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 Introduction.   Up to now, in quantum theory, it has not been possible to connect 
mechanical and electrodynamical possibilities by, on the one hand, electrostatic and 
magnetostatic interactions and by radiation-mediated interactions, on the other, in a 
manner that is free of contradictions, and to consider both of them from a unified 
standpoint.  In particular, no one has succeeded in considering the finite propagation 
speed of the electromagnetic force effects in the correct way.  The purpose of the present 
paper is to fill that gap.  In order to achieve that goal, it will be necessary to give a 
relativistically-invariant formalism that will allow one to treat the interaction between 
matter and the electromagnetic field, and thus also the one between matter and matter.  
This problem seems to be fundamentally linked with great difficulties that precluded 
Dirac from finding the relativistically-invariant formulation of the one-electron problem, 
up to now, and one will first arrive at a completely satisfactory solution to the problem 
that is posed here when one clarifies those fundamental difficulties.  Nevertheless, it 
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gives the impression that the problem of retardation could be split into the 
aforementioned deeper-lying problems.  Whereas it must be approached with no help on 
the part of classical theory, the retardation problem still seems soluble by corresponding 
considerations. 
 It is known in classical point mechanics that a relativistically-invariant formulation of 
the many-body problem with the help of Hamilton ’s theory is not practicable.  
Therefore, one might also not hope that one could arrive at a relativistically-invariant 
treatment of the many-body problem by means of differential equations in configuration 
space (or the corresponding matrices) in quantum theory, especially since such a 
treatment would seem to be coupled inseparably with a quantization of electromagnetic 
waves that is equivalent to the introduction of light quanta.  Thus, e.g., the equation (*) 
that Eddington gave for the two-electron problem, into which the four-dimensional 
distance between two world-points enters essentially, can hardly be brought into harmony 
with experiments if that equation yields interactions between the electrons that are 
qualitatively quite different from retarded potentials that one expects from Maxwell’s 
theory.  That difference would also remain in the limiting case of high quantum numbers 
and many electrons, and would thus lead to contradictions.  Moreover, the corresponding 
analogues to the theory that we strive for here will be, on the one hand, Maxwell’s 
theory, and on the other hand, the wave equation of the one-electron problem, when it is 
re-interpreted in the sense of a classical continuum theory.  Schrödinger (** ) has already 
achieved a formally-satisfactory combination of these two field theories.  If one starts 
with the Dirac equation for the one-electron problem then that will exhibit the 
corresponding connection of Tetrode (*** ).  The theory that we aim for here then relates 
to the aforementioned consequent field theories as quantum mechanics does to classical 
mechanics, in that it will, in fact, emerge from this field theory by quantization (i.e., 
introduction of non-commutative quantities or corresponding functionals), and in its 
formal content will define a consequent continuation of the investigations of Dirac (**** ), 
Pauli and Jordan (†) on radiation, and that of Jordan, Klein, and Wigner (††) on the 
many-body problem.  A similar attempt was recently undertaken by Mie (†††).  The 
corresponding analogue of that attempt is Mie’s theory of the electron.  For the time 
being, that theory generally remains a formal schema, as long as the classical field 
equation has not been found whose integration would yield electrons in a satisfactory 
way.  Thus, Mie’s quantum theory of fields, which still exhibits many similarities with 
the theory that we seek here, is inapplicable in practice. 
 The theory that we seek here is also still afflicted with many defects.  As was already 
mentioned, the fundamental difficulties in the relativistic formulation that were 
emphasized by Dirac remain unchanged (††††).  Moreover, the formulas of the theory lead 

                                                
 (*) A. S. Eddington, Proc. Roy. Soc. 121 (1928), 524; 122 (1929), 358. 
 (** ) E. Schrödinger, Ann. d. Phys. 82 (1927), 265.  
 (*** ) H. Tetrode, Zeit. Phys. 49 (1928), 858; cf., also F. Möglich, ibidem, 48 (1928), 852.  
 (**** ) P. A. M. Dirac, Proc. Roy. Soc. (A) 114 (1927), 243 and 710.  
 (†) P. Jordan and W. Pauli, Jr., Zeit. Phys. 47 (1928), 151.  
 (††) P. Jordan and O. Klein, Ibidem, 45 (1927), 751; P. Jordan and E. Wigner, Ibidem, 47 (1928), 
631.  
 (†††) G. Mie, Ann. d. Phys. (4) 85 (1928), 711.  
 (††††) As O. Klein has shown [Zeit. Phys. 53 (1929), 157], these difficulties are especially striking due 
to the fact that according to Dirac’s theory, in some circumstances, the electron can pass through a 
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to an infinite zero-point energy for the radiation, and thus include the interaction of an 
electron with itself as an infinite additive constant.  Naturally, the theory also yields no 
sort of information on the possibility of the radiation processes of the elementary 
electrical particles and on Nature’s preference for antisymmetric wave function in 
configuration space over symmetric ones for many electrons or protons.  However, these 
difficulties are of a sort that they do not interfere with the application of the theory to 
many physical problems.  The methods that are developed here permit, e.g., the 
mathematical treatment of certain more detailed processes in the theory of the Auger 
effect and related problems, as well as the consideration of the retarded potential in the 
calculation of the energy values for the stationary states of atoms.  The latter might be 
meaningful, in particular, for the theory of the fine structure of ortho-helium lines.  
Furthermore, the formalism that is developed here includes the previous methods (viz., 
quantum mechanics, Dirac ’s theory of radiation) as special cases in the first 
approximation.  In all, we may conclude from this that the later, ultimate theory will also 
have essential trains of through in common with the one that we seek here.  Let it be 
mentioned that a quantization of the gravitational field, which seems to be necessary on 
physical grounds (*), is also practicable by means of a formalism that is completely 
analogous to the one employed here with no new difficulties. 
 
 

I.  General methods. 
 

 § 1.  Lagrangian and Hamiltonian form of the field equations, energy and 
impulse integrals.  Let a Lagrangian function L be given that might depend upon 
certain continuous space-time functions Qα (x1, x2, x3, t), as well as upon their first 
derivatives with respect to the coordinates.  The differential equations that the field 
quantities Qα must satisfy might arise from the variational principle: 
 

δ , ,
i

Q
L Q Q

x
α

α α
 ∂
 ∂ 

∫ ɺ  dV dt = 0    (1) 

 
when the variation of the Qα is assumed to vanish on the boundary of the domain of 
integration.  In this, we have written Qα

ɺ  for the time derivative ∂Qα / ∂t at a fixed spatial 

location, and the index α shall distinguish the various state quantities that are present in 
arbitrary, finite numbers, while the index i refers to the three spatial coordinates.  In what 
follows, we shall always employ Greek symbols for indices of the former kind and Latin 
symbols for ones of the latter kind.  As is known, the differential equations that follow 
from (1) read: 

                                                                                                                                            
potential jump whose order of magnitude is V = mc2 / e, in contradiction to the classical energy theorem.  
For the time being, an analogous consequence of the theory also seems to frustrate a closer theoretical 
treatment of the structure of the nucleus. 
 (*) A. Einstein, Berl. Ber. (1916), 688; cf., esp., pp. 696, where the necessity of treating the emission of 
gravitational waves quantum-theoretically was emphasized.  Furthermore, cf., O. Klein, Zeit Phys. 46 
(1927), 188; cf., esp., the remark **  on pp. 188 of that paper. 
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i i

i

L L L
QQ x t Q
x

αα α

∂ ∂ ∂ ∂ ∂− −∂∂ ∂ ∂ ∂∂
∂

∑ ɺ
= 0.    (2) 

 
 In order to make the analogy with ordinary point mechanics emerge from this, we 
first introduce the Lagrange function that has been integrated over only the spatial 
volume: 

L  = L dV∫ .      (3) 

 
For δQα that vanish on the boundaries, one will then get by partial integration: 
 

Lδ = 
i i

i

L L
QQ x
x

αα α

 
 ∂ ∂ ∂
 − ∂∂ ∂ ∂ ∂ 

∑ ∑∫  δQα  dV. 

On that basis: 
L

Qα

δ
δ

= 
i i

i

L L
QQ x
x

αα

∂ ∂ ∂− ∂∂ ∂ ∂
∂

∑      (4) 

 
is called the Hamiltonian  or functional derivative of L  with respect to Qα at the spatial 
location P under scrutiny whose coordinates are x1, x2, x3 .  One can define it as the limit 
of the quotient: 

;P

L

Qα

δ
δ

= lim 
( ) ( )L Q Q L Q

Q dV
α α α

α

δ
δ

+ −

∫
, 

 
such that the two values of L  in the numerator differ only by the fact that one of the state 
quantities Qα in one case is a different spatial function from the other case, while in the 
limit, not only should the integral in the denominator converge to zero, but also the 
interval in which δQα is assumed to be zero should collapse to a single spatial point P – 
viz., the one at which the functional derivative of L  is to be ascertained.  Since one 
trivially has: 

;P

L

Qα

δ
δ

 = 
P

L

Qα

 ∂
 ∂ 
ɺ

, 

the field equations will then read: 

;P

L

t Qα

δ
δ

∂
∂ ɺ

 = 
;P

L

Qα

δ
δ

.     (2′) 

 
 Just as in point mechanics, equations (2) or (2′) determine the behavior of the state 
quantities at all subsequent time points when they, along with their first derivatives, are 
given at a certain time point.  In place of the finitely-many state quantities qi of point 
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mechanics, a continuum of state variables will appear here, or more precisely: finitely-
many continua, namely, the state functions Qα (x1, x2, x3).  By contrast, the spatial 
coordinates are not to be regarded as state quantities, but as parameters. 
 In fact, one can always arrive at the case of continuously-many degrees of freedom, 
where the state quantities are spatial functions, by passing to the limit from the case of 
finite-many degrees of freedom.  For the sake of simplicity, let the volume domain in 
which the field quantities are defined be finite, and let it be subdivided into congruent 
parallelepiped cells with the edge lengths ∆x1, ∆x2, ∆x3 .  One then replaces the 
continuous spatial functions Qα (x1, x2, x3) by step functions that have constant values 
inside each cell.  If one thinks of the cells as being characterized by three running 
numbers l, m, n, corresponding to the three spatial coordinates, then one will now have 
the finitely-many state quantities Qα,l,m,n .  If one replace the integral in the expression for 
L  with a sum and the spatial derivatives with differential quotients according to: 
 

1

Q

x
α∂

∂
= , 1, , , , ,

1

l m n l m nQ Q

x
α α+ −

∆
 

 
then with the Lagrange function: 
 

L  = ∆x1 ∆x2 ∆x3 
, 1, , , , ,

, , , , , ,
, , 1

, ,l m n l m n
l m n l m n

l m n

Q Q
L Q Q

x
α α

α α
+ − 

 ∆ 
∑ ɺ⋯   (5) 

 
the equations of motion of ordinary point mechanics will read: 
 

, , ,l m n

d L

dt Qα

∂
∂ ɺ

 = 
, , ,l m n

L

Qα

∂
∂

.    (5′) 

 
It shall now be shown that in the limit of a vanishing volume for the cells that are 
employed for the subdivision of space equations (2) or (2′) for a continuum of degrees of 
freedom will emerge precisely from equations (5′) of ordinary point mechanics (*).  To 
that end, it will obviously suffice to show that: 
 

lim 
1 2 3 , , ,

1

l m n

L

x x x Qα

∂
∆ ∆ ∆ ∂

→ 
;P

L

Qα

δ
δ

. 

 
Since the coordinates Qα,l,m,n occur in terms that belong to the cell l, m, n, as well as to the 
cell l – 1, m, n; l, m – 1, n; l, m, n − 1, in the sum over l, m, n, one will now have: 

 

                                                
 (*) Cf., on this, also G. Mie, loc. cit., § 4 and § 5.  
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1 2 3 , , ,

1

l m n

L

x x x Qα

∂
∆ ∆ ∆ ∂

= 
1, ,

1 1, , 1, ,

1

l m n

l m n l m n

L L L
Q QQ x
x x

α αα

−

    
     ∂ ∂ ∂    − −  ∂ ∂ ∂ ∆     ∂ ∂    ∂ ∂    

− … 

 
and, in fact, for an arbitrary refinement of the cell subdivision, this will converge to: 

 

i i

i

L L
QQ x
x

αα

∂ ∂ ∂− ∂∂ ∂ ∂
∂

∑  = 
;P

L

Qα

δ
δ

, 

as was asserted. 
 In analogy to point mechanics, we now come to the introduction of a Hamiltonian  
form for the field equations, instead of the Lagrangian one.  First, one defines the 
“impulse” Pα that is canonically-conjugate to the field quantities Qα : 

 

Pα = 
L

Qα

∂
∂ ɺ

,     (6) 

 
and then the Hamiltonian  function H, according to: 

 

H , ,
i

Q
P Q

x
α

α α
 ∂
 ∂ 

 = P Qα α
α
∑ ɺ − L.    (7) 

 
 By varying H with respect to the variables Pα , Qα , it will follow from (6) that: 

 

 δH = 
i i

i

QH H H
P Q

QP Q x
x

α
α α

αα α α

δ δ δ

 
 ∂∂ ∂ ∂
 + + ∂∂ ∂ ∂ ∂ ∂ 

∑ ∑  

  = 
i i

i

QL L
Q P Q

QQ x
x

α
α α α

αα α α

δ δ δ

 
 ∂∂ ∂
 − + ∂∂ ∂ ∂ ∂ 

∑ ∑ ∑ɺ , 

so one will first have: 
H

Pα

∂
∂

= Qα
ɺ ,       (8) 

and secondly: 
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− 
P

H

Q
αα

 ∂
 ∂ 

= 
Q

L

Q
αα

 ∂
 ∂  ɺ

, − 

i P

H
Q

x
α

α

 
 ∂
 

∂ ∂ ∂ 

= 

i Q

L
Q

x
α

α

 
 ∂
 

∂ ∂ ∂  ɺ

= Pα i .  (9) 

 
The variables inside the parentheses are to be kept constant for the differentiations in 
question, and we have introduced a new abbreviation Pα i for later purposes, moreover. 
 The canonical field equations follow from (8) and (9), when one recalls (2): 
 

Qα
ɺ = 

H

Pα

∂
∂

, Pα
ɺ  = − 

i i

i

H H
QQ x
x

αα

 
 ∂ ∂ ∂
 − ∂∂ ∂ ∂
 ∂ 

∑ ,  (10) 

or when one introduces: 

H  = H dV∫ ,     (11) 

one will get the equations: 

;PQα
ɺ = 

;P

H

Pα

δ
δ

,  ;PPα
ɺ  = − 

;P

H

Qα

δ
δ

.   (I) 

 
They arise from the variational principle: 
 

δ L dV dt∫ = δ , ,
i

Q
P Q H P Q

x
α

α α α α
α

  ∂−  ∂  
∑∫ ɺ  dV dt = 0,  (12) 

 
in which, Pα and Qα are considered to be spatial functions that are varied independently 
and whose variations should vanish at the limits.  The canonical field equations then 
determine the further temporal course of the spatial functions Pα and Qα  when they are 
given arbitrarily for a certain moment in time t = t0 . 
 Furthermore, only the form (12) for the variational principle will be used in the 
following calculations, and it is inessential whether the integrand of (12) can or cannot go 
to a function of Qα , ∂Qα / ∂xi , and Qα

ɺ by just eliminating the Pα .  One can also free 

oneself of the assumption that H does not include the spatial derivatives of the Pα , but 
that will not be necessary for the later applications. 
 We would now like to introduce the (hitherto unnecessary) assumption that the 
Hamiltonian function H does not include the time coordinate explicitly, and assert that 
the quantity H  is not constant in time in that case.  In fact, by partial integration, one will 
immediately find that: 

dH

dt
 = ; ;

; ;
P P

P P

H H
P Q

P Qα α
α α α

δ δ
δ δ
 

+  
 

∑∫ ɺɺ  dVP , 
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in which the terms (*) that originate on the boundary of the domain of integration can 
generally be dropped (as in all of what follows when one verifies the temporal constancy 
of certain volume integrals).  That means that the field quantities must vanish sufficiently 
rapidly when integrating over all space.  If one assumes that, then the constancy of H  in 
time will follow immediately from the given expression for /dH dt  by using (I).  In all 
physical applications, the quantity H  (just like the Hamiltonian function of point 
mechanics) can be interpreted as the total energy of the system for a suitable choice of 
the numerical factors. 
 Other integrals exist besides the energy integral H : 
 

Gk = − 
k

Q
P dV

x
α

α
α

∂
∂∑∫   (k = 1, 2, 3)  (13) 

 
that can be interpreted as components of the total impulse of the system.  Analogous to 
the energy integral, it must be assumed here that H does not contain the spatial 
coordinates explicitly either, but once again, one must allow the dropping of the outer 
surface integrals.  In fact, it then follows from (13) by successive partial integration that: 
 

 kdG

dt
 = − 

k k

Q P
P P Q

x x
α α

α α α
α

 ∂ ∂− ∂ ∂ 
∑∫ ɺɺ ɺ  dV 

  = 
k k

Q PH H

Q x P x
α α

α α α

δ δ
δ δ
 ∂ ∂+ ∂ ∂ 

∑∫  dV, 

 
but by substituting the expressions: 
 

 
H

Qα

δ
δ

 = 
i i

i

H H
QQ x
x

αα

∂ ∂ ∂− ∂∂ ∂ ∂
∂

∑ , 
H

Pα

δ
δ

 = 
H

Pα

∂
∂

, 

 
it will also follow that: 

 kdG

dt
 = − 

i i k k

i

QH H
Qx x x
x

α

αα

  
  ∂∂ ∂ ∂
   −∂∂ ∂ ∂  ∂  ∂  

∑ ∑∫  dV, 

                                                
 (*) That will give rise to the outer surface integral: 
 

)cos( , i
i

i i

H H
df n x P

Q P

x x

Qα α
α α α

  
  ∂ ∂
  ∫ ∂ ∂  ∂ ∂  ∂ ∂  

+∑ ∑ ɺɺ , 

 
which can be interpreted as the energy flux through the boundary surface. 
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which can be converted completely into an outer surface integral, and will thus vanish, by 
assumption, such that Gk is, in fact, constant in time.  If no spatial direction is 
distinguished from the outset − so L, and therefore also H, are invariant under spatial 
rotations of the coordinate axis cross − then the Gk will define the components of a 
vector, as they must. 
 
 
 § 2.  Canonical commutation relations (C. C. R.) for continuous space-time 
functions.  Energy and impulse theorem in quantum dynamics.  We are now 
sufficiently prepared to take the step from classical physics to quantum physics.  For that, 
we first appeal to a method that corresponds to the employment of matrices or operators 
in quantum mechanics, while we will first briefly go into the methods that are analogous 
to the Schrödinger differential equation in coordinate space later on.  The formal 
conversion of the latter methods to field physics encounters the mathematical 
complication of how to define a volume element on function space in a reasonable way.  
The former method has the advantage, moreover, that a greater freedom exists in the 
choice of the independent variables, in that canonical transformations can be performed 
more easily, and furthermore, that the form of the physical laws (which are the field 
equations and the expression for the Hamiltonian  function, in our case) can be carried 
over from the classical theory directly.  As is known, with that method, the difference 
between classical and quantum physics is expressed by the idea that the physical 
quantities will be generally replaced by non-commutative operators, moreover.  In the 
case of quantum mechanics, these physical state quantities depend, firstly, upon time and 
secondly upon one (or more) discontinuous indices that distinguish the various degrees of 
freedom, so in the case of quantum dynamics of the field functions, the aforementioned 
indices (to some degree) go to continuously-varying spatial coordinates x1, x2, x3, which 
are then to be regarded as ordinary numbers (i.e., c-numbers), just like the time t. 
 In order to arrive at C. C. R. (*) for the continuous field quantities, as in the previous 
paragraphs, we carry out the passage to the limit from the case of finitely-many degrees 
of freedom by starting with the Lagrange function (5), which will go to the Lagrange 
function (3) in the limit of an infinitely-fine cell decomposition of space.  If we introduce 
the ordinary δ-symbol, which is defined by: 

 

δll ′  = 
0 for ,

1 for ,

l l

l l

′≠ 
 ′= 

     (14)  

 
and furthermore, the abbreviation: 

 
δl, m, n; l′, m′, n′  = δll ′  δmm′   δnn′  , 

and the relation: 
∆V = ∆x1 ∆x2 ∆x3  

 

                                                
 (*) Here, and in what follows, the abbreviation C. C. R. will always be employed for “canonical 
commutation relations.” 
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for the volumes of the cells then, according to ordinary quantum mechanics, the C. C. R. 
for finitely-many degrees of freedom will read: 

 
pα, lmn Qβ, l ′ m′ n′  − Qβ, l′ m′ n′  pα, lmn = δl, m, n; l′, m′, n′  δαβ ,   (15) 

 
to which, one can add the commutation of the various Q with each other, as well as the 
various p.  In this, one has: 

pα, l m n = 
,lmn

L

Qα

∂
∂ ɺ

=  ∆V 
,lmn

L

Qα

∂
∂ ɺ

, 

 
such that in the limit, one will have: 
 

0

1
lim
V V∆ → ∆

 pα, l, m, n = Pα (x1, x2, x3). 

 
If we were to pass to the limit ∆V → 0 in equation (14) after dividing by ∆V then we 
would get zero on the right-hand side.  We would then obtain a reasonable result when 
we first multiplied (15) by an arbitrary step function f (i.e., a c-function) of the indices l′ 
m′ n′ and then summed over all cells of a certain piece of space V′, when we let the 
function f converge to a continuous spatial function f (x1, x2, x3) in the limit of ∆V → 0, in 
such a way that the sum: 

( , , )
l m n

f l m n
′ ′ ′

′ ′ ′∑ ∆V 

would go to the integral: 

1 2 3( , , )
V

f x x x dV
′

′ ′ ′ ′∫  

 
over the chosen spatial piece.  We then obtain: 
 

, ,
, ,( , , ) lmn lmn
l m n l m n

l m n

p p
f l m n V Q Q

V V
α α

β β′ ′ ′ ′ ′ ′
′ ′ ′

 ′ ′ ′ ∆ ⋅ − ∆ ∆ 
∑  

 

= 
( , , ) when the cell , ,  is in ,

0 otherwise,2

f l m n l m n Vh

i αβδ
π

′



 

 
and in the limit of an infinitely-fine cell decomposition: 
 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( , , ) { ( , , ) ( , , ) ( , , ) ( , , )}
V

f x x x dV P x x x Q x x x Q x x x P x x xα β β α
′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′−∫∫∫  

 

= 1 2 3 1 2 3( , , ) when the cell , ,  is in ,

0 otherwise.2

f x x x x x x Vh

i αβδ
π

′



  (16) 
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Moreover, the roles of x1, x2, x3 and 1x′ , 2x′ , 3x′   can also be switched in this.  It is 

preferable to formulate this result by means of the singular function symbol δ(x) that 
Dirac introduced, which is defined by: 
 

( ) ( )
b

a
f x x dxδ∫  = 

(0), when 0 in ( , ),

0 otherwise.

f x a b=



   (17) 

 
It follows from this that one can always set δ(− x) = δ(x).  Furthermore, with the 
introduction of the vector r whose components are x1, x2, x3, and the abbreviations: 

 

1 2 3

1 2 3 1 2 3
1 2 3

( ) ( ) ( ) ( ), ( , ) ( , ) ( ),

one will have :

( , , ), when , , in ,
( , , ) ( , )

0 otherwise.V

x x x

f x x x x x x V
f x x x

δ δ δ δ δ δ δ

δ
′

′ ′ ′ = = = −




′ ′ ′ ′ ′ = 
 

∫

r r r r r r r

r r

  (17′) 

 
If we write Pα, Qα for Pα (x1, x2, x3), Qα (x1, x2, x3), for brevity, and Pα′ , Qα′  for Pα ( 1x′ , 

2x′ , 3x′ ), Qα ( 1x′ , 2x′ , 3x′ ), and if we introduce the bracket symbol: 

 
[F, G] ≡ FG – GF 

 
as a further abbreviation then the canonical commutation rules for continuous field 
quantities can be written as follows: 
 

[Qα , Qβ′ ] = 0,  [Pα , Pβ′ ] = 0,  [Pα , Qβ′ ] = [ Pα′ ,Qβ] = δαβ δ(r, r′). (II) 

 
 It should be remarked that these relations are true for two different spatial locations, 
but always at the same time point, and that nothing further will be said about the value of 
the bracket symbol in question of the field quantities at two different time points.  By 
contrast, if we define the derivative of the δ-function in the usual way, namely: 
 

( ) ( )
b

a
f x x dxδ ′∫ = 

(0) when 0 in ( , ),

0 otherwise,

f x a b′− =



    (17″)  

 
which arises from (17) formally by partial integration and dropping the terms that 
originate on the boundary, then the C. C. R. (II) can be differentiated by the spatial 
coordinates.  One will then get, e.g.: 
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, ( , ), , ( , ) ( , ),
2 2 2

, ( , ), , ( , ) ( , ),
2 2 2

i i i i i

i i i i i

Q Qh h h
P P

x i x x i x i x

P Ph h h
Q Q

x i x x i x i x

α α
α α

α α
α α

δ δ δ
π π π

δ δ δ
π π π

   ′∂ ∂∂ ∂ ∂′ ′ ′ ′= = = −    ′ ′∂ ∂ ∂ ∂ ∂    


   ′∂ ∂∂ ∂ ∂ ′ ′ ′ ′= = = −    ′ ′∂ ∂ ∂ ∂ ∂    

r r r r r r

r r r r r r

    (18) 

 
in which the last equation follows from δ (r, r′) = δ (r − r′) = δ (r′ − r). 

 In order to go further, we must define the differentiation of a function of non-
commutating quantities with respect to one of the quantities, which happens, in a well-
known manner, by way of: 
 

1 2

1

( , , )F Q Q

Q

∂
∂

…
 = 1 2 1 2

0

( , , ) ( , , )
lim

F Q Q F Q Q
δ

δ
δ→

+ −… …
, 

 
in which δ is a c-number (multiplied by the identity operator, which is not written down).  
With this definition, the usual rule for the differentiation of a product will be true: 
 

1 2

1

( )F F

Q

∂
∂

 = 2 1
1 2

1 1

F F
F F

Q Q

∂ ∂+
∂ ∂

, 

 
in which, one must be careful to preserve the sequence of the factors. 
 Now, let F be an arbitrary function of the Pα , ∂Pα / ∂xi , Qα , ∂Qα / ∂xi , which 
however might depend upon only the values of these functions at a single spatial location.  
In analogy with the corresponding development in ordinary quantum mechanics, one can 
easily prove that: 

[ , ] ( , ) ( , ) ,
2

[ , ] ( , ) ( , ) .
2

i i

i

i i

i

h F F
F Q

Pi P x
x

h F F
P F

Qi Q x
x

α
αα

α
αα

δ δ
π

δ δ
π

 
 ∂ ∂ ∂
′ ′ ′ = + ∂∂ ∂  ∂
 ∂  


  
  ∂ ∂ ∂′ ′ ′ = + ∂∂ ∂  ∂
 ∂   

∑

∑

r r r r

r r r r

  (19) 

 
 According to (II) and (18), these relations will, in fact, obviously be correct when F is 
replaced with one of the field quantities Pα , Qα , ∂Pα / ∂xi , ∂Qα / ∂xi , and one will then 
further show that they will remain correct for F1 + F2 and F1F2 when they are assumed to 
be correct for F1 and F2 .  One further obtains the corresponding C. R. for: 
 

F = F dV∫  

 
immediately from (19) by partial integration, namely: 
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 [ , ]F Qα′  = 

for 

2

i i

i i

i x x

h F F
Pi P x
x
ααπ

′=

 
 ∂ ∂ ∂
 − ∂∂ ∂ ∂ ∂ 

∑ , 

 

 [ , ]P Fα′  = 

for 

2

i i

i i

i x x

h F F
Qi Q x
x

ααπ
′=

 
 ∂ ∂ ∂
 − ∂∂ ∂ ∂ ∂ 

∑ . 

 
With the introduction of the symbols /F Pαδ δ  and /F Qαδ δ , from (4), this can be easily 

written as: 

[ , ]F Qα  = 
2

h F

i Pα

δ
π δ

, [ , ]F Pα  = − 
2

h F

i Qα

δ
π δ

,  (20) 

 
in which the variation is always performed at the same spatial location at which the field 
quantities that are found inside the bracket are found. 
 We are now sufficiently prepared to go on to a discussion of the field equations.  We 
borrow them from classical theory in the canonical form (I): 
 

Qα
ɺ = 

H

Pα

δ
δ

,  Pα
ɺ  = − 

H

Qα

δ
δ

,    (I) 

 
with the special addition that the partial differentiations that enter into them are 
understood to have the sense that was defined above.  In general, the special prescription 
about the sequence of factors in H that the classical paradigm cannot be determined 
uniquely will also be required.  Thus, for later applications, H will be (essentially) a 
quadratic form in the field quantities, so the field equations will be (essentially) linear (*), 
such that the prescription (I) will say that the field equations read precisely the same as 
the corresponding classical ones. 
  The field equations can be written directly in form: 
 

Qα
ɺ = 

2
[ , ]

i
H Q

h α
π

,  Pα
ɺ  = 

2
[ , ]

i
H P

h α
π

 

 
by means of (20), from which, by an inductive argument that is similar to the one above, 
one can conclude that the quantity F that was considered there will satisfy the relation: 
 

                                                
 (*) The Hamiltonian function and the field equations for the matter waves contain products of the 
material field quantities ψ and ψ* with the electromagnetic potentials Φν .  We will see that ψ and ψ* 
commute with the Φν  in our theory, so that situation will not be affected. 
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Fɺ = 
2

[ , ]
i

H F
h

π
,     (21) 

and thus, for: 

 F  = F dV∫ , 

one can conclude (*): 

Fɺ  = 
2

[ , ]
i

H F
h

π
.              (21′) 

 
 Two conclusions can be drawn from this equation that are of fundamental importance 
for the consistent practicability of the theory.  We first set F = H  in (21′), and since 
[ , ]H H  ≡ 0, that will yield: 

Hɺ  = 0,  H  = const.    (22) 
 
The energy theorem is also true here (** ) [in which, it is naturally assumed that H does 
not include time explicitly, since (21) applies to only quantities that fulfill that 
assumption].  Secondly, we replace F with one of the bracket symbols [Qα , Qβ′ ], 

[Pα, Pβ′ ], [Pα , Qβ′ ], [ Pα′ , Qβ] in (21).  Since, from (II), these brackets are all c-numbers 

(more precisely: c-numbers multiplied by the identity operator), they will then commute 
with H, such that the temporal derivatives of the brackets (for fixed spatial positions) will 
vanish.  This means that if one assumes that the C. R. (II) is true for a certain time point t 
= t0 then the C. R. will be reproduced for a neighboring time-point by means of the field 
equations (I), and thus, for all time.  The consistency of (I) and (II) is thus proved by that. 
 We now apply (20) to the impulse integral that is defined by (13): 
 

Gk = −
k

Q
P

x
α

α
α

∂
∂∑∫ dV.     (13) 

 
If one identifies F  with Gk in (20) then one will find that: 
 

[Gk, Qα] = 
2 k

Qih

x
α

π
∂
∂

, [Gk, Pα] = 
2 k

Pih

x
α

π
∂
∂

. 

 

                                                
 (*)  The role that this relation plays is that it allows one to avoid the application of equations such as: 
 

Fɺ  = 
i i i

i i

F F F Q F P
Q P

Q PQ P x x
x x

α α
α α

α α αα α

  
  ∂ ∂ ∂ ∂ ∂ ∂+  ∂ ∂∂ ∂ ∂ ∂  ∂ ∂  ∂ ∂  

+ +∑ ∑
ɺ ɺ

ɺ ɺ , 

which would be inadmissible. 
 (** ) One will remark that, in contrast to the older representation of quantum mechanics, we have not 
introduced the assumption that H  has been brought into diagonal form, since that certainly represents an 
important case in physical applications of the equations, but not the only possible one.  
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It follows from this by induction for any quantity F (that does not include spatial 
coordinates explicitly) of the kind considered that: 
 

k

F

x

∂
∂

= − 
2 i

h

π
[Gk, F],     (23) 

 
which are relations that define one aspect of (21).  Due to the fact that: 
 

k

F
dV

x

∂
∂∫

 = 0, 

 
and by the existence of F  = ∫ F dV, it follows from that relation upon integrating over the 
spatial volume that: 

[Gk, F ] = 0, 
 
and, in particular, for F = H , according to (21), one will have: 
 

kGɺ  = 0, Gk = const.,    (24) 

 
with which, the existence of the impulse integral in quantum dynamics will be proved.  In 
regard to this, one must generally make a remark concerning the sequence of factors Pα 
and ∂Qα / ∂xk in (13).  Indeed, the validity of (23) and (24) is independent of that 

sequence, but according to (18), ,
k

Q
P

x
α

α
 ∂
 ∂ 

 will be singular and indeterminate for x = 0, 

since those functions are to be taken at the same spatial location, and the same thing will 

be true for δ′ (x).  Which linear combination of expressions 
k

Q
P

x
α

α
∂
∂

 and 
k

Q
P

x
α

α
∂
∂

 should 

be employed in the integrands of Gk can therefore not be established from the outset. 
 By representing the operators that represent field quantities by matrices, and in the 
special case for which the energy and impulse Gk are matrices in diagonal form, the 
following differential equations for an arbitrary matrix element Fnm of F will result from 
(21) and (23): 

nmFɺ  = 
2

( )n m

i
H H

h

π − Fnm ,  nm

k

F

x

∂
∂

= − 
2 i

h

π
(Gk,n – Gk,m) Fnm , 

 
such that the dependency of the element Fnm of space and time will necessarily have the 
form of a harmonic wave: 

Fnm = anm 
2

[( ) ( ) ]n m n m
i

H H t
he
π − − −G G r

,   (25) 
 
if one understands G to mean the impulse vector whose components are Gk .  

Independently of any special representation of the operators, it will follow from repeated 
application of (21) and (23) in a known way that for any quantity F: 
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= 
2 2

[ ( ) ( ,( )] [ ( ) ( ,( )]1 2 3

1 2 3

( , , , )

( , , , )

i i
H t t H t t

h h
F x x x t

e e
F x x x t

π π′ ′ ′ ′− − − − − − −′ ′ ′G r r G r r

.  (26) 

 
 To conclude this paragraph, let us mention the development of the field quantities in 
eigen-oscillations as a method of integration; that is the only method that has proven to 
be practical up to now.  One develops the field quantities in terms of their dependency 
upon the spatial coordinates in an orthogonal system: 
 

Pα = 1 2 3( ) ( , , )a t u x x xαρ ρ
ρ
∑ , Qα = 1 2 3( ) ( , , )b t u x x xαρ ρ

ρ

∗∑ ,   (27) 

in which: 

u u dVρ σ
∗

∫  = δρσ ,    (28) 

and the inversion formulas read: 
 

aαρ (t) = 1 2 3( , , )P u x x x dVα σ
∗

∫ , bαρ (t) = 1 2 3( , , )Q u x x x dVα ρ∫ . (27′) 
 
In this, the uρ are considered to be c-functions, while the aα and bα , like the Pα and Qα , 
are considered to be q-numbers. 
 The fact that the orthogonal system is discrete can enforced by either consider the 
field in a cavity, on whose walls certain boundary conditions must be fulfilled (i.e., 
standing waves) or, as is customary in, e.g., the theory of crystal lattices, by the 
restriction of the field to spatially-periodic motions with sufficiently-large periods (i.e., 
travelling waves). 
 One gets the C. R. for the a and b from (II). 
 

[aαρ , bβσ] = [ , ]P Q u u dV dVα β ρ σ
∗′ ′ ′∫  = 

2

h
u u dV

i αβ ρ σδ
π

∗ ′∫ , 

 
and the canonical form: 

[aαρ , bβσ] = 
2

h

i αβ ρσδ δ
π

     (29) 

will then follow from (28). 
 The Hamiltonian function H  goes to a function of the a and b and gives rise to 
canonical equations in these variables.  Naturally, one has complete freedom in the 
choice of the orthogonal system.  If it so happens that one can choose H  to be separable 
then all of the matrices will be easy to calculate.  In other cases, one must turn to 
perturbation theory for a suitable initial system, whether by the introduction of 
Schrödinger functions ϕ (b1, b2, …) or by the original methods of matrix theory. 
 
 
 § 3.  Relativistic invariance of the C. C. R. for an invariant Lagrangian function.  
Up to now, we have spoken of only C. C. R. that couple the field quantities at two spatial 
locations at the same time point.  However, the C. C. R. for two different time points are 
determined implicitly by the field equations (I).  In order for the theory to be useful, it 
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must now be demanded that the C. C. R. must also preserve their forms when one goes 
from one coordinate system to another by a Lorentz transformation due to the relativistic 
invariance of the Lagrangian function.  The problem of this paragraph is then to provide 
evidence that this condition is fulfilled. 
 If we go from one coordinate system to another by a Lorentz transformation then the 
values of the bracket symbol (II) will change on two grounds:  First of all, the quantities 
Pα and Qα are not generally scalars, so they will be transformed in a certain way at a 
well-defined world-point.  Secondly, other world-points must be chosen in the C. C. R. in 
the primed coordinate system than the ones that were chosen in the unprimed system, 
where the latter exhibit a common t′-coordinate, while the former have an equal value of 
t.  Meanwhile, the change in the bracket that is required by the latter situation would be 
difficult to ascertain, since we cannot exhibit general formulas for it in the case of finite 
differences in the time values at the two locations that come under consideration.  
However, one can circumvent that difficulty by restricting oneself to infinitesimal 
Lorentz transformations.  In that case, in fact, any physical quantity f (t′) will be replaced 
by f (t) + ∂f / ∂t (t′ – t), and ∂f / ∂t, as well as the associated C. C. R., can be inferred from 
(I).  The invariance of the system of equations under finite transformations will then 
follow from the group character of the invariance of the totality of these transformations.  
In what follows, we will proceed accordingly in such a way that we calculate the changes 
in the brackets under infinitesimal Lorentz transformations separately as a result of the 
two aforementioned facts, and then investigate the conditions under which they will be 
compensated. 
 If we would begin with the first-mentioned basis for the change in the bracket then 
we would first have to make some general statements about the type of transformations of 
the quantities Pα and Qα under Lorentz transformations.  It will be preferable to introduce 
the imaginary time coordinate x4 = ict, and to further replace the quantities that were 
previously denoted by Pα with: 

Pα4 = 

4

L
Q

x
α

∂
∂∂
∂

 = ic Pα ,    (30) 

such that: 

4

4

P

x
α∂

∂
= Pα
ɺ  = − 

H

Qα

δ
δ

, 
4

Q

x
α∂

∂
= 

1
Q

ic α
ɺ  = 

1 H

ic Pα

δ
δ

= 
4

H

Pα

δ
δ

,  (30′) 

 

[Pα4, Qβ ] = ( , )
2

hc
αβδ δ

π
r r ,    (31) 

 
in which we now apply the overbar in order to characterize the space-time location of Qβ, 
in order to preserve the prime symbol for the transition to another coordinate system.  In 
what follows, the quantities that were already introduced in (9), namely: 

 

Pα i = 

i

L
Q

x
α

∂
∂∂
∂

 = − 

i

H
Q

x
α

∂
∂∂
∂

,    (9) 
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will enter in with the same status as the Pα4, although no C. C. R. exist between Qβ and 
Pβ4 that are as simple as equation (31).  However, in regard to that, one must especially 
emphasize that the agreement of the two expressions for Pα i that were used in (9) is not 
generally guaranteed, due to the non-commutation of certain factors in H.  It is only when 
L is a quadratic form in the Qα

ɺ  and ∂Qα / ∂xi with constant coefficients (with the possible 

addition of a function of only the Qα) that the argument that was used in the derivation of 
(9) can be adopted immediately.  One then generally has: 
 

Pα µ = 
L
Q

x
α

µ

∂
∂∂
∂

,     (32) 

 
if here, and in what follows, the indices µ, ν, … always run 1 to 4, in contrast to the Latin 
indices, which only refer to spatial coordinates and run from 1 to 3, and in contrast to the 
indices α, β, …, which distinguish the various quantities Pα µ  and Qµ.  We shall not 
make any special assumption about the transformation law of the latter quantities.  
However, it can be easily concluded from (32) that (*): If one transforms the Q quantities 
by the orthogonal coordinate transformation (one sums over indices that appear twice): 
 

xµ′  = aµν xν , aµρ aνρ = δνµ ,    (33) 

according to: 
Qα′  = Aαβ Qβ ,      (34) 

 
then the Pα µ  will transform according to: 

 
Pαµ′  = aµν Bαβ Pβν ,     (35) 

 
in which the B coefficients depend upon the A coefficients according to: 

 
Aαγ Bβγ = δαβ .     (36) 

 
That is, the matrix of B is the reciprocal of the transpose of the matrix A.  It then follows 
from this that the P and Q will always be contracted over equal indices in such a way 

that, e.g., P Qαµ α
α
∑  is a vector and 

Q
P

x
α

αµ
α ν

∂
∂∑  is a tensor. 

 If we go from the finite transformations to the infinitesimal ones, where aµν = δµν + ε 
sµν , Aαβ = δαβ + ε tαβ , and according to (33) and (36), sµν = − sνµ , sνν = 0, Bαβ = δαβ − ε 
tαβ , and if one neglects quantities of order ε2, then (33), (34), and (35) will become: 
 

xµ′  = xµ + ε sµν xν ,  sµν = − sνµ ,   (33′) 

                                                
 (*) This will be true independently of whether L, along with Qα

ɺ , does or does not include the Pα4 

explicitly.  
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Qα′ = Qα + ε tαβ  Qβ ,     (34′) 
Pαµ′  = Pαµ − ε tβα  Pβµ  + ε sµν  Pαν  .   (35′) 

 
Moreover, we calculate the brackets of the primed field quantities, while we nonetheless 
first let the world-points (xµ) and ( )xµ  at which the field quantities are taken be fixed. 

 One will then have: 
 

 [ , ]Q Qα β′ ′  = [Qα, Qβ ] + ε tαγ [Qγ , Qβ ] + ε tβδ [Qα, Qδ ], 

 4[ , ]P Qα β′ ′  = [Pα 4 , Qβ ] + ε s4ν [Pαν , Qβ ] − ε tγα [Pγ 4 , Qδ ] + ε tβδ [Pα 4 , Qδ ], 

 4 4[ , ]P Pα β′ ′  = [Pα 4 , 4Pβ ] + ε s4ν [Pαν , 4Pβ ] + ε s4ν [Pα 4 , Pβν ]  

   − ε tγα [Pγ 4, 4Pβ ] − ε tγ β [Pα 4 , 4Pγ ] . 

 
 The expressions will simplify substantially when we substitute the values (II) [(31), 
resp.] of the brackets for the unprimed coordinate system.  In fact, all terms that contain 
the tαβ as a factor will then vanish.  That is trivial in the first and last equation, but in the 
second equation that will give a contribution (up to a common constant factor): 
 

− tγ α δγ β  + tβγ δα γ = − tβ α + tβ α = 0. 
 

All that will remain are terms with the factor s4ν , in which it follows, moreover, that s44 = 
0, so ν can be replaced with the index k that runs from 1 to 3, such that one will have: 
 

4 4

4 4 4 4 4 4

[ , ] 0,

[ , ] ( , ) [ , ],
2

[ , ] [ , ] [ , ].

k k

k k k k

Q Q

hc
P Q s P Q

P P s P P s P P

α β

α β αβ α β

α β α β α β

δ δ ε
π

ε ε

′ ′ =

′ ′ = + 


′ ′ = + 

r r   (37) 

 
 We can now go on to the calculation of the second part of the change in the brackets, 
namely, the one that originates in the change of the world points.  Now, it is always 
permissible for us to move the origin of the coordinate system to either of the two world-
points that then remain fixed.  Which of these world-points is irrelevant, since is has 
already been shown that the transition from one slice t = const, to a parallel neighboring 
slice in the four-dimensional world will not change the C. C. R.  If we choose the first 
point P to be the fixed one then the second one P  will have the values xi = ix , x4 = 0 in 

the unprimed coordinate system, while the point P′  will possess coordinates with the 
same values ix′  = ix , 4x′  = 0 in the primed system.  The point P  will then have the 

coordinates ( ix , 0) in the unprimed system, but the point P′  will have the coordinates, 

4( , )i ik k k kx s x s xε ε− − , since x4 = 0.  Thus, for any two quantities F1, F2, one will have: 
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[F1(P), F2( )P′ ] = [F1(P), F2 ( )P ] – ε sν k 2
1

( )
( ),k

F P
x F P

xν

 ∂
 ∂ 

. 

 
If we once more leave the origin of the coordinate system arbitrary then the total change 
in the brackets will become: 

4

4
4 4 4 4 4

4 4 4

[ , ( ) [ , ( )] ( ) , ,

[ , ( ) [ , ( )] ( ) , [ , ],

[ , ( ) [ , ( )] ( ) ,

{[ , ] [ , ]}

k k k

k k k k k

k k k

k k k

Q
Q Q P Q Q P s x x Q

x

Q
Q Q P Q Q P s x x Q s P Q

x

P
P P P P P P s x x P

x

s P P P P

β
α β α β ν α

ν

β
α β α β ν α α β

ν

β
α β α β ν α

ν

α β α β

ε

ε ε

ε

ε

 ∂
′ ′ ′ − = − −  ∂ 

 ∂
′ ′ ′ − = − − + ∂ 

 ∂
′ ′ ′ − = − −  ∂ 

+ + .
















 (38) 

 
In regard to this, we next remark that the summation index v can be restricted to 4 in the 
terms with svk .  That is trivial for the first and last equation, since the brackets in question 
vanish, but for the middle equation, it will follow from the fact that the terms that are 
endowed with the factor (kx  − xk)  need to be preserved only when that factor is once 

more cancelled by the addition of a derivative of the δ-function with respect to xk , which 

will also be important in what follows.  For v = 1, 2, 3, 4,
Q

P
x

β
α

ν

∂ 
 ∂ 

 is now proportional to 

( , )
xν

δ∂
∂

r r , while the term will be made to vanish for v = k due to the fact that skk = 0, 

such that only v = 4 will remain here, as well. 
 Now, should the C. C. R. (II) also remain valid for non-parallel neighboring slices t′ = 
const. then for all skew-symmetric sµν − and thus for all s4k  − the terms in ε in the 
formulas that were written down must compensate for them.  That is, one must have: 
 

4

4
4

4
4 4 4

4

( ) , 0,

( ) , [ , ],

( ) , [ , ] [ , ].

k k

k k k

k k k k

Q
x x Q

x

Q
x x P P Q

x

P
x x P P P P P

x

β
α

β
α α β

β
α α β α β

 ∂
− =  ∂  


 ∂ − =  ∂  


 ∂ − = +  ∂  

   (39) 

 
 We now go on to the verification of equations (39), for which we assume that H does 
not include the spatial derivatives of P.  The first equation is then fulfilled in its own 
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right, since the bracket 
4

,
Q

Q
x

β
α

 ∂
 ∂ 

 will then include only the function δ itself, but not its 

spatial derivatives; the second equation is also easy to confirm.  Next, from (II) and (19), 
the right-hand side will become: 
 

2
[ , ]kP Q

hc α β
π

 = 
4

( , )kP

P
α

β

δ∂
∂

r r = − 
2

4

( , )

k

H
Q

P
x

α
β

δ∂
∂∂ ∂
∂

r r , 

while the left-hand side will yield: 
 

4
4

2
( ) ,k k

Q
x x P

hc x
β

α
π  ∂

−  ∂ 
 = 4

2
( ) ,k k

H
x x P

hc Pα
β

π  ∂−  ∂  
 

 

= ( ) ( )k k k k
i i

i

H H
x x x x

QQ P P x
x

αα β β

δ δ∂ ∂ ∂ ∂ ∂− + − ∂∂ ∂ ∂ ∂∂
∂

∑ . 

 
Since the factor of (kx  – xk) must be compensated by a derivative of the δ-function, all 

that will remain as a result of partial differentiation with respect to (kx  – xk) is: 

 

−

k

H
Q P
x

α β

∂ ∂
∂ ∂∂
∂

, 

 
which agrees with the value on the right-hand side (*).  The last of equations (39) requires 
somewhat more calculation.  It then follows from (19) that the value of the right-hand 
side of this equation is: 

4 4

2
{[ , ] [ , ]}k kP P P P

hc α β α β
π +  = k kk k

i i

ii

P PP P
Q QQ Q x

xx

β βα α

β αβ α

δ δ

 
  ∂ ∂∂ ∂ ∂ − + + +   ∂ ∂ ∂ ∂ ∂  ∂∂ ∂∂ 

∑  

= 
2 2 2 2

i i

k k i k i i

H H H H
Q Q Q QQ Q xQ Q
x x x x x x

α β β βα α
β α

δ δ

   
   ∂ ∂ ∂ ∂ ∂   − − +∂ ∂ ∂ ∂∂ ∂    ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   ∂ ∂ ∂ ∂ ∂ ∂   

∑ .  (*) 

 
The left-hand side of the last equation (39) becomes: 
                                                
 (*) The commutability of the differentiations with respect to the various variables is also rigorously true 
for differentiations with respect to matrices, as becomes clear from the definition of that operation that was 
given in the previous paragrapgh. 
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4
4

4

2
( ) ,k k

P
x x P

hc x
β

α
π  ∂

−  ∂ 
 

 = 4 4

2 2
( ) , ( ) ,k k k k

i i

i

H H
x x P x x P

Qhc Q hc x
x

α α
ββ

π π
 
  ∂ ∂ ∂ − + −  ∂∂ ∂     ∂ ∂ 

∑  

 = 
2 2 2

( )k k
i ji j

k i j i

H H H
x x

Q Q QQx xQ Q
x x x x

α β βα
β β

δδ

 
 ∂ ∂ ∂ ∂ ∂ + − +∂ ∂ ∂ ∂∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑  

 = 
2 2 2

i i

k k k i

H H H
Q Q QQxQ Q
x x x x

α β βα
β α

δ δ

   
   ∂ ∂ ∂ ∂   − + ⋅∂ ∂ ∂∂   ∂∂ ∂ ∂ ∂ ∂ ∂   ∂ ∂ ∂ ∂   

∑  

× 
2 2

( )k k
i j i j

j i

H
x x

QQx x
x x

βα

δ∂ ∂− ∂∂∂ ∂ ∂ ∂
∂ ∂

∑∑ . 

 
The first term already agrees with the corresponding one in (*), while the last one will 
give something non-vanishing only for i = k or for j = k.  In the first case, one will get the 
contribution: 

− 
2

i i

i k

H
QQ x

x x
βα

δ∂ ∂
∂∂ ∂∂ ∂

∂ ∂

∑ , 

 
while in the second case, one will get: 
 

− 
2

i i

k i

H
QQ x

x x
βα

δ∂ ∂
∂∂ ∂∂ ∂

∂ ∂

∑ , 

 
which agrees precisely with the terms in (*) that are multiplied by / ixδ∂ ∂ .  The only 

term that will remain is: 

2

( , )
i i

k i

H
QQx

x x
βα

δ

 
 ∂ ∂  ⋅∂∂ ∂ ∂ ∂ ∂ ∂ 

∑ r r . 
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Its vanishing seems to be a special auxiliary condition that is required by the relativistic 
invariance of the C. C. R.: 

2

i i

k i

H
QQx

x x
βα

 
 ∂ ∂ 

∂∂ ∂ ∂ ∂ ∂ ∂ 

∑ = 0.    (40) 

 
Indeed, it is not fulfilled for an arbitrary relativistically-invariant Lagrangian function L 
and the associated Hamiltonian function H, but only for all of them for which equation 
(9) is guaranteed, and which we will encounter in physical applications.  The quadratic 
terms in the spatial derivatives of the Qα (higher ones will not appear at all) will then 
always have constant coefficients.  With that, we have then proved the invariance of the 
C. C. R. to the extent that will be necessary in the following applications. 
 It then follows from the form of the C. C. R. that the brackets vanish (infinitesimal 
character of the C. C. R.) for all world-points with space-like connecting directions (i.e., 

2
i

i

x∆∑  − c2 ∆t2 > 0) that are at finite distances from each other.  It follows from closer 

considerations of a different kind that this state of affairs does not generally remain true 
for points on a light cone or with time-like connecting directions.  In that case, the values 
of the brackets can also be given explicitly for points with finite, non-zero, separation 
distances, and only in special cases.  In quantum mechanics, that situation corresponds to 
the fact that perhaps the coordinate q(t) at time t does not commute with the coordinate at 
time t′; the brackets in question cannot generally be given explicitly. 
 It then follows further from (21) and (23) that: 
 

4

4 4

,k k
k

k

Q
J icG P dV

x

Q
J P L dV H E

x

α
α

α

α
α

α

∂ = − = ∂ 


 ∂ = − = =  ∂  

∑∫

∑∫
   (41) 

 
define the components of a four-vector that combines the total energy and the total 
impulse.  Those relations will then take the form: 
 

F

xν

∂
∂

 = 
2

hc

π
[Jv, F].     (42) 

 
Later on, we will confirm the vector character of Jk by direct calculation. 
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II.  Presentation of the fundamental equations for the theory of electromagnetic 
fields and matter waves. 

 
 § 4.  Difficulties in electrodynamics, the quantization of Maxwell’s equations, 
necessity of extra terms.  We shall next seek to apply the schema for the C. C. R. of the 
previous chapter to the equations of vacuum electrodynamics.  The physical state 
quantities here are the components Φα of the four-potential [Φi = Ai, Φ4 = i Φ0], from 

which the field strengths follow by differentiation: 
 

4 23 31 12 1 2 3

,

, ( , , ) ( , , ), .k k

F
x x

F i F F F F F

β α
αβ

α β

αβ βα

∂Φ ∂Φ= − ∂ ∂ 
= = = − E H H H

   (43) 

 
It is known that the usual Maxwell equations of vacuum electrodynamics: 
 

F

x
αβ

β

∂
∂

= 0     (44) 

 
will follow by variation from the action principle: 
 

δ ∫ L dV dt = 0 
 
when one substitutes the expression (*): 
 

L = − 1
4 Fαβ Fαβ = 1

2 (E2 – H2)    (45) 

for the Lagrangian function L. 
 We now define the impulses that are canonically conjugate to the Φα : 
 

Pα 4 = 

4

L

x
α

∂
∂Φ∂
∂

 

 
according to the prescription of the first chapter and find that: 
 

Pk 4 = − F 4k (k = 1, 2, 3), P44 = 0.   (46) 
 
The identical vanishing of the impulse that is conjugate to Φ4 represents a remarkable 
degeneracy of the Lagrangian function of electrodynamics, and brings certain 

                                                
 (*) One always sums over indices that appear twice, and indeed over each index independently of the 
other ones.  Greek indices run from 1 to 4 and Latin ones from 1 to 3.  Furthermore, it must be remarked 
that we shall employ the Heaviside units for the field strengths throughout this chapter. 
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complications with it.  Above all, the Pk4 can no longer be specified as arbitrary spatial 
functions on a world-slice t = const., due to the coupling: 
 

3
4

1 4

k

k

P

x=

∂
∂∑  = − div E = 0     (44′) 

 
[which follows from (44) for α = 4].  The C. C. R. of Chapter I [cf., also (30)], which 
would yield: 
 

[Φα , β′Φ ] = 0,  [F4i , 4kF ′ ] = 0,  [F4k, α′Φ ] = δkα 
2

hc

π
− δ (r, r′)  (47) 

 
in our case, are therefore not applicable with no further assumptions, and the extent to 
which they are compatible with the auxiliary condition (44′) must be established.  We 
immediately find that this is not the case for the equations that were just written down, 
since it would follow from them that: 
 

4 ,k
i

k

F

x

 ∂ ′Φ ∂ 
 = 

2 i

hc

xπ
− ∂

∂
 δ (r, r′), 

 
while, from (44′), that expression must vanish.  Generally, the C. R. are useful that 
emerge from the given ones by elimination of the potentials by differentiation of the field 
strengths: 

[Fik , lmF ′ ] = 0,  [F4i , 4kF ′ ] = 0,  [F4k, lmF ′ ] = 
2

hc

π
−

kl km
m lx x

δ δδ δ
 ∂ ∂− ∂ ∂ 

,   (47) 

 
or, when written three-dimensionally: 
 

[Hi, k
′H ] = 0, [Ei, k

′E ] = 0, [E1 , 2′H ] = − [E2 , 1′H ] = 
32

hc

i x

δ
π

∂
∂

.  (47″) 

 
It will then follow from the last of the equations that were written down that: 
 

4 ,k
lm

k k

F
F

x

 ∂ ′ ∂ 
∑  = 

2

hc

π
− 2 2

l m m lx x x x

δ δ ∂ ∂− ∂ ∂ ∂ ∂ 
 = 0 

as required. 
 The C. R. (47′) are, in fact, equivalent to the quantization of electromagnetic waves 
by the notion of light quanta, as one might perhaps recognize by the introduction of 
eigen-oscillations according to the method that was given at the end of § 2.  However, the 
fact remains that the general schema of the C. C. R. that was developed in Chapter I can 
be employed in electrodynamics with no further assumptions. 
 It seems natural from our Ansatz regarding the relativistic treatment of the many-
body problem that we should first account for the presence of particles by the 
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introduction of the associated calculations for matter waves.  The transition from the 
classical theory to the quantum theory will come about in two steps: First, there is the 
transition from classical point mechanics to the wave equations of the quantum-
mechanical one-body problem (a particle in a prescribed electromagnetic field) and the 
interpretation of the differential equations thus-obtained in the sense of a classical 
continuum theory.  Secondly, there is the transition to the many-body problem, in which 
the four-current that the matter waves produce according to Maxwell’s equations can be 
regarded as having been generated by an electromagnetic field, and likewise since matter 
is also an electromagnetic field (and both fields move through the space-time manifold) 
will be subjected to quantization.  However, that process will have the result that the 
fundamental difficulties that are attached to each of the relativistic theories of the 
quantum-mechanical one-body problem that have been posed up to now, and which 
originate in the possibility of having two different signs for the energy for a given 
impulse according to the relativistic formulation of the energy-impulse theory for a 
particle, will also persist in our theory and remain completely unsolved. 
 Here, we will use the Dirac theory of one particle, which accounts for spin, as a basis, 
and therefore, before we go into a further discussion of the complication in 
electrodynamics that we just spoke of, we shall next summarize the equations of that 
theory, to the extent that they are important to us.  Four functions ψρ (ρ = 1, …, 4) will be 
introduced, along with four four-rowed matrices γµ whose elements are µρσγ , and which 

satisfy the relations: 
γ µ γ ν + γ ν γ µ = 2 δµν .    (48) 

 
The ψρ  then satisfy the field equations: 
 

2

h e

i x c
µ
ρσ µ

µ σ µ

γ
π

 ∂ + Φ  ∂ 
∑∑ ψρ  − i mc ψρ = 0.   (49) 

 
Likewise, the †

ρψ  satisfy the adjoint equations: 

 

†

2

h e

i x c
µ
ρσ µ σ

µ σ µ

γ ψ
π

 ∂ − Φ  ∂ 
∑∑ + i mc †

ρψ  = 0.   (50) 

 
The electron charge has been set to – e (with e positive) in this.  We now assert that both 
equations will follow from the variational principle: 
 

δ ∫ L dV dt = 0 
when one sets: 

L = − † 2 †

2

h e
i mc

i x c
µ
ρσ σ µ σ ρ ρ

µ σ ρ µ

γ ψ ψ ψ ψ
π

  ∂ + Φ −   ∂   
∑∑∑  , (51) 
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and ψ † and ψ are varied independently of each other.  This is trivial for equation (49), 
but for equation (50), the statement will follow from this that L differs from: 
 

L′ = + 
†

† 2 †

2

h e
i mc

i x c
µ σ
ρσ µ σ σ ρ ρ

µ σ ρ µ

ψγ ψ ψ ψ ψ
π

  ∂ − Φ +   ∂   
∑∑∑  (51′) 

 
only by terms that can be written as divergences, and which then make no contribution to 

the variation of ∫ L dV dt : 

L – L′ = − †( )
2

hc

i x
µ
ρσ ρ σ

µ σ ρ µ

γ ψ ψ
π

∂
∂∑∑∑ .    (52) 

 
It is important to remark that we do not need to take ψ † and ψ as commuting in these 
calculations, and ψ † can always be placed to the left of ψ .  Since L, as well as L′, vanish 
for the non-varied field motion according to (49) and (50), the same thing will be true for 
the difference L – L′.  It is then possible to identify: 
 

sµ = (− e) †

,

µ
ρσ ρ σ

ρ σ
γ ψ ψ∑     (53) 

 

with the current vector 4

1
,k ks i s i

c
ρ = = 

 
, where the factor – e will naturally enter in as 

a result of the negative electron charge.  As a result of (49) and (50), one will then have: 
 

s

x
µ

µ

∂
∂

 = 0,     (54) 

 
and it will follow further from (51) and (53) that: 
 

L

µ

∂
∂Φ

= sµ .     (55) 

 
In order to obtain this relation, each of the expressions (49) and (50) will also be 
multiplied by c in the definition of L. 
 The variational principle from which we have derived the Dirac field equations 
immediately takes on the Hamilton  form (12), which is characterized by the independent 
variation of the Pα and Qα and the linearity of the Lagrangian function in Qα

ɺ  

4

in , in our case
x

σψ ∂
 ∂ 

.  We then have: 
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Pσ 4 = 

4

L

x
σψ

∂
∂∂
∂

= − 4 †

2

hc

i ρσ ρ
ρ

γ ψ
π ∑

 = − 
2

hc
σψ

π
∗ . 

 
The latter notation is justified by the fact that the expression: 
 

σψ ∗  = 4 †1

i ρσ ρ
ρ

γ ψ∑      (56) 

 
can be chosen by means of the differential equations (49) and (50) for the function σψ ∗  

that is the complex-conjugate of ψσ , when the γα are Hermitian  matrices, such that the 
expression for the particle density will be given by: 
 

1 1

( )e i−
 s4 = ρ ρ

ρ
ψ ψ∗∑ ,     (53′) 

 
moreover.  The C. R. (II) [(31), resp.] then assume the simple form: 
 

4 †

† †

[ , ] 0,

1
[ , ] [ , ] ( , ),

, ] [ , ] 0

i

ρ σ

ρ σ τσ σ τ ρσ
τ

ρ σ τ τ

ψ ψ

ψ ψ γ ψ ψ δ δ

ψ ψ ψ ψ

∗

∗ ∗

′ = 
′ ′ ′= = 

′ ′= = 

∑ r r

[

  (57) 

 
here.  The transformation laws for the quantities ψρ and †

ρψ  under Lorentz 

transformations does not need to be discussed in detail here, since it will suffice to 
remark that they are in harmony with the general rules of § 3, and therefore the 
relativistic invariant of the C. R. (57) can also be considered to have been proved. 
 At this point, we might discuss the well-known peculiarity that the C. R. (57) 
represent only one of two possibilities that are both completely justified, formally 
speaking, and indeed one of them corresponds to the symmetric solutions of the usual 
quantum-mechanical equations in configuration space (i.e., Einstein-Bose statistics), 
while the other case corresponds to the antisymmetric solutions (i.e., Fermi-Dirac 
statistics) of the q-number relations that arise from (57) when one replaces the – signs in 
the brackets with + signs everywhere.  If we then introduce the abbreviation: 
 

[F, G]+ = FG + GF 
then we will get: 

4 †

† †

1
[ , ] [ , ] ( , ),

[ , ] [ , ] [ , ] 0

iρ σ τσ ρ σ ρσ
τ

ρ σ ρ σ ρ σ

ψ ψ γ ψ ψ δ δ

ψ ψ ψ ψ ψ ψ

∗
+

∗ ∗
+ +

′ ′ ′= =

′ ′′ = = =

∑ r r
   (57a) 

here. 
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 It is necessary for us to go into the changes in the general equations (19) and (20) of § 
2 that arise from this.  It is clear that in these equations the bracket must be given the + 
sign in the event that F is linear in ψ or ψ † (or their derivatives).  One will see that this 
is the case for all brackets that appear in the invariance proof of § 3, and that this will 
carry over directly to the case that is presently before us.  By contrast, the proof of (19) 
gives some insight into the combination of F1 and F2 into F1 F2 .  One then has: 
 
 [F1 F2 , Qα]− = F1 (F2 Qα + Qα F2) − (F1 Qα + Qα F1) F2 , 
 [Pα , F1 F2]− = (Pα F1 + F1 Pα) F2 −  F1 (Pα F2 + F2 Pα), 
 
only for the usual bracket with the – sign, while [F1 F2 , Qα]+ and [Pα , F1 F2]+ cannot be 
reduced to the corresponding symbols for F1 and F2 individually.  Thus, if F is a bilinear 
form in ψ †, ∂ψ † / ∂xi , ψ, ∂ψ / ∂xi , in which the ψ † always stands to the left of the ψ, 
then the usual brackets will be taken with the – signs.  Therefore, the C. R. (21) and (23) 
[(42), resp.] for energy and impulse are also valid with the usual brackets, which is of 
decisive significance for the feasibility of the theory. 
 One sees that the two types of solutions – namely, Einstein-Bose statistics, on the one 
hand, and the exclusion principle (forbidden equivalence), on the other – seem to still be 
completely justified formally from the standpoint of the quantization of the waves and the 
relativistically-invariant treatment of the many-body problem, as well, and a satisfactory 
explanation for the preference of the second possibility by nature can therefore not be 
given (†). Special ψ-functions are introduced for protons, as well as for electrons, which 
commute with the latter, moreover.  However, since the equations for these two read 
completely the same – apart from the fact that – e gets replaced with + e and m with M 
− we do not need to go into that further. 
 We can now consider the interaction of matter waves with the electromagnetic field, 
which is produced by the variational principle: 
 

δ ∫ L dV dt = 0, 
 
when one replaces L with the sum of the radiation part L(s) [equation (45)] and the matter 
part L(m) [equation (51)].  As a result of (55), it follows from this that: 
 

F

x
αβ

β

∂
∂

= sα , 

 
when the expression (53) is substituted for sα .  Physically, this means that this current 
vector is definitive for not only the effect of an external field on matter, but also 
conversely serves to generate a field.  However, this once more raises the complication of 
exhibiting the C. R. that is in harmony with the condition: 
 

                                                
 (†) The information that P. Jordan gave in regard to this in Ergebisse der exakten Naturwissenschaftern 
7 (1929), 206 was incorrect.  In neither of the two cases would a zero-point energy appear for matter 
waves, moreover. 
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div E = 
1

i
s4 = ρ = (− e) σ σ

σ
ψ ψ∗∑ . 

Namely, if we define: 

[div E, σψ ∗′ ] = (− e) δ(r, r′) σψ ∗′ , 
 
which applies to (57), as well as (57a), then it will follow by integrating (xi) over a finite 
volume that contains the point ( )ix′  that: 

 

,ndf σψ ∗ ′
 ∫ E  = (− e) σψ ∗′ . 

 
However, that means that the electric field strength E cannot commute with the matter 

field ψ for finite distances between the spatial points (xi) and ( )ix′ , as well.  Devising a 

theory with such non-infinitesimal C. R. seems practically hopeless, especially since the 
proof of the relativistic invariance of such C. R. might be linked with great 
complications. 
 However, it is possible to avoid that complication by a formal trick that consists in 
adding small extra terms to the Lagrangian function L(s) of electrodynamics, that likewise 
contain only first derivatives of the potential Φα and do not affect the linearity of the field 
equations, but which imply that P44 no longer vanishes identically.  One then counts these 
altered equations with the canonical C. R. and then first lets the coefficients of the extra 
terms converge to zero in the physical applications in the final results.  The simplest 
possibility for such an extra terms is expressed by the Ansatz: 
 

− L(s) = 
1

4
Fαβ Fαβ – 

2

ε
(Div Φ)2,  Div Φ = 

x
α

α α

∂Φ
∂∑ .  (58) 

 
Yet another possibility is: 

− L′(s) = 
1

4
(1 + ε) Fαβ Fαβ – 

2

ε
x x

α α

β β

∂Φ ∂Φ
∂ ∂

. 

 
It can then be easily shown that the difference between the variations of the integrals of 
L′ and L vanish identically.  The C. R. would generally be different in the two cases, but 
it can be assumed that all physical final results will be the same in the limit as ε → 0.  
The Ansatz (58) for L shall then be retained in what follows.  The modified Maxwell 
equations then read: 
 

(Div )
F

x x
αβ

β α

ε
∂ ∂+ Φ
∂ ∂

 = (1 + ε) 
xα

∂
∂

(Div Φ) – □Φα = sα .  (59) 

 
Moreover, in place of (46), the impulses that are conjugate to the Φα are now: 
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Pk4 = − F4k, P44 = ε Div Φ,     (60) 
 
and the C. C. R. will become: 
 

4 4 4

4 4

[ , ] 0, [ , ] 0, [ ,Div ] 0,

1
[ , ] ( , ), [Div , ] ( , ).

2 2

i k i

i i

F F F

hc hc
F

α β

α αδ δ δ
π ε π

′ ′Φ Φ = = Φ = 


− ′ ′ ′ ′Φ = Φ Φ = 
r r r r

 (61) 

 
One further sees that the previously-written C. R. (47) remain correct, but are extended 
by ones that contain the ∂Φ4 / ∂x4 ; the equations (47′) or (47″) then remain true, as well.  
Furthermore, equation (59) is now no longer affected for α = 4, since the second temporal 
derivative of Φ4 enters into it, such that now the Φα  and the conjugate Pα 4 can, in fact, be 
given for a certain time points as arbitrary spatial functions.  Let it be remarked that the 
complete invariance of the theory under variations of the potentials that leave the field 
strengths unchanged, namely, ones for which: 
 

α′Φ  = Φα + 
xα

λ∂
∂

, 

 
no longer exists now, but this invariance will probably remain when one subjects the 
function λ to the auxiliary condition: 
 

λ□  = const. 
 
The relativistic invariance of C. R. (61) is also proved rigorously for ε ≠ 0 by the 
considerations of § 2. 
 The essential basic assumptions of our theory are contained in the expression (58) and 
(51) for the Lagrangian function of radiation and matter, and the associated C. C. R. (61) 
and (57) or (57a).  We extend them by writing down the expressions for the Hamiltonian  
functions.  According to (60) and (58), one will have: 
 

H(s) = Pv4 
4x
ν∂Φ

∂
 – L(s) = − F4k 

4

k

x

∂Φ
∂

 + ε Div Φ
4x
ν∂Φ

∂
 + 1

4 Fik Fik – (Div Φ)2 

= − 1
4 F4k F4k + 1

4 Fik Fik  − F4k 
4

k

x

∂Φ
∂

 + ε (Div Φ)2 − ε Div Φ k

kx

∂Φ
∂

  (58′) 

 
for the radiation part, and according to (51) and (56), one will have: 
 

H(m) = − 4 †

42

hc

i x
σ

ρσ ρ
ψγ ψ

π
∂
∂

 − L(m) = + 4 † 2 † †

2 k

hc
imc e

i x
µσ

ρσ ρ σ σ ρσ ρ σ µ
ψγ ψ ψ ψ γ ψ ψ

π
∂ − + Φ
∂

  

 = + 2 †
42

k k

k

hc
mc e ei

i x
νσ

ρσ ρ ρσ σ σ ρσ ρ σ µ ρ σ
ψα ψ α ψ ψ α ψ ψ ψ ψ

π
∗ ∗ ∗∂ + + Φ + Φ

∂
  (51′) 
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for the matter part, if one sets: 
 

α k = i γ 4γ k, α 4 = γ 4, with α µ α ν + α ν α µ  = 2 δνµ .  (48′) 
 
Furthermore, one must add the statement that is contained in the C. C. R. for the total 
field that all electromagnetic field quantities (potential, field strengths, and Div Φ) 
commute with all field quantities of the matter waves (ψρ , 

†
ρψ ) (for the same time-point).  

This fact, which includes an essential difference between our theory and the theory of 
Jordan and Klein , which is valid in the limit c → ∞, implies a great simplification in the 
calculations.  On the other hand, the splitting of the Lagrangian function into two 
summands that are completely independent logically and correspond to the matter and 
light waves (if one also considers protons then there will be three independent 
summands) corresponds to the provisional character of our theory and can probably be 
modified later in favor of a unified conception of all genera of wave fields. 
 
 
 § 5.  On the relationship between the equations that were presented here and the 
previous Ansätze for the quantum electrodynamics of charge-free fields.  In a 
previous paper by Jordan and Pauli (*), the C. R. of electrodynamics were formulated in 
the special case of the absence of charged particles from a somewhat different standpoint, 
for which the four-dimensional integrals (over space and time) were considered with 
brackets in integrands, which might then be referred to as the four-dimensional 
standpoint, for that reason.  There, a ∆-function was defined by the relation: 
 

4

3 3
1 2 3 1 2 3 1 2 3 1 2 3

( , , ) ( , , )

1 1
( , , , ) ( , , , ) ,

V

V V

f x t x t dV dt

f x x x ct r dx dx dx f x x x ct r dx dx dx
r r+ −

∆


= = − − =


∫

∫ ∫

… …

 (62) 

 
which was assumed to be valid for any function f (x, …, t), such that this function 
presents a singularity on the light cone ct = − r and ct = + r, and indeed with the opposite 
signs for the past and future.  In that sense, one can also set: 
 

∆ (x, …, t) = 
1

r
[δ (r + ct) – δ (r − ct)],   (62′) 

 
if one understands δ to once more mean the ordinary δ-function. 
 One now asks what follows from the relation (62′) for the ∆-function when we always 
introduce only three-dimensional integrals over space t = 0, instead of four-dimensional 
integrals over space-time, consistent with the standpoint that we have assumed here. 
 We then first obtain: 

∆ = 0 for integrals over t = 0     (63) 

                                                
 (*) P. Jordan and W. Pauli, Zeit. Phys. 47 (1928), 151.  This section is not required for an 
understanding of what follows.  
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from (62).  The same thing is then true for the spatial derivatives of ∆ and the second 
time derivatives, since they can be expressed in terms of the spatial ones by: 
 

24

2
1 xα α=

∂ ∆
∂∑  = 0. 

 

However, something interesting happens when we specialize 
1

c t

∂∆
∂

to three-dimensional 

integrals using (62′).  We then get: 
1

c t

∂∆
∂

 = δ′ (r), 

 
which can, however, be converted further.  Namely, let f (x1, x2, x3) be an arbitrary 
function of the three spatial coordinates, and evaluate: 
 

1 2 3

2
( )f r dx dx dx

r
δ ′∫ . 

 
We introduce polar coordinates and set the function f that is integrated over the angle 
equal to Φ(r): 

Φ(r) = f dΩ∫ , so Φ(0) = 4π f (0), 

so: 
2

( )f r dV
r

δ ′∫  = 
0

( ) 2 ( )r r r drδ
∞

′Φ∫ . 

 
If we think of Φ(r) as being an even function for negative r (such that Φ(r) remains 
continuous for r = 0 and r Φ(r) still has a continuous derivative for r = 0) then, since δ′ 
(r) is an odd function, we can also write: 
 

2
( )f r dV

r
δ ′∫  = ( )r r drδ

+∞

−∞

′Φ∫  = − 
0

( )
r

d
r

dr =

Φ = − Φ(0) = − 4π f(0). 

 
Since the integral that is being calculated has the value – 4π f (0) for all f (x1, x2, x3), we 
can say that we have: 
 

1

c t

∂∆
∂

 = − 4π δ (x1, x2, x3) for integrals over t = 0.  (64) 

 
We can directly adapt the C. R. for the field strengths in the paper of Jordan and Pauli, 
namely: 

 [Ei, k
′E ] =    [Hi, k

′H ]  = 
2 2

2 2 28 ik
i k

ihc

x x c t
δ

π
 ∂ ∂− ∂ ∂ ∂ 

 ∆ (P – P), 
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 [E1, 2′E ] = − [H1, 2′E ]  = 
2

3

1

8 k

ihc

x c tπ
∂ ∂

∂ ∂
 ∆ (P – P), 

 
into the ones (47″) that are employed here, which actually emerge from the ones that 
were written down by means of (63) and (64). 
 The four-dimensional viewpoint has the advantage over the three-dimensional one 
that it makes the relativistic invariance of the C. R. immediately obvious, while that must 
be verified by the somewhat circumstantial methods of § 2 for the three-dimensional 
viewpoint that is assumed here.  Nevertheless, we have many grounds for believing that 
the three-dimensional viewpoint should be preferred in the formulation of the C. R.  First 
of all, from the four-dimensional viewpoint, the fact that the generalization to other 
waves than light waves is not entirely clear is a result of the fact that not just neighboring 
points will contribute to the integral over the bracket here.  Even for force-free matter 
waves, it would be a result of the dependency of their phase velocity on the wave length 
that a four-dimensional integral over the interior of the light cone would appear in the 
definition of the associated ∆-function, along with the three-dimensional integral over 
that light cone.  For matter waves in an external electromagnetic field, the analogue of the 
∆-function can, in fact, be defined on the basis of its properties, but it can no longer be 
calculated explicitly, in general.  Finally, in all physical applications, it is always just the 
three-dimensional integral over t = const., that is in question, such that the three-
dimensional viewpoint also has a closer connection to the physical content of the theory 
than the four-dimensional one. 
 

 
 § 6.  Differential and integral form of the conservation law for the energy and 
impulse of the total wave field.  In Chapter I, it was shown how one could always give 
temporally-constant volume integrals for the total energy and total impulse [see equations 
(7), (13), and (41)], from the canonical form of the field equations, namely: 
 

Jµ = 4 4

Q
P L

x
α

α µ
α α

δ
 ∂ − ∂ 
∑∫  dV,    (41′) 

 
in which the components of the four-vector Jν for ν = 1, 2, 3, which represent the 
components of the impulse, multiplied by – ic, while J4 = H  determines the total energy.  
However, it was not shown there whether energy and impulse can also be conserved in 
the differential form: 

T

x
µν

ν

∂
∂

 = 0,     (65) 

 
in which Tµν in represents the tensor of stress and energy and impulse density in a known 
way, from which the constancy of: 

Jµ  = 4T dVµ∫      (66) 
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then follows.  Here, we would like to show that this is, in fact, the case, and that indeed 
the integrands in (41′) and (66) do not agree, but the values of the integrals can probably 
be always assumed to vanish when they are resting (i.e., two-dimensional) outer surface 
integrals.  However, it should be emphasized that one should expect conservation laws 
for only the total field, which is composed of the electromagnetic and matter waves. 
 We begin with the discussion of the contribution of the matter waves to the energy 
tensor.  It is well-known, and was calculated most completely by Tetrode (*).  The 
calculations in question shall again be sketched out here, but with consideration given to 
the non-commutation of the factors that are present.  Starting with the expression (51) for 
the matter part of the Lagrangian function and the relation (55), we would like to see how 
the expression Fµν sν for the Lorentz force can be converted into a four-dimensional 
divergence.  One then has: 
 

Fµν sν = 
x x

µν

µ ν

 ∂Φ∂Φ −  ∂ ∂ 
sν = ( )s s

x x
ν

ν µ ν
µ ν

∂Φ ∂− Φ
∂ ∂

, 

 
in which, from what was said already, use was made of the following important relation 
(54), viz.: 

s

x
ν

ν

∂
∂

= 0,     (54) 

 
which follows from the field equations for matter waves.  If we further make note of (55) 
then it will follow that: 

Fµν sν = ( )
L

s
x x

ν
µ ν

ν µ ν

∂Φ∂ ∂− Φ
∂Φ ∂ ∂

.   (67) 

 
From this, it is important that the current components must commute with all 
electromagnetic field quantities, since they are expressible in terms of only ψ and ψ †, 
such that the sequence of factors does not enter into (67).  On the same grounds (i.e., the 
commutation of ∂Φν / ∂xµ with ψ and ψ †), we can set: 
 

L

xµ

∂
∂

= 
† 2 † 2

††

L L L L L

x x x x x x x
xx

ρ ρ ρ ρν

ρρν µ µ ρ µ ν ρ µ ν µ

νν

ψ ψ ψ ψ
ψψψ ψ

∂ ∂ ∂ ∂∂Φ∂ ∂ ∂ ∂ ∂+ + + + ∂∂∂Φ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂∂
∂∂

, 

 
in which one must be careful that the factors that contain ψ † must always appear to the 
left of the factors that contain ψ.  One finally has the field equations: 
 

†

L

ρψ
∂

∂
 = †

L

x

x
ρν

ν

ψ
∂ ∂

∂∂
∂

∂

,  
L

ρψ
∂

∂
 = 

L

x
x

ρν

ν

ψ
∂ ∂

∂∂ ∂
∂

, 

                                                
 (*) H. Tetrode, Zeit. Phys., loc. cit.  



Heisenberg and Pauli – On the quantum dynamics of wave fields 36 

which emerge from the vanishing of the variation of L, such that we finally get from (67): 
 

 Fµν sν = − 
† 2 †

† †

L L L

x x x x x x
xx x

ρ ρ ρ

ρρ ρµ ν µ ν ν µ

νν ν

ψ ψ ψ
ψψ ψ

 
 ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ − −

∂∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂∂∂ ∂  ∂∂ ∂  

 

2

( )
L L

s
x x x x

x

ρ
µ ν

ρ ν µ µ ν

ν

ψ
ψ

∂∂ ∂ ∂− + + Φ∂ ∂ ∂ ∂ ∂∂
∂

; 

 
that is, the energy-impulse tensor ( )mTµν  of matter, which is defined by: 

 

( )mTµν  = 
†

†

L L

x x x
xx

ρ ρ

ρρµ ν µ

νν

ψ ψ
ψψ

∂ ∂∂ ∂ ∂+ ∂∂∂ ∂ ∂∂∂
∂∂

 − δµ ν L + Φµ sν ,  (68) 

satisfies the relations: 

Fµν sν = − 
( )mT

x
µν

ν

∂
∂

.     (69) 

 
The first term in (68) drops out, in turn, by the choice (51) of L, so L itself can also be set 
equal to zero then, and it is interesting to point out that its derivation by the relation (69) 
will also remain valid when one replaces L with L′ [see equation (51′)] in (68), or with (L 
+ L′) / 2.  With the expression (51) for L, we get from (68): 
 

− ( )mTµν  = †

,2

hc

i x
ρν

σρ σ
ρ σ µ

ψ
γ ψ

π
∂
∂∑  − Φµ sν  = †

, 2

hc
e

i x
ν
σρ σ µ ρ

ρ σ µ

γ ψ ψ
π

 ∂ + Φ  ∂ 
∑ . (70) 

 
 This expression for the tensor ( )mTµν  is not symmetric in µ and ν.  As Tetrode has 

shown, an expression for the energy tensor that is symmetric in µ and ν can also be used.  
However, since it will lead to the same integral value for energy and impulse as the 
asymmetric expressions (68) or (70), we do not need to go into that point any further here 
(*). 
 We now go on to the part of the energy-impulse tensor that the electromagnetic field 
contributes.  Moreover, we will demand that this part ( )sTµν  , along with the expression 

(54): 

sν = 
F

x x
νρ

ρ ν

ε
∂ ∂+
∂ ∂

(Div Φ)     (59) 

                                                
 (*) By contrast, it is necessary to employ the expression for ( )mTµν   that is symmetric in µ and ν in the 

calculation of the total angular impulse. 
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for the current, must fulfill the relation: 
 

( )sT

x
µν

ν

∂
∂

 = Fµν sν .     (71) 

 
If the term that is multiplied by ε were not present then − ( )sTµν  could be taken to be the 

Maxwell tensor: 
Sµν = Fµρ Fνρ − 1

4 Fρσ Fρσ δµν      (72) 

 
in a known way, since, with consideration given to the identity (43), it will fulfill the 
identity: 

S

x
µν

ν

∂
∂

= − Fµν 
F

x
νρ

ρ

∂
∂

.     (73) 

 
We must then look for extra terms that are proportional to ε that are counted in the 
second term in the expression for the current.  However, in this we will keep in mind the 
fact that according to the equation: 

s

x
ν

ν

∂
∂

= 0, 

 
which follows from the field equations for matter waves as a result of (59), one will have: 
 

□  Div Φ = 
2

2
, x x

ν

µ ν µ ν

∂Φ∂
∂ ∂∑  = 0.    (74) 

 
We then assert that the extra term ε Σµν , with: 
 

Σµν = 21
(Div ) (Div ) ( Div ) (Div )

2x x xν µ ρ µν µν
µ ν ρ

δ δ∂ ∂ ∂Φ Φ + Φ Φ − Φ Φ + Φ
∂ ∂ ∂

, (75) 

 
that gets added to (72) will give what is desired.  (The overbars mean symmetrization, 
due to the non-commutation of factors.)  We then obtain: 
 

x
µν

ν

∂Σ
∂

= 
2

(Div ) Div (Div ) (Div ) Div 
x x x x x

µ
ν µ

µ ν µ ν ρ

∂Φ∂ ∂ ∂Φ Φ + Φ Φ + Φ − Φ Φ
∂ ∂ ∂ ∂ ∂

□  

− 
2

(Div ) Div Div (Div ) (Div )
x x x x x x x

µν
ν

µ ν µ ν µ ν µ

∂Φ∂Φ ∂ ∂ ∂ ∂Φ − Φ Φ − Φ Φ + Φ
∂ ∂ ∂ ∂ ∂ ∂ ∂

. 

 
As a result of (74), all that remains in this is: 
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x
µν

ν

∂Σ
∂

= 
x x x

µ ν

ν µ ν

 ∂Φ ∂Φ ∂−  ∂ ∂ ∂ 
(Div Φ) = − Fµν 

xν

∂
∂

(Div Φ),   (76) 

 
so when one employs the expression (58) for L(s), one will get: 
 
 − ( )sTµν  = Sµν + ε Σµν  

 

= Fµρ Fνρ + ε (Div ) (Div ) ( Div )
x x xν µ ρ

µ ν ρ

ε ε∂ ∂ ∂Φ Φ + Φ Φ − Φ Φ
∂ ∂ ∂

 δµν + L(s) δµν ,  (77) 

 
which is, in fact, relation (71).  Using (59), one can convert this into: 
 

 − ( )sTµν  = Fνρ 
x

ρ

µ

∂Φ
∂

– 
xρ

∂
∂

(Φµ Fνρ) – ε 
x

ν

µ

∂Φ
∂

Div Φ + Φµ sν   

 

+ ε ( Div ) ( Div )
x xν ρ

µ ρ

ε∂ ∂Φ Φ − Φ Φ
∂ ∂

 δµν + L(s) δµν .  (77′) 

 
 It is now essential that the terms in Φµ sν  must cancel precisely when one adds (77′) 
and (68).  One obtains the difference as the sum of the integrands of (41′): 
 

Tµν = ( )sTµν + ( )sTµν ,     (78) 

 
which, in fact, fulfills the conservation law (65), from (69) and (71), and with 
consideration to the value (60) of the impulse of the electromagnetic field, one gets, for ν 
= 4: 

 ( )
4
sTµ + ( )

4
sTµ − 4 4

Q
P L

x
α

α µ
α µ

δ
 ∂ −  ∂ 
∑   

= +
xρ

∂
∂

(Φµ F4ρ) – ε 
xµ

∂
∂

(Φ4 Div Φ) + ε 
xρ

∂
∂

(Φρ Div Φ) δµ 4 . 

 
However, these expressions contain only spatial derivatives, so they will vanish upon 
integrating over spatial volumes.  Since F44 = 0, this is trivial for the first term, and for 
the other ones, it will be immediately obvious for µ = 1, 2, 3, while for µ = 4, what will 
remain is: 

− ε 
xµ

∂
∂

(Φ4 Div Φ) + ε 
xρ

∂
∂

(Φρ Div Φ) = ε 
3

1k kx=

∂
∂∑ (Φk Div Φ). 

 
 With that, the desired proof is completed, and the connection between the differential 
form and the canonical integral form of the conservation laws is exhibited in our case.  At 
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the same time, the vector character of Jk is also verified once more.  However, it must be 
emphasized that the given expression for the electromagnetic part of the energy and 
impulse contains a zero-point energy for the radiation, as well as a self-energy for the 
electrons and protons, which does not correspond to reality (*).  The extent to which this 
fundamental gap in the theory that is being developed here does not, nevertheless, affect 
the calculations in special physical problems will be discussed in the following chapter. 
 
 

III.  Approximation methods for the integration of the equations 
and physical applications. 

 
 § 7.  Presentation of the difference equations for the probability amplitudes.  The 
calculations of this chapter will be based upon the Hamiltonian  function H whose 
radiation and matter wave parts are given by (58′) and (51′).  For this, it becomes 
convenient to introduce a real t according to x4 = ict, and to correspondingly also set Φ4 = 
i Φ0 .  Furthermore, with regard to the applications, we shall again go from the Heaviside 

units to the ordinary ones, such that the Φµ will be replaced with 
1

4π
Φµ , while sµ is 

replaced with 4π sµ .  Finally, it is convenient to introduce potentials 0
µΦ  (c-numbers) 

of external, “applied” forces whose sources are not counted with the system.  For 
example, due to the large mass of the atomic nuclei, it will often be convenient to 
consider the forces that originate with them in the 0

µΦ , and thus, to neglect the reaction. 

 With the introduction of the impulses that are conjugate to the potentials Φµ  (when 
measured in ordinary units) according to: 
 

0

0
0

1 1 1
,

4 4

1 1
,

4 4

k
k k

k

k
k

k

c c c t x

c c x c t

π π

ε
π π

 ∂Φ ∂ΦΠ = − = + +  ∂ ∂  


 ∂Φ ∂Φ Π = = +  ∂ ∂  

E

E

    (60′) 

 
such that the C. R. read: 

[Πρ , σ′Φ ] = 
2

h

iπ
δρσ δ (r, r′),     (61′) 

 
the radiation part of the Hamiltonian function will assume the form: 
 

                                                
 (*) It is known that Klein  and Jordan were able to eliminate certain factors in the expression for energy 
by reordering in their theory of the self-energy of the electron.  That reordering is equivalent to the addition 
of certain terms that include the bracket [Φk , ψ] to the energy density.   In our theory, in which Φk 
commutes with ψ at the same time point, it seems that no analogue to the Klein-Jordan  trick exists that 
would be quite so simple. 
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( )sH = 
2 2

2 2 20
0 0

1 2
2

16
i k k

k k
k i k k

c
dV c e e

x x x x

ππ
π ε

  ∂Φ ∂Φ ∂Φ ∂Φ − + Π − Π + Π − Π  ∂ ∂ ∂ ∂   
∫ . (79) 

 
Correspondingly, one then gets the matter part of the Hamiltonian in the form of: 
 

( )mH =  
 

2 0 0
0 0( ) ( )

2
k k k

k k
x

hc
dV mc e e

i x
σ

ρσ ρ ρσ ρ σ ρσ ρ σ ρ σ
ψα ψ α ψ ψ α ψ ψ ψ ψ

π
∗ ∗ ∗ ∗ ∂ + + Φ + Φ − Φ + Φ ∂ 

∫ .  (79a) 

 
 The associated C. R. are determined from (57) and (57a), as before: 
 
 a) Einstein-Bose statistics: 
 

ψρ (r) ( )σψ ∗ ′r  – ( )σψ ∗ ′r ψρ (r) = δρσ δ (r, r′).     (57) 

 
 b) Exclusion principle (forbidden equivalence): 
 

ψρ (r) ( )σψ ∗ ′r  + ( )σψ ∗ ′r ψρ (r) = δρσ δ (r, r′).    (57a) 

 
 In order to solve the quantum-theoretical problem that is defined by equation (79a), 
one conveniently develops the ψ (Φ, resp.) in a suitable orthogonal system.  The classical 
solutions of the field equations that one obtains when one deletes the interaction terms 
(and thus, the terms of the form ψ *α ψ Φ) from (79a) lend themselves to that 
development in a natural way. 
 We therefore first assume that the Dirac equations for the matter waves are integrated 
for the potentials 0

µΦ , which we assume are constant in time.  [When the 0
µΦ  contain a 

component that is variable in time, one can split it off and, if convenient, treat it together 
with the interaction terms of (79).]  Each eigenvalue Es of the “unperturbed” problem that 
was solved belongs to a system of eigenfunctions (ρ = 1, 2, 3, 4), which is normalized 
according to the equation: 

r sdV u uρ ρ
∗

∫ = δrs .     (80) 

 
One further has the “inverse” orthogonality relations: 
 

( ) ( )s s

s

u uρ σ
∗ ′∑ r r  = δρσ δ (r, r′).    (80′) 

We then set: 
ψρ = s

s
s

a uρ∑ ,  ρψ ∗ = s
s

s

a uρ
∗ ∗∑ .    (81) 

 
The a quantities satisfy the C. R.: 



Heisenberg and Pauli – On the quantum dynamics of wave fields 41 

 
Bose - Einstein statistics : ,

Exclusion principle : .
s t t s st

s t t s st

a a a a

a a a a

δ
δ

∗ ∗

∗ ∗

− =
+ = 

   (82) 

 
The same process shall further be applied to the cavity radiation with no interaction with 
matter.  However, on grounds that will be explained later, we will not start with the 
Hamiltonian  function (79) then, but with a somewhat modified function (doubly-
appearing indices will always be summed over): 
 

( )
0
sH  = 

2 2
2 2 20

0 0

1 2
2

16
i k k

k k
k i k k

c c
dV c e

x x x x

π επ
π ε δ ε δ

  ∂Φ ∂Φ ∂Φ ∂Φ − + Π − Π + Π − Π  ∂ ∂ ∂ + + ∂ 
∫  

− 
2 2

0

8 ( ) 8
k

k kx x

εδ δ
π ε δ π

   ∂Φ ∂Φ +    + ∂ ∂    

;   (83) 

 
δ is a small parameter.  We now look for the solutions to the classical wave problem that 
are associated with (82).  To that end, we set, in a known way: 
 

1 13

2 23

3 33

0 03

8
cos sin sin ,

8
sin cos sin ,

8
sin sin cos ,

8
sin sin sin .

r
r r r

r
r r r

r
r r r

r
r r r

q x y z
L L L L

q x y z
L L L L

q x y z
L L L L

q x y z
L L L L

π π πκ λ µ

π π πκ λ µ

π π πκ λ µ

π π πκ λ µ


Φ = ⋅ ⋅ 




Φ = ⋅ ⋅ 


Φ = ⋅ ⋅ 

Φ = ⋅ ⋅ 

   (84) 

 
In this, L means the edge length of the (cubic) cavity, and κr, λr, µr are whole numbers 
that belong to the oscillation with the index r.  We likewise set: 
 

1 13

2 23

3 33

0 03

8
cos sin sin ,

8
sin cos sin ,

8
sin sin cos ,

8
sin sin sin .

r
r r r

r
r r r

r
r r r

r
r r r
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L L L L
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L L L L
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L L L L

π π πκ λ µ

π π πκ λ µ

π π πκ λ µ

π π πκ λ µ
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Π = ⋅ ⋅ 


Π = ⋅ ⋅ 
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   (85) 
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The Hamiltonian  function thus goes to: 
 

( ) 2 2 2 2 2
1 2 3 0

0 1 2 3 0 1 2 3

2 2
1 2 3 0 1 2 32 2

2 2
1 2 1 3 2 32

1
2

( ) ( )
( )
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L

π
ε δ
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ε δ
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ε δ
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 = + + + + 
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+
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+

+ − + − + − 2) ].r
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  (86) 

 
This function belongs to the corresponding canonical equations, which read, after 
eliminating p: 
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ɺɺ ɺ
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2
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r r
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q q
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q q q q q q

c c

µ µ

δ κ λ µ ε κ λ µ
π π









  +   


     − − + + + = − + − + + +     
       

ɺɺ ɺ

(87) 

 
For every value of r (i.e., for every system of values of κr, λr, µr), equations (87) describe 
the motions of four coupled oscillators.  The classical solution of such a problem will be 
found by the Ansatz 0

rq  = b0 cos 2π vr t, 1
rq  = b1 cos 2π vr t, 2

rq  = b2 cos 2π vr t, 3
rq  = b3 

cos 2π vr t.  Equation (87) then goes to a system of linear equations with the determinant 

2 2 2 22
,r r r r r r r

L
X

c
ν ν κ λ µ ν ′ ′= = + + − 

 
: 

 

2

2

2

2

1

1

1
(1 )

1

r
r r r r r r r

r
r r r r r r r

r
r r r r r r r

r
r r r r r r r

X

X

X

X

κ κ λ κ µ κ ν
ε

λ κ λ λ µ λ ν
ε

µ κ µ λ µ µ ν
ε

δν κ ν λ ν µ ν
ε

′− − − −
+

′− − − −
+

′− − − −
+

+′ ′ ′ ′+ +
+

.   (88) 
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By setting the determinant equal to zero, one obtains a triple root 2
rν ′  = 2 2 2

r r rκ λ µ+ + , and 

a single root: 

2
rν ′  = 2 2 2( )r r r

ε εδ κ λ µ
ε δ

− ⋅ + +
+

. 

 
We denote the four roots by vr,1 ; vr,2 ; vr,3 ; vr ,0 .  The three roots vr,1 = vr,2 = vr,3 belong to 
three linearly-independent solutions that satisfy the condition: 
 

b1 κr + b2 λr + b3 µr + b0 ,1rν ′  = 0.   (89) 

 
vr,0 belongs to the (un-normalized) solution: 
 

b1 = κr,  b2 = λr,  b3 = µr,  b0 = − ,0

1
rν
δ−

.  (90) 

 
In the limiting case δ = 0, one will always have vr ,0 = vr,1 , and the fourth oscillation will 
no longer be linearly-independent of the first three.  There will then exist only three 
proper, periodic, linearly-independent solutions of (87).  The fourth linearly-independent 
solution of (87) will then be aperiodic and can be obtained by passing to the limit δ → 0 
in the following way: For δ ≠ 0, we combine the two solutions: 
 
 1

rq = κr sin 2π vr,1 t, 1
rq = κr sin 2π vr,0 t, 

 2
rq = λr sin 2π vr,1 t, 2

rq = λr sin 2π vr,0 t, 

 3
rq = µr sin 2π vr,1 t, 3

rq = µr sin 2π vr,0 t, 

 0
rq = − ,1rν ′  cos 2π vr,1 t, 0

rq = − ,0

1
rν
δ

′
−

 cos 2π vr,0 t 

 
by subtraction to form a beat: 
 

,1 ,0 ,1 ,0
1
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2
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3
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2 2
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2 2 1

r r r rr
r

r r r rr
r

r r r rr
r

r r r r rr
r r r

q t t

q t t

q t t

q t t t

ν ν ν ν
κ π π

ν ν ν ν
λ π π

ν ν ν ν
µ π π

ν ν ν ν ν
ν π π ν πν

δ

+ − 
= 


+ − = 

+ −
=

′+ −  ′ ′= − − − 









  (91) 

 

In the limit δ → 0, one will have vr,0 = v r,1 1
2 2

δ δ
ε

 − − 
 

; if one multiplies the values of q  
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by ε / 2 and goes to δ = 0 then one will obtain: 
 

1

2

3

0

2 (1 ) cos 2 ,

2 (1 ) cos 2 ,

2 (1 ) cos2

2 (1 ) sin 2 (1 ) cos 2 .

r
r r r

r
r r r

r
r r r

r
r r r r r

q t t

q t t

q t t

q t t t

π ε ν κ πν
π ε ν λ πν
π ε ν µ πν
π ε ν ν πν ε ν πν

= + ⋅
= + ⋅ 
= + ⋅ 
′ ′= + ⋅ − − 

  (92) 

 
Aperiodic solutions of (87) then exist for δ = 0.  If one defines the associated partial 
oscillation of the field strengths then that will yield: 
 

1 2
r r

r rq qλ κ− = 0, …, 0 1
r r

r

L
q q

c
κ

π
+ ɺ = 2ε rν ′ κr ⋅ cos 2π vr t, … (93) 

 
Thus, the aperiodic changes in the potential belong to periodic oscillations of the field 
strengths, which vanish when ε → 0, moreover.  The aperiodic solutions that are 
considered here have the simple form of the C. R. (61′) to thank, since they guarantee the 
commutation of Φ0 and Φk .  However, the transition ε → 0 can be completed with no 
difficulties in all physical questions, since no aperiodic solutions of the kind (92) exist for 
the field strengths. 
 Nevertheless, it would be inconvenient to calculate with these aperiodic initial 
solutions; for that reason, we have added the δ-term into the function 2

0H .  The 

introduction of the δ-term then has a reason that is similar to the introduction of the 
cavity: It implies a discrete eigenvalue spectrum.  Cavities and δ-terms generally disturb 
the invariance of the equations under spatial and temporal transformations.  In the final 
result, however, if we go to the limit of an infinitely large cavity and the limit of δ = 0 
then the invariance will once more be restored. 
 The transition to the quantum-theoretical solution of equation (86) comes about in 
such a way that one introduces the impulse and coordinates of the principal oscillations 
Pr, Q r (there are four of them for each r), in place of the pr, qr, and indeed an elementary 
calculation will yield the possible schema: 
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(94) 

 
One then has: 

r
iP  = 

,

1

2
r
i

r i

Q
π ν

ɺ , 0
rP  = − 0

,0

1

2
r

r

Q
π ν

ɺ , 

 
and furthermore, the C. R.: 
 

[ , ]r s
i kP Q −  = δik δrs 

2

h

iπ
,    [ , ]r s

i kP P −  = 0,    [ , ]r s
i kQ Q −  = 0 (i = 1, 2, 3, 0; k = 1, 2, 3, 0). 

 

The equation 0
rP  = − 0

,0

1

2
r

r

Q
π ν

ɺ  shows that the Hamiltonian  function includes 2
0( )rP  and 

2
0( )rQ  with negative signs: 

 
 H0  = 2π vr,1 

2 21
1 12 [( ) ( ) ]r rP Q+  + 2π vr,2 

2 21
2 22 [( ) ( ) ]r rP Q+  

(95) 
 + 2π vr,3 

2 21
3 32 [( ) ( ) ]r rP Q+  − 2π vr,0 

2 21
0 02 [( ) ( ) ]r rP Q+ . 

 
In order to not be forced to always write the principal oscillation separately with the 
index 0 in what follows, we introduce: 
 

vr,4 = − vr,0 , 
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and furthermore: 
P r,4 = − 0

rQ ,  Q r,4 = 0
rP .   (96) 

 
 From now on, we enumerate the principal oscillations with an index λ that runs from 
1 to 4: 
 Q r,λ  ≡ ( 1

rQ , 2
rQ , 3

rQ , 0
rP ), 

 P r,λ  ≡ ( 1
rP , 2

rP , 3
rP , − 0

rQ ). 

 
With the help of (94) and (84), the potentials can now be written in a form that is 
analogous to (81): 

0 0

0 0

, ,

1 1
, .

4 4

r r r r
i i

r r r r
i i

Q P

P w Q w
cL cL

λ λ λ λ

λ λ λ λ

υ υ Φ = Φ =



Π = Π = 


   (97) 

 
The r

i
λυ  and r

iw λ mean the orthogonal system of eigenfunctions of the cavity. 

 In place of the coefficients a, a* in equation (81) and the P, Q in equation (97), one 
now introduces the number of corpuscles in corresponding quantum states as a variable, 
as Dirac did for the first time in his theory of radiation.  Let the number of electrons in 
the state s be Ns , and let the number of light quanta in the state r be Mr .  Call the 
canonically-conjugate angles Θs (χr, resp.). 
 One shall then have (†): 
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  (98) 

 
The quantities Vs are the sign functions that were introduced by Jordan and Wigner: 
 

Vs = 
t s≤
∏ (1 – 2 Nt).     (99) 

                                                
 (†) Cf., the repeatedly-cited paper of Jordan and Wigner on this.  
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The exponential functions of the phase angles can be regarded as operators, and have the 
following properties: 

2

2

2

Bose - Einstein statistics :

converts into 1,

Exclusion principle :

" " 1 ,

Radiation :

" " 1.

s
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r
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h
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h
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h
r r
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e M M
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π

π χ

Θ

Θ



−



−



−



   (100) 

 
We now go on to the presentation of the Schrödinger equation that belongs to the 
Hamiltonian  function (79) plus (79a).  The probability function ϕ shall depend upon the 
variables Ns and Mr, so | ϕ  |2 shall then give the probability that Ns electrons will be 
found in the state s, and Mr light quanta shall be found in the state r.  One obtains the 
differential equation that belongs to ϕ when one expresses the H in (79) and (79a) in 
terms of N, Θ, and M, χ with the help of (81), (97), (98), and then regards the angles as 

operators and sets (H – E) ϕ = 0 (E is the total energy of the system).  One will then use 
the the fact that the us and vrλ are solutions of Hamilton ’s equation (79) [(79a), resp.] 
with no interaction terms to good advantage.  The “unperturbed” energy will then have 
the simple form: 

E = 1
, ,2

,

( )s s r r
s r

E N M hλ λ
λ

ν+ +∑ ∑ . 

 
 The term 12 ∑ hv means an infinite additive zero-point energy of the radiation cavity.  

Since that term enters into the total energy only as an additive constant, it has no physical 
meaning, and can then be dropped (cf., pp. 52).  If one expresses the interaction term in H 
in terms of u and v then the following integral will appear: 
 

0

,

.

r s i t r
st i

r s t r
st

c u u dV

d u u dV

λ λ
ρ ρσ σ

λ λ
ρ σ

α υ

υ

∗

∗

= 


= 

∫

∫
     (101) 

 
The difference equation for the probability amplitude ϕ (N1, N2, …; M1, M2, …) then 
ultimately reads (in what follows, the summation sign will again be written out): 
 
 a) In the case of Bose-Einstein statistics for matter: 
 
( )s s r r

s r

E N E M hλ λν− + +∑ ∑  ϕ (N1, N2, …; M1, M2, …) 



Heisenberg and Pauli – On the quantum dynamics of wave fields 48 

= 1/2 1/ 2

, , ,
( 1)

4 s t
s t r

h
e N N

λπ
+′Σ  

  × 1/2
1[ ( ) ( , , 1, , 1, ;r r

r st st s tM d ic N N Nλ λ
λ ϕ− − +… … … 1, , 1, )rM M λ −… …  

  + (Mrλ + 1)1/2 ( )r r
st std icλ λ+  ϕ (N1, …, Ns – 1, …, Nt + 1, …; M1, …, Mrλ + 1, …)] 
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4 s

s

h
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π ∑
 

  × 1/2
1[ ( ) ( , ;r r

r ss ssM d ic Nλ λ
λ ϕ− … 1, , 1, )rM M λ −… …  

  + (Mrλ + 1)1/2 ( )r r
ss ssd icλ λ+  ϕ (N1, …; M1, …, Mrλ + 1, …)] .      (102) 

 
 b) In the case of the exclusion principle for matter: 
 
( )s s r r

s r
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  + (Mrλ + 1)1/2 ( )r r
ss ssd icλ λ+  ϕ (N1, …; M1, …, Mrλ + 1, …)] .      (103) 

 

The summand r = s is excluded from the summation Σ′. 
 
 
 § 8.  Calculation of the perturbed eigenvalues up to second order in the 
interaction terms.  If one regards the interaction terms in equations (102), (103) as small 
perturbations then one can attempt to integrate (102), (103) by successive 
approximations.  In the unperturbed system, say,0

sN electrons are found in the state s, 
while no light quanta at all are present.  We exclude dispersion and absorption processes 
from this initial solution, which are of no interest to us, at first.  The unperturbed 
probability amplitude will read: 

0 0
1 21 1 2 2

0 1 1 ,0 ,0, ,
( , ; , ) ,M MN N N N
N Mϕ δ δ δ δ=… … ⋯ ⋯  0

1 1
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 (104) 
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We substitute this value of ϕ0 in the interaction term for equation (102) [(103), resp.] and 
thus find the perturbation to the first approximation ϕ1 of the probability amplitude ϕ = 
ϕ0 + ϕ1 + …  That yield: 
 
 a) Bose-Einstein statistics: 
 

0 0 0
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 b) Exclusion principle: 
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(106) 

 
At all other locations in 

1
N − , 

2
N −  , … space, one will have ϕ1 = 0.  By substituting ϕ1 

from (105) and (106) in (102) and (103), one will obtain the eigen-perturbation E(2) (E = 
E0  + E(1) + E(2) + …) if the equation at the location 01N , 0

2N , …; 0, … has been written 

out.  The temporal mean of the perturbation terms, and thus, the perturbing energy E(1), 
will vanish. 
 Calculation yields: 
 
 a) Bose-Einstein statistics: 
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 b) Exclusion principle: 
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Small denominators of the form Es – Et + hvrλ can possibly appear on the right-hand sides 
of formulas (105) to (108) that will affect the convergence of the process.  Their physical 
meaning is the following one: In order for Es – Et + hvrλ to be small, one must have Es – 
Et ~ hvrλ ; i.e., the unperturbed system is capable making a jump from the state t to the 
state s with the emission of a light quantum hvrλ .  The further discussion of the small 
denominators would then proceed in precisely the same way as Dirac’s theory of 
radiation.  Since we are more interested in the eigen-perturbations here, we would like to 
assume that the terms in question do not affect the result appreciably; that is case for, e.g., 
the normal state of an atom from which no emission is possible.  However, even in the 
excited states, it might very well be meaningful to consider the interaction of the 
electrons, while neglecting the radiation force.  Since we are aiming for the calculation of 
the interaction, we will not comment further upon the appearance of small denominators. 
 In what follows, it shall be proved that the eigen-perturbation that is calculated from 
(107), (108) is, to a certain approximation, identical with the second-order eigen-
perturbation that one obtains when one imposes electrostatic interactions between the 
electrons in the usual way and solved the Schrödinger equation in configuration space.  
To that end, we remark that the quantities r

stc λ  have to do with the currents, and therefore 

with the magnetic interactions of electrons, while the quantities r
std λ  relate to the electric 

interaction.  Since the magnetic interactions are equal in order of magnitude to the 
relativistic effects that can still not be treated in configuration space, we will neglect them 
for our proof of the r

stc λ terms.  What then remains is the calculation of sums of the type: 

 

,

1 r r
s t ts

r s t r

d d
E E hv

λ λ

λ λ− +∑ .    (109) 

 
The integrals r

std λ  (r ≠ t) will first become noticeably large for vrλ for which the wave 

length of light is comparable to the atomic dimensions, and thus, for very large vrλ .  
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Furthermore, since the number of eigen-oscillations increases very rapidly with 
increasing v, we will suspect that the main contribution to the sum comes from very large 
values of v.  It therefore seems justified to consider the sum: 
 

,

1 r r
st ts

r r

d d
h

λ λ

λ λν∑      (110) 

 
in the first approximation, instead of (111).  As an estimate will show, the error is not 
greater than the error that is introduced by neglecting the r

stc λ .  The sum (110) is easy to 

evaluate; one finds, somewhat more generally, that: 
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(Here, P and P′ shall index points in the volumes considered.) 
 The sum: 
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appears in this.  In order to calculate it, one defines ∆P G (P, P′ ).  From (94) and (84), 
that will yield: 
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δ (P − P′ ) means the Dirac δ-function of the points P and P′.  If the cavity is sufficiently 
large then the solution to the differential equation (112) for G (P − P′ ) will read: 
 

G (P − P′ ) = − 
2 1

1 PPr

π
δ ′−

.    (113) 

 
It follows from this that in the limit of δ = 0: 
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The integral Ast, nm is then the known exchange integral that appears in perturbation theory 
when one treats the many-body problem with quantum mechanics in the usual way.  
Ultimately, one gets the energy perturbation E(2), up to terms of order δ, as: 
 
 a) Bose-Einstein statistics: 
 

  E(2) = 
2

0 0 0 0
, ,,

,

( 1)
2 s t st ts s t ss tt

s t
s t

e
N N A N N A

 
+ + 

 
′Σ ∑ . 

 
 b) Exclusion principle: 
 

  E(2) = 
2
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, ,,

,

(1 )
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s t
s t

e
N N A N N A

 
− + 
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The terms that appear here still include infinite sums of the form: 
 

,st ts
s

A∑ = St . 

It follows from (114) that: 
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The quantities St then correspond to the self-interaction of a particle that was discussed 
by Jordan and Klein , and become infinitely large.  St does not depend upon the distance 
t; i.e., the self-interaction of an electron is the same at any distance.  Thus, the terms St, 
like the zero point of the radiation, generally imply an infinite additive constant for the 
total energy.  In the theory that is being developed here, there are no processes in which 
the electron number changes.  Therefore, the additive extra terms will have no effect, 
since one is only interested in the energy differences (†); we then drop the self-interaction 
of the electrons from E(2) and obtain: 
 
 a) Bose-Einstein statistics: 
 

                                                
 (†) Translator’s note: italics mine. To me, this suggests that one is dealing with non-conservative forces 
that do not admit non-singular potential energy functions; the energy difference is the path-dependent work 
integral between the initial and final states. 
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E(2) = e2 
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 b) Exclusion principle: 
 

E(2) = e2 
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These are precisely the formulas that conventional quantum mechanics gives when one 
considers the electrostatic interaction of the electrons in the first approximation.  The 
theory that we are pursuing here leads naturally to these formulas only under certain 
omissions that shall be discussed briefly. 
 The magnetic terms cst dts and cst cts will be dropped.  Since the sum: 
 

,

1
st nm

r r

c d
hλ λν∑ , 

 
which is analogous to (110), vanishes, as the calculations will show, the terms cst cts will 
chiefly play a role in the magnetic interactions that gives rise to exchange terms of the 
form: 

( ) ( ) ( ) ( )s i t n i m

PP

u P u P u P u P
dV dV

r
ρ ρσ σ µ µν να α∗ ∗

′
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′∫ . 

 
Its magnitude is small of order (v / c)2 relative to the values E(2).  In addition, the exact 

formula (107) [(108), resp.] contains extra terms of the kind 
( )

s t
st ts

s t r r

E E
d d

E E h hν ν
−

− +∑ , 

which can be neglected in the transition from (109) to (110), and which originate in the 
retarding of the potential.  Ultimately, E(2) still does not give the exact eigenvalue, but 
E(3), E(4), etc., must be considered in E, as well.  In many cases, E(3) will greater than the 
terms that have been neglected up to now.  The calculation of E(3) and a comparison of 
the values with the corresponding perturbing terms of the treatment in configuration 
space will, however, lead to extremely tedious calculations.  If would be very desirable to 
have another method of integrating the fundamental equations of the theory, in which the 
interaction of the electrons is not assumed to be small and is developed in powers of 1 / e.  
It would also be necessary to investigate the role of the self-energy of the electrons more 
precisely in terms of order (v / c)2. 
 
 
 § 9.  On the light emission that one might expect from the theory when an 
electron passes through a potential jump.  The calculations of the previous section will 
show that the theory that is sought here includes the results of the previous theories as 
special cases.  The proof of that can also be easily carried out for radiation phenomena 
for which equations (102), (103) lead to essentially the same results as Dirac ’s theory of 
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radiation.  It also yields nothing new in the problem of the sharpness of the energy 
definition in the stationary states. 
 By contrast, some experiments shall be discussed here that still have not been treated 
from the standpoint of the theories up to now (*).  To cite a particular example: Let a 
helium atom in the normal state be under the influence of a strong electric field.  That 
field can ionize the helium atom with a certain probability.  In a similar way, it is know 
that for an α-particle in the Gamov-Gurney-Condon theory of the Geiger-Nutall law, a 
certain probability exists that it can pass through the nuclear potential jump.  Such a 
transition is found in quantum mechanics in such a way that the electron can leave its 
atom with a well-defined energy that is given by the difference between the energies that 
were originally present in the normal states of helium and the remaining energy of the 
positive helium ion.  However, if one considers the interaction of matter and radiation in 
the manner that has been set down here then a certain probability will also exist for the 
emission of electrons of significantly lower energy values, such that the energy law will 
be justified by the emission of a corresponding light quantum.  Here, the blurring of the 
energy of the emitted electrons has nothing to do with the lifetimes of the states in 
question, so the effect comes about entirely independently of the ionization probability.  
Moreover, the theory leads one to expect phenomena that are completely similar (mutatis 
mutandis) to the Auger jumps. 
 One can summarize the mathematical treatment of the aforementioned effects under 
the title of “transitions between states of equal energy.”  We then assume that there is a 
discrete, radiation-less state of the atom in the unperturbed system (viz., the normal state 
or the metastable state), and there is a continuum of translational states in the vicinity of 
that energy value that will resolve into a sequence of discrete, very closely spaced terms 
under the quantization in a cavity.  If one first treats that problem with conventional 
quantum mechanics then a certain eigenfunction ϕa of the electron coordinates will 
belong to the discrete initial state of the atom.  Eigenfunctions ϕ t will belong to the 
individual translation states that will be represented to a sufficient approximation by a 
product of the eigenfunctions of the ions and the translational eigenfunctions (viz., plane 
waves) of a single electron.  If one denotes the kinetic energy of the electron by Et then 
the mean distance ∆Et between two neighboring translational states of energy Et will have 
the value: 

∆Et = 
3

3/2 3 1/ 216 (2 ) t

h

m L Eπ
    (118) 

 (L = edge length of the cavity). 
 According to Dirac (** ), the transition probability for the process considered – viz., 
the transition of an electron from the atomic context to the energetically-corresponding 
translational state – is then given by: 
 

                                                
 (*) If one restricts oneself to the first approximation, as will be done in what follows, then one will get 
results that can be derived from Dirac’s theory of radiation.  However, that will no longer be correct in the 
higher approximations, since a unified treatment of the interaction forces and radiation forces will be 
required then, which is still not contained in Dirac’s theory of radiation. 
 (** ) Proc. Roy. Soc. 114 (1927), 243; see, esp., pp. 264, equation (32).  
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(2 )at tm L E

h

πΦ .   (119) 

 
In this, 0

atΦ  means the matrix element of the perturbing potential that belongs to the 

transition considered.  One then has: 
 

0
atΦ  = − e 0a tdϕ ϕ∗ Φ Ω∫ .    (120) 

 
dΩ means the volume element in configuration space.  Here, in the case of the Gamov 
transition, the potential jump itself enters as the perturbing potential, in essence, so the 
smallness of 0

atΦ  originates in the fact that the product ϕ*a ϕ t is small everywhere.  (The 

eigenfunction of the translation and that of the atom decrease exponentially inside of the 
jump.)  In the case of the photoelectric effect, Φ0 means the potential of an external 
perturbing light wave (*), while in the Auger process, it will be the potential of the 
Coulomb interactions of the electrons.  Since the eigenfunction ϕ t is normalized over the 
entire cavity in the coordinates of an electron, one easily sees that 0

atΦ  behaves like L3/2 

as a function of L.  The transition probability (119) is then independent of L, as it must 
be. 
 Equation (120) becomes especially simple when the interaction of the electrons is 
generally regarded as small.  In the case of the exclusion principle, one will then have, in 
the highest approximation: 

0
atΦ  = − e 0a tdVu u∗Φ∫ , 

 
in which the ua means the eigenfunction of the state from which the electron is removed 
by the transition; ut is the translation eigenfunction, so the integral is only extended over 
a three-dimensional space, namely, the coordinates of one electron. 
 If one treats the same problem with the method that was described in this paper then a 
perturbing term of the form – e Φ0 ψ * ψ will first enter in place of the perturbing 
potential V in the Hamiltonian  function.  If one again expresses ρψ ∗  and ψρ in terms of 

Ns and Θs then it will follow from (98) in the case of the exclusion principle that: 
 
 H1 = – e Φ0

ρ ρψ ψ∗   

= Ns (1 – Nt) Vs (N1, …, 1 – Ns, …) Vs (N1, …, 1 – Ns, …) ast …,  (121) 

 
in which: 

ast = − e 0 s tu u dVρ ρ
∗Φ∫ .    (121a) 

 
We can again adapt the Dirac equation for the transition probabilities (119) directly, if 
we now have: 

                                                
 (*) Cf., on this, G. Wentzel, Phys. Zeit. 29 (1928), 321.  
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0
atΦ  = 
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…

… …     (122) 

 
for 0

atΦ  ; here, ϕ t means the probability amplitudes for the initial and final states in N1, 

…, M1, …space.  If one next asks about the transitions without the emission of light 
quanta then one will have: 
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  (123) 

 
H1 is to be regarded as an operator [cf., (100)] in (122), and one will get, in the zeroth 
approximation: 

0
atΦ   = aat = − e 0 a tdV u uρ ρ

∗Φ∫ ,    (124) 

 
in agreement with the previous result. 
 Transitions with the emission of light quanta (hvrλ) are then also present.  The 
eigenfunction for the state a remains as before, except that ϕ a must be calculated up to 
the terms of first order that are given in equation (106).  By contrast, the eigenfunction of 
the final state t in the zeroth approximation is now: 
 

0
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Analogous to (106), the perturbing terms of first order in ϕ t are given by: 
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 (125) 

 
Other values of ϕ1 can enter in place of the N1, …, M1 space that are of no interest to us, 
since the enter into the sum (122). 
 We thus obtain, in the first approximation (the terms of order zero drop out): 
 

0
, rat h λνΦ = ,

1 1 1
, , ,
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N M
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… …

… …  
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Use of the notation std∗  = dts is made in this.  Combining the various terms yields: 
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By substituting 0

, rat hv λ
Φ  into (119), one will obtain the probability of the transition from 

the state a to a state of equal energy, during which, a light quantum hvrλ is excited and an 
electron is emitted in the state Et .  For the values λ = 1, 2, the energy of the 
aforementioned final state will differ only slightly from the sum hvrλ + energy of the 
atomic system in the state t in which no light quanta are present (which is equal to Eion + 
Et + hvrλ).  For λ = 3 or 4, however, the energy of the final state will differ from the 
corresponding sum by quantities of order 1 / δ, as one infers from a consideration that is 
analogous to the one that led from (104) to (108).  Should the energy of the final state be 
equal to that of the initial state then for λ = 3, 4, and small δ, either hvrλ must be very 
large or Et must be very large; the corresponding probability amplitude will then be very 
small, so the contributions of λ = 3 and λ = 4 should be dropped in the limit δ = 0. 
 From (119), the total probability for the emission of a light quantum with a frequency 
between v and v + ∆v and the simultaneous emission of an electron with the 
“corresponding” energy” 

Et = Ea – Eion – hv     (128) 
then amounts to: 
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 Since λ can assume only the values 1, 2, v0, and therefore das, will vanish from 
equation (94).  The sums between the lines are then converted into: 
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If the wave length of light that belongs to hvrλ is large compared to the atomic 
dimensions then one can set: 
 

r
mnc λ  = m l n r

l
l

u u u λ
ρ ρσ σα∗∑∫ = 

1
( )r nm

l A l
l

v x
c

λ∑ ɺ .    (131) 

 
In this, the index A means that the value of the function of position in question is to be 
taken at the location of the atom.  If one performs the summation over the values of r, λ 
between v and v + ∆ν then, from (84) and (94), one will get: 
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for the transition probability (129).  The factor 1 / ∆Et will drop out when the matrices ast 
and st

lxɺ  are calculated with the eigenfunctions, which are normalized according to the 

scale of dEt . 
 If v and ∆v have an order of magnitude E / h then the relative frequency of processes 
with the emission of light quanta in comparison to the frequency of ordinary transitions 
will have the order of magnitude: 

~ 
22e x

hc c
 
 
 

ɺ
.     (133) 

 
The probability for the transition that is considered here will then be small of the same 
order as the radiation effects relative to the probability of the ordinary processes. 
 If one applies this result to the Gamov-Gurney-Condon theory of the radioactive 
decay of the nucleus then one will conclude that primary β-ray spectra cannot be sharp, 
since all radiation effects of the electrons on the nucleus have the relative order of 
magnitude 1.  Admittedly, from the theory that is presented here, the associated 
continuous γ-ray spectra must also always appear, since in this theory, the validity of the 
energy law will always remain true.  This theory then gives no insight into the 
complications that are linked with the apparent non-existence of those γ-ray spectra. 
 Our argument for the continuous primary β-spectra has a certain similarity to a 
consideration of Rosseland (*), which said that the electrons would be forced to emit 
radiation as a result of the acceleration that they acquire upon leaving the nucleus.  
However, upon closer comparison, there are still some differences between the theories.  
The Rosseland transitions correspond to only the terms in the sum (129) for which Es – 
Et – hvrλ can be considered to be very small.  Due to the smallness of the associated 
coefficients dst, cst , they will produce only a minor contribution to the total result. 
 Equation (129) is also applicable to the photo-electric effect.  However, that will 
produce nothing new, but will give the known probability formula for the Compton 

                                                
 (*) S. Rosseland, Zeit. Phys. 14 (1923), 173.  
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effect.  If one were to choose the state t to be in a discrete spectrum then one would again 
obtain a derivative of the Ladenburg-Kramer  dispersion formula from (129). 
 From the final formula (132), one can recognize that it also contains the jump + mc2 
→ − mc2 that Dirac discussed, which will naturally influence the result.  Since that jump 
undoubtedly does not happen in reality, we have not considered it in the discussion of 
(132).  That fact is inconsequential to the theory that is discussed here, which one must 
consider as long as the Dirac difficulty is still unexplained. 
 


