 
24.II, it can perhaps even happen for z = 7 
that curve II indeed (for α = 0) increases 
steeper than I at the origin, but that later on, 
two intersection points of I and II will occur.  
Since z = 7 does not occur anyway, one 
should not attach any physical meaning with 
that possibility. 
 When β increases above the value z / 2 (increasing β corresponds to decreasing 
temperature), from equation (25), the “strength of the molecular field” will again 

 

x 

I 

II 

y 

y = 1 

Fig. 1. 
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decrease, and for β > 
8

1 1
2

z

z

 
+ −  

 
, there will no longer be any paramagnetism.  

Mathematically, in fact, this comes about because of the assumed GAUSSian distribution 
for the energy values, which has the consequence that level values will also occur for 
small values of s that (for positive J0) lie just as deeply to deeper than the energy that 
belongs to s = n.  In reality, there is certainly no energy value that lies deeper than the one 
for n = s (when J0 is positive).  Naturally, the deviations of the actual energy distribution 
curve from the assumed one will become more and more noticeable for decreasing 
temperature. 
 One must improve the provisional theory that was attempted here by calculating the 

higher variances of the mean 3E∆ , 4E∆ , etc. and correspondingly construct improved 
distribution curves for the values of the terms.  Corresponding higher powers of β would 
appear on the left-hand side of equation (25) in this improved theory; the left-hand side of 
(25) is thus actually a transcendental function of β.  The value that we have obtained here 
for the left-hand side of (25) might correspond to a development of that function in 

powers of 
z

β
 = 0J

kT
 that has been truncated at the second term (our term β – β 2 / z can 

indeed differ from the first two terms of the true power series of that function only by 
small amounts).  However, it follows from this argument that for higher values of β / z – 

say, 
1

2z

β ≥  − an examination of the higher variances nE∆  would be imperative for the 

study of ferromagnetism.  Such a more precise examination of the distribution curve 
would also most likely displace the limiting value (26) of z.  However, nothing in our 
results would change very much qualitatively. 
 If β is substantially smaller than the limiting value that is given by (25) then, as was 
mentioned already, equation (24) will yield paramagnetism.  For small values of α, 

calculation gives (tan x ≈ x − 
3

3

x
…): 

 

y = 
3 2

2 42

2

2 3
2 2

z
z z

α α β
β ββ β

 
+ − 
   − + − + 
 

 + …  (27) 

 
The first term of this series gives the CURIE law with a modification that is similar to the 
one in the WEISS theory: 
 

m0 ∝ 
1

8 8
1 1 1 1

T

T
T

z z

− Θ    
+ − − Θ − −   

   

. 

 
The critical temperature in this is Θ: 
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Θ = 02

8
1 1

J

k
z

 
− − 

 

. 

 
 Before I go on to a discussion of the numerical values of J0, I would like to justify the 
previous assertion that the terms in the state sum (21) exhibit a very steep maximum at 

the location m = m0 .  To that end, I shall calculate the mean-square variance 2m∆  of m 
about m0 .  It is: 

2m∆  = 2 2
0m m−  

and 

2m  = 
2

2

1 S

S α
∂
∂

. 

From (22a): 
 

 
S

α
∂
∂

 = n (ex + e−x)2n−1 (ex − e−x) F + 
F

α
∂
∂

(ex + e−x)2n, 

 

 
2

2

S

α
∂
∂

 = 
(2 1)

2

n n−
(ex + e−x)2n−2 (ex − e−x)2 F + 

2

n
(ex + e−x)2n F 

 + 2n
F

α
∂
∂

(ex + e−x)2n−1 (ex − e−x) + 
2

2

F

α
∂
∂ 2

n
(ex + e−x)2n. 

 
 This implies that, in the first approximation: 
 

2m = 2 2
0 (1 tan ) 2 tan log

2

n
m x n x F

α
∂+ − + ⋅

∂
. 

One will then have: 

2m∆  = 21 tan 4 tan log
2

n
x x F

α
∂ − + ∂ 

. 

 
 The most probable deviation of the moment m from the expected value m0 is then 

only of order of magnitude n , so the terms that were neglected in the exponent of g(m) 
in equation (22) will be order ∆m2 / n, and thus of order 1, which agrees with the degree 
of approximation that we have consistently sought.  The neglected terms have the same 
order as the boundary surface effects. 
 
 
 § 4.  Magnitudes and signs of the “molecular field.”  The constant β must have 
order of magnitude 1, in order for ferromagnetism to be possible; one must then have J0 ~ 
kT, where T will assume values on the order of 103 degrees for Fe, Co, Ni.  It follows that 
J0 ~ 10−13 erg ~ 1

100 the energy of the hydrogen ground state.  That is just the order of the 

energy contribution that one would expect for the exchange term of the form (1) when the 
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atoms lie close to each other.  If the atomic separations become larger then the exchange 
terms will decay exponentially.  That is the basis for the fact that iron or nickel salt 
solutions are never ferromagnetic. 
 The question of the sign of J0 is much more difficult to answer.  In their theory of the 
homopolar bond, HEITLER and LONDON make that assumption that J0 is negative in 
complete generality, which would exclude ferromagnetism.  For the special case in which 
the electrons are found to be unperturbed in the 1s state, it follows, in fact, from general 
theorems that the energy values must lie in a way that would correspond to negative 
values of J0 .  Such an argument is, in turn, applicable to only electrons in the 1s state, 
and one can show that J0 will generally be positive for high principal quantum numbers.  
One must then deal with the expression: 
 

J0 = 
2 2 2 2 21 2 2

2 k k l l
kl k k l

e e e e e

r r r r r
κ λ κ λ

κλ κ λ λ

ψ ψ ψ ψ
 

+ − − − 
 

∫  dτk dτl ,  (1) 

 
in which κ and λ are the indices for the atomic nuclei, while k and l are the those of the 
electrons.  Initially, ψ will be a hydrogen eigenfunction, but later on, it will be shown that 
the argument is just as valid for other central fields in the vicinity of the nucleus.  One 
can then say with certainty that J0 will be positive for very small values of rκλ , since the 
term 1 / rκλ will then outweigh all of the other ones.  However, that result does not need 
to have any physical meaning, since for very small values of rκλ , even the entire 
approximation becomes illusory (cf., the case of 1s terms!).  One then comes to the 
values of J0 for very large rκλ .  When J0 is positive there, one must assume that it remains 
positive for all values of rκλ , in general.  We thus investigate further how a charge 
distribution of density k k

κ λψ ψ  appears at large distances rκλ , first for perhaps the higher s 

terms.  The Schrödinger functions contain an e-function as the most important term, and 

k k
κ λψ ψ  thus contains the factor 0

k kr r

a ne
κ λ+

−
 (a0 = Bohr hydrogen radius, n = principal quantum 

number; thus, no confusion with the electron number 2n should be created).  If one drops 
the remaining factors then the density will be constant on confocal ellipsoids of rotation 
around the two nuclei.  For increasing distance between the nuclei, the charge ellipsoid 
degenerates into a cylinder around the connecting line between the nuclei.  (This happens 
for both values of the principal quantum number.)  Furthermore, the e-function appears 
multiplied by a polynomial in rκκ (rκλ , resp.) of degree n – 1.  The zero locus of this 
polynomial lies entirely in the neighborhood of the nucleus; at greater distances from it, it 
will suffice to replace the polynomial with its highest power rn−1.  The behavior of the 
central force at distances of order a0 from the nucleus is entirely inessential when only 
rκλ  is sufficiently large.  The density distribution of the charge over the length of the 
aforementioned cylinder is therefore non-uniform, but otherwise approximately 
proportional to 1 1n n

k kr rκ λ
− − .  For small values of n, this distribution is still quite uniform and 

one can easily see that the negative terms in J0 can substantially predominate.  For 
increasing n, by contrast, the density distribution assumes an ever steeper maximum at 
the midpoint between the two nuclei.  In the limit of very large values of n, the mean 
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value of the terms of type 1 / rκκ , when taken over the density distribution that was given 
above, tends to the value 2 / rκλ : 
 

1

kr κ

 = 
1

kr λ

 = 
1

lrκ

 = 
1

lr λ

 → 
2

rκλ

. 

 
By contrast, the term with 1 / rkl – viz., the “self-potential” of the density distribution – 
increases beyond all limits with increasing n.  J0 is then certainly positive for sufficiently 
high principal quantum numbers.  One can easily show that nothing will change in this 
result when one carries out the calculations for p, d, …, or any other higher state.  The 
limiting value of n for which J0 can become positive for the first time is difficult to 
determine exactly.  A rough calculation yields n = 3.  This limiting value will possibly 
depend upon values of the remaining quantum numbers.  The fact that, e.g., the oxygen 

molecule empirically possesses a magnetic moment of 2 ⋅⋅⋅⋅ 1

2 2

h

π
 in the ground state 

seems to show that J0 can already be positive for n = 2.  On the other hand, it can follow 
from the many-times-observed critical temperatures (e.g., for γ-iron) that there are many 
times J0 that can also be negative for higher principal quantum numbers. 
 
 Concluding remarks.  The calculations that were described here lead to two 
conditions for the appearance of ferromagnetism: 
 
 1. The crystal lattice must be a type such that any atom has at least 8 neighbors. 
 2. The principal quantum number of the electrons that are responsible for magnetism 
must be n ≥ 3. 
 
 Both conditions together do not reach far enough to single out Fe, Co, Ni from all 
other materials; however, Fe, Co, Ni do satisfy the conditions.  It was certainly to also be 
expected that the theory that was contrived here can meanwhile serve as only a 
qualitative schema in which ferromagnetic phenomena will perhaps be classified later.  
The theory admits an extension for the case of several exchanges per atom; an incisive 
study of the J(kl) values, as well as the distribution curve of the term values, will be 
requisite.  I hope to be able to go into these questions, as well as a thorough comparison 
of the theory with the experimental results later. 
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