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On the quantum theory of wave fields, II.

By W. Heisenbergin Leipzig andW. Pauli in Zurich
(Received on 7 September 1929)

Translated by D. H. Delphenich

The decomposition of total systems of terms into cambining subsytems will be examined for the
quantum theory of wave fields. The integrals of the egustof motion will be derived from the
invariance properties of the Hamiltonian functidrurthermore, the consideration of gauge invariance will
yield a satisfactory formulation of electrodynamicghwno extra terms. The mathematical connection
between wave theory and particle theory will be ulsed.

Introduction. The relativistic formulation of the quantum theofywave fields ()
has been plagued with difficult objections, up to nowpadrticular, the interaction of the
electron with itself seems to make the applicatiotheftheory impossible in many cases,
at the moment. We are thus still quite far from #&mate formulation of the theory.
Nevertheless, we would like to believe that it is mely that construction of wave
theory that will be vital to any further progress in quamtheory.

In the quantum theory of point mechanics, essentiagrpss is achieved by the
investigation of the invariance properties) (of the Hamiltonian function. The
distribution of systems of terms into non-combininguy® of terms can be derived from
these invariance properties, and likewise the simplgnale of the equations of motion
are connected with such invariance properties of Haeniltonian function. The
invariance properties of the wave equations will be etgrain an entirely similar way in
the following exposition.

8 1. General method and impulse theorems.The basic idea of the method is
generally this: If theHamiltonian function H is invariant under certain operations then
that means that a well-defined operakbr which will be linear in all of the cases that are

important to us, will remain unchanged:; i.e., it widlhemute withH . If one regards the
operator as a quantum-theoretical variable) then it will follow that this variable is
constant in time, so one thus will obtain an intego&l the equations. If the
aforementioned invariance remains under any changestarhaions of the system then

()  W. HeisenbergandW. Pauli, Zeit. Phys.56 (1929), 1. This paper will be cited as | in what
follows.

(")  Confer the summary presentationHhf Weyl, Gruppentheorie und Quantenmechanik, Leipzig,
Hirzel, 1928.

Fokk

(") On this, cf.P. A. M. Dirac, Proc. Roy. Soc. London (AR3(1929), 714.
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the changes in the values of the variables will be ptetaly impossible, so every
numerical value of the operator will represent a subsysif terms that do not combine
with the remaining terms.

As the simplest example, let the Hamiltonian functibe invariant under the
translation of the entire wave field in space. (Th&tons in the following formulas are
taken from the paper | everywhere.) The translation x + J corresponds to the
change of the wave functio, (cf., I, pp. 20):

Qo - Qu- 2 & ®
The change in a functionglof theQ, will then be:
F-F- jdvzgg aaQ (1 o | dvzaaQ 53 jF. 2)
The translation byx; then corresponds to the operator:
1- 0% [ deaaQ 52 (3)

Since theHamiltonian function H is invariant under translations, the operator (3)
must commute withH. The quantum-theoretic variable that corresponds i then

constant in time. Since the operatbf X, corresponds to the variablerR/ h P, [l,
equation (20)], (3) will then yield the impulse theorenefuation (24)]:

j dVZa:aa?q” P, = const. (4)

§ 2. Conservation of charge.The particulaHamiltonian function for the electrons
(¢, and radiation®,) is invariant under the transformation:

Yo — Yo, Y, - y,e, (5)
in which @ means a constant, or the corresponding infinitesiraatformation:

Since thez//E mean the impulses that are canonically-conjugate teshét will suffice
to consider just thg), . A functional of they, goes to:
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OF
Y

P

F-F+ida[dv_—u,, (")

so the operator that belongs to the transformatiors (en:

. o)
1+ida|dVy, — . (8)
.[ p 5¢,p
It then follows that:
j dV ¢, = const. (9)

One can rearrange the factors on the left-hand sid®)odvith affecting the temporal
constancy of the integral. One then obtains therdmf the conservation of charge. If

the Hamiltonian function contains matter waves for electrons and peotg/ and
z//;p)) then the theorem of the conservation of chargehaile the form:

[ v -0 + 9Py = const. (10)

In order for this equation to be justified, the Himmian function must be invariant
under the following transformation:

(e) (e a He) Oe) 4-ia
o - yPer, P -y Pe, } 1)

w;p) N wép)e—lﬂ, w;(p) N w;(p)elﬂ_

The usual form of the Hamiltonian function up townaontains two independent
summands that each depend upon apf§ or ¢! alone. That function is invariant

under (11), so one even has the conservation afjeh@r the protons and electrons
separately. However, one sees from (11) that amepossibly introduce terms of the
form:

YWY P 8%+ Oy PR, sk (12)

into the Hamiltonian function with altering (10}(means the components of theaac

spin tensor.) Such extra terms make it possibléhfere to exist “annihilation processes,”
in which an electron and a proton combine intogatliquantum). The annihilation
processes can then be introduced into the matheah&famework of the quantum theory
of waves with no difficulty, although it is knowindt they have no place in particle
theory.

_2me
§ 3. The transformation®, - ®, +0x/ox, , Y - e " o Oy,. For the sake of
simplicity, let there be just one kind of mattér) in the following calculations. As long

(") Translator’s note: Of course, this paper was publisieéote the positron was discovered.
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as one ignores extra terms withand o (I, pp. 31), the Hamiltonian function will be
invariant under the following transformatiof: (

2mie 2rie

o, - ¢V+g_))((v, Woe " Oy, ¢ - yglend, (13)

in which y represents an arbitrary function of space and timeth({&y y shall commute
with all variablesy,, ®,, and in addition, the values gfanddy / ot at different spatial
locations must commute.) As is known, this invariandk be perturbed by the extra
terms incandd. This is a blemish in the theory that seems unavoidalde one carries
over Maxwell’'s equations to quantum theory in the usual way. HoweWeone
examines the integrals that belong to (13) then thédit suggest the possibility of
avoiding the extra terms altogether. (

For the following calculations, we start with the Laggian function with n@ and o
terms; its radiation part is then called (when onglegs Heavisideunits) simply:

(" Weyl used the term “gauge invariance” for thigan. cit.

() Ina paper bf. Fermi that appeared in the meantime [Rendiconti d. R. Add.ideei (6) 9 1% half
(1929), pp. 881], another interesting method of quantizationgivas in which the gauge invariance was
perturbed by auxiliary conditions, instead of extra ternit©ie Fermi method can be characterized as
follows from the viewpoint that is assumed in this pa@ere introduces:

- v, \?
L =71y ==« | dv
JZ%(GXV]

as the radiation part of the Lagrangian function, sbekthe field equations that arise by varyfhgwill
read:

Rl
For the quantities:
_y 00,
K= ; ox,
the relation:
0%K _
ZV: g 0

will follow from these equations by meansﬁfg—i = 0. In order to make this result agree viitaxwell’s
H "

equationsFermi added the auxiliary conditions:
K=0andK=0

on a slicet = const. in a known way, and these conditions witiyagate in the course of time by means of
the field equations. These auxiliary conditions aredvali quantum electrodynamics, not gseumber
relations, but in the same sense as equation (25), whichilivderive later. Fermi then arrived at his
guantum-electrodynamical equations when he employed tméeFadecomposition for the electromagnetic
field and configuration space for the matter field, (8f.7 of this paper). The question of the relativistic
invariance of the C. C. R. or that of the correspopdiperator method was not particularly examined by
Fermi, although it follows with no further assumptions fronpg@al or from 8§ 4 of the present paper.
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2
E(Q32—5§2):—£ ﬂ_acbv
2 4\ ox, ox, |

However, in this Lagrangian function we consider ohly®; (i = 1, 2, 3) to be variables,
while we regard®, as an arbitrarily given function that commutes with ather
variables. In particular, e.g®4 can simply be set equal to zero. That would correspond
to the state of affairs in classical theory, in whicte @f the four components is indeed
completely arbitrary, due to (13). Ondy is established, the invariance (13) will then
still exist only for time-independent functions Thus, lety be an arbitrary function of
the three spatial coordinates that vanishes at infinitg sufficient degree, and look for
the integrals that belong to (13).

One should observe that now only the three spatialpooents of Maxwell's
equations follow by variation of th®; in the Lagrangian function, while the equation:

dive=p (14)
does not need to be fulfilled.
Instead of (13), we consider the infinitesimal transiation:

CDHCD.+5§X w, » -8

, 2o Ogp. (15)

A functionalF of ®; and ¢, will go to:

FoF+o[adv OF 0y _2me oF ,
b, ox h cay,
0 OF 2me OF
=F-0|dv : 16
J ((M&D h ccprw”j)( (16)
The operator:
0 0 2me 1)
dv = 17
J ){ch‘ib hcw”cﬂ//pj an

will then correspond to the transformation (15) aswmmute with the Hamiltonian
function.
Therefore:

avi-25-2 5wt 1s)

is a constant. Since this is true for all arbyrgpatial functions, it will then follow that:

dive +e > ¢y, = const. =C. (19)
o
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Therefore, only (19) will follow from the formulaticthat is carried out here in place
of (14), in whichC represents an arbitrary spatial function. Howevemust now be
observed that every system of values@arepresents a single system of terms that does
not combine with the remaining terms, and chang&€sare completely impossible. Any
sort of interaction terms or perturbations of the Haman function will leave the
invariance under (15) unaffected. Extra terms of the typeamd dterms in | are then
generally inadmissible; however, it seems justifedssume that only quantities that are
invariant under (13) have any physical meaning. Followidgyl, we call such
guantities gauge-invariant.

The commutation rules for the quantiti@swill be formulated most simply with the
help of the quantities:

C :j)((divez+ezw§¢/p)dv = j)([cdv, (20)
P

in which yonce more means an arbitrary spatial function. mFto(47) and (57), one
finds that:
_ hc oy

[C.yd=-exwn, [Cy,] =exy,, [C’CDK]_Z_MR' (21)

However, that means that the transformation (19) ke mediated by infinitesimal
variation ofy according to:

fof+ 2058 1], 22)
hc

whenf is replaced with any of the quantitigs, z/lf,, @, . Therefore, (22) is also true for

the variation of an arbitrary quantifyunder (15). Let it also be mentioned that this
relation generalizes to:

27 = 270 =

£=C -£2C
f-eh [fle N (22)
for the finite transformation (13). In particulémy gauge-invariant quantities — for them,

it is mainly:

. o/ hc o hc 04, D
Fuv, Y4, wp{z—;%m%%j, (Z—;aT%—eq:ﬂijwg (23)
U U

that comes under consideration — it follows that:
[C,F]=0,

and thus, also:
[C,F]=0; (24)
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i.e., they commute witle. If one represents the variables of the system oficea then
the gauge-invariant quantities will include no elements ¢batespond to transitions of
C, although the other non-gauge-invariant quantities will pbbbinclude such matrix
elements. Since directly-measurable quantities areyalgauge-invariant, one can give
a numerical value to the const&ht In particular, if one chooses:

C=0 (25)

then the fourth component daxwell’s equations will also be true; indeed, it that will
not generally be true as gnumber relation, but probably for all gauge-invariant
relationships. C = 0 means that the operator (17) will give zero wheriegpo the
Schrodinger functiondt (¢, ®;) of any stationary state of the system; i.e., tat®ns
for which the Schrodinger functional is likewise ineanti under (15) is singled 6y = 0.
One can give a number of independent gauge-invariant @.or,which, all other
gauge-invariant C. R. are derivable. In essence, thethargquantities (23), and they
must be identical with the ones that can be derived paper I. They also propagate in
time according to I, equation (21). It is therefore quibevenient to employ C. R.
betweend; and¢;, and thus, in-gauge-invariant quantities. In the many-ipodlglem of

point mechanics, that will correspond to the fact thatequationgx ¢ — ¢ px = % A

will used for the derivation gl = %% although ultimately such C. R. cannot even
k
be defined in the chosen antisymmetric system.

The relativistic invariance of the schema thatjust wrote down seems doubtful, at
first, sinced, would be singled out by the, . Before we investigate that question (8 5),
we shall first treat the Lorentz group by a methioat is analogous to the one that was
employed for the other groups up to now in the cakea relativistically-invariant
Lagrangian function C. C. R. (e.g., the Lagrangefion that was endowed withterms
and was used in I).

§ 4. Lorentz transformation ('). The invariance of the Hamiltonian function unde
spatial rotations corresponds to the angular ingpla&. The method that was employed
up to now must be modified somewhat for proper htweransformations, since the
Hamiltonian function is not invariant under them,itaand the components of the impulse
collectively behave like the components of a foecter. However, we will see that the
proper Lorentz transformation corresponds to thmemre integrals. Once more, it
suffices to consider infinitesimal transformatighsequation (33]:

Xu — Xy + € Suv Xv (Sw =~ sw). (26)

() Essential parts of this paragraphs — in particulee, expression (30) fo and the proof of the
constancy in time of the associated volume integrals-{28¥ due td. v. Neumann to whom, we extend
our deepest thanks for informing us of his results.
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(Here, and in what follows, equal indices will always summed over.) The wave
functions then change on two grounds: First of a#i, @h are not scalars, in general, but
they transformation in a prescribed way at a well-defineddapoint; furthermore, they
change the world-point to whidQ, refers. With the relations of I, one will then gt
equation (39, (35), (9)]:

d
Qa - Qa+£taﬂQﬂ - & &S,uvxv, (27&)
ox,
oH oP
Pas » Pasa— EtpaPps — € —50_ S E 24 S Xy (27b)
a& 0X,,
28

We now seek an operatdr such that:
27T~
Qa —» Qo+ fh—c[/\Qg] : (28a)

Such an operator is given by [cf., relation |, (7) betmvehe Hamiltonian and Lagrangian
function]:

A = j AdV, (29)
_ 0Q,
N = [taﬂQ/J —Kskvxvjpcm = H s X,
0
= [taﬂQ/J ‘a%: Skvxvj Paa+ L Sy X (30)
In fact, if one recalls that:

27T — oF 217
—JH,F] = —, —[P,,Q.] =0usd(t,
hC[ ] 6X4 hC[ a4 Qﬂ] a3 ('C t)

then an expression that agrees with the right-hatel i (27a) will follow immediately
upon substituting (29), (30) into (28a).
However, with the sam@A , one also has the equation:

Pas - Paa + gi—’g[/‘\, P.]. (28b)

According to I, equation (20), it will then follow that:
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21T — ON 0 OA
_/\1Pa = - _
e Feel 0Q, 0x 59Q,
ox
0 oH 0 oH
:_t P _ .VXVP + —5 __—S y
sa Ppa ox (s a4) aQaSka ox aa& 1k X

0%

and with the use of the expression &1, 4 / 0x4 , it will follow from the field equation
that:
21T — oP. oP. oH
—[APR,] =—tpaPpa— —2 sy X — 2 Sk X%~ —55— Sy
hC[ al prFpa =5y ax, J0Q, %

0%,
in agreement with (27b).
It follows by generalizing (28a, b) that an arbitrary gugrF that does not include
the coordinates explicitly will go to:

FoF+e2lAF] (31)
hc

under an infinitesimal Lorentz transformation. Fmité Lorentz transformations, it will
follow from this that there exists an opera&such that one has:

F_ SFS* (31)
for it. If one develop$in powers ofs then the term that is linear awill be given by:

s=1+¢ 7R+ .. (32)
hc

However, we have not succeeded in finding an explicit egme for S for non-
infinitesimal transformations. The Schrédinger fuoesi or functionalg will be
transformed in a corresponding way under Lorentstoamations according to:

¢ - S¢,

in whichSis regarded as an operator that acts upon the variabkesre included ig.

We must now answer the question of whethedepends upon the time coordinate
x4. We will show that this is not the case, under ggueption that:
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d

J/,_j{aQ” P..—0, Ljdv
,u
define the components of a four-vector (viz., energy-isgdk = —i c &, Js = H). This
means that for the infinitesimal transformation (26) should have:

Jy - Ju+Eswdy,
and in particular:

H - |—_|+£S4ka.

A comparison with (31) will then give:
27 — —
ZIAH] = sac (33)
hc

Moreover, it is easy to calculateA/dx,. For a quantityr that does not includg,

explicitly, one would have simply:

a_F :—_[F H]
0X, hc

however, forF = A, one must add the term that arises by differentiafing/ith respect
to the symbolx, that is included in it explicitly. The second term BO)Y makes a
contribution to this fow = 4, and one gets:

A 277 0
AHI-| Q”P4§<4dV

dx
=- h—c[/_\, H]+J3,S,- (34)

This will vanish precisely as a result of (33), anel will then have:

A\ = const. (35)

This equation contains six independent integralg,esponding to the six componests

= - sy, (thetypz are determined uniquely by tlg), and three of them can be interpreted
as belonging t®k as a result of the angular impulse theorem, whéeother three that
belong tosi have no such intuitive meaning. It must once nfofe I) be emphasized
that it is indeed essential that one must insuae tie temporal constancy of the integral
must be independent of the sequence of facto#) iard (30).

The invariance of the C. C. R. under Lorentz ti@msations follows immediately
from (31) or (3). The proof of invariance that was carried outehe probably
somewhat simpler than the one that was given iHdwever, it must be stressed that the
vector character of, represents a new assumption that cannot be dedumedthe
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Lorentz invariance of the Lagrangian function along.c@ntrast, this assumption always
enters into consideration when a differential foratioh of the energy-impulse theorem
exists in the form of the vanishing of a tensor divergence

oT

w

axv_

As would emerge from I, this is always applicable to anysjgiayly-important case.

8 5. Lorentz transformations and gauge invariance.n § 3, we spoke of a process
in which one set®, = 0 in a special coordinate system and then applieG.tke R. to it.
In it, the equation:

C=dive+ed ¢ w,=0 (25)
P

is valid only for gauge-invariant quantities gsnumber relations, while the other
quantities — e.g., th¢ and®, — do not commute them. However, sif€e&ommutes
with the energy, it can nevertheless be employed nasuiliary condition for the
Schradinger functional.

Such a process is not intrinsically relativisticaliyariant. In another reference
system, the C. C. R. will no longer apply to non-gauyaiant quantities. However,
one can show that all statements about gauge-invariantitiggthat are obtained in that
way will satisfy the requirement of relativistic invance when one adds the equation
(25). To that end, we next establish the gauge invariahtteedHamiltonian function,
and above all, the quantity\ that was found to be definitive for the Lorentz
transformation in the previous paragraphs. According teguation (45), (51), (51
(58) (when we omit the terms that are endowed wjtand seP,4 = 0 for the radiation),
we will have the following Lagrangian and Hamiltonian dtions for the matter and
radiation parts, respectively:

L™ = {wE [E%mwﬂ%}a;gwi [%‘wﬂ +ewg¢kj+ mczazgw,?wg] (36a)

21T 0X, 0X,

HM™ = Ews 64[10 — L
2m " 0x,
hc 0 .

= a;gl/ls [H aé)l(lkﬂ + ewaq)k j + rmza;crw;wa + e'¢’5¢’p¢4 ) (37a)

LO =~ 4FgpFap= $(€% - ), (36b)
0P s b, 1 1

HO = - F4k 6X4k -9 == F4k ax: _E F4kF4k +Z FikFik . (37b)



Heisenberg and Pauli. Quantum theory of wave fields, II. 12

As one seedi™ andH® are not gauge-invariant, in contrast{&) andL®. On the
other hand, the total energy can be transformed by piategiration into:

H=[H™+H)dv =

f {aﬁgwp[b; aafk” wcb J mc’a, W, W, — 4 Fy Py + 3R F +i® C |dV. (38)
auav

A similar conversion is true for the total impulsél is then gauge-invariant in the case
of C=0, and it is also the time component of a foacter in only that case.

The calculation of the quantit\ that is defined by (29) and (30) takes a similar
form. We now understant,, to be quantities that relate to the matter wawes,

particular, while the associatég for the ®, will vanish identically, due to their vector
character. As a result, one will have:

7\:jdv

he oy " Ry S (39)
{_ET""E Ltpawa ——pSW)g,j+ L )S4kxk —Fy {Skp u _GTKSWX’J-*_ L )S4kxk:|.

axﬂ 9

However, one has:

od,
j dVF4k(a ,UVXI Sk,u ,uj

,u
3 0o,
- J. dVF4k Lk ,uvxv axk ,uvxv

= J. dVF4k|: Lk ,uvxv+ ((D VXV)}

oF
J. dv{ ,uk ,uv)Q/ axik (D S,uv&lj
where the last step follows by partial integratidn.all, one gets:

hc ¢’p

]

A=| dv{ ool Mo+, ( iewp%jsﬂm

+ L™ sy X + Fax Fuke Suv X + L9 spexic—i C s D %) (40)

A will then be gauge-invariant f@ = 0.
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One obtains the values of all quantities in the meference system from (39),
according to formula (31), except for the valuebaf when®, = 0 in the original system,
and one assume the C. C. R. However, for non-gaugdanvauantities, their non-
commutation withC and the contribution to the last term in (40) thageafifom it must be
considered. They are easily inferred by comparison {fh). One can deduce two
kinds of conclusions from this state of affairs. sFiof all, the C. R. for the gauge-
invariant quantities in the new reference system folieman their validity in the original
reference system independently of what sort of C. &trae for the remaining quantities.
Only the former C. R. are then necessary for the pobdie validity of (31) by gauge
invariance. Secondly, one can show that one carresot tod, = 0 and the C. C. R. in
the new reference system by a change of gauge that @svalvsuitable functioy.
Generally, thayy will be ag-number.

However, it is unnecessary to go into that change agg@ more detail in order to
show the Lorentz invariance of the entire process. ebhaer, it will suffice for that to

establish that the C. C. R between the quantiiesy., ®x, Fis still remain valid in the

new reference system and that thecommutes with altb, and ¢, , ¢, as one easily

verifies. Furthermore, the spatial componentdViaixwell’'s equations are no longer
fulfilled as g-number relations in the new reference system; neves$ieone can choose
the eigenvalue zero on their right hand sides by singlinigacsubsystem of terms that
does not combine with the remaining terms, which would cporesto the choice df =

0 in the original reference system. If one furthesesbes thatb, does not enter into the

Hamiltonian function at all fo€ = 0, and that the expressiezrﬁgzﬂ +6 Yp Dsin the
7T 0X

v
other equations can be expressed in terms oftheb,, and their derivatives by means
of the matter-wave equation then one will recogrtze identity of the computational
schema in the new reference system with the otfeeiimitial system.

8 6. Implementing the schema with no extra termsWe revert to real timg; =i c
t and to the usual units for field strengths andctimeent vector, introduce the quantities:

nk:—iqzk, (41)
4mc

h
27i

@, = 0 in the coordinate system that was chosenhertteatment. The Hamiltonian
function (37a, b) now reads:

which satisfy the C. C. RIT;, @] = ax Odx, v') [cf., I, (60), (61)], and setd, =

H=
hc

0
[av Ea;km‘/’g 6x: +mcak wip, +

1 (aqai 00,

2
Torl ax, o j +2n2|1§+ed>ka;aw§wa (42)
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The last term mediates the interaction betweenatiati and matter, and will be
considered to be a perturbing term. For the implementati the method, as in I, it will
be convenient to develop thdg in an orthogonal system that will be found by solving
unperturbed problem. In contradiction to the previous austhonly the three spatial
components of thi&axwell equations will be fulfilled in the unperturbed problem.e W
again set [cf., |, equation (84)]:

P, =, / % (o) COS]—LTKr X Dsing)lr y Dsin][T,ur z (and cycl. permutations)

(43)
n, =\/§ o) cosl—LTer[Bing)lrstingyrz :
The radiation part of the Hamiltonian function thendrees:
H = 27¢® [(p})* +(P5)* +(P5) ]
+ e WO A k)7 + (Al = 0ik) + (ot =0l ] (44)

for an eigen-oscillation. If one then sefs= b’ sin 277v; t in the classical theory then one

will obtain three linear equations for thH® from the three spatial components of
Maxwell’'s equations whose determinant is:

[v: 2L, x, =K3+Af+uf—v:2j
C

xl‘ _/(I‘2 _KI‘AI‘ _KI‘/'II‘
-AK, X =AP =Au | (45)
—pK, A X

By setting the determinant equal to zero, one @ltiain a double root

1 2 2 2
I/r _\/Kr +Ar+lur’

whose associated coefficierttS must satisfy the condition. It then defines aaragglic
solution:

g =b'0, (47)
in which:
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We introduce the coordinat®s Q " of the principal oscillations as a possible schema:

1 A MK K
ro— r Ny ry Qr + r Qr ,
| 4cL JV (K2 +A2) VIV (K2 +AD) ST
1 r A r ﬂ A r A r
q = ; + rr Q + - ! = Q )
NI JV (K2 +A2) vV (K2 + D) Covfv T
1 VKA 7P
q3 = - ] [] 2 + ! ! le
4clL Vid Y, Vi Vr
1 v, r H A r K r
pp= A —P +——L—P t+—="F,
acL KA v+ ) Jvi e
1 r V, r /'l A r A r
P, =K, | —515P +——EC P+ P
JacL )EAATTJuiwEead v
1 r l(l‘2 -i_AI‘2 r ﬂr r
=y = e AL
4cL V Vi

The radiation part of the Hamiltonian function read

H, = Y 2mv, {4[(R)? +(Q)1+1L(P) *+(Q) 1 +4( P 3

in the new variables.

(48)

(49)

As in |, equation (98), one introduce the numbiglight quantaM; 1 (M, 2, resp.) in

place of B", Q/, P, Q,, along with the conjugate angles, as variables.

r 1 h 1/2 szXr,/l _zTni)(r,/l 1/2
Qi :i_ Z_[ M:"e -€ Mo

r h 1/2 zTni)(r,A _zTni)(r,A 1/2
P/i = 4 Mr/i € te M rA |’
7T

By contrast, such a substitution would make noeéassP;, sinceQ; is not present in

A=1, 2.

(50)

15

the unperturbed Hamiltonian function, 9¢ is itself a constant in the unperturbed
system. We them employ tiN, M, (1 = 1, 2), andP, as independent variables of the

probability amplitude.
Schradinger equation will read:

If one assumes the exclusgrinciple for matter then the
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[FE+Y NE+D M hv, +> v, (P’ 1#(N, N, ... .M, Py
S r,A r

=-ie 412 N,@-NOV(N,,...,1=-N. W (N, ,.. , =N, )

s,tr
r . .
ﬂéZCﬂA[M:—;2¢(Nl““’1_ NS’:L_ Nt ’Mll-.- ,MI‘,/‘ - 11P"_:3I,- yoo )

-(M,, +1"?¢(N,,...,.1-N; ,I=-N, M, ,.. M_, - 1P5,...)

3 (h 0 (51)
+ci? ,;_Ta_P;MN“""l_ N,,I=-N,M,,.. M, - 1P; %
-ie LZ'NS{Zcg[ijz¢(Nl,...;Ml,...,MM—l,Pef,...)
47T sr A=L2

~(M+D)"26(N,,...;M,,... M, , +1P; ,.)]

[h s 0 1
+ C N,...,M,...,P ...

in these variables.
However, along with this equatioy must satisfy the further condition that the
operatorC must give zero when it is appliedga It reads:

P ¢(N1,...,|v|l,...,P;,...)+§ N,A-NOB N, ,.., =NV N, ,.. . EN,)
@’ #(N,,..., 1= N, 1-N, ... M, ,.. P} ,..)

52
+> N dZg(N,,...,M,,... . P;,...)= 0. (52)
In this, we have set:
dl, = j uubveav, (53)
where:
o _ 4 2 . . JT /e
vV, = — — Sin— K, X[5in—A y[sin—u z. (54)
m\ cv L L L

r

In the unperturbed system, in which the interactiowéeh matter and radiation can
be neglected, from (52), one will have:

P =0. (55)

All that remains then are the two known principal letions 1 and 2. However,
theP, must also be considered in the unperturbed system, vinios with it some
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differences from the previous schema that is due t@dh&inuous eigenvalue spectrum
of the B .

In what follows, as in I, we will recalculate onlyetlelectrostatic interaction; in the
meantime, the magnetic and retarded effects will bertagined by the method 8freit
(Yin 1.

For the electrostatic interaction, one expressesperator; in (51) most simply by
(52). One can then neglect the terms vgthin (51) in comparison to the terms witt}

in the first approximation. Only the temporal mean Efﬂvr(l%r)2 remains as the
r

perturbing energy in that approximation, in whi€ is replaced with the operator in
(51). It will then follow that the perturbation tife eigenvalue is:

AE = € Zt w NO(L-N2)did; +e”y v, NN, dLd; . (56)

r,st

(Let N? be the value dfls in the unperturbed system.)
In complete analogy to the calculation in |, onké then find that:

2
AE = 2 TNJL-N) A+ 2 NINCA |, (57)
S st

in which Ag s means the exchange integral (I, 114):

As,om = [ aV v e (P (P (YU, (P)

e

The u; represent the orthogonal system in which the matgenfunction is developed.

It emerges from (57) that an infinite interactiohthe electron with itself will also
result from the method that is followed here thdt make the application of the theory
impossible in many cases. The only advantageefrtbthod that is described here then
consists of the fact that it makes the extra tamthe Maxwell equations superfluous.

§ 7. Transition to configuration space('"). In this section, we will treat the
guestion of how one can calculate (say, for a geeargy) the probability that for a
given number of light quant¥, , (A = 1, 2) and a giver®, 3 the locations of théN
electrons that are present will lie inside of tl@ume dag, ... dgp ... dgin around the
location@y ... Qip ... in. The index runs from 1 to 3 and refers to the three spatial
coordinates, the indgxruns from 1 toN and refers to the different particles. One sees

(") G. Breit, Phys. Rev34 (1929), 553.
("M R. Oppenheimergave us friendly encouragement to elaborate upon thisothethd we would like
to express our thanks to him at this point.
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that the total number of particles present can be as$uim be constant, such that
annihilation processes will be excluded at first. We hientpreserve the Fourier

decomposition of the radiation field, in contrast tattbf the matter waves, since for the
time being that is the only way to eliminate the zerm¥penergy of the radiation. We

will show that probability amplitudes:

Py..p (G - Ny Mry, Pr3)

can be defined, in which the indicgscan assume four values for eggltorresponding
to the four wave functions of tHairac theory of the spin electron, and from which the
desired probability can be calculated from:

4

> 1@, (G- Gn, Mp, Prg) P

PPy =l

These functions satisfy simple differential equatjowithout it being necessary to
introduce any sort of omissions or approximations. dlaar that the comparison of the
results of the quantum theory of wave fields with sehoof the non-relativistic
Schrddinger theory of the many-body problem (viz., waves in configaraspace) will
be eased by the introduction of such functions. Onelsanderive those functions along
a detour to the function®(Ns, M., P 3) that were defined in the previous paragraphs,
but we prefer to follow a direct path.

First, we would like to exhibit theSchrodinger equation that belongs to the
Hamiltonian function (42) and the auxiliary condition ftre functional with the

variablesN,(x) = t//ft//p, M;,, Pr 3 that corresponds 16 = 0. The most important part of

the argument will then be the transition frd\y(x) to di1, o1, G, -.. Gin, O\ @s variables.
According to (43), (48), and (50), one will have:

_27
q)k— ZZ r/il 1/2€h)( -e hX"AMrl/]/Z).i.ZVIr(?‘Qr?’, (58a)
A=L2 r r
A h VIr ”1‘ 1/2 1/2 r3pr3 8b
=22 Vk (M MM)+Z 7% P (58b)
A=1,2 r
In this:
= o2 S 0sT T g CoinT g, x, SN 6, %, (59)

(and cyclic permutations),

if . is set equal to the matrix:
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N 1 2 3
1 ‘92 81‘92 "
Je+es Jelvel 48
& £,E, (48)
2 £,
Je+e: Jeirel
3 0 - & +&5 &,

for eachr. We see that thg x are the components of the unit vector in the direadion

the wave normaEZ & :1j, and for each, we have set:
k
’ ’ ’ ( ! 2L j
K=V'é&, A=V, H=V'& Vi=—mv|.
c

It follows from this that:
dive =-4cdivil

8 / v: |8 . 2m
:ZT E F ri’™ r,2°2 EIPI‘?)’
which will yield the equation:
div & + 4me > iy, =
P
is solved forP;3 by means of th€ourier theorem:
Pa+e [ Uy (X)X wow,dv =0, (60)
P

in which vy is defined by (54). Furthermore, from (42), wigare drops the zero-point
energy of the radiation, the Hamiltonian functioiti ixe:

Da o g
A= M, + 3 (P, +jdv[— S gw,,ng

_2a
ey / O Lo - " o alw,av

/112

+>.Q" j Ul Qo WoaV (61)
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We now write the two relations (60) and (61) as operatoiaons that act upon the

27

function @ { N, (X), Mra , Pr3}. For that, we consider that n " converts the valudl into

M F 1, resp. and thad" is replaced with;ﬁ 9 . We will then have:
T r3
{Pmej um(mDZNp(x)dVJ #{N, (%), My , Prg} = 0. (60)
P

{_Eﬁ-ZMMhVM +var(Pr3)2} l//{Np (Xi)’ MM ’ Pr3}

jdV e ;gwm oY, +mc’a UI/IEI//U @ {Ny (%), My , Pr3}
27

P an
+eZ\FEﬂD_ZIu ak, u,u,0v)
X [(Mea + 1)"2 ¢ {N, (%), ..., M Mr/\"'l . Pra}
- MY @{N, (%), ..., M Mm Pr3}]

), ..My, ...,Pra}=0.  (61)

+ez (ju ;gwswng)aP

It is now important to see how operators of thenfor

O Da o
[T t,000w,av  and [ 2 0w, Leav
p.o P, Xk

(thef arec-numbers) act upon a functiorfd{ N, (x;)} whenN, (x) = z/lfz//p, and one has
the C. C. R.:
[Wn 0] = Q6 O(x, ¥);

moreover, one wishes to know the result when & apong (g1, ..., Gip, ..., din)-
The required transformation theory has been dpeelloseveral tlmes already).(

However, it is convenient to first replace ti¥gx) with step functions, and then to go to
configuration space, and only at the end will thactions once more be allowed to

become continuous. Thus, let the cells inside bitvy¢* and ¢ have equal values be
chosen to have then same volum®s and set:

a'p,)(i = wp (X|)’ a;Din = l//;D;()ﬂ) AV’
such that one will have:

() P. A. M. Dirac, Proc. Roy. Soc. (AL14 (1927), 243:P. Jordan and O. Klein, Zeit. Phys.45
(2927), 751P. Jordan, ibidem 45 (1927), 766P. Jordan andE. Wigner, ibidem, 47 (1928), 631.
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[a, . ,a  ]s=0 0.,

o1 o PT %X

in which thex; run through only discrete values. One sees that fized total numbeN
of particles (this assumption is essential at first):

— A0
NM = & Ay
will possess the eigenvalue:
N
za_pppa:ﬁqip !
p=1

in which several pairs of valugs, g, can also coincide.
N N\ — | N\ — I 1 |
p(x|) - wp(xl) l/lp (X|) =1m N a‘p,xi a‘p,xi
then has the eigenvalues:

N
Za_ppp [B(x _qp) ’
p=1

in which theDirac J-function now appears.
The transition to configuration space — i.e.,dlsociation of:

¢ (O Ay, ..., AN On) With  O{N, }

results from the equations:

PLyg - L, - gy )7 N ) (o N N s N }
NI 1/2
q)(:I-plql."“ ,2quTY ’]pN—:LQN—l ): ?j ¢ wlql L prqr prqr LA ) (62)
1/2
OIN® N©@ _| (N}
(NG o N ) = ISTVE] #(00,...00,,00;:--PQy--)-
D | N® times N® times

One sees that all paigs, g, are different from each other in the first row,ilhwo pairs
are equal to each other in the second row, andhdnlast one generallf®, N@, ...
values will coincide. FoEinstein-Bosestatistics,@(o1 Qi, ..., O On) IS Symmetric in
this, and for the exclusion principle, it is antiayetric; in the latter case, only the first
row of (62) will be in force.

For the sake of simplicity, the further calculasowill be performed for thEinstein-
Bosestatistics. One will then have:
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O — NY24719,% . — A9, Nj1/2
Ay = N/»q e ' Ay = e N/»a '

and "% convertsN,, into N,, 1, resp., as an operator. We will then have:

[ z fp,cf»s ag»s a; j ®f NP'%'}

P.T X

= > o NJZ(N,, +DY2O{N, ., =3, 3, +0,, 3} (63)

px oo Oxx " T’ Pxx
PO

For a well-definedp, g, x, the argument ob on the right-hand side will differ from the
one on the left-hand side by the fact that theevaliN in the cellp, x; is reduced by one,
while the value ofN in the cellg; x is increased by one; if the value fwere equal to
zero in the cello, x then the factorN”2 would ensure that the right-hand side would

vanish. If we replaceN, , with the elgenvaluez in particular, and perform

’SQ’

the transition to configuration space accordln(fm then we will get:

{ D ook amj é (0L Gy -\ O ON)

PO X

z fpﬂ')ﬂz pppd)(]ql ¢(Q|.’q|l, ,0: q|p, ’g\llqlN)

p.0.%
_zzfpp,a,qp ¢(,01CIi1, wer Gy Gip, ...,ﬂ\jqiN). (64)
o p
The factorsN?Z (N, +1)"* in (63) thus drop out in comparison to the comtairial

factors that arise in (62). The transition to ¢batinuum can then be completed with no
further assumptions. One will have:

B o (@, oy ) = M AV)™N2 6 (01, 0, . o, W),
N, ()} = lim (AV) ™' 2d{N

M} )
For:

No () = 2.0, D% =4,).

we will get the association:

([t 800w, (x) AV )0 {Z #0578, }
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- ZJZ fﬂ (ql )¢pl..ﬂ PN (q|1’ qiN ) (65)

p=1l g,

In particular, forf, o= J,, f, it will follow that:
N N
(] fx) N(x)dV)¢{25p,pp5(>s—qip)} = > 108, 5 (GGy).  (66)
p=1 p=1

One likewise shows that:

[jzfm(x)wﬂa%dvj {Z 005 -q, }

- ZZ fp (ql g ¢pl..ﬂ PN (q|1’ qiN ) (67)

p=l g, k,

As would emerge from the argumentsJofdan andWigner, the statements (65), (66),
(67) will also remain correct for the case of tlelesion principle when the functiopis
assumed to be antisymmetric in the paysg, . (The sequence of argumems ay, ...,
O\, On IS thus definitive for the determination of centaigned functions.)

We can immediately rewrite our equations’}6(061) in configuration space. We
will get:

|:Pr3 + ez_ UOr (qip)}¢pl.upN (qi1’ v 1qiN ’M rA 1Pr 3) = 0 (68)

|:_E +Z/1 MthM +var (R3)2}¢plmp,\‘ (qili"' 1qiN ’MM 1Pra)

hc 0 y
+ —q —+mca M,,P
k,p;'p{zm Pp:Tp aqkp Pp10, pj¢pl..ﬂ'p.npN (q|p A 3)
*e 2w Z > v (g,)a
A=1,2k POy

x| (M,, +1)”2¢p1_.ﬁp..‘pN (Gp oMy My, + 1, R)
- Mrl/1/2¢pl..ﬂ ..Pn (qip! Mli""MM + 1’ ’PrS ):|

0
+622 2 U4, 0, 5o Pa,, G Mo Ra) 20 (69)
r3

kpa

The extent to which these equations can be appeigd by theSchrodinger
equation in configuration space will be examinedendosely byR. Oppenheimerin a
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paper that will appear soon. The self-energy of tleetelns will also give rise to
complications here.

Let it be mentioned how one is to generalize thegss that was applied here for the
transition to configuration space for the case in whichihilation processes are present.
In that case, the number of particles will no longemain constant. However, it is
possible to work with a system of functions:

¢(MM ’ Pr3), ¢(Qi1, MM, Pr3), ---,¢(Qi1, e OinG Mr/l, Pr3),

in different-dimensional spaces that correspond to teesca which zero, one, .N, ...
particles are present, respectively. These functiongheih be linked by a simultaneous
system of differential equations for a given theory. would create no difficulty to
exhibit that system of equations for the particular e&xérms that were given in 8§ 2,
equation (12). However, that should be avoided, sinceetpasticular terms hardly
admit any physical interpretation.




