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Introduction. Up to now, in quantum theory, it has not been posdiblconnect
mechanical and electrodynamical possibilities by, ondhe hand, electrostatic and
magnetostatic interactions and by radiation-mediatgdractions, on the other, in a
manner that is free of contradictions, and to carsidoth of them from a unified
standpoint. In particular, no one has succeeded indmnsy the finite propagation
speed of the electromagnetic force effects in theecoway. The purpose of the present
paper is to fill that gap. In order to achieve that gaalill be necessary to give a
relativistically-invariant formalism that will allowre to treat the interaction between
matter and the electromagnetic field, and thus alsamtieebetween matter and matter.
This problem seems to be fundamentally linked with gréfficulties that precluded
Dirac from finding the relativistically-invariant formulatiorf the one-electron problem,
up to now, and one will first arrive at a completedyisfactory solution to the problem
that is posed here when one clarifies those fundamdiffamlulties. Nevertheless, it
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gives the impression that the problem of retardatiomldcobe split into the
aforementioned deeper-lying problems. Whereas it must beaqby@a with no help on
the part of classical theory, the retardation problalinssems soluble by corresponding
considerations.

It is known in classical point mechanics that a r@kstically-invariant formulation of
the many-body problem with the help d¢familton’s theory is not practicable.
Therefore, one might also not hope that one could eaiva relativistically-invariant
treatment of the many-body problem by means of diffeakatuations in configuration
space (or the corresponding matrices) in quantum theopgciedly since such a
treatment would seem to be coupled inseparably with a ga#ioh of electromagnetic
waves that is equivalent to the introduction of lightrgaa Thus, e.g., the equation (
that Eddington gave for the two-electron problem, into which the fdumensional
distance between two world-points enters essentialyhardly be brought into harmony
with experiments if that equation yields interactionswieein the electrons that are
gualitatively quite different from retarded potentialsittione expects frotvlaxwell’s
theory. That difference would also remain in thetlingi case of high quantum numbers
and many electrons, and would thus lead to contradgtidbforeover, the corresponding
analogues to the theory that we strive for here hagll on the one handlaxwell’s
theory, and on the other hand, the wave equation afrieeslectron problem, when it is
re-interpreted in the sense of a classical continu@oryh Schrodinger (7) has already
achieved a formally-satisfactory combination of these fiwld theories. If one starts
with the Dirac equation for the one-electron problem then that wihibit the
corresponding connection @&trode (* ). The theory that we aim for here then relates
to the aforementioned consequent field theories as quamechanics does to classical
mechanics, in that it will, in fact, emerge from thisldi theory by quantization (i.e.,
introduction of non-commutative quantities or correspondungctionals), and in its
formal content will define a consequent continuatiothefinvestigations dbirac (),
Pauli and Jordan (") on radiation, and that dfordan, Klein, andWigner (") on the
many-body problem. A similar attempt was recently utaden byMie (''). The
corresponding analogue of that attempMig’s theory of the electron. For the time
being, that theory generally remains a formal scheamsalong as the classical field
equation has not been found whose integration would yieldretscin a satisfactory
way. ThusMie’s quantum theory of fields, which still exhibits many damties with
the theory that we seek here, is inapplicable in practi

The theory that we seek here is also still afficddth many defects. As was already
mentioned, the fundamental difficulties in the refgstic formulation that were
emphasized bpirac remain unchanged'("). Moreover, the formulas of the theory lead

()  A.S.Eddington Proc. Roy. Socl21(1928), 524122 (1929), 358.
”)  E. Schrédinger, Ann. d. Phys82 (1927), 265.
H. Tetrode, Zeit. Phys49 (1928), 858; cf., alsb. Moglich, ibidem 48 (1928), 852.

(") P.A.M. Dirac, Proc. Roy. Soc. (A)14(1927), 243 and 710.

(" P. JordanandW. Pauli, Jr., Zeit. Phys47 (1928), 151.

("M P. Jordan andO. Klein, Ibidem 45 (1927), 751P. Jordan andE. Wigner, Ibidem 47 (1928),
631.

("™ G. Mie, Ann. d. Phys. (485 (1928), 711.

("M As O. Klein has shown [Zeit. Phy&3 (1929), 157], these difficulties are especially striking due
to the fact that according tDirac’s theory, in some circumstances, the electron css ghrough a
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to an infinite zero-point energy for the radiati@md thus include the interaction of an
electron with itself as an infinite additive constamMaturally, the theory also yields no
sort of information on the possibility of the radiatigprocesses of the elementary
electrical particles and on Nature’'s preference forisammetric wave function in
configuration space over symmetric ones for many eastor protons. However, these
difficulties are of a sort that they do not interfevéh the application of the theory to
many physical problems. The methods that are developed gezreit, e.g., the
mathematical treatment of certain more detailed @m%eE® in the theory of the Auger
effect and related problems, as well as the considerafi the retarded potential in the
calculation of the energy values for the statiorstates of atoms. The latter might be
meaningful, in particular, for the theory of the fineusture of ortho-helium lines.
Furthermore, the formalism that is developed here inslibde previous methods (viz.,
guantum mechanicsPirac’s theory of radiation) as special cases in thet firs
approximation. In all, we may conclude from this that ldter, ultimate theory will also
have essential trains of through in common with the tbaé we seek here. Let it be
mentioned that a quantization of the gravitational figeldich seems to be necessary on
physical grounds’, is also practicable by means of a formalism thatompletely
analogous to the one employed here with no new diffesul

|. General methods.

8 1. Lagrangian and Hamiltonian form of the field equations, emgy and
impulse integrals. Let alagrangian function L be given that might depend upon
certain continuous space-time functioQg (xi, X, X3, t), as well as upon their first
derivatives with respect to the coordinates. The diffeal equations that the field
guantitiesQ, must satisfy might arise from the variational proei

5j L[Qa, aa% ,Qaj dVv dt=0 (1)

when the variation of th€, is assumed to vanish on the boundary of the domain of
integration. In this, we have writtd@a for the time derivativéQ, / ot at a fixed spatial

location, and the inde& shall distinguish the various state quantities thatpegeent in
arbitrary, finite numbers, while the indexefers to the three spatial coordinates. In what
follows, we shall always employ Greek symbols fatiges of the former kind and Latin
symbols for ones of the latter kind. As is known, difgerential equations that follow
from (1) read:

potential jump whose order of magnitudevis mc / e, in contradiction to the classical energy theorem.
For the time being, an analogous consequence of the thlaryseems to frustrate a closer theoretical
treatment of the structure of the nucleus.

() A. Einstein, Berl. Ber. (1916), 688; cf., esp., pp. 696, where thességeof treating the emission of
gravitational waves quantum-theoretically was emphasizédrthermore, cf.O. Klein, Zeit Phys.46
(1927), 188; cf., esp., the remarlon pp. 188 of that paper.
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In order to make the analogy with ordinary point meatgeimerge from this, we
first introduce the Lagrange function that has beeagnated over only the spatial
volume:

E:dev. (3)

For A, that vanish on the boundaries, one will then get bygbamtegration:

5E:IZH: a%L_ o a Qg AV,

T 0X aa&
0%
On that basis:
oL _ 0 oL
—_— 4
5Q aQ Zax aaQ “)
0%

is called theHamiltonian or functionalderivative of L with respect ta@Q, at the spatial
locationP under scrutiny whose coordinates &iex;, X3 . One can define it as the limit
of the quotient:

oL _ . L(Q,+9Q)-T(Q)
3Q,.» [5Q,dv ’

such that the two values &f in the numerator differ only by the fact that arf¢he state
guantitiesQ, in one case is a different spatial function frdra bther case, while in the
limit, not only should the integral in the denommaconverge to zero, but also the
interval in whichdQ, is assumed to be zero should collapse to a sgpgigal pointP —
viz., the one at which the functional derivative Iof is to be ascertained. Since one

trivially has:
oL _ [ oL j
5QH;P aQa p,

the field equations will then read:
0 oL _ oL
at 5Q.a;P 5QH;P .

(2)

Just as in point mechanics, equations (2) §rdétermine the behavior of the state
guantities at all subsequent time points when ta&ng with their first derivatives, are
given at a certain time point. In place of thetéily-many state quantitieg of point
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mechanics, a continuum of state variables will appes, lte more precisely: finitely-
many continua, namely, the state functid@g (x1, X2, X3). By contrast, the spatial
coordinates are not to be regarded as state quantities patsaneters.

In fact, one can always arrive at the case of naotisly-many degrees of freedom,
where the state quantities are spatial functions, byingass the limit from the case of
finite-many degrees of freedom. For the sake of siiyli®et the volume domain in
which the field quantities are defined be finite, and tldiei subdivided into congruent
parallelepiped cells with the edge lengths;, Ax,, Axs . One then replaces the
continuous spatial function®, (X1, X2, X3) by step functions that have constant values
inside each cell. If one thinks of the cells as beingatharized by three running
numberd, m, n, corresponding to the three spatial coordinates, ¢dhnenwill now have
the finitely-many state quantiti€d,; mn . If one replace the integral in the expression for
L with a sum and the spatial derivatives with differdmfisotients according to:

an - Qa,|+l,m,n - Qa,l ,m.n
0% Ax,

then with the Lagrange function:

L = Axy Axo Axs Z L[Qa,l,m,n Qusvamn = i 1Qa,|,m,nj (5)
I,m,n AX1
the equations of motion of ordinary point mechanics nedid:
d oL oL
= (3)

aaQ.a,l,m,n B aQa,l,m,n .

It shall now be shown that in the limit of a vanishimglume for the cells that are
employed for the subdivision of space equations (229ifdr a continuum of degrees of
freedom will emerge precisely from equation® @& ordinary point mechanics)( To
that end, it will obviously suffice to show that:

o1 oL oL
AxlAXZA)% 6 Qll mn 5Qa;P

Since the coordinat&3d, mn occur in terms that belong to the delin, n, as well as to the
celll =1, m,n: I, m=1,n; 1, m n—-1, in the sum ovdr m, n, one will now have:

() Cf., on this, als@. Mie, loc. cit, § 4 and § 5.
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1 oL :[atj || oC | oC 1
AXIAXZA)%GQIJmn aQa Imn aa& aa& Axl

axl I,m,n axl I-1,m,n

and, in fact, for an arbitrary refinement of the sealbdivision, this will converge to:

oL _Z 0 oL _ oL
aQa i a)ﬁ aa& 5QH;P ,
0%
as was asserted.
In analogy to point mechanics, we now come to th@dhiction of aHamiltonian
form for the field equations, instead of thagrangian one. First, one defines the
“impulse” P, that is canonically-conjugate to the field quanti®s

po= O (6)

0Q,

and then thé&damiltonian functionH, according to:
H [Pa,oa,‘f%j =3 PG -L @)
X a

By varyingH with respect to the variabl&, , Q,, it will follow from (6) that:

so one will first have:
—=Q,, (8)

and secondly:
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oH oL oH oL
-l == . | —==1| =|—==—| =Pai. 9
(aqajp ((’)Qa L 592 59Q a 9)
0% Jo, L 0% g,
The variables inside the parentheses are to be keptaobrisr the differentiations in

guestion, and we have introduced a new abbrevi&joffor later purposes, moreover.
The canonical field equations follow from (8) and (9), wbeae recalls (2):

. oH ) oH 0 oH
=—, P=-|—) ———|, 10
@, 30, 2o 500, 4o
0
or when one introduces:
H = j Hdv, (11)
one will get the equations:
: OoH . OH
o= : P.e,=- : I
QHYP 5PH;P . 5QH;P ( )
They arise from the variational principle:
_ - 0Q _
sfLdvdt=5[|>PQ -H F;,Q,,a; dv dt=0, (12)

in which, P, andQ, are considered to be spatial functions that aredandependently
and whose variations should vanish at the limiiche canonical field equations then
determine the further temporal course of the spatractionsP, andQ, when they are
given arbitrarily for a certain moment in time to .

Furthermore, only the form (12) for the variatibpainciple will be used in the
following calculations, and it is inessential whatlhe integrand of (12) can or cannot go

to a function ofQ,, 0Q, / 0% , and Q,, by just eliminating thé®, . One can also free
oneself of the assumption thdtdoes not include the spatial derivatives of e but
that will not be necessary for the later applicagio

We would now like to introduce the (hitherto uneegary) assumption that the
Hamiltonian functionH does not include the time coordinate explicitlgd aassert that
the quantityH is not constant in time in that case. In factphstial integration, one will
immediately find that:

dH OoH oH .
= = Po+—Q.. | dVe,
dt J'Za:(apmp aP 5Qa;P Qa,Pj P
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in which the terms’] that originate on the boundary of the domain of integmatian
generally be dropped (as in all of what follows when oedfies the temporal constancy
of certain volume integrals). That means that tHd Gi@antities must vanish sufficiently
rapidly when integrating over all space. If one assuithat, then the constancy df in
time will follow immediately from the given expresaidor dH/ dt by using (1). In all
physical applications, the quantityd (just like theHamiltonian function of point
mechanics) can be interpreted as the total energy of the systearstiable choice of
the numerical factors.

Other integrals exist besides the energy intebral

k=12, 3) (13)

_ 0Q,
Gk—_JZa:Pa o dv

that can be interpreted as components otated impulseof the system. Analogous to

the energy integral, it must be assumed here khadoes not contain the spatial

coordinates explicitly either, but once again, omest allow the dropping of the outer

surface integrals. In fact, it then follows frof8j by successive partial integration that:
-P Q”j dv

d_Gk:— 'aQ” _a
dt I;[P”axk 7 9%,
:.[Z OH 6Qa+5H6PH y

= 0Q, 0%, JdRax )

but by substituting the expressions:

. 9P, .

OH :6_H_Zi oH OH oH
5Qa aQa i a)ﬁ aa&’ 5Pa aPa ’
ox
it will also follow that:
dG, 0 oH 0Q oH
P S - a |- av,
dt I;izax 99 0% | 0%
ox

() That will give rise to the outer surface integral:

oH - .
[df Y [costh )| 3~ Q + R
i a aa& aapa

0

OH

0%

which can be interpreted as the energy flux through the bousdeace.
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which can be converted completely into an outer suifgtegral, and will thus vanish, by
assumption, such thabg is, in fact, constant in time. If no spatial diieat is
distinguished from the outsetsoL, and therefore alsel, are invariant under spatial
rotations of the coordinate axis crossthen theGy will define the components of a
vector, as they must.

§ 2. Canonical commutation relations (C. C. R.) for continuouspace-time
functions. Energy and impulse theorem in quantum dynams& We are now
sufficiently prepared to take the step from classicaksyto quantum physics. For that,
we first appeal to a method that corresponds to the gmplat of matrices or operators
in quantum mechanics, while we will first briefly go irttee methods that are analogous
to the Schrodinger differential equation in coordinate space later onhe Tormal
conversion of the latter methods to field physics entmanthe mathematical
complication of how to define a volume element orcfiom space in a reasonable way.
The former method has the advantage, moreover, tigaeater freedom exists in the
choice of the independent variables, in that canonicasfmamations can be performed
more easily, and furthermore, that the form of thespia laws (which are the field
equations and the expression for th@miltonian function, in our case) can be carried
over from the classical theory directly. As is kmpwith that method, the difference
between classical and quantum physics is expressed bydehethat the physical
guantities will be generally replaced by non-commutatiperators, moreover. In the
case of quantum mechanics, these physical state gesut&pend, firstly, upon time and
secondly upon one (or more) discontinuous indices tahduish the various degrees of
freedom, so in the case of quantum dynamics of the figidtions, the aforementioned
indices (to some degree) go to continuously-varying spataddinates, X», Xs, which
are then to be regarded as ordinary numbersdireimbers), just like the timte

In order to arrive at C. C. R)(for the continuous field quantities, as in the previous
paragraphs, we carry out the passage to the limit frencdake of finitely-many degrees
of freedom by starting with the Lagrange function (5),clhwill go to the Lagrange
function (3) in the limit of an infinitely-fine cellecomposition of space. If we introduce
the ordinaryd-symbol, which is defined by:

0 forl #I',
d'_{ 1 forl =I', } (14)

and furthermore, the abbreviation:

d,m,n;l’,m’,n’ =d' Onm o s
and the relation:
AV = AXq1 Axo AX3

() Here, and in what follows, the abbreviation C. C.vRll always be employed for “canonical
commutation relations.”
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for the volumes of the cells then, according to mady quantum mechanics, the C. C. R.
for finitely-many degrees of freedom will read:

Pa, imn Q,B, I'm’n” = Q,B,I’m’n’ Pa, imn = d m,n; 1, m,n’ 50/,8, (15)

to which, one can add the commutation of the var@Qusith each other, as well as the
variousp. In this, one has:

oL _ Ayt ,
an Imn aQa,lmn

palmn

such that in the limit, one will have:

1
AI\I/mOA_ Pa,1, m,n= Pa (X1, X2, X3).

If we were to pass to the limkV - O in equation (14) after dividing bV then we
would get zero on the right-hand side. We would theaiol# reasonable result when
we first multiplied (15) by an arbitrary step functib(i.e., ac-function) of the indice$’
m’ n”and then summed over all cells of a certain piecepateV’, when we let the
functionf converge to a continuous spatial functiqry, X2, X3) in the limit ofAV - 0, in
such a way that the sum:

> f(,m,n)AvV

I'm'n

would go to the integral:

J, F0x %, %) dv

over the chosen spatial piece. We then obtain:

palmn palmn
Zf(l m’ n)AV[E Qi = Qi AV}

I'm'n’

_h f(I,m,n) whenthecell m n isivV
2 | 0 otherwise,

and in the limit of an infinitely-fine cell decomsition:

JITT00% %) dvVEBOs % 9 Q% % F= Q'X'3 KB x x ¥

_ L.d,ﬂ{ f (X, X, %) when the celx % X isinV (16)
27 0 otherwise.
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Moreover, the roles of;, Xo, X3 and X, X,, X; can also be switched in this. It is

preferable to formulate this result by means of the $mgiunction symboldx) that
Dirac introduced, which is defined by:

Lbf(x)a(x) dx:{ f(0), whenx= 0in& b ) an

0 otherwise.

It follows from this that one can always s&t X) = JdX). Furthermore, with the
introduction of the vector whose components axg Xp, X3, and the abbreviations:

A(r) =0(%)A(%,)d(x),  O(r,x')=0(c,t)=a( —1),

one will have: a7)

, , f (X, %, %), whenx ,% ,% inV,
(X, %, %)0(r,v )={ )
J, 0 otherwise.

If we write Pg, Qg for Pa (X1, X2, X3), Qo (X1, X2, X3), for brevity, andP,, Q. for P4 (X,
X, %), Qs (X, X,,X,), and if we introduce the bracket symbol:

[F, Gl =FG - GF

as a further abbreviation then the canonical coratimut rules for continuous field
guantities can be written as follows:

[Qa, Q,1=0, Pa, P1=0, Pa. Q1=[P.Q4 = dpdr,v). (I

It should be remarked that these relations am foutwo different spatial locations,
but always at the same time point, and that nothintgper will be said about the value of
the bracket symbol in question of the field quaegitat two different time points. By
contrast, if we define the derivative of thdéunction in the usual way, namely:

I: f(X)J'(x) dx= { ~1'(0) whenx=0in& b) (17)

0 otherwise,

which arises from (17) formally by partial integost and dropping the terms that
originate on the boundary, then the C. C. R. (Hh de differentiated by the spatial
coordinates. One will then get, e.qg.:
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. 0Q, |_h o Q| h oo , h @

P =z |=— —§ P—<|=— —Jk)=———0

ook |T2max S By T 2mag OO )T Ty 06T 18)
‘o, 1 _nh o oP | _h o h

“2.Q |=———0J ©Q,|=—— - hd;

o T 2ma 2O o X T amay OO )T Ty )

in which the last equation follows frod(t, t') =d(t —t') = o (¢ —¢v).

In order to go further, we must define the differdidia of a function of non-
commutating quantities with respect to one of the quasitiidich happens, in a well-
known manner, by way of:

OF(QQ) _ ;- FQ+3,Q,)-F(QQ..)
aQ, 5-0 3 !

in which dis ac-number (multiplied by the identity operator, whismot written down).
With this definition, the usual rule for the diféetiation of a product will be true:

o(FF,) _  OF,  OF
0Q, 16Q1 0Q

in which, one must be careful to preserve the serpief the factors.

Now, let F be an arbitrary function of the, , 0P, / 0% , Qs , 0Q, / 0% , which
however might depend upon only the values of th@setions at a single spatial location.
In analogy with the corresponding development mhir@ry quantum mechanics, one can
easily prove that:

[FlQ) = s a )|,
- aXi (19
o _ h|oF OF 0 5
[P Fl = aQ E Sy + > 5o Normdtl
i %o

According to (Il) and (18), these relations witll,fact, obviously be correct whénis

replaced with one of the field quantitieg , Q. , 0P,/ dx , 0Q, / 9% , and one will then
further show that they will remain correct #61 + F, andF;F, when they are assumed to
be correct foF; andF, . One further obtains the corresponding C. R. for

F=[Fav

immediately from (19) by partial integration, nagel
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= h | oF 0 OF

F1 ;r :_.__ ~ Al )
ax' for x =%

;= h | oF 0 OF

[F. Fl = -

“2m X, Fax 00
a)ﬂ for x =%

With the introduction of the symboF / 5P, and oF / Q, , from (4), this can be easily
written as:

Q)= 9F (gpyo- N OF
[F.Q] = 27 P [F.R] : ! (20)

in which the variation is always performed at thene spatial location at which the field
guantities that are found inside the bracket anado

We are now sufficiently prepared to go on to &uksion of the field equations. We
borrow them from classical theory in the canonfoain (1):

: OH : oH
= —, Pa == —, |
< OP, oQ, ®

with the special addition that the partial diffeiations that enter into them are
understood to have the sense that was defined abowgeneral, the special prescription
about the sequence of factorsHnthat the classical paradigm cannot be determined
uniquely will also be required. Thus, for laterphpations,H will be (essentially) a
quadratic form in the field quantities, so thedieluations will be (essentially) lineay, (
such that the prescription (1) will say that theldi equations read precisely the same as
the corresponding classical ones.

The field equations can be written directly innfo

27

. _2_]7i _ 5 _ 27
Qa_ h [H,Qa], Pa h [H1Pg]

by means of (20), from which, by an inductive arguirthat is similar to the one above,
one can conclude that the quanfityhat was considered there will satisfy the refatio

() The Hamiltonian function and the field equations foe matter waves contain products of the
material field quantitiesy and ¢/ with the electromagnetic potentials,. We will see thaty and ¢/
commute with th&, in our theory, so that situation will not be affette
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. ZTM[H’ - (21)
and thus, for:

F = j Fdv,
one can conclude)(

F =2 A @

Two conclusions can be drawn from this equation thabBfendamental importance
for the consistent practicability of the theory. Wstfset F = H in (21), and since
[H, H] =0, that will yield:

H =0, H = const. (22)

The energy theorem is also true hére [in which, it is naturally assumed thit does
not include time explicitly, since (21) applies to only dautges that fulfill that
assumption]. Secondly, we replaewith one of the bracket symbol®4 , Q;],

[Pa, P; ], [Pa, Qs], [P, Qg in (21). Since, from (Il), these brackets arecatiumbers

(more preciselyc-numbers multiplied by the identity operator), they whikén commute

with H, such that the temporal derivatives of the bracketdiffed spatial positions) will

vanish. This means that if one assumes that the QI)Ris true for a certain time point t

= tp then the C. R. will be reproduced for a neighboring time-point by meahs 6éietd

equationgl), and thus, for all timeThe consistency of (1) and (I1) is thus proved by that.
We now apply (20) to the impulse integral that is define(Li3y:

_ 0Q,
Gk _—j ;Paadv. (13)

If one identifiesF with Gy in (20) then one will find that:

ih 0Q ih 0P,
Gl a. = — al G,Pa = — a'
[Gk, Qd] 277 0x, [Gw Pdl 27 0%,

() The role that this relation plays is that it alfoene to avoid the application of equations such as:

: oF . OF . oF 0Q, OF 0P
F = +—P+ a 4 a
%) a0, ¥*op, "X 00, % 2B ox
0xX 0x
which would be inadmissible.
(") One will remark that, in contrast to the older repreation of quantum mechanics, we have not
introduced the assumption thet has been brought into diagonal form, since that certagsesents an

important case in physical applications of the equatioatsnot the only possible one.
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It follows from this by induction for any quantitlf (that does not include spatial
coordinates explicitly) of the kind considered that:

OF _  2nmi
—=-"="[GF], 23
ox. (G F] (23)

which are relations that define one aspect of (21). Duleetfact that:
j 6_de =0,
0%,

and by the existence &f =] F dV, it follows from that relation upon integrating ovaet
spatial volume that:

[Gk, |E] =0,
and, in particular, foF = H , according to (21), one will have:
G, =0, Gy = const., (24)

with which, the existence of the impulse integral in quandynamics will be proved. In
regard to this, one must generally make a remark concettmngequence of factoR,
and 0Q, / dx in (13). Indeed, the validity of (23) and (24) is independ&nthat

sequence, but according to (1%&,, %Q”

} will be singular and indeterminate foi= 0,

since those functions are to be taken at the samialdpaation, and the same thing will

be true ford’ (x). Which linear combination of expressioﬁ;%Q” and %Q" P, should
X X

be employed in the integrands@f can therefore not be established from the outset.
By representing the operators that represent field gjiganby matrices, and in the

special case for which the energy and impuBeare matrices irdiagonal form the

following differential equations for an arbitrary matalementr,,, of F will result from

(21) and (23):

E = ZT”'(Hn ~H ) Fam,

n

oF 271
m=-— (Gk,n —Gk,m) Fam,
0%, h

such that the dependency of the elentggtof space and time will necessarily have the
form of a harmonic wave:
27 Fy = H )t 6 )]

Fom=ame" ) (25)

if one understands® to mean the impulse vector whose components Gye.

Independently of any special representation of the opsratawill follow from repeated
application of (21) and (23) in a known way that for any gtyakt
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2m. — ., , ! 27 = .
_ eTm[H(t -y~e.(v-0] F (X, %, %, 1) e-Tm[H(t-t)-(&(r-r)] |

(26)
F (%%, %, )

To conclude this paragraph, let us mention the developafehe field quantities in
eigen-oscillations as a method of integration; thahésdnly method that has proven to
be practical up to now. One develops the field quantiigerms of their dependency
upon the spatial coordinates in an orthogonal system:

Pa=Y a,(0u,(% % %), Qs=D b, (W(X, %, %), (27)

in which:
j u,us dV = &, (28)
and the inversion formulas read:

azp (0 = [ P (%, %, %) dV, bap (1) = [ QU, (X, %, %) dV. 27)

In this, the y are considered to be c-functions, while theaad b, like the R and Q,,
are considered to be g-numbers.

The fact that the orthogonal system is discrete exaorced by either consider the
field in a cavity, on whose walls certain boundaognditions must be fulfilled (i.e.,
standing waves) or, as is customary in, e.g., tleorly of crystal lattices, by the
restriction of the field to spatially-periodic motis with sufficiently-large periods (i.e.,
travelling waves).

One gets the C. R. for tlaeandb from (11).

/ l/ h !
[8ap, bl = [ [P, Q] U 4, dV dV = z—magﬂj usd, dv,

and the canonical form:
h
[aap’ bﬂa] = 2_]7i5aﬂ 5[)0 (29)

will then follow from (28).

The Hamiltonian functionH goes to a function of tha andb and gives rise to
canonical equations in these variables. Naturalle has complete freedom in the
choice of the orthogonal system. If it so happias one can choosd to be separable
then all of the matrices will be easy to calculaten other cases, one must turn to
perturbation theory for a suitable initial systemhether by the introduction of
Schrddinger functionsg (by, by, ...) or by the original methods of matrix theory.

8 3. Relativistic invariance of the C. C. R. for an invariant.agrangian function.
Up to now, we have spoken of only C. C. R. thatpt®the field quantities at two spatial
locations at the same time point. However, th€ (R. for two different time points are
determined implicitly by the field equations (I)n order for the theory to be useful, it
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must now be demanded that the C. C. R. must also peettezir forms when one goes
from one coordinate system to another by a Lorentistoamation due to the relativistic
invariance of the.agrangian function. The problem of this paragraph is then to provide
evidence that this condition is fulfilled.

If we go from one coordinate system to another by artargansformation then the
values of the bracket symbol (I1) will change on twouwyrds: First of all, the quantities
P, andQ, are not generally scalars, so they will be tramséat in a certain way at a
well-defined world-point. Secondly, other world-points o chosen in the C. C. R. in
the primed coordinate system than the ones that wersen in the unprimed system,
where the latter exhibit a commdrcoordinate, while the former have an equal value of
t. Meanwhile, the change in the bracket that is requisethe latter situation would be
difficult to ascertain, since we cannot exhibit genevaiulas for it in the case of finite
differences in the time values at the two locatiohat tcome under consideration.
However, one can circumvent that difficulty by reging oneself to infinitesimal
Lorentz transformations. In that case, in fact, physical quantity (t') will be replaced
byf (t) +of /ot (' — 1), andof / dt, as well as the associated C. C. R., can be imfdiroen
(). The invariance of the system of equations undetefitransformations will then
follow from the group character of the invariance oftibtality of these transformations.
In what follows, we will proceed accordingly in sucivay that we calculate the changes
in the brackets under infinitesimal Lorentz transforomet separately as a result of the
two aforementioned facts, and then investigate the tiondiunder which they will be
compensated.

If we would begin with the first-mentioned basis foe tchange in the bracket then
we would first have to make some general statementg #imtype of transformations of
the quantitie®?, andQ, under Lorentz transformations. It will be prefeeatd introduce
the imaginary time coordinate, = ict, and to further replace the quantities that were
previously denoted bly, with:

Pu=—L —icp,, (30)

29

0X,

such that:
PRa_p__0H 0Q_1. _10H_JH (30)
ox, ° 0Q,’ ox, ic " icdP, OP,’
[Pas, Q;1= Eagﬂa(r,?), (31)
21T

in which we now apply the overbar in order to cletgeze the space-time location@p,
in order to preserve the prime symbol for the ttamsto another coordinate system. In
what follows, the quantities that were alreadyadtrced in (9), namely:

oL oH
Pai = == ’ (9)
209, 509,

0X, 0X,
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will enter in with the same status as g, although no C. C. R. exist betwe®p and
Pa that are as simple as equation (31). However, in deigathat, one must especially
emphasize that the agreement of the two expressiom, fahat were used in (9) is not
generally guaranteed, due to the non-commutation of odeetiors inH. It is only when
L is a quadratic form in th@'a anddQ, / dx with constant coefficients (with the possible

addition of a function of only th@,) that the argument that was used in the derivation of
(9) can be adopted immediately. One then generally has:

oL
Poy=—5~, (32)
0 0Q,
0x

]

if here, and in what follows, the indicgsv, ... always run 1 to 4, in contrast to the Latin
indices, which only refer to spatial coordinates and rum ficto 3, and in contrast to the
indicesa, £ ..., which distinguish the various quantitifs, and@’. We shall not
make any special assumption about the transformationolathe latter quantities.
However, it can be easily concluded from (32) thatlf one transforms th® quantities
by the orthogonal coordinate transformation (one sures indices that appear twice):

X, = 8w Xy, Aup Avp = O (33)

according to:
Q, =AasQs, (34)

then theP,,, will transform according to:

Py = 8uv BagPpy, (35)
in which theB coefficients depend upon thecoefficients according to:

AgyBg, = Oup. (36)

That is, the matrix oB is the reciprocal of the transpose of the maitixit then follows
from this that the® andQ will always be contracted over equal indices in such a wa
. 0Q, .
that, e.g.,z P, Q, isavector anoz P,,ﬂ% IS a tensor.
a a X,
If we go from the finite transformations to the infesimal ones, wher&,, = ., + &

Suv, Agp = Onp + E 1y, and according to (33) and (36)y = — Sy, Sw =0,Bop=0pp— €
tqsz, and if one neglects quantities of orderthen (33), (34), and (35) will become:

X;I :Xy+£S/1|/X|/ y S/IV:_SV/Il (33)

() This will be true independently of whethky along with Qﬂ, does or does not include tifRg,
explicitly.
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Q, =Qa + £t45 Qp, (34)
P’ﬂ = Pay - gtﬂa Pﬂ/[ + SS/,V Pay . (35)

aj

Moreover, we calculate the brackets of the primeld figiantities, while we nonetheless
first let the world-points),) and (X,) at which the field quantities are taken be fixed.

One will then have:

[Q,, Q] =1[Qa Q]+ €tsy[Qy, Q1 + £t35[Quay Qs1,
[Py Q] =[Paa, Q1+ s [Pav, Qp1 = ety [Pya, Q5] + Etgs[Paa, Qsl,
[P Pl =[Pas, Pyl + S0 [Pav, Pyl + €51 [Pas, Py, ]

— £ty [Pya, Py 1 — £ty5[Paa, P,].

The expressions will simplify substantially when we silte the values (1) [(31),
resp.] of the brackets for the unprimed coordinate systienfact, all terms that contain
thetyps as a factor will then vanish. That is trivial in thesfiand last equation, but in the
second equation that will give a contribution (up to a comeonstant factor):

~tYadyp *ly dy==tpa+154=0.

All that will remain are terms with the factss, , in which it follows, moreover, thai, =
0, sov can be replaced with the indkexhat runs from 1 to 3, such that one will have:

[Q,. ;] =0,
[P Q] :2_; t,%) 3, +€ 50 B Q. (37)
L |5[';4] =&s,] B BA] te sl P _B]'

We can now go on to the calculation of the secondgddlte change in the brackets,
namely, the one that originates in the change ofwtbdd points. Now, it is always
permissible for us to move the origin of the coordirsatggem to either of the two world-
points that then remain fixed. Which of these world-poist irrelevant, since is has
already been shown that the transition from oree sl const, to garallel neighboring
slice in the four-dimensional world will not change theGC R. If we choose the first

point P to be the fixed one then the second éhavill have the valueg = X, x; = 0 in

the unprimed coordinate system, while the pdttwill possess coordinates with the
same values = X, X, = 0 in the primed system. The poiRt will then have the

coordinates X, 0) in the unprimed system, but the pofit will have the coordinates,
(X —€8.%,—€ S X), sincexa = 0. Thus, for any two quantiti€s, F», one will have:
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= = - oF,(P
[Fi(P), F2(P)] = [Fi(P), F2(P)] — £5¢ X{H(P), o )} .
0%,
If we once more leave the origin of the coordinatéesyisarbitrary then the total change
in the brackets will become:

s _— [ eQ, ]
[Q,, Q(P)-[Q, Q(Pl=-¢ s(%= ¥ x|
s e o] Q] -
[Q,, Q(P)-[Q, Q(Pl=-¢ (%= ¥ X te g R D (38)
[P0 Pou(P) ~[ B BB =—¢ 5(%- »: A
adr " B4 ad B4 §< %( I 41 ax}
+es,{[R. BIH R, BRI}

In regard to this, we next remark that the summatidexw can be restricted to 4 in the
terms withs, . That is trivial for the first and last equatiomc® the brackets in question
vanish, but for the middle equation, it will follow frothe fact that the terms that are
endowed with the factorX — x) need to be preserved only when that factor is once

more cancelled by the addition of a derivative ofdHanction with respect ta , which

0 .
will also be important in what follows. Fer=1, 2, 3,{ PM,%} IS now proportional to
X

aicf(t,?), while the term will be made to vanish for k due to the fact thag = 0,
X

such that only = 4 will remain here, as well.

Now, should the C. C. R. (ll) also remain valid fon-parallel neighboring slicé's=
const. then for all skew-symmetrs;, — and thus for alky - the terms ing in the
formulas that were written down must compensatéhfem. That is, one must have:

o 0Q, | _
(Xk Xk)|:Ql’ 6X4 —_01
99, | _
(Yk—&){ﬁ’w% =[Bw Ql (39)
_ apﬂf _ _
(X = %)| R o =[Rw B+ B, B

We now go on to the verification of equations (38} which we assume that does
not include the spatial derivatives Bf The first equation is then fulfilled in its own
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4

55
right, since the brack{tQa, aQﬂ} will then include only the functio@d itself, but not its
X

spatial derivatives; the second equation is alsy &aconfirm. Next, from (II) and (19),
the right-hand side will become:

265 51 = P 500 = 9°H _
h—[Pak,Qﬂ] = aPﬂk 5(t,t):— —(,’ch(t,t),
¢ ba oP,, 8%
0%,

while the left-hand side will yield:

2 vy B 0| Z2m g e OH
h—c(xk &){FZW a)J—hc(xk Xk){ﬁ’w }

V4

d oH d oH o

= (X — —_ 0+(X - -

(% xk)aQaa% (% X‘)ZaaQﬂ,aF},ax
0%

Since the factor ofX, — X must be compensated by a derivative of &tfanction, all
that will remain as a result of partial differemiga with respect toX, —x) is:

__0 oH
099 3P,
0%,
which agrees with the value on the right-hand §ile The last of equations (39) requires

somewhat more calculation. It then follows from®)1hat the value of the right-hand
side of this equation is:

2 = - oP, OP oP 0P, | o
—{[P, P P, Pl} =| —&+—2 |5+ ak 4~ Bk |
hC{[ ak ﬂA] +[ a4 ﬂl]} ( aQﬂ GQLJ IZ aaQﬂ aaQa 6X
0X 0X
0°H 0°H 0°H 0°H 0
— 5_ + - *
0Q, 09, |° 2| T3, a0, T30, 100 |% ©
0Q,0 0Q,0—~ —%9 0—29
0%, 0%, ox 0% 0x 00X

The left-hand side of the last equation (39) beme

() The commutability of the differentiations with respcthe various variables is also rigorously true
for differentiations with respect to matrices, as bee®lear from the definition of that operation thaswa
given in the previous paragrapgh.
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27T oP,
" (x - P.. p4
— (%, xk){ 2 aJ

oH
—(xk xk){ 24 aQﬂ}LT(’* x{)Z 7| B0,
0>ﬂ
PH d| o 3H 35
T50,0% X2 G~ 5, 0T 5, 00, ax,
Qs Q0 o Pox
9°H 9°H 9 o°H
- L _°"__ 5
aQ 99 9Q, aaQﬂ 2 X 50Q 59
70
X 0%, 0x
90 0°H
X ZZ(Xk Xk)a_a)_(‘ aaQaaaQﬂ
ox; 0%

The first term already agrees with the correspanaine in (*), while the last one will
give something non-vanishing only for k or forj = k. In the first case, one will get the
contribution:

_ Z—HE
i aa&aa& 0%
ox  0x
while in the second case, one will get:
65

— z aQa a aQﬂ
axk 0X

which agrees precisely with the terms in (*) theg aultiplied by 00/0x. The only
term that will remain is:

0 0°H _
——— [D(t,¥).
Z axaaQaaaQﬂ (x,7)

0% 0%
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Its vanishing seems to be a special auxiliary conditian is required by the relativistic
invariance of the C. C. R.:

d 9°H
—  |=0. 40
2\ ;00,0 o
ox,  0X%

Indeed, it is not fulfilled for amrbitrary relativistically-invariant Lagrangian functidn
and the associated Hamiltonian functidnbut only for all of them for which equation
(9) is guaranteed, and which we will encounter in physippli@ations. The quadratic
terms in the spatial derivatives of tig (higher ones will not appear at all) will then
always have constant coefficients. With that, weehdoen proved the invariance of the
C. C. R. to the extent that will be necessary infttiewing applications.

It then follows from the form of the C. C. R. thht brackets vanish (infinitesimal
character of the C. C. R.) for all world-points wipace-like connecting directions (i.e.,

Zsz - ¢* At > 0) that are afinite distances from each other. It follows from closer

considerations of a different kind that this state &died doesnot generally remain true
for points on a light cone or with time-like connegtiirections. In that case, the values
of the brackets can also be given explicitly for p®nith finite, non-zero, separation
distances, and only in special cases. In quantum mesh#émat situation corresponds to
the fact that perhaps the coordingfp at timet does not commute with the coordinate at
timet'; the brackets in question cannot generally be givenoikpl

It then follows further from (21) and (23) that:

3 =-icG =¥ 34‘2% av,

_ 0Q,
3.=] [2 oo

(41)

- Lj dv=H=E
define the components of a four-vector that conbittee total energy and the total
impulse. Those relations will then take the form:

oF 2m
— =—1J,, F. 42
0x, hc[ ] (42)

Later on, we will confirm the vector characterJpby direct calculation.
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Il. Presentation of the fundamental equations for the thery of electromagnetic
fields and matter waves.

8 4. Difficulties in electrodynamics, the quantization oMaxwell's equations,
necessity of extra terms.We shall next seek to apply the schema for the ®. ©f the
previous chapter to the equations of vacuum electrodynamitse physical state

guantities here are the componed@g of the four-potential i = i, @4 =1 Pg], from
which the field strengths follow by differentiation:

- acbﬂ _ acba
Pox, 0% (43)
Fao =1€, (Fu,FanF 1) = (94929 9, Fpp =—Fp .

It is known that the usudaxwell equations of vacuum electrodynamics:

oF,
% =0 (44)
0X,

will follow by variation from the action principle:

slLdvd=0
when one substitutes the expression (

L == 4FasFap= (€~ 9% (45)
for the Lagrangian functioh.
We now define the impulses that are canonicallyjuggate to thep,, :

oL
3 0P,
0x,

Poa=

according to the prescription of the first chaged find that:
Pk4 == F4k (k = 1, 2, 3), P44 =0. (46)

The identical vanishing of the impulse that is cgjte tod, represents a remarkable
degeneracy of the Lagrangian function of electradyics, and brings certain

() One always sums over indices that appear twice, anddrales each index independently of the
other ones. Greek indices run from 1 to 4 and Latesdom 1 to 3. Furthermore, it must be remarked
that we shall employ thideavisideunits for the field strengths throughout this chapter.
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complications with it. Above all, thBy, can no longer be specified as arbitrary spatial
functions on a world-slice= const., due to the coupling:

3
zapm =—dive=0 (44)
k=1 aX4

[which follows from (44) fora = 4]. The C. C. R. of Chapter | [cf., also (30)], whic
would yield:

-h

[®,, D] =0, Fa, Fy]=0, Fao ®,]= do == 3, ) (47)
2

in our case, are therefore not applicable with no furissumptions, and the extent to
which they are compatible with the auxiliary conditi@#') must be established. We
immediately find that this is not the case for the equatthat were just written down,

since it would follow from them that:

OF ,cp; = —_hci O, t),
0X, 27T 0%

while, from (44), that expression must vanish. Generally, theRCare useful that
emerge from the given ones by elimination of theepbals by differentiation of the field
strengths:

' ; . -hc 00 00
[Fi, Fn1=0, [Fai, Fy] =0, [Fa, Frnl= o [@'E_dmaj’ (47)
or, when written three-dimensionally:
' ' ; . hc 00 )
[ﬁia ﬁk] = 01 [ina sz] = 0! [Qfl, »62] == [621 531] = H&S (47)

It will then follow from the last of the equatiotizat were written down that:

_ 2 2
)

” 27T | 0% axn_axnax

as required.

The C. R. (47 are, in fact, equivalent to the quantization lece'omagnetic waves
by the notion of light quanta, as one might perheggognize by the introduction of
eigen-oscillations according to the method that grasn at the end of § 2. However, the
fact remains that the general schema of the C..@hd was developed in Chapter | can
be employed in electrodynamics with no further agsions.

It seems natural from our Ansatz regarding thatrastic treatment of the many-
body problem that we should first account for theespnce of particles by the
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introduction of the associated calculations for mattarves. The transition from the
classical theory to the quantum theory will come aboutvo steps: First, there is the
transition from classical point mechanics to the waepiations of the quantum-
mechanical one-body problem (a particle in a prescribectremagnetic field) and the
interpretation of the differential equations thus-aledi in the sense of a classical
continuum theory. Secondly, there is the transitmthe many-body problem, in which
the four-current that the matter waves produce accordiMpkwell’s equations can be
regarded as having been generated by an electromagnetiafidltlkewise since matter
is also an electromagnetic field (and both fields mthweugh the space-time manifold)
will be subjected to quantization. However, that procesishave the result that the
fundamental difficulties that are attached to eachth&f relativistic theories of the
guantum-mechanical one-body problem that have been posed npwt and which
originate in the possibility of having two different sigfor the energy for a given
impulse according to the relativistic formulation ok tkenergy-impulse theory for a
particle, will also persist in our theory and remain ptately unsolved.

Here, we will use th®irac theory of one particle, which accounts for spin, basis,
and therefore, before we go into a further discussidnthe complication in
electrodynamics that we just spoke of, we shall nertnsarize the equations of that
theory, to the extent that they are important toksur functionsy, (0= 1, ..., 4) will be

introduced, along with four four-rowed matricgswhose elements arg,,, and which

satisfy the relations:
iy ryiyi=20w. (48)

The ¢, then satisfy the field equations:

ZZ {max i(jq:ﬂjwp—imcwp:o. (49)

Likewise, thez//; satisfy the adjoint equations:

e .
zz pg(Z_ax__ECD"jw;H mcy) = 0. (50)
The electron charge has been set &(with e positive) in this. We now assert that both

equations will follow from the variational princaal

olLdvdt=0
when one sets:

L:_zzg{yggw (Ziaxi+c¢ Jwg—imczwlwp} T
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and ¢ " and ¢ are varied independently of each other. This is trivialefuation (49),
but for equation (50), the statement will follow from tthatL differs from:

h ay, e t D2t
L'=+ — < ——0 +imc 51
ZZ; {yz{m > o ﬂngwg v, (51)
only by terms that can be written as divergences, andwhén make no contribution to
the variation 01{ L dV dt:
hc 0
L-L=- — (! : 52
2225 yzgaxﬂ Ww,) (52)

U o p

It is important to remark that we do not need teta " and ¢ as commuting in these
calculations, an@v " can always be placed to the leftgsf SinceL, as well a ’, vanish
for the non-varied field motion according to (4@pg50), the same thing will be true for
the differencd. — L”. It is then possible to identify:

Su= (-6 D Vo, (53)
0,0

: 1. : : :
with the current vectoE ==, S = |,0j, where the factor e will naturally enter in as
c

a result of the negative electron charge. Asaltre$(49) and (50), one will then have:

1 =0, (54)

and it will follow further from (51) and (53) that:

oL
ey Sy . (55)
In order to obtain this relation, each of the egpmns (49) and (50) will also be
multiplied byc in the definition oL.

The variational principle from which we have dedvtheDirac field equations
immediately takes on thdamilton form (12), which is characterized by the indepemnde
variation of theP, and Q, and the linearity of the Lagrangian function Q,

(in 0, ,in our cas}. We then have:
0X,
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oL hc hc
Pss = =- E T = o
4 aawg 2m 5 Vil 271¢I”
0x,

The latter notation is justified by the fact thag¢ texpression:

wE = ._z 1/2([[//; (56)

0

can be chosen by means of the differential equat{d@) and (50) for the functiog

that is the complex-conjugate @£, , when they, areHermitian matrices, such that the
expression for the particle density will be given b

11 0
@_I &= Zp:wpwpa (53)

moreover. The C. R. (I) [(31), resp.] then assuhs&esimple form:

W,.¢,] =0,
W1 =2 S ol 911 = 8,05 ¥) (57)

W i 1=[w! w1 =0

here.  The transformation laws for the quantitiggand 1,1/; under Lorentz

transformations does not need to be discussed tail deere, since it will suffice to
remark that they are in harmony with the generdsrwof § 3, and therefore the
relativistic invariant of the C. R. (57) can alssdonsidered to have been proved.

At this point, we might discuss the well-known pkarity that the C. R. (57)
represent only one of two possibilities that argéhboompletely justified, formally
speaking, and indeed one of them corresponds tgytmenetric solutions of the usual
guantum-mechanical equations in configuration sp@ee, Einstein-Bose statistics),
while the other case corresponds to the antisynenswlutions (i.e., Fermi-Dirac
statistics) of the-number relations that arise from (57) when ondacss the — signs in
the brackets with + signs everywhere. If we th@roduce the abbreviation:

[F, G+ =FG + GF
then we will get:

o _1- 1 =
[wp,w[,]—i;y:;[w,,,m 3,,d, t), s7a)
W, @), =¥, 1. <[y} w)] =0
here.
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It is necessary for us to go into the changes in thergeequations (19) and (20) of §
2 that arise from this. It is clear that in theseatus the bracket must be given the +
signin the event thaF is linear in ¢ or ¢ (or their derivatives). One will see that this
is the case for all brackets that appear in the invegigmoof of 8 3, and that this will
carry over directly to the case that is presentfptgeus. By contrast, the proof of (19)
gives some insight into the combinationFgfandF; into F1 F, . One then has:

[F1F2, Qo)-=F1 (F2 Qo+ Qo F2) — (F1 Qo + Qo F1) F2,
[Pa, FiF2]- = (PaF1 + F1 Pg) Fo = F1 (Po F2 + F2 Py),

only for the usual bracket with the — sign, whife F,, Q,]+ and P., F1 F2]+ cannot be
reduced to the corresponding symbolsHpandF, individually. Thus, ifF is abilinear
formin ¢, 0wt 10% , ¢, dw! 0%, in which they " always stands to the left of thye
then theusual bracketsvill be taken with the — signs. Therefore, the C(F.) and (23)
[(42), resp.] for energy and impulse are also valid whig usual brackets, which is of
decisive significance for the feasibility of the theory

One sees that the two types of solutions — namelytdiiinBose statistics, on the one
hand, and the exclusion principle (forbidden equivalerme}he other — seem to still be
completely justified formally from the standpoint oétQuantization of the waves and the
relativistically-invariant treatment of the many-bodylplem, as well, and a satisfactory
explanation for the preference of the second posgililt nature can therefore not be
given (). Specialy+functions are introduced for protons, as well as foctedes, which
commute with the latter, moreover. However, sina eéquations for these two read
completely the same — apart from the fact thatgets replaced with € andm with M
—we do not need to go into that further.

We can now consider the interaction of matter wawéh the electromagnetic field,
which is produced by the variational principle:

s/Ldvdi=0,

when one replacdswith the sum of the radiation paﬁf) [equation (45)] and the matter
partL™ [equation (51)]. As a result of (55), it follows fromghhat:

oF,; _

axﬂ

Sa1

when the expression (53) is substituteddpr Physically, this means that this current
vector is definitive for not only the effect of an ext& field on matter, but also
conversely serves to generate a field. Howeverpotiig more raises the complication of
exhibiting the C. R. that is in harmony with the corditi

(") The information thaP. Jordan gave in regard to this in Ergebisse der exakten Nasemischaftern
7 (1929), 206 was incorrect. In neither of the two cagesld a zero-point energy appear for matter
waves, moreover.
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div ¢ = %84 =p=(-€ Dy, .
Namely, if we define:
[div & ¢;/1= (-8 dv,v) ¢,

which applies to (57), as well as (57a), then it willdallby integrating ;) over a finite
volume that contains the poifx’) that:

Jediyl | =coy.

However, that means that the electric field strergtcannot commute with the matter
field ¢ for finite distances between the spatial pointy &nd (x'), as well. Devising a

theory with such non-infinitesimal C. R. seems ficadly hopeless, especially since the
proof of the relativistic invariance of such C. Riight be linked with great
complications.

However, it is possible to avoid that complicatioy a formal trick that consists in
adding small extra terms to the Lagrangian functidnof electrodynamics, that likewise
contain only first derivatives of the potent®), and do not affect the linearity of the field
equations, but which imply th&4 no longer vanishes identically. One then coumtse
altered equations with the canonical C. R. and flienlets the coefficients of the extra
terms converge to zero in the physical applicatinghe final results. The simplest
possibility for such an extra terms is expressethbyAnsatz:

L= S FuaFor— £ (O 02 Dive =3

o0,
ox,

(58)

Yet another possibility is:
1 £ 0D _ 0D
—L9==(1+8FopFop—— —2—2.
4( ) Fas Fas 2 0x; 0X%g

It can then be easily shown that the differenceveen the variations of the integrals of
L' andL vanish identically. The C. R. would generallydifferent in the two cases, but
it can be assumed that all physical final resuliis ve the same in the limit as - 0.
The Ansatz (58) foL shall then be retained in what follows. The medifViaxwell
equations then read:

aFgﬂ a . _ a . _
—F+e—(Divd) =(1+5 — (Divd)—-OP,=5,. (59)
0, 0x, 0X

a

Moreover, in place of (46), the impulses that anejugate to th&, are now:
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Pua = — Fy4, Pa=¢€ Div CD, (60)

and the C. C. R. will become:

[CDa,CD'ﬂ] =0, [4” A;k] =0, [F‘“,DiVCD] =0,
[Fy @,1= .0—5(t t), [Div , CD]—%Ed v). (61)

One further sees that the previously-written C(4) remain correct, but are extended
by ones that contain tla#sb, / dx4 ; the equations (4yor (47') then remain true, as well.
Furthermore, equation (59) is now no longer afiédéte o = 4, since the second temporal
derivative of®, enters into it, such that now tie, and the conjugate,, can, in fact, be
given for a certain time points as arbitrary spdtiactions. Let it be remarked that the
complete invariance of the theory under variatiohshe potentials that leave the field
strengths unchanged, namely, ones for which:

o =g+ A
0Xx

a

no longer exists now, but this invariance will pably remain when one subjects the
function A to the auxiliary condition:

OA = const.

The relativistic invariance of C. R. (61) is alsooyed rigorously fore # 0 by the
considerations of § 2.

The essential basic assumptions of our theorg@mtained in the expression (58) and
(51) for the Lagrangian function of radiation andttar, and the associated C. C. R. (61)
and (57) or (57a). We extend them by writing ddha expressions for théamiltonian
functions. According to (60) and (58), one wilviea

HO =P, 9P 10 = Fy 9P 4 opiv 99 4 1Fy Fix — (Div ®)?
ox, 0X, 0X,
~ 4 Fax Fac + 4 Fic Fic — Fa %qjk v ®)° v o 20 (58)
4
for the radiation part, and according to (51) &fs),(one will have:
hc 0 hc 0
HO == 2 ] ;X”” L=+ 2y ;X” —imciyy, + eyl w,®,
=+ C gt W, W mcar L, el W @ + ey, ®, (51)

2 777 ox,
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for the matter part, if one sets:

a“=i < at=y with a“a’+a’a" =2d,. (48)
Furthermore, one must add the statement that is oedtan the C. C. R. for the total
field that all electromagnetic field quantities (potahtifield strengths, and Diw)
commutewith all field quantities of the matter waveg,(, z//;) (for the same time-point).

This fact, which includes an essential difference betwe# theory and the theory of
Jordan andKlein, which is valid in the limit - o, implies a great simplification in the
calculations. On the other hand, the splitting of ttagrangian function into two
summands that are completely independent logically anckspond to the matter and
light waves (if one also considers protons then therd kel three independent
summands) corresponds to the provisional characteurofheory and can probably be
modified later in favor of a unified conception of alhgea of wave fields.

8 5. On the relationship between the equations that wepresented here and the
previous Ansatze for the quantum electrodynamics of charg&ee fields. In a
previous paper byordan andPauli (), the C. R. of electrodynamics were formulated in
the special case of the absence of charged particlesafsmmewhat different standpoint,
for which the four-dimensional integrals (over space am#) were considered with
brackets in integrands, which might then be referredasothe four-dimensional
standpoint, for that reason. Theré-function was defined by the relation:

jv f(X,...,t)A(X,...,t)dV dt
' 1 1 (62)
=, fOux g, ct=-n=-dgaxdx-[  {x % ¥ o ) dxdxdx

which was assumed to be valid for any functfo(x, ..., t), such that this function
presents a singularity on the light carte= — r andct = +r, and indeed with the opposite
signs for the past and future. In that sense, one sarsel:

AX ... 1) = %[5(r +ct) = 3(r - cb), (62)

if one understanddto once more mean the ordina¥yunction.

One now asks what follows from the relation'{6@r theA-function when we always
introduce only three-dimensional integrals over spgaed, instead of four-dimensional
integrals over space-time, consistent with the stamtiploat we have assumed here.

We then first obtain:

A =0 forintegrals over=0 (63)

() P. Jordan and W. Pauli, Zeit. Phys.47 (1928), 151. This section is not required for an
understanding of what follows.



Heisenberg and Pauli — On the quantum dynamics of wave fields 33

from (62). The same thing is then true for the spatialvaigves ofA and the second
time derivatives, since they can be expressed in teftie spatial ones by:

L . 1 0A . .
However, something interesting happens when we specrah%zteto three-dimensional
c

integrals using (62 We then get:
10A
—— =09(n),
c ot )

which can, however, be converted further. Namely,flét;, X, Xs) be an arbitrary
function of the three spatial coordinates, and evaluat

[ f%é’(r)dxl dx, d.

We introduce polar coordinates and set the fundtitimat is integrated over the angle
equal tod(r):

qa(r):j fdQ, so  ®(0) = 47t (0),
Sso:

j f%é’(r)dv = T d(r) 20 (r )rdr .

If we think of ®(r) as being an even function for negativésuch that®d(r) remains
continuous for = 0 andr ®(r) still has a continuous derivative for= 0) then, since’
(r) is an odd function, we can also write:

= — ®(0) =- 4771(0).

r=0

j fgé’(r)dv = f ®J(r)rdr :—i(rcb)
r i dr

Since the integral that is being calculated hasvittee — 47f (0) for allf (X1, X2, X3), we
can say that we have:

1 ‘2_? = - 4715 (Xy, X, Xa)  for integrals ovet = 0. (64)
c

We can directly adapt the C. R. for the field st in the paper afordan andPauli,
namely:

(€, &1 = [9 9] =

ihc[ 92 92

877 | Ox 0x, % czatzj AP=h,



Heisenberg and Pauli — On the quantum dynamics of wave fields 34

into the ones (47 that are employed here, which actually emergenftbe ones that
were written down by means of (63) and (64).

The four-dimensional viewpoint has the advantager dhe three-dimensional one
that it makes the relativistic invariance of theRC.immediately obvious, while that must
be verified by the somewhat circumstantial methoti§ 2 for the three-dimensional
viewpoint that is assumed here. Nevertheless, ave Imany grounds for believing that
the three-dimensional viewpoint should be prefemetthe formulation of the C. R. First
of all, from the four-dimensional viewpoint, thecfathat the generalization to other
waves than light waves is not entirely clear igsult of the fact that not just neighboring
points will contribute to the integral over the ¢at here. Even for force-free matter
waves, it would be a result of the dependency eif fhhase velocity on the wave length
that a four-dimensional integral over the interadrthe light cone would appear in the
definition of the associated-function, along with the three-dimensional intdgoaer
that light cone. For matter waves in an extertedteomagnetic field, the analogue of the
A-function can, in fact, be defined on the basigproperties, but it can no longer be
calculated explicitly, in general. Finally, in @hysical applications, it is always just the
three-dimensional integral over = const., that is in question, such that the three
dimensional viewpoint also has a closer connediiotie physical content of the theory
than the four-dimensional one.

8 6. Differential and integral form of the conservation lawfor the energy and
impulse of the total wave field. In Chapter I, it was shown how one could alway® g
temporally-constant volume integrals for the teadrgy and total impulse [see equations
(7), (13), and (41)], from the canonical form oé tireld equations, namely:

= 9Q _
3= | (ZH: Pra o 5ﬂ4Lj dv, (41)

a

in which the components of the four-vectdy for v = 1, 2, 3, which represent the
components of the impulse, multiplied byc-while J, = H determines the total energy.
However, it was not shown there whether energyianmlilse can also be conserved in
the differential form:

T
AP (65)
X,

in which T, in represents the tensor of stress and energyngnadse density in a known
way, from which the constancy of:

Jy = j T, dVv (66)
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then follows. Here, we would like to show that tlgsin fact, the case, and that indeed
the integrands in (4Land (66) do not agree, but the values of the integralpbably
be always assumed to vanish when they are restingt@@-dimensional) outer surface
integrals. However, it should be emphasized thatshaeild expect conservation laws
for only the total field, which is composed of the electagnetic and matter waves.

We begin with the discussion of the contribution & thatter waves to the energy
tensor. It is well-known, and was calculated mosnmietely by Tetrode (). The
calculations in question shall again be sketched out hateyith consideration given to
the non-commutation of the factors that are preseratrtii®y with the expression (51) for
the matter part of the Lagrangian function and thaticet (55), we would like to see how
the expressiork,, s, for the Lorentz force can be converted into a four-dsrenal
divergence. One then has:

oo, 0P 0P 0
Fuws =| —4+-———"|sv=—%5 —(¥,9),
g (axﬂ 0x, j 0x,, ax,  “

in which, from what was said already, use was nwdée following important relation
(54), viz.:

9% (54)

which follows from the field equations for matteawves. If we further make note of (55)
then it will follow that:
oL 0, 0
ST S0, ax, ox,
v U

(®.8)- (67)

From this, it is important that the current compase must commute with all
electromagnetic field quantities, since they arpressible in terms of onlgand ¢,
such that the sequence of factors does not erite(6i@). On the same grounds (i.e., the
commutation 00®,, / 9x,, with z,l/andz//T), we can set:

oL _ oL od, Oy, oL 0%, oL oL 9y, oL 9y,
ox, 0, ox, Ox, Oy 0x,0% 661//; oy, 0%, aal/’p 0%0%
0x, 0x,

in which one must be careful that the factors tattaing " must always appear to the
left of the factors that contagr. One finally has the field equations:

oL _ 9 oL oL _ 9 oL
0y, 0, 04, | oy, 0x ,04,"
ox, 0x,

() H. Tetrode, Zeit. Phys.]oc. cit.
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which emerge from the vanishing of the variatio. p$uch that we finally get from (67):

O, 9 oL oW, oL |3 oL |0y,
0x,, a&a% 6)9,6)56% 6)56% 0%
0x, 0x, 0x,
62
S T L0 (0,8);
a%axvaxﬂ ax, 0%
0x,

F,qu/:

that is, the energy-impulse tensgf” of matter, which is defined by:

T(m):‘w’;i oL, oL 0y,

v _5/1VL+¢/1$/’ (68)
“ ox, 0, aaw; aal/’p 0X,
0x, 0x,
satisfies the relations:
oty
F,uv s =- —. (69)
ox,

The first term in (68) drops out, in turn, by tHeoxe (51) oL, soL itself can also be set
equal to zero then, and it is interesting to pout that its derivation by the relation (69)
will also remain valid when one repladesvith L' [see equation (5)] in (68), or with

+ L") /2. With the expression (51) far we get from (68):

_ - r|hc 9
GIEY pZ", yf,pw[{ 271 o +e¢ﬂj¢/[,. (70)

he

oy
t+ V¥
27 ; Vol ox,,

—Tm =
T, =

This expression for the tensd’ﬁj’) IS not symmetric inz and v. As Tetrode has

shown, an expression for the energy tensor tratmemetric ing and v can also be used.
However, since it will lead to the same integralueafor energy and impulse as the
a;symmetric expressions (68) or (70), we do not meeap into that point any further here
()

We now go on to the part of the energy-impulseaenhat the electromagnetic field
contributes. Moreover, we will demand that thi$tp‘@fj) , along with the expression

(54):

oF
s, = —2 +£i(Div ®d) (59)
0x,

0Xx .,

* e . (m) . . . .
() By contrast, it is necessary to employ the expredsio " that is symmetric iz and v in the
calculation of the total angular impulse.
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for the current, must fulfill the relation:

o1

7

ox,

=Fus,. (71)

If the term that is multiplied by were not present then T could be taken to be the

Maxwell tensor:
Suw=Fup Fvp= 2 Foo Foo O (72)

in a known way, since, with consideration given to itentity (43), it will fulfill the
identity:

0S oF
Z=-Fy —2. (73)
0X, X,

We must then look for extra terms that are proportidoat that are counted in the
second term in the expression for the current. Howavehjs we will keep in mind the
fact that according to the equation:

which follows from the field equations for matter waassa result of (59), one will have:

2
O Divd = —acb"

=0. 74
—~ axf, X, (74)

We then assert that the extra tegin,, , with:

_ 0 . 0 . 0 . 1, .
=, 67(DIV D) +CD#R(DIV D) —E(deDlv ) J,, +§(D|v 25, (75)

]

that gets added to (72) will give what is desired. (Therlmars mean symmetrization,
due to the non-commutation of factors.) We then obtain:

2

(Div ®) +—~—(Div @) —-® ODiv ®
0x, 0% 0%

ox

%w = (Div )2~ Div o+, —2
ox, 0X,, 0x,
? 3P

-9 9 iy ) -Div -2 Div o -, —(Div @) + s

ox, 9, 0X, 0% 0%, 0

%(Div D) .

As a result of (74), all that remains in this is:
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0 . 0
— (Div®) =-Fy
(Div @) =-Fy ox,

(Div @), (76)
0%,

0z, (0¥, _ 00,
0X, ox, 0x

o

so when one employs the expression (58).frone will get:

—TO =

_ 9 9 9 | 9
—prFup+£¢V67(D|v¢)+£¢ﬂa(Dlv CD)—&‘@(CD[)DIV ®) I+ L, (77)

V]

which is, in fact, relation (71). Using (59), one canwat this into:

0P 0 od, .
-T® =F, P — (P Fyp) ——LDiVO+®
v p ox, 6Xp( u Fuo) ox, S
+ 62 (@, Divo)-e-2 (@ Div d) Gu+LO g (77)
0X 0Xx

u 0

It is now essential that the termsdn, s, must cancel precisely when one a{dg)
and(68). One obtains the difference as the sum ofrttegrands of (4}

Tw=TO+TY (78)

w1

which, in fact, fulfills the conservation law (65),o0m (69) and (71), and with
consideration to the value (60) of the impulse of thetedenagnetic field, one gets, for
=4:

S, S a a
T;54)+ T;54)_ {z P % L5p4j
> 0x,

0 0 . 0 )
=+— (®,Fy) —&—(Py Div D) + £ —(D,Div D) 9,4 .
aX(u4p) aX(4 ) ax(p ) Qua

2 u 2

However, these expressions contain ospatial derivatives, so they will vanish upon
integrating over spatial volumes. Sinég = 0, this is trivial for the first term, and for
the other ones, it will be immediately obvious for 1, 2, 3, while for = 4, what will
remain is:

0 . 0 . 3.9 )
—&—(P4DiVD)+&—(D,Div D) =€ Y — (D¢ Div D).
™ (Py ) ™ (®p ) ;axk( k )

u 0

With that, the desired proof is completed, and the adimrebetween the differential
form and the canonical integral form of the conservalaovs is exhibited in our case. At
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the same time, the vector charactedob also verified once more. However, it must be
emphasized that the given expression for the eleeyoetic part of the energy and
impulse contains a zero-point energy for the radiateanwell as a self-energy for the
electrons and protons, which does not correspond tayréali The extent to which this
fundamental gap in the theory that is being developed hesenddenevertheless, affect
the calculations in special physical problems will bewssed in the following chapter.

lll. Approximation methods for the integration of the equations
and physical applications.

8 7. Presentation of the difference equations for the pbability amplitudes. The
calculations of this chapter will be based upon keamiltonian function H whose
radiation and matter wave parts are given by)(88d (51). For this, it becomes
convenient to introduce a raahccording to, = ict, and to correspondingly also sef =
i o . Furthermore, with regard to the applications, wdl slgain go from thédeaviside

units to the ordinary ones, such that tewill be replaced withi ®,, whiles, is

Jam
replaced withv/4rrs,. Finally, it is convenient to introduce potem;ialbf, (c-numbers)

of external, “applied” forces whose sources are cminted with the system. For
example, due to the large mass of the atomic nutlevill often be convenient to

consider the forces that originate with them in m& and thus, to neglect the reaction.

With the introduction of the impulses that are jogate to the potential®, (when
measured in ordinary units) according to:

ﬂk=—i€k=+ 1 (_16d>k+6d>0}

4rrc 4me\ ¢ ot 0
(60)

n, = 1 ¢, = P 66Dk+_16d>0’

4rrc 4mc| 0%, c Ot

such that the C. R. read:
h

M, ®1=—03s0(r, ), 61
[pg] Znipa(tt) (61)

the radiation part of the Hamiltonian function vaisume the form:

() Itis known thaKlein andJordan were able to eliminate certain factors in the exgioesfor energy
by reordering in their theory of the self-energy of tleeteon. That reordering is equivalent to the addition
of certain terms that include the bracke [ ¢] to the energy density. In our theory, in whi¢h
commutes withy at the same time point, it seems that no analogtieeti§lein-Jordan trick exists that
would be quite so simple.
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2 2
A0 = [avi| 22 %) openz- 2P, + 28 nz P L (79)
16\ ax,  0x 0%, € 0%

Correspondingly, one then gets the matter part offmiltonian in the form of:

qm =

hc

j dv {— as, o,

0X,

= + Méay W, + €D+ aplf W, ~ eéd>8+d>o)w5wg} (79a)

The associated C. R. are determined from (57) and (57b¢f@®:

a) Einstein-Bose statistics:

Wo (r) Yo (v) =, (") Yo (¥) = G0 O (x, V). (57)
b) Exclusion principle (forbidden equivalence):

Wo () Y, (x) + @ (x) Yo (v) = Gao O (x, V). (57a)

In order to solve the quantum-theoretical problem ihatefined by equation (79a),
one conveniently develops tiye(®, resp.) in a suitable orthogonal system. The dassi
solutions of the field equations that one obtains whes deletes the interaction terms
(and thus, the terms of the form¢ a ¢ ®) from (79a) lend themselves to that
development in a natural way.

We therefore first assume that higac equations for the matter waves are integrated
for the potentials®® , which we assume are constant in time. [When@fjecontain a
component that is variable in time, one can splitfitaofl, if convenient, treat it together
with the interaction terms of (79).] Each eigenvdief the “unperturbed” problem that
was solved belongs to a system of eigenfunctigns (, 2, 3, 4), which is normalized
according to the equation:

[avy'g=4ds. (80)
One further has the “inverse” orthogonality relations:

DUPE) () = G I(r, v). (80)

We then set:
Wo= au;, wy= Y alu). (81)

Thea quantities satisfy the C. R.:
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Bose - Einstein statistics: a.a’— g'a =J } (82)

Exclusion principle : aa’+da=9,

The same process shall further be applied to the cadtsgti@n with no interaction with
matter. However, on grounds that will be explaineér]atve will not start with the
Hamiltonian function (79) then, but with a somewhat modified fumeti(doubly-

appearing indices will always be summed over):

2 2
H :.[dv 1 (0%, 0P, + 2N - 0P, om, L2 nz- EC adakn
16\ 0x,  0x 0% £+5 E+0 0

) (6(19,(} +£[a¢0j }; )
8r(e+9)| 0x, 8\ 9%,

ois a small parameter. We now look for the solutkmnthe classical wave problem that
are associated with (82). To that end, we set, in avkiveay:

0

8 Vi /i L IT
() :,f— " cos— k. X[Bin—A ysin—u z
1 L3 ql L r L ry LM’

®, = /% ay sinl—LTer[d:osg)lr stin][T,ur z,
(84)
8 . TT . IT T
Q. = f_ ' sin— k. X[sin— A y[cos— 1. z,
3 L3 q3 L r L ry LM

8 L IT L TT L TIT
(0} :,f— ' sin— k. X[Sin— A y[sin—u z
0 L3 qO L r L ry L/'ll’

In this, L means the edge length of the (cubic) cavity, andi,, 1 are whole numbers
that belong to the oscillation with the indexWe likewise set:

8 Vi /i L TT
M :,/— " cos— K, X[in— A yOsin-u z,
1 L3 pl L r L ry Llur
I, —,/f p, Sin ILTK x[tos—)l stm—,ur z,

(85)
8 T
n,= e p; Sin LerE‘sm—)l yEk:os—,ur z,

M, —\/E Py SiN ILTerDsm—)l y[rsm—,ur z.
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TheHamiltonian function thus goes to:

HO® =272 + 2
”C( " e+5Q’j
crir Ecir
-—q +A 0+ +
LqO(Krpi rﬂz lurQ‘») L( +5)
, EO0 577

(oK + A, + )

B Gk + 84 + gy )
&’k A+A B+y B

8L2

8L2

+5 82

TEHAA, — Gk)? +H( i — )2+ (Gl — ).

42

(86)

This function belongs to the corresponding candneguations, which read, after

eliminatingp:

L2
E

I_ 2
[—-%+W+fﬂﬁ%

o+ (K24 A2+ ) ] = (1+a)[

d+e) -

L

S

gl—

— G+ 4+HA G4 G

— G 4G +A Gy G

b+r q+Aq+u g

(87)

= (]_+ 5)( L

I— g 2 2 2 | — _L-
(1—5){—[(;7) o+ (k24 A +mqo}— (1+a)[ Egendedarm gl

I_ 2
(—-%+W+fﬂﬁ%

S

For every value of (i.e., for every system of values &f A, &), equations (87) describe
the motions of four coupled oscillators. The dleassolution of such a problem will be

found by the Ansatzy, =by cos 27vi t, g =b;cos 2rvi t, ¢, =b, cos 27v t, g; =bs
cos 2rv, t. Equation (87) then goes to a system of lineaatgns with the determinant

(ZLV 0 X _Kr2+42+/42_vr:2j:
C

- -k A -K -KkV
1+£ rer rH /qr
WA R -Av
K mHA - -y
reer 1+£ r
VK VA v X120 1y
1+¢
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By setting the determinant equal to zero, one obtairipla tootv'* = x>+ A%+ y?, and
a single root:

i =5 £0 [Ik? + A7 + 142).

We denote the four roots w1 ; Vi2; Wr3; Vro. The three roote 1 =V, 2 =V, 3 belong to
three linearly-independent solutions that satisfy thelitiom:

by & + b2 A + b3t +lo v, | = 0. (89)
V; obelongs to the (un-normalized) solution:

v
b, = «, b, = A, bz = 14, bo=- 1_r'05- (90)

In the limiting cased = 0, one will always have o= v; 1, and the fourth oscillation will
no longer be linearly-independent of the first threeher&€ will then exist only three
proper, periodic, linearly-independent solutions of (87). fbleth linearly-independent
solution of (87) will then be aperiodic and can be olgt@iby passing to the limé —» 0
in the following way: Foid# 0, we combine the two solutions:

q, = A Sin 2TV 1 t, q, = K Sin 2Tvi o,
O, = Ar Sin 27v; 1 t, 0, = Ar Sin 27vi o t,
Qs = L SIN 2TV 1 1, Qs = L SIN 2T o t,
0o =~ V;, COS 2TV 11, Qp=—

by subtraction to form a beat:

ViV, o . V=V
0 =2k, 00527—”2 L2t sin 710t

-v
o, = ZACOSZT” Vioy ginaria” oy
2 2

| (91)

I/rO r1 I/r 0
O =24 cosZT 2 tstrT't

!

V. +V V-V v
q{):2vr’vls|n2n%tsmzr%)t—(v;yl— "Oj cosav, it .

In the limit 0 — 0, one will have/ o=V, (1—%—%) ; if one multiplies the values of
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by £/ 2 and goes td = 0 then one will obtain:

q =21+ e)v, tlk, cosaw,t

Q, =271(1+ &)V, t0 cosaw. t ,

Q; = 271(1+ &)y, t it cos 2w, t

Gy =21+ e, tW sin2w,t—- (e Yy cosat .

(92)

Aperiodic solutions of (87) then exist f@r= 0. If one defines the associated partial
oscillation of the field strengths then that will el

GA — K =0, ..., Ook, +Ciq§= 26 V! K [0S 27T t, ... (93)
s

Thus, the aperiodic changes in the potential belong togeroscillations of the field
strengths, which vanish whea - 0, moreover. The aperiodic solutions that are
considered here have the simple form of the C. R) {(6Xhank, since they guarantee the
commutation ofdy and®, . However, the transitioa -~ 0 can be completed with no
difficulties in all physical questions, since no apemasblutions of the kind (92) exist for
the field strengths.

Nevertheless, it would be inconvenient to calculateh witese aperiodic initial

solutions; for that reason, we have added &erm into the functionH;. The

introduction of thedterm then has a reason that is similar to the dghtction of the
cavity: It implies a discrete eigenvalue spectrum. @ss/éinddterms generally disturb
the invariance of the equations under spatial and temparaformations. In the final
result, however, if we go to the limit of an infialy large cavity and the limit od =0
then the invariance will once more be restored.

The transition to the quantum-theoretical solutioreqfiation (86) comes about in
such a way that one introduces the impulse and coordiohtee principal oscillations
P, Q' (there are four of them for each in place of the', d', and indeed an elementary
calculation will yield the possible schema:
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/] q UK. + K, + K\/ -0
e T o e S oy
1 o =- K, q+ KK, Q-+ A c AN1-0 >
JacL ™ o2k T v vk T e Ja Yo
1 JAZ+K? o L HN1=0 P

r
q3:_ [ I 0
13 12,1
L Vr 1 r \[ 6 r1 6Vr ,lVr ,0

I

r V, VrO

Vac
1 rl
_q = — P’
JacL ® o Jov, C Ja-o)ov v rlQ‘)
4cL

V! UK, W,
r :/1 1 P' + rtr P —_
b= A +Kr2 ! \/vr’!l(/]f +Kr2) 2 @a- cS)v’2 Q
ov,

/12+K / rl(/12+K -2 oW oy &

/1r2 +Kr2 Jvr 0
N a-ow? @ (94)

NacL py =/ dv; , Q.
One then has:
1 . 1 .
PI‘ — 'I‘ , PI‘ - — r ,
' 2nv,, Q ° 2,

and furthermore, the C. R.:

[P Q] = dds 2; PP =0, [Q.Q] =0 (=123 0k=1, 2 3,0).

The equationP, = - Q) shows that thélamiltonian function includes(P;)? and

r,0

(Q))? with negative signs:

Ho = 27via 3[(R)* +(Q)7 + 2mvi2 3[(F)* +(Q))’]
(95)
+ 21mvi 3 5[(R)* +(Q)] = 27vio 3[(R)* +(Q) 7T -

In order to not be forced to always write the pipat oscillation separately with the
index 0 in what follows, we introduce:

Vra=—Vro,
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and furthermore:
Pr,4:_Q(;, Qr,4: IDOr- (96)

From now on, we enumerate the principal oscillatiwith an indexA that runs from
1to 4:

Q™ =(Q, . Q. R,
Pr,/l E(Plr, Pzr, Psr,_Q(;).

With the help of (94) and (84), the potentials can now bétemrin a form that is
analogous to (81):

cDi :QMUiM, CDO - FjAUrOA’
1 1 (97)
I_I- - Pr/l /1, I—I - A A )
' 4cL W ° 4c|_Q "

The v and w” mean the orthogonal system of eigenfunctions otéhaty.

In place of the coefficients, a in equation (81) and the, Q in equation (97), one
now introduces the number of corpuscles in cornegpg quantum states as a variable,
asDirac did for the first time in his theory of radiatiori.et the number of electrons in
the states be Ns , and let the number of light quanta in the statee M, . Call the
canonically-conjugate angl€x (x:, resp.).

One shall then havé)(

Bose - Einstein statistics :

g 27
a=e N2 d= Ne
Exclusion principle :

_orig 2
a,=Ve " 'NY, &= NFe TV,

Radiation : (98)

r h 1/2 ZTme ’L:erﬂ 1/2
P = 4— Mr/] e +e M 1|
T , ,

m_1/h 1/2 Py Al 1/2
Q =- 4— Mr/i eh -e N Mr 1
| T ’ ’

The quantitied’s are the sign functions that were introduceddrdan andWigner:

Vs= ] (1-2N). (99)

t<s

(") Cf., the repeatedly-cited paperJafrdan andWigner on this.
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The exponential functions of the phase angles caederded as operators, and have the
following properties:

Bose - Einstein statistics :
27

765 .
eh ~ convertsN, intoN,- 1,
Exclusion principle :

271

e " N, "1-N, (100)
Radiation :

2n

en™ M "M -1

We now go on to the presentation of tBehrddinger equation that belongs to the
Hamiltonian function (79) plus (79a). The probability functigrshall depend upon the
variablesNs andM,, so |¢ F shall then give the probability th&k electrons will be
found in the stats, andM; light quanta shall be found in the state One obtains the
differential equation that belongs th when one expresses thein (79) and (79a) in

terms ofN, @, andM, x with the help of (81), (97), (98), and then regards theezsngs

operators and setsl(~ E) ¢ = 0 E is the total energy of the system). One will thea us
the the fact that thes andv;, are solutions oHamilton’s equation (79) [(79a), resp.]
with no interaction terms to good advantage. The “unpeetd” energy will then have
the simple form:

E= ZESNS+Z(Mr,A +%) th,/i '
s rA

The term$ 2 hv means an infinite additive zero-point energy @ thdiation cavity.

Since that term enters into the total energy oslgmadditive constant, it has no physical
meaning, and can then be dropped (cf., pp. 52)ndfexpresses the interaction terrflin
in terms ofu andv then the following integral will appear:

c/ :J’ uya,, 4o’ dv, Lot
dr/l_'[ &t ,,rA ( )
s = | Uy U0, dv.

The difference equation for the probability ammigup (N1, Nz, ...; M1, My, ...) then
ultimately reads (in what follows, the summatiogrswill again be written out):

a) In the case @dose-Einsteinstatistics for matter:

(FE+D NE+> M, lv,) ¢ (Ny, Ny, ...; My, My, ...)
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Z Ni./Z(N[+1)l/2

str/1
[M”Z(dff— ic)@(N,...,N.-1...,N+L1...;M,....M_,-1,...)
+ Mo+ D)2 (d +ic) @(Ng, ... ,Ns— 1, . ,Ne+ 1, . sMy, o, Mp + 1, .00)]

h
™
[M”z(d —ic)P(N,...; M,...,M_, —1,..)

+ M+ D72 (d2 +ic) @ (Ny, ...;My, o, M+ 1, )] (102)

b) In the case of the exclusion principle for reatt

(—E+z NSES+Z M,h,) @ (Ny, Ny ...; My, My, ...)

\/75)]2([\5 N,,.. W.(N.,..,I= N,..)

[MYA A =i ¢(N,,...,1- N, 1= N,,... ;M,...,M_, -1,..)
+(|\/|M + 1M (d? +ic?) @(Ny, ..., 1= Ng, oo, T=Np, i My, o, Mia + 1, .00)]

h
yeo Il
[M“Z(df: e P(N,...; My,... .M, —1,...)

+ M+ P2 (d2 +ic) @ (Ny, ...; My, o, M+ 1, )] (103)

The summand = s is excluded from the summatid.

8 8. Calculation of the perturbed eigenvalues up to second ad in the
interaction terms. If one regards the interaction terms in equat{@d), (103) as small
perturbations then one can attempt to integrate2)(1Q103) by successive
approximations. In the unperturbed system, Kdglectrons are found in the stae
while no light quanta at all are present. We edeldispersion and absorption processes
from this initial solution, which are of no intete® us, at first. The unperturbed
probability amplitude will read:

¢0(N11'~-; Ml”") = 5N1,N£)5N2,Ng ”.5M1,05M2 ,O”. ,

1 forN, = N°,

0 for N, # N.
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We substitute this value @ in the interaction term for equation (102) [(103), respd a
thus find the perturbation to the first approximatipnof the probability amplitude =
do+ @1+ ... Thatyield:

a) Bose-Einsteinstatistics:

rA
#(NY,...,N2+1,...,N°-1,..;0,0,.. ,1,0,0)
h
N an
NO +1 1/2 N 1/2 d IC[’/] ’
£ S (N2+DY* (N - ic)
(105)
#.(N?,...;0,0,.. ,1,0,0)
h
e -
=LA S N2 - ic).
rA S
b) Exclusion principle:
ra
#(NY,...,1-N? ... ,2- N?,..;0,0,.. ,1,0,0)
h
N ar
:mVS(Nf,...,l— NC o VU (ND 2= N2, ) (] - i)
e h (106)
4 0 0 0 0 0 RYZ
+— YT (N SN vyl NC LN (B N - ,
ety N N D NG (B N2 )(L - i€)
h
e|——
#.(N?,...;0,. 1 0,. —ZN (d? —icl).
At all other locations inN_, N, , ... space, one will havg, = 0. By substitutings,
from (105) and (106) in (102) and (103), one whtain the eigen-perturbatide? (E =
E® +EY + E@ + ..) if the equation at the locatioN?, N2, ...; 0, ... has been written

out. The temporal mean of the perturbation temmns, thus, the perturbing enerﬁﬂ}),
will vanish.
Calculation yields:

a) Bose-Einsteinstatistics:
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h
e —
-g®@ = ! i 0 OfAA _ ; A4 P Y
E S%’M‘ ES —_ E[ + h\/r/‘ (NS +1) Nt (dSt ICrSt )(dst + Iést)
2
+ © NO(dY —ic)No(d7 +ic?). (107)
s,t,r.A 4ITVM

b) Exclusion principle:

h
e —
_g@ - 37 47T 01 _ NIONFAA _ i A4 AL i xA
B = 2 B TR ey AN (g + ey
2
+ Y S N0 - i) NO(d ]+ i¢)). (108)
s,t,r,A 47TVM

Small denominators of the forB — E; + hv) can possibly appear on the right-hand sides
of formulas (105) to (108) that will affect the convergené the process. Their physical
meaning is the following one: In order fBg — E; + hv, to be small, one must hat® —
E: ~ hv,; i.e., the unperturbed system is capable making a junmp the statd to the
states with the emission of a light quantunw,. The further discussion of the small
denominators would then proceed in precisely the same wdyirac’s theory of
radiation. Since we are more interested in the gmgeturbations here, we would like to
assume that the terms in question do not affect tldt Egspreciably; that is case for, e.g.,
the normal state of an atom from which no emiss®opassible. However, even in the
excited states, it might very well be meaningful tansider the interaction of the
electrons, while neglecting the radiation force. c8iwe are aiming for the calculation of
the interaction, we will not comment further upon éippearance of small denominators.
In what follows, it shall be proved that the eigentymdation that is calculated from
(107), (108) is, to a certain approximation, identical wikle second-order eigen-
perturbation that one obtains when one imposes efgatic interactions between the
electrons in the usual way and solved 8shrodinger equation in configuration space.

To that end, we remark that the quantitéés have to do with the currents, and therefore

with the magnetic interactions of electrons, while tuantitiesd!! relate to the electric

interaction. Since the magnetic interactions are equalrder of magnitude to the
relativistic effects that can still not be treate@amfiguration space, we will neglect them

for our proof of thec!” terms. What then remains is the calculation of softke type:
St

1 r r
Z—E et dridy . (109)
r,A S A

The integralsd! (r # t) will first become noticeably large fak, for which the wave
length of light is comparable to the atomic dimensj and thus, for very large,.
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Furthermore, since the number of eigen-oscillationsreames very rapidly with
increasingv, we will suspect that the main contribution to the sismes from very large
values ofv. It therefore seems justified to consider the sum:

> 1 oarqy (110)
r,A th)

in the first approximation, instead of (111). As estimate will show, the error is not
greater than the error that is introduced by neijigahe c!. The sum (110) is easy to
evaluate; one finds, somewhat more generally, that:

Zh,f Ayl = 2 v av (g ge) ' gur'), o (111)

r,A rA r/i

(Here,P andP’ shall index points in the volumes considered.)
The sum:

5 G OUE) g by

r,A Via

appears in this. In order to calculate it, onangsfAr G (P, P”). From (94) and (84),
that will yield:

2 G PP = Y AU P (P) @ 5~ (P)B (P)

rA Vm r,A Vr/i

2
- () e[ -2 ]2
L) L 5 (1-0)d| ¢
. T i 5 T T 7 7T
XZSmIerP SIN-A Y Sin-f4 7 SiR-K X SiR-A % SR/ 2

8
= ;B -P). (112)

O (P —P”) means th®irac ofunction of the point® andP’. If the cavity is sufficiently
large then the solution to the differential equati@12) forG (P —P”) will read:

2r 1
GP-P)=-"——. 113
( ) =51, (113)

It follows from this that in the limit o®= 0O:

u, (P u, (P 4 (P) y( A

Mop

(114)

d'diy, = Asom= [ dV dV
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The integralAs; nm is then the known exchange integral that appears iarpatton theory
when one treats the many-body problem with quantum mexhan the usual way.
Ultimately, one gets the energy perturbatis, up to terms of orded; as:

a) Bose-Einsteinstatistics:

E® = %T%’(Ng +1) N?Am;; NS N; A, J.
b) Exclusion principle:

E2=5 {Z N°(1-N )A§m+z N2 NO&SJ

The terms that appear here still include infinite sums@form:

z A&t,ts = S '
It follows from (114) that:

P p
S=ZAsus—IZ””( )4 (P U(P) Y P

dv dv'
lop
GG LG LYV JCTAMY
lop lop
= —j ul U dv= (115)

rPP

The quantitiesS then correspond to the self-interaction of a partict was discussed
by Jordan andKlein, and become infinitely largeS does not depend upon the distance
t; i.e., the self-interaction of an electron is Hame at any distance. Thus, the tens
like the zero point of the radiation, generally imply infinite additive constant for the
total energy. In the theory that is being developed hbeee are no processes in which
the electron number changes. Therefore, the addititiea terms will have no effect,
sinceone is only interested in the energy differeri@esve then drop the self-interaction
of the electrons fror&® and obtain:

a) Bose-Einsteinstatistics:

(") Translator’s note: italics mine. To me, this suggésat one is dealing with non-conservative forces
that do not admit non-singular potential energy funstidine energy difference is the path-dependent work
integral between the initial and final states.
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No (N -1)

E@ = ¢ z NONJ(A o+ Agd+ ézT A, , + const. (116)
s>t S
b) Exclusion principle:
0/nO _
ED =& Y NINJ(-A, o+ A )+ ézw A, + const. (117)

s>t S

These are precisely the formulas that conventignahtum mechanics gives when one
considers the electrostatic interaction of the teders in the first approximation. The
theory that we are pursuing here leads naturallyh&se formulas only under certain
omissions that shall be discussed briefly.

The magnetic terms; dis andcs; s will be dropped. Since the sum:

1
zh_cstdnm ’

r,A rA

which is analogous to (110), vanishes, as the tlons will show, the terms; ¢ will
chiefly play a role in the magnetic interactionatthyives rise to exchange terms of the
form:

I u, (P ag, U(P y'(Pa, §(P

Mop

dvdv.

Its magnitude is small of ordey ( ¢)° relative to the valueE®. In addition, the exact

formula (107) [(108), resp.] contains extra terrhghe kind z E-& d,dg,
(E.-E+hv) by,
which can be neglected in the transition from (1@9§110), and which originate in the
retarding of the potential. Ultimatel® still does not give the exact eigenvalue, but
E®, E®, etc., must be consideredBn as well. In many caseE® will greater than the
terms that have been neglected up to now. Thellesitn of E® and a comparison of
the values with the corresponding perturbing teohshe treatment in configuration
space will, however, lead to extremely tediouswalions. If would be very desirable to
have another method of integrating the fundamesgahtions of the theory, in which the
interaction of the electrons is not assumed tonelsand is developed in powers of & /
It would also be necessary to investigate the obkhe self-energy of the electrons more
precisely in terms of ordev ( ¢)*.

8 9. On the light emission that one might expect from théheory when an
electron passes through a potential jump.The calculations of the previous section will
show that the theory that is sought here incluttesrésults of the previous theories as
special cases. The proof of that can also beyeeaitied out for radiation phenomena
for which equations (102), (103) lead to essentidle same results &irac’s theory of
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radiation. It also yields nothing new in the problemtlodé sharpness of the energy
definition in the stationary states.

By contrast, some experiments shall be discussed!narstill have not been treated
from the standpoint of the theories up to noy (To cite a particular example: Let a
helium atom in the normal state be under the influexca strong electric field. That
field can ionize the helium atom with a certain proligbi In a similar way, it is know
that for ana-particle in theGamov-Gurney-Condontheory of theGeiger-Nutall law, a
certain probability exists that it can pass throughrhelear potential jump. Such a
transition is found in quantum mechanics in such a waytteaelectron can leave its
atom with a well-defined energy that is given by theedéhce between the energies that
were originally present in the normal states of helamd the remaining energy of the
positive helium ion. However, if one considers thenaction of matter and radiation in
the manner that has been set down here then a cprtdoability will also exist for the
emission of electrons of significantly lower energlues, such that the energy law will
be justified by the emission of a corresponding light quant Here, the blurring of the
energy of the emitted electrons has nothing to do with lifetimes of the states in
guestion, so the effect comes about entirely independehtlye ionization probability.
Moreover, the theory leads one to expect phenomextaath completely similam{utatis
mutandi$ to theAuger jumps.

One can summarize the mathematical treatment chfhrementioned effects under
the title of “transitions between states of equal enpéryVe then assume that there is a
discrete, radiation-less state of the atom in the miageed system (viz., the normal state
or the metastable state), and there is a continuunarmdlational states in the vicinity of
that energy value that will resolve into a sequenceisifrete, very closely spaced terms
under the quantization in a cavity. If one first tredat problem with conventional
quantum mechanics then a certain eigenfuncdrof the electron coordinates will
belong to the discrete initial state of the atom.geBfunctionsg  will belong to the
individual translation states that will be represented tsufficient approximation by a
product of the eigenfunctions of the ions and the traosklt eigenfunctions (viz., plane
waves) of a single electron. If one denotes thetldrenergy of the electron & then
the mean distana®E; between two neighboring translational states of enérgyll have
the value:

h3

= 1677(2T1)3/2 L3El/2 (118)

AE;

(L = edge length of the cavity).

According toDirac (), the transition probability for the process consideredz.,
the transition of an electron from the atomic contexthe energetically-corresponding
translational state — is then given by:

() If one restricts oneself to the first approximatias,will be done in what follows, then one will get
results that can be derived frdbirac’s theory of radiation. However, that will no longerdmrect in the
higher approximations, since a unified treatment of itlleraction forces and radiation forces will be
required then, which is still not containedDirac’s theory of radiation.

(") Proc. Roy. Socl14(1927), 243; see, esp., pp. 264, equation (32).
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2 411
hAE

0 2 6477
‘ at h—4

(2m)3/2 LSE[UZ. (119)

= ‘CDO

at

In this, ®°, means the matrix element of the perturbing potential beéongs to the
transition considered. One then has:

P =-e j PPD°%'dQ. (120)

dQ means the volume element in configuration space. ,Htetbe case of th&amov
transition, the potential jump itself enters as théypbing potential, in essence, so the
smallness ofd? originates in the fact that the prodyct ¢'is small everywhere. (The
eigenfunction of the translation and that of the atonreese exponentially inside of the
jump.) In the case oj the photoelectric effebf, means the potential of an external
perturbing light wave §, while in the Auger process, it will be the potential of the
Coulomb interactions of the electrons. Since the eigenfanagt ' is normalized over the
entire cavity in the coordinates of an electron, orslyeaees that?, behaves likd*?
as a function of.. The transition probability (119) is then independdnt,oas it must
be.

Equation (120) becomes especially simple when the iti@naof the electrons is

generally regarded as small. In the case of the exalysiaciple, one will then have, in
the highest approximation:

o3 :—ejquaDCDOUt,

in which theu® means the eigenfunction of the state from which tket®n is removed
by the transitiony' is the translation eigenfunction, so the integralrily extended over
a three-dimensional space, namely, the coordinatesseslectron.

If one treats the same problem with the method tlast described in this paper then a
perturbing term of the form e ®° ¢ wwill first enter in place of the perturbing

potentialV in the Hamiltonian function. If one again express¢/§ and ¢, in terms of
Ns and®s then it will follow from (98) in the case of the dusion principle that:

Hy=-e®’yy,
=Ns (L =N) Vs(Ny, ..., 1=Ng, ..)Vs(Ny, ..., 1 =Ns, ...) &g ..., (121)

in which:
a=-e [®°urul dv. (121a)

We can again adapt th@irac equation for the transition probabilities (119) directfy, i
we now have:

() Cf., on thisG. Wentzel Phys. Zeit29 (1928), 321.
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%= > PPN, .M. )Hg (122)

Ni,N5....,M;,M,

for®° ; here,¢' means the probability amplitudes for the initiatlefinal states iy,

at

..., My, ...space. If one next asks about the transitiwitBout the emission of light
guanta then one will have:

¢° = 5N1Nf BSNZN(Z, w20y, =0y -+ Oy, -+ + higher -order terms,
(123)
¢ = Oy O+ O, O, - + higher -order terms.

H; is to be regarded as an operator [cf., (100)[L22f, and one will get, in the zeroth
approximation:

O =aw=-e[dvo’u’ |, (124)

in agreement with the previous result.
Transitions with the emission of light quanta{) are then also present. The

eigenfunction for the stat@ remains as before, except that must be calculated up to
the terms of first order that are given in equafib®6). By contrast, the eigenfunction of
the final state in the zeroth approximation is now:

t —
S VY- RO. WY TR

Analogous to (106), the perturbing terms of firgley ing ' are given by:

(N°=0, N°=1),
#(N°,... 1-N°...1=-N°,.. N°,...0.. B..)

el —

:T_’TMVS(NE),---,N?,---)V('\lf,---,Nto,---)E(l— N+3,,~ 8. )(di+ i), | (125)

h
T
A(NS,...,N2,...,0,0,.. )= LS (N0 =5+ )7+ icl,).

st
- hVM

Other values o, can enter in place of th, ..., M1 space that are of no interest to us,
since the enter into the sum (122).
We thus obtain, in the first approximation (therte of order zero drop out):

%, = > PN, My, ) H g™

N...,M
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h
z \/7 WINS,..., 1= N2 OV(N?,..., 1= N?,..)

-E.+h,
(1- NS)(d”+|c”)D25(Nl S NGVU(NC, L N ) A,

h
+y VAT \/7 NO(d? +icdya [V (N,...,. 1= N V(N 1= NP,

+ > a V(N 1= N2 V(N 1= N2 L)

h
e I
4 0 0
— = V(N,,...,1-N_ ... vl N L
TN NV (N N

OL- N°+5 -0 )(d7 +ic?)
+a V(N,...,1- N2, W,(N,.. 1= N%,..)
e

h
|:|@Z(N0 5. +3)(d” +id%). (126)

rA

Use of the notationml] = disis made in this. Combining the various terms geld

q)O

at,hy,

h
e N
= VNS, 1= N2, W (N°,-- 2= N°,..) 0 &, - (d,, +ic,,— d,~ ic,)

hv,,
\F
+z @A-N2)@d? +id})a,,

-E,+ hy,

a

/ h
+ZE (1-N2+9, -0 )(d7 +icl)a,,

E+h

= V(N 1= N2 W(ND -+, 1= N2, L)
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/ h
e -
X Zi(l—N;H o, )d2+ic)a,

S Es_Ea+ hvr/i

h
+ZE \F (1-N2+0,)qd" +ic))a,, (127)

E,+ hy,

By SUbStItutIng(Dat n, N0 (119), one will obtain the probability of the tsétion from

the statea to a state oéqual energyduring which, a light quantuimn, is excited and an
electron is emitted in the stat& . For the valuesi = 1, 2, the energy of the
aforementioned final state will differ only slightlyoim the sumhv, + energy of the
atomic system in the staten which no light quanta are present (which is equéddo+

E: + hw,). ForA = 3 or 4, however, the energy of the final state wiflied from the
corresponding sum by quantities of orderd &s one infers from a consideration that is
analogous to the one that led from (104) to (108). Shbelénergy of the final state be
equal to that of the initial state then fbr= 3, 4, and smald, eitherhv, must be very
large orE; must be very large; the corresponding probability awonbdi will then be very
small, so the contributions df= 3 andA = 4 should be dropped in the lindit= 0.

From (119), the total probability for the emission oigatl quantum with a frequency
betweenv and v + Av and the simultaneous emission of an electron witl th
“corresponding” energy”

= Ea —Eion—hv (128)
then amounts to:

V+Av (da Id)
o \F SN2+ )

hAE{A—lZ \Y s Eg Ed+ h

2
\} a,(dy +ic)
+ZS: E_E+hy A-N2+0o,)| . (129)

Since A can assume only the values 1,V@, and therefored,s, will vanish from
equation (94). The sums between the lines aredbeverted into:

rA A
L(l_ Ng + 533) Cas a‘St + aasdst (130)
477 Es - Ea + th E E+ h\é
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If the wave length of light that belongs tos, is large compared to the atomic
dimensions then one can set:

cl = ZJ' ua Uy’ = Z(\/I”)A%S{‘m . (131)
| |

In this, the indexXA means that the value of the function of positiomguestion is to be
taken at the location of the atom. If one perfothes summation over the valuesrofl
betweerv andv + Av then, from (84) and (94), one will get:

N x“a, a. X'
Sa Ns@{&_ 2 e hj

2

2
il@ie VAVZ
AE,  3c

(132)

for the transition probability (129). The factor AE; will drop out when the matrices;
and x* are calculated with the eigenfunctions, which moemalized according to the

scale ofdE; .

If vandAv have an order of magnitude/ h then the relative frequency of processes
with the emission of light quanta in comparisorthie frequency of ordinary transitions
will have the order of magnitude:

2 <\ 2
© ( Xj . (133)

“helc

The probability for the transition that is consigiérhere will then be small of the same
order as the radiation effects relative to the phality of the ordinary processes.

If one applies this result to teamov-Gurney-Condon theory of the radioactive
decay of the nucleus then one will conclude thahary S-ray spectra cannot be sharp,
since all radiation effects of the electrons on theleus have the relative order of
magnitude 1. Admittedly, from the theory that isegented here, the associated
continuous)ysray spectra must also always appear, since irthiksry, the validity of the
energy law will always remain true. This theoryerthgives no insight into the
complications that are linked with the apparent-agistence of thosgray spectra.

Our argument for theontinuousprimary -spectra has a certain similarity to a
consideration oRosseland(’), which said that the electrons would be forcedeait
radiation as a result of the acceleration that theguire upon leaving the nucleus.
However, upon closer comparison, there are stitesalifferences between the theories.
The Rosselandtransitions correspond to only the terms in the ¢029) for whichEs —

E: — hy, can be considered to be very small. Due to thelsess of the associated
coefficientsds;, s, they will produce only a minor contribution tcettotal result.

Equation (129) is also applicable to the photatele effect. However, that will
produce nothing new, but will give the known proibgb formula for the Compton

() S. RosselandZeit. Phys14 (1923), 173.
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effect. If one were to choose the state be in a discrete spectrum then one would again
obtain a derivative of theadenburg-Kramer dispersion formula from (129).

From the final formula (132), one can recognize thalsi aontains the jump mc
— —mc thatDirac discussed, which will naturally influence the resultinc8 that jump
undoubtedly does not happen in reality, we have not coesidein the discussion of
(132). That fact is inconsequential to the theory thatiscussed here, which one must
consider as long as ti@rac difficulty is still unexplained.



