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The decomposition of total systems of terms into non-combining subsytems will be examined for the 
quantum theory of wave fields.  The integrals of the equations of motion will be derived from the 
invariance properties of the Hamiltonian function.  Furthermore, the consideration of gauge invariance will 
yield a satisfactory formulation of electrodynamics with no extra terms.  The mathematical connection 
between wave theory and particle theory will be discussed. 
 
 
 Introduction.   The relativistic formulation of the quantum theory of wave fields (*) 
has been plagued with difficult objections, up to now.  In particular, the interaction of the 
electron with itself seems to make the application of the theory impossible in many cases, 
at the moment.  We are thus still quite far from an ultimate formulation of the theory.  
Nevertheless, we would like to believe that it is precisely that construction of wave 
theory that will be vital to any further progress in quantum theory. 
 In the quantum theory of point mechanics, essential progress is achieved by the 
investigation of the invariance properties (** ) of the Hamiltonian function.  The 
distribution of systems of terms into non-combining groups of terms can be derived from 
these invariance properties, and likewise the simple integrals of the equations of motion 
are connected with such invariance properties of the Hamiltonian  function.  The 
invariance properties of the wave equations will be exploited in an entirely similar way in 
the following exposition. 
 
 
 § 1.  General method and impulse theorems.  The basic idea of the method is 
generally this: If the Hamiltonian  function H  is invariant under certain operations then 
that means that a well-defined operator H , which will be linear in all of the cases that are 
important to us, will remain unchanged; i.e., it will commute with H .  If one regards the 
operator as a quantum-theoretical variable (*** ) then it will follow that this variable is 
constant in time, so one thus will obtain an integral of the equations.  If the 
aforementioned invariance remains under any changes or perturbations of the system then 

                                                
 (*) W. Heisenberg and W. Pauli, Zeit. Phys. 56 (1929), 1.  This paper will be cited as I in what 
follows.  
 (** ) Confer the summary presentation of H. Weyl, Gruppentheorie und Quantenmechanik, Leipzig, 
Hirzel, 1928.  
 (*** ) On this, cf., P. A. M. Dirac, Proc. Roy. Soc. London (A) 123 (1929), 714. 
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the changes in the values of the variables will be completely impossible, so every 
numerical value of the operator will represent a subsystem of terms that do not combine 
with the remaining terms. 
 As the simplest example, let the Hamiltonian function be invariant under the 
translation of the entire wave field in space.  (The notations in the following formulas are 
taken from the paper I everywhere.)  The translation xi → xi + δxi corresponds to the 
change of the wave functions Qα (cf., I, pp. 20): 
 

Qα → Qα − 
i

Q

x
α∂

∂
δxi .     (1) 

 
 The change in a functional F of the Qα will then be: 
 

F → F − i
i

QF
dV x

Q x
α

α α

δ δ
δ

∂
∂∑∫  = 1 i

i

Q
x dV

x Q
α

α α

δδ
δ

 ∂− ∂ 
∑∫ F.  (2) 

  
 The translation by δxi then corresponds to the operator: 
 

1 − i
i

Q
x dV

x Q
α

α α

δδ
δ

∂
∂∑∫ .    (3) 

 
 Since the Hamiltonian  function H  is invariant under translations, the operator (3) 
must commute with H .  The quantum-theoretic variable that corresponds to it is then 
constant in time.  Since the operator δ / δQα corresponds to the variable 2π i / h Pα [I, 
equation (20)], (3) will then yield the impulse theorem [I, equation (24)]: 
 

i

Q
dV P

x
α

α
α

∂
∂∑∫  = const.    (4) 

 
 
 § 2.  Conservation of charge.  The particular Hamiltonian  function for the electrons 
(ψρ) and radiation (Φv) is invariant under the transformation: 
 

ψρ → ψρ  e
iα,  ρψ ∗  → ie α

ρψ ∗ − ,    (5) 

 
in which α means a constant, or the corresponding infinitesimal transformation: 
 

ψρ → ψρ  + i δα ψρ , ρψ ∗  → iρ ρψ δαψ∗ ∗− .    (6) 

 
Since the ρψ ∗  mean the impulses that are canonically-conjugate to the ψρ , it will suffice 

to consider just the ψρ .  A functional of the ψρ  goes to: 
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F → F + i δα 
F

dV ρ
ρ

δ ψ
δψ∫ ,     (7) 

 
so the operator that belongs to the transformation (6) is then: 
 

1 + i δα dV ρ
ρ

δψ
δψ∫ .     (8) 

It then follows that: 

dV ρ ρψ ψ ∗
∫ = const.      (9) 

 
One can rearrange the factors on the left-hand side of (9) with affecting the temporal 
constancy of the integral.  One then obtains the theorem of the conservation of charge.  If 
the Hamiltonian  function contains matter waves for electrons and protons ( ( )e

ρψ  and 
( )p
ρψ ) then the theorem of the conservation of charge will have the form: 

 
( ) ( ) ( ) ( )( )e e p pdV ρ ρ ρ ρψ ψ ψ ψ∗ ∗⋅ − +∫ = const.   (10) 

 
In order for this equation to be justified, the Hamiltonian function must be invariant 
under the following transformation: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, .

e e i e e i

p p i p p i

e e

e e

α α
ρ ρ ρ ρ

α α
ρ ρ ρ ρ

ψ ψ ψ ψ
ψ ψ ψ ψ

∗ ∗ −

− ∗ ∗

→ → 
→ → 

   (11) 

 
The usual form of the Hamiltonian function up to now contains two independent 
summands that each depend upon only ( )e

ρψ  or ( )p
ρψ  alone.  That function is invariant 

under (11), so one even has the conservation of charge for the protons and electrons 
separately.  However, one sees from (11) that one can possibly introduce terms of the 
form: 

( ) ( ) ( ) ( )e p ik e p ik
ik ikF F sρ ρ ρσ ρ ρ ρσψ ψ ψ ψ∗ ∗ ∗+s     (12) 

 
into the Hamiltonian function with altering (10). (sik means the components of the Dirac 

spin tensor.)  Such extra terms make it possible for there to exist “annihilation processes,” 
in which an electron and a proton combine into a light quantum (†).  The annihilation 
processes can then be introduced into the mathematical framework of the quantum theory 
of waves with no difficulty, although it is known that they have no place in particle 
theory. 
 

 § 3.  The transformation Φv → Φv + ∂χ / ∂xv , ψρ → 
2 i e

h ce
π χ−

 ⋅⋅⋅⋅ ψρ .  For the sake of 
simplicity, let there be just one kind of matter (ψρ) in the following calculations.  As long 
                                                
 (†) Translator’s note: Of course, this paper was published before the positron was discovered.  
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as one ignores extra terms with ε and δ (I, pp. 31), the Hamiltonian function will be 
invariant under the following transformation (†): 
 

Φv → Φv + 
xν

χ∂
∂

, ψρ → 
2 i e

h ce
π χ−

 ⋅⋅⋅⋅ ψρ , ρψ ∗  → 
2 i e

h ce
π χ

ρψ ∗ ,  (13) 

 
in which χ represents an arbitrary function of space and time. (In this, χ shall commute 
with all variables ψρ , Φα , and in addition, the values of χ and ∂χ / ∂t at different spatial 
locations must commute.)  As is known, this invariance will be perturbed by the extra 
terms in ε and δ.  This is a blemish in the theory that seems unavoidable when one carries 
over Maxwell’s equations to quantum theory in the usual way.  However, if one 
examines the integrals that belong to (13) then that will suggest the possibility of 
avoiding the extra terms altogether (*). 
 For the following calculations, we start with the Lagrangian function with no ε and δ 
terms; its radiation part is then called (when one employs Heaviside units) simply: 

                                                
 (†) Weyl used the term “gauge invariance” for this in loc. cit.  
 (*) In a paper by E. Fermi that appeared in the meantime [Rendiconti d. R. Acc. dei Lincei (6) 9 1st half 
(1929), pp. 881], another interesting method of quantization was given in which the gauge invariance was 
perturbed by auxiliary conditions, instead of extra terms.  The Fermi method can be characterized as 
follows from the viewpoint that is assumed in this paper: One introduces: 
 

( )s
L  = 

,

2
1
2 x

dVµ

µ ν ν

∂Φ 
∫  ∂ 
∑  

 
as the radiation part of the Lagrangian function, such that the field equations that arise by varying Φµ will 
read: 

−
2

2xν

µ

ν

∂ Φ
∂∑  = sµ . 

For the quantities: 

K = 
xµ

µ

µ

∂Φ
∂∑ , 

the relation: 
2

2
K
xν ν

∂
∂∑ = 0 

 

will follow from these equations by means of s
x

µ

µ µ

∂
∂∑ = 0.  In order to make this result agree with Maxwell’s 

equations, Fermi added the auxiliary conditions: 
 

K = 0 and  Kɺ = 0 
 
on a slice t = const. in a known way, and these conditions will propagate in the course of time by means of 
the field equations.  These auxiliary conditions are valid in quantum electrodynamics, not as q-number 
relations, but in the same sense as equation (25), which we will derive later.  Fermi then arrived at his 
quantum-electrodynamical equations when he employed the Fourier decomposition for the electromagnetic 
field and configuration space for the matter field (cf., § 7 of this paper).  The question of the relativistic 
invariance of the C. C. R. or that of the corresponding operator method was not particularly examined by 
Fermi, although it follows with no further assumptions from paper I or from § 4 of the present paper. 
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1

2
(E2 – H2) = −

2

1

4 x x
µ ν

ν µ

 ∂Φ ∂Φ−  ∂ ∂ 
. 

 
However, in this Lagrangian function we consider only the Φi (i = 1, 2, 3) to be variables, 
while we regard Φ4 as an arbitrarily given function that commutes with all other 
variables.  In particular, e.g., Φ4 can simply be set equal to zero. That would correspond 
to the state of affairs in classical theory, in which one of the four components is indeed 
completely arbitrary, due to (13).  Once Φ4 is established, the invariance (13) will then 
still exist only for time-independent functions χ.  Thus, let χ be an arbitrary function of 
the three spatial coordinates that vanishes at infinity to a sufficient degree, and look for 
the integrals that belong to (13). 
 One should observe that now only the three spatial components of Maxwell’s 
equations follow by variation of the Φi in the Lagrangian function, while the equation: 
 

div E = ρ       (14) 

does not need to be fulfilled. 
 Instead of (13), we consider the infinitesimal transformation: 
 

Φi → Φi + δ 
ix

δχ
δ

 , ψρ → 
2 i e

h c

π δχ−  ⋅⋅⋅⋅ ψρ .    (15) 

 
A functional F of Φi and ψρ will go to: 
 

F → F + δ 
2

i i

F i e F
dV

x h c ρ
ρ

δ χ π δ ψ χ
δ δψ
 ∂ −  Φ ∂ 

∫  

= F – δ 
2

i i

F i e F
dV

x h c ρ
ρ

δ π δ ψ χ
δ δψ

 ∂ −  ∂ Φ 
∫ .   (16) 

The operator: 

2

i i

i e
dV

x h c ρ
ρ

δ π δχ ψ
δ δψ

 ∂ −  ∂ Φ 
∫      (17) 

 
will then correspond to the transformation (15) and commute with the Hamiltonian 
function. 
 Therefore: 

1 i

i

e
dV

c x c ρ ρ
ρ

χ ψ ψ∗ ∂− − ∂ 
∑∫

E
    (18) 

 
is a constant.  Since this is true for all arbitrary spatial functions, it will then follow that: 
 

div E + e ρ ρ
ρ

ψ ψ∗∑  = const. = C.    (19) 
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 Therefore, only (19) will follow from the formulation that is carried out here in place 
of (14), in which C represents an arbitrary spatial function.  However, it must now be 
observed that every system of values for C represents a single system of terms that does 
not combine with the remaining terms, and changes of C are completely impossible.  Any 
sort of interaction terms or perturbations of the Hamiltonian function will leave the 
invariance under (15) unaffected.  Extra terms of the type of ε and δ terms in I are then 
generally inadmissible; however, it seems justified to assume that only quantities that are 
invariant under (13) have any physical meaning.  Following Weyl, we call such 
quantities gauge-invariant. 
 The commutation rules for the quantities C will be formulated most simply with the 
help of the quantities: 
 

C  = (div )e dVρ ρ
ρ

χ ψ ψ∗+ ∑∫ E  = C dVχ ⋅∫ ,   (20) 

 
in which χ once more means an arbitrary spatial function.  From I, (47) and (57), one 
finds that: 

[ C , ψρ] = − eχ ψρ , [ , ]C ρψ ∗  = eχ ρψ ∗ , [C , Φk] = 
2 k

hc

i x

χ
π

∂
∂

.  (21) 

 
However, that means that the transformation (15) will be mediated by infinitesimal 
variation of χ according to: 

f → f + 
2

[ , ]
i

C f
hc

π δ ,     (22) 

 
when f is replaced with any of the quantities ψρ , ρψ ∗ , Φk .  Therefore, (22) is also true for 

the variation of an arbitrary quantity f under (15).  Let it also be mentioned that this 
relation generalizes to: 

f → 
2 2i i

C C
h he f e
π π−

⋅ ⋅       (22′) 
 
for the finite transformation (13).  In particular, for gauge-invariant quantities – for them, 
it is mainly: 
 

Fµν ,  ρ σψ ψ∗ ,  
2

hc
e

i x
σ

ρ σ µ
µ

ψψ ψ
π

∗
 ∂ + Φ  ∂ 

, 
2

hc
e

i x
ρ

µ ρ σ
µ

ψ
ψ ψ

π

∗
∗

 ∂
− Φ  ∂ 

 (23) 

 
that comes under consideration – it follows that: 
 
 [ C , F] = 0, 
and thus, also: 

[C, F] = 0;   (24) 
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i.e., they commute with C.  If one represents the variables of the system of matrices then 
the gauge-invariant quantities will include no elements that correspond to transitions of 
C, although the other non-gauge-invariant quantities will probably include such matrix 
elements.  Since directly-measurable quantities are always gauge-invariant, one can give 
a numerical value to the constant C.  In particular, if one chooses: 
 

C = 0      (25) 
 
then the fourth component of Maxwell’s equations will also be true; indeed, it that will 
not generally be true as a q-number relation, but probably for all gauge-invariant 
relationships.  C = 0 means that the operator (17) will give zero when applied to the 
Schrödinger functional F (ψρ, Φi) of any stationary state of the system; i.e., the solutions 
for which the Schrödinger functional is likewise invariant under (15) is singled by C = 0. 
 One can give a number of independent gauge-invariant C. R., from which, all other 
gauge-invariant C. R. are derivable.  In essence, they are the quantities (23), and they 
must be identical with the ones that can be derived from paper I.  They also propagate in 
time according to I, equation (21).  It is therefore quite convenient to employ C. R. 
between Φi and Ei, and thus, in-gauge-invariant quantities.  In the many-body problem of 

point mechanics, that will correspond to the fact that the equations pk ql – ql pk = 
2

h

iπ
δkl  

will used for the derivation of pk = 
2 k

h

i qπ
∂

∂
, although ultimately such C. R. cannot even 

be defined in the chosen antisymmetric system. 
 The relativistic invariance of the schema that we just wrote down seems doubtful, at 
first, since Φ4 would be singled out by the Φk .  Before we investigate that question (§ 5), 
we shall first treat the Lorentz group by a method that is analogous to the one that was 
employed for the other groups up to now in the case of a relativistically-invariant 
Lagrangian function C. C. R. (e.g., the Lagrange function that was endowed with ε-terms 
and was used in I). 
  
 
 § 4.  Lorentz transformation (*).  The invariance of the Hamiltonian function under 
spatial rotations corresponds to the angular impulse law.  The method that was employed 
up to now must be modified somewhat for proper Lorentz transformations, since the 
Hamiltonian function is not invariant under them, as it and the components of the impulse 
collectively behave like the components of a four-vector.  However, we will see that the 
proper Lorentz transformation corresponds to three more integrals.  Once more, it 
suffices to consider infinitesimal transformations [I, equation (33′)]: 
 

xµ → xµ + ε sµν xν  (sµν = − sµν).    (26) 
 

                                                
 (*) Essential parts of this paragraphs – in particular, the expression (30) for Λ and the proof of the 
constancy in time of the associated volume integrals (29) – are due to J. v. Neumann, to whom, we extend 
our deepest thanks for informing us of his results.  
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(Here, and in what follows, equal indices will always be summed over.)  The wave 
functions then change on two grounds: First of all, the Qα are not scalars, in general, but 
they transformation in a prescribed way at a well-defined world-point; furthermore, they 
change the world-point to which Qα refers.  With the relations of I, one will then get [I, 
equation (34′), (35′), (9)]: 
 

Qα → Qα + ε tαβ Qβ  − ε  
Q

x
α

µ

∂
∂

sµν xν ,      (27a) 

 

Pα 4 → Pα 4 − ε tβα Pβ 4  − ε  

k

H
Q

x
α

∂
∂∂
∂

s4k xk − ε  4P

x
α

µ

∂
∂

sµν xν  .   (27b) 

 
We now seek an operator Λ  such that: 
 

Qα → Qα + ε 
2

[ , ]Q
hc α
π Λ .    (28a) 

 
Such an operator is given by [cf., relation I, (7) between the Hamiltonian and Lagrangian 
function]: 

Λ  = dVΛ∫ ,       (29) 

 

  Λ  = k
k

Q
t Q s x

x
α

αβ β ν ν
 ∂− ∂ 

Pα 4 − H s4k xk , 

= k
k

Q
t Q s x

x
α

αβ β ν ν
 ∂− ∂ 

 Pα 4 + L s4k xk .  (30) 

In fact, if one recalls that: 
 

2
[ , ]H F

hc

π
 = 

4

F

x

∂
∂

,  4

2
[ , ]P Q

hc α β
π ′  = δαβ δ (r, r′) 

 
then an expression that agrees with the right-hand side of (27a) will follow immediately 
upon substituting (29), (30) into (28a). 
 However, with the same Λ , one also has the equation: 
 

Pα 4 → Pα 4 + ε 4

2
[ , ]P

hc α
π Λ .    (28b) 

 
According to I, equation (20), it will then follow that: 
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4

2
[ , ]P

hc α
π Λ  = − 

i

i

QQ x
x

αα

 
 ∂Λ ∂ ∂Λ
 − ∂∂ ∂ ∂ ∂ 

 

 

= − tβα Pβ 4 – 
ix

∂
∂

(si v xv Pα 4 ) + 
H

Qα

∂
∂

si k xk − 4k k
i

i

H
s x

Qx
x

α

 
 ∂ ∂
 

∂∂  ∂ ∂ 

, 

 
and with the use of the expression for ∂Pα 4 / ∂x4 , it will follow from the field equation 
that: 

4

2
[ , ]P

hc α
π Λ  = − tβα Pβ 4 – 4

i

P

x
α∂

∂
si v xv − 4

4

P

x
α∂

∂
s4 k xk − 4k

k

H
s

Q

x
α

∂
∂∂
∂

, 

in agreement with (27b). 
 It follows by generalizing (28a, b) that an arbitrary quantity F that does not include 
the coordinates explicitly will go to: 
 

F → F + ε 
2

[ , ]F
hc

π Λ       (31) 

 
under an infinitesimal Lorentz transformation.  For finite Lorentz transformations, it will 
follow from this that there exists an operator S such that one has: 
 

F → S F S−1      (31′) 
 
for it.  If one develops S in powers of ε then the term that is linear in ε will be given by: 
 

S = 1 + ε 
2

hc

π Λ + …     (32) 

 
However, we have not succeeded in finding an explicit expression for S for non-
infinitesimal transformations.  The Schrödinger functions or functional ϕ will be 
transformed in a corresponding way under Lorentz transformations according to: 
 
 ϕ → S ϕ, 
 
in which S is regarded as an operator that acts upon the variables that are included in ϕ. 
 We must now answer the question of whether Λ  depends upon the time coordinate 
x4. We will show that this is not the case, under the assumption that: 
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Jµ = 4 4

Q
P L dV

x
α

α µ
µ

δ
 ∂ −  ∂ 
∫  

 
define the components of a four-vector (viz., energy-impulse, Jk = − i c Ek, J4 = H ).  This 

means that for the infinitesimal transformation (26), one should have: 
 

Jµ → Jµ + ε sµν Jν , 
and in particular: 

H  → H + ε s4k Jk . 
 
A comparison with (31) will then give: 
 

2
[ , ]H

hc

π Λ  = s4k Jk .     (33) 

 
Moreover, it is easy to calculate 4/d dxΛ .  For a quantity F that does not include x4 

explicitly, one would have simply: 

4

F

x

∂
∂

 = − 2
[ , ]F H

hc

π
; 

 
however, for F = Λ , one must add the term that arises by differentiating Λ  with respect 
to the symbol x4 that is included in it explicitly.  The second term in (30) makes a 
contribution to this for v = 4, and one gets: 
 

 
4

d

dx

Λ
 = − 4 4

2
[ , ] k

k

Q
H P s dV

hc x
α

α
π ∂Λ −

∂∫
 

= − 4

2
[ , ] k kH J s

hc

π Λ + .    (34) 

 
This will vanish precisely as a result of (33), and we will then have: 
 

Λ  = const.      (35) 
 
This equation contains six independent integrals, corresponding to the six components sµν 
= − sνµ (the tαβ are determined uniquely by the sµν), and three of them can be interpreted 
as belonging to sik as a result of the angular impulse theorem, while the other three that 
belong to s4k have no such intuitive meaning.  It must once more (cf., I) be emphasized 
that it is indeed essential that one must insure that the temporal constancy of the integral 
must be independent of the sequence of factors in (4) and (30). 
 The invariance of the C. C. R. under Lorentz transformations follows immediately 
from (31) or (31′).  The proof of invariance that was carried out here is probably 
somewhat simpler than the one that was given in I.  However, it must be stressed that the 
vector character of Jν represents a new assumption that cannot be deduced from the 
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Lorentz invariance of the Lagrangian function alone.  By contrast, this assumption always 
enters into consideration when a differential formulation of the energy-impulse theorem 
exists in the form of the vanishing of a tensor divergence: 
 

T

x
µν

ν

∂
∂

= 0. 

 
As would emerge from I, this is always applicable to any physically-important case. 
 
 
 § 5.  Lorentz transformations and gauge invariance.  In § 3, we spoke of a process 
in which one sets Φ4 = 0 in a special coordinate system and then applies the C. C. R. to it.  
In it, the equation: 

C = div E + e ρ ρ
ρ

ψ ψ∗∑ = 0    (25) 

 
is valid only for gauge-invariant quantities as q-number relations, while the other 
quantities – e.g., the ψ and Φµ – do not commute them.  However, since C commutes 
with the energy, it can nevertheless be employed as an auxiliary condition for the 
Schrödinger functional. 
 Such a process is not intrinsically relativistically invariant.  In another reference 
system, the C. C. R. will no longer apply to non-gauge-invariant quantities.  However, 
one can show that all statements about gauge-invariant quantities that are obtained in that 
way will satisfy the requirement of relativistic invariance when one adds the equation 
(25).  To that end, we next establish the gauge invariance of the Hamiltonian function, 
and above all, the quantity Λ  that was found to be definitive for the Lorentz 
transformation in the previous paragraphs.  According to I, equation (45), (51), (51′), 
(58′) (when we omit the terms that are endowed with ε, and set P44 ≡ 0 for the radiation), 
we will have the following Lagrangian and Hamiltonian functions for the matter and 
radiation parts, respectively: 
 

L(m) = − 2
4

42 2
k k

k
k

hc hc
ei e mc

x i x
σ σ

σ σ ρσ ρ σ ρσ ρ σ
ψ ψψ ψ α ψ ψ α ψ ψ

π π
∗ ∗ ∗   ∂ ∂+ Φ + + Φ +   ∂ ∂    

, (36a) 

 

 H(m) = − ( )

42
mhc

L
x

σ
σ

ψψ
π

∗ ∂ −
∂

  

= 2
42

k k
k

k

hc
e mc ei

i x
σ

ρσ ρ σ ρσ ρ σ σ ρ
ψα ψ ψ α ψ ψ ψ ψ

π
∗ ∗ ∗ ∂ + Φ + + Φ ∂ 

,  (37a) 

 
L(s) = − 1

4 Fαβ Fαβ = 1
2 (E2 – H2),       (36b) 

 

H(s) = − ( )
4

4

sk
kF L

x

∂Φ −
∂

 = − 4
4 4 4

1 1

2 4k k k ik ik
k

F F F F F
x

∂Φ − +
∂

.    (37b) 
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 As one sees, H(m) and H(s) are not gauge-invariant, in contrast to L(m) and L(s).  On the 
other hand, the total energy can be transformed by partial integration into: 
 

H  = ( ) ( )( )m sH H dV+∫ =  

 

2
2 4 1 1

4 4 42 22
k

k k ik ik
kk u v

hc
e mc F F F F i C

i x
σ

ρσ ρ σ ρσ ρ σ
ψα ψ ψ α ψ ψ

π
∗ ∗

∂ Ω
∂ ∂

  ∂ + Φ + − + + Φ  
 ∂   

∫ dV.   (38)   

 
A similar conversion is true for the total impulse.  H is then gauge-invariant in the case 
of C = 0, and it is also the time component of a four-vector in only that case. 
 The calculation of the quantity Λ  that is defined by (29) and (30) takes a similar 
form.  We now understand tρσ to be quantities that relate to the matter waves, in 
particular, while the associated tµν for the Φµ will vanish identically, due to their vector 
character.  As a result, one will have: 
 

( ) ( )
4 4 4 .

2
m sk

k k k k k k

dV

hc
t s x L s x F s s x L s x

x x
ρ

ρ ρσ σ µν ν µ µ µν ν
µ µ

ψ
ψ ψ

π
∗

Λ =


     ∂ ∂Φ× − − + − Φ − +        ∂ ∂       

∫
(39) 

 
 However, one has: 

4
k

k v kdV F s x s
x µν µ µ

µ

 ∂Φ − Φ  ∂ 
∫  

 = 4k k v v k
k

dV F F s x s x s
x

µ
µ µν µν µ µ

∂Φ 
+ + Φ ∂ 

∫  

 = 4 ( )k k v k v
k

dV F F s x s x
xµ µν µν

 ∂+ Φ ∂ 
∫  

 = 4
4

k
k k v v

k

F
dV F F s x s x

xµ µν µ µν
 ∂− Φ ∂ 

∫ , 

 
where the last step follows by partial integration.  In all, one gets: 
 

 Λ  = 
2 2
hc hc

dV t ie s x
x

ρ
ρσ ρ σ ρ ρ µ µν ν

µ

ψ
ψ ψ ψ ψ

π π
∗ ∗

  ∂
− + + Φ   ∂  

∫  

 
+ L(m) s4k xk + F4k Fµ k sµν xv + L(s) s4k xk – i C sµν Φµ xv].   (40) 

 
Λ  will then be gauge-invariant for C = 0. 



Heisenberg and Pauli.  Quantum theory of wave fields, II. 13 

 One obtains the values of all quantities in the new reference system from (39), 
according to formula (31), except for the value of Φ4, when Φ4 = 0 in the original system, 
and one assume the C. C. R.  However, for non-gauge-invariant quantities, their non-
commutation with C and the contribution to the last term in (40) that arise from it must be 
considered.  They are easily inferred by comparison with (21).  One can deduce two 
kinds of conclusions from this state of affairs.  First of all, the C. R. for the gauge-
invariant quantities in the new reference system follow from their validity in the original 
reference system independently of what sort of C. R. are true for the remaining quantities.  
Only the former C. R. are then necessary for the proof of the validity of (31) by gauge 
invariance.  Secondly, one can show that one can also revert to Φ4 = 0 and the C. C. R. in 
the new reference system by a change of gauge that involves a suitable function χ.  
Generally, that χ will be a q-number. 
 However, it is unnecessary to go into that change of gauge in more detail in order to 
show the Lorentz invariance of the entire process.  Moreover, it will suffice for that to 
establish that the C. C. R between the quantities ψρ , σψ ∗ , Φk , Fi4 still remain valid in the 

new reference system and that the Φ4 commutes with all Φk and ψρ , σψ ∗ , as one easily 

verifies.  Furthermore, the spatial components of Maxwell’s equations are no longer 
fulfilled as q-number relations in the new reference system; nevertheless, one can choose 
the eigenvalue zero on their right hand sides by singling out a subsystem of terms that 
does not combine with the remaining terms, which would correspond to the choice of C = 
0 in the original reference system.  If one further observes that Φ4 does not enter into the 

Hamiltonian function at all for C = 0, and that the expression 
42

hc

x
σψ

π
∂
∂

 + ei ψρ Φ4 in the 

other equations can be expressed in terms of the ψρ , Φk, and their derivatives by means 
of the matter-wave equation then one will recognize the identity of the computational 
schema in the new reference system with the one in the initial system. 
 
 
 § 6.  Implementing the schema with no extra terms.  We revert to real time x4 = i c 
t and to the usual units for field strengths and the current vector, introduce the quantities: 
 

Πk = − 
1

4 cπ
Ek ,     (41) 

 

which satisfy the C. C. R. [Πi , r
′Φ ] = 

2

h

iπ
 δik ⋅ δ(r, r′) [cf., I, (60′), (61′)], and set Φ4 = 

Φ0 = 0 in the coordinate system that was chosen for the treatment.  The Hamiltonian 
function (37a, b) now reads: 
 
H = 

2

2 2 21
2

2 16
k k ki k

k k
k k i

hc
dV mc e

i x x x
ρ

ρσ ρ ρσ ρ σ ρσ ρ σ

ψ
α ψ α ψ ψ π α ψ ψ

π π
∗ ∗ ∗

 ∂  ∂Φ ∂Φ
 + + − + Π + Φ ∂ ∂ ∂   

∫ (42) 
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The last term mediates the interaction between radiation and matter, and will be 
considered to be a perturbing term.  For the implementation of the method, as in I, it will 
be convenient to develop the Φi in an orthogonal system that will be found by solving the 
unperturbed problem.  In contradiction to the previous methods, only the three spatial 
components of the Maxwell equations will be fulfilled in the unperturbed problem.  We 
again set [cf., I, equation (84)]: 
 

1 13

1 13

8
cos sin sin (and cycl. permutations),

8
cos sin sin .

r
r r r

r
r r r

q x y z
L L L L

p x y z
L L L L

π π πκ λ µ

π π πκ λ µ


Φ = ⋅ ⋅ 



Π = ⋅ ⋅ 

 (43) 

 
The radiation part of the Hamiltonian function then becomes: 
 

( )s
rH  = 2π c2 2 2 2

1 2 3[( ) ( ) ( ) ]r r rp p p+ +  

+ 2 2 2
1 2 1 3 2 33

[( ) ( ) ( ) ]
8

r r r r r r
r r r r r rq q q q q q

L

π λ κ µ κ µ λ⋅ − + − + −   (44) 

 
for an eigen-oscillation.  If one then sets r

iq = r
ib sin 2π vr t in the classical theory then one 

will obtain three linear equations for the bi from the three spatial components of 
Maxwell’s equations whose determinant is: 
 

2 2 2 22
,r r r r r r r

L
X

c
ν ν κ λ µ ν ′ ′= = + + − 
 

 

 
2

2

2

r r r r r r

r r r r r r

r r r r r r

X

X

X

κ κ λ κ µ
λ κ λ λ µ
µ κ µ λ µ

− − −
− − −
− − −

.    (45) 

 
 By setting the determinant equal to zero, one will obtain a double root  
  

rν ′  = 2 2 2
r r rκ λ µ+ + , 

 
whose associated coefficients r

ib  must satisfy the condition.  It then defines an aperiodic 

solution: 
r
iq  = r

ib ⋅⋅⋅⋅ t,      (47) 

in which: 

 1
r

r

b

κ
= 2

r

r

b

λ
= 3

r

r

b

µ
. 
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We introduce the coordinates Pr, Q r of the principal oscillations as a possible schema: 
 

1 1 2 32 2 2 2

2 1 2 32 2 2 2

2 2

3 2 3

1 12 2 2 2

1
,

4 ( ) ( )

1
,

4 ( ) ( )

1
,

4

1

4 ( )

r r r rr r r r

r rr r r r r r r

r r r rr r r r

r rr r r r r r r

r rr r rr

r r r r

r rr r r
r

r r r r r

q Q Q Q
cL

q Q Q Q
cL

q Q Q
cL

p P
cL

λ µ κ κ
ν νν κ λ ν ν κ λ

λ µ λ λ
ν νν κ λ ν ν κ λ

κ λ µ
ν ν ν ν

ν µ λλ
κ λ ν κ λ

= + +
′ ′′ ′ ′+ +

= + +
′ ′′ ′ ′+ +

+
= − +

′ ′ ′ ′

′
= +

+ ′ +
2 3

2 1 2 32 2 2 2

2 2

3 2 3

,

1
,

4 ( )

1
.

4

r rr

r

r r r rr r r r
r

r r rr r r

r rr r rr

r r

P P

p P P P
cL

p P P
cL

κ
ν

ν µ λ λκ
κ λ νν κ λ

κ λ µ
ν ν












+
′

′

= − + + 
+ ′′ + 


+ = − + ′ ′ 

 (48) 

 
The radiation part of the Hamiltonian function reads: 
 

sH  = { }2 2 2 2 21 1 1
1 1 2 2 32 2 22 [( ) ( ) ] [( ) ( ) ] ( )r r r r r

r
r

P Q P Q Pπ ν + + + +∑   (49) 

 
in the new variables. 
 As in I, equation (98), one introduce the number of light quanta Mr,1 (M r,2 , resp.) in 
place of 1

rP , 1
rQ , 2

rP , 2
rQ , along with the conjugate angles, as variables. 

 

, ,

, ,

2 2
1/2 1/2

2 2
1/2 1/2

1
,

4

,
4

r r

r r

i i
r h h

r r

i i
r h h

r r

h
Q M e e M

i

h
P M e e M

λ λ

λ λ

π πχ χ

λ λ λ

π πχ χ

λ λ λ

π

π

−

−

 
= −  

  


  = +  
  

 λ = 1, 2.  (50) 

 
By contrast, such a substitution would make no sense for 3

rP , since 3
rQ  is not present in 

the unperturbed Hamiltonian function, so 3
rP  is itself a constant in the unperturbed 

system.  We them employ the Nr, Mrλ (λ = 1, 2), and 3
rP  as independent variables of the 

probability amplitude.  If one assumes the exclusion principle for matter then the 
Schrödinger equation will read: 
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{

2 1
, 3 1 2 1 3

,

1 1
, ,

1/2 1
1 1 , 31,2

1/2
1 1 , 3

[ ( ) ] ( , , , , , , )
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h
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P

h
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λ
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λ

λ

ϕ
π

ϕ
π

ϕ

ϕ
π

=












∂  + − − − ∂ 


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
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…

… … …

… … …

… … …

… … …












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  (51) 

 
in these variables. 
 However, along with this equation, ϕ must satisfy the further condition that the 
operator C must give zero when it is applied to ϕ .  It reads: 
 

1
3 1 1 3 1 1,

1
1 1 3

1
1 1 3

( , , , , , ) (1 ) ( , ,1 ) ( , ,1 )

( , ,1 ,1 , , , , , )

( , , , , , ) 0.

r
s t s s t t

s t

r
st s t

r
s ss

s

P N M P N N N N N N

d N N N M P

N d N M P

ϕ

ϕ
ϕ

+ − ⋅ − −

⋅ − − 
+ = 



′Σ

∑

… … … … …

… … … …

… … …

V V

 (52)   

In this, we have set: 
r
std  = 0s t

ru u v dVρ ρ
∗

∫ ,      (53) 

where: 

0
rv  = 

3

4 2
sin sin sinr r r

r

x y z
c L L L

π π πκ λ µ
π ν

⋅ ⋅
′

.   (54) 

 
 In the unperturbed system, in which the interaction between matter and radiation can 
be neglected, from (52), one will have: 
 

3
rP  = 0.      (55) 

 
 All that remains then are the two known principal oscillations 1 and 2.  However, 
the 3

rP  must also be considered in the unperturbed system, which brings with it some 
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differences from the previous schema that is due to the continuous eigenvalue spectrum 
of the 3

rP . 

 In what follows, as in I, we will recalculate only the electrostatic interaction; in the 
meantime, the magnetic and retarded effects will be ascertained by the method of Breit  
(†) in I. 
 For the electrostatic interaction, one expresses the operator 3

rP  in (51) most simply by 

(52).  One can then neglect the terms with r
stc  in (51) in comparison to the terms with r

std  

in the first approximation.  Only the temporal mean of 2
3( )r

r
r

Pπν∑  remains as the 

perturbing energy in that approximation, in which 3
rP  is replaced with the operator in 

(51).  It will then follow that the perturbation of the eigenvalue is: 
 

∆E = 2 0 0 2 0 0

, ,
, ,

(1 ) r r r r
r s t st ts r s t ss tt

r s t
r s t

e N N d d e N N d dπν πν− +′Σ ∑ .  (56) 

 
(Let 0

sN  be the value of Ns in the unperturbed system.) 

 In complete analogy to the calculation in I, one will then find that: 
 

∆E = 
2

0 0 0 0
, ,,

,

(1 )
2 s t st ts s t ss tt

s t
s t

e
N N A N N A

 
− + 

 
′Σ ∑ ,   (57) 

 
in which Ast, ts means the exchange integral (I, 114): 
 

Ast, nm = 
( ) ( ) ( ) ( )s t n m

PP

u P u P u P u P
dV dV

r
ρ ρ ρ ρ
∗ ∗ ∗ ∗

′

′ ′
′⋅∫ . 

 
The suρ  represent the orthogonal system in which the matter eigenfunction is developed. 

 It emerges from (57) that an infinite interaction of the electron with itself will also 
result from the method that is followed here that will make the application of the theory 
impossible in many cases.  The only advantage of the method that is described here then 
consists of the fact that it makes the extra terms in the Maxwell equations superfluous. 
 
 
 § 7.  Transition to configuration space (††).  In this section, we will treat the 
question of how one can calculate (say, for a given energy) the probability that for a 
given number of light quanta Mr,λ (λ = 1, 2) and a given Pr,3 the locations of the N 
electrons that are present will lie inside of the volume dqi1 … dqip … dqiN around the 
location qi1 … qip … qiN .  The index i runs from 1 to 3 and refers to the three spatial 
coordinates, the index p runs from 1 to N and refers to the different particles.  One sees 

                                                
 (†) G. Breit, Phys. Rev. 34 (1929), 553.  
 (††) R. Oppenheimer gave us friendly encouragement to elaborate upon this method, and we would like 
to express our thanks to him at this point. 
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that the total number of particles present can be assumed to be constant, such that 
annihilation processes will be excluded at first.  We further preserve the Fourier 
decomposition of the radiation field, in contrast to that of the matter waves, since for the 
time being that is the only way to eliminate the zero-point energy of the radiation.  We 
will show that probability amplitudes: 
 

1 Nρ ρϕ
…

( qi1 … qiN , Mrλ, Pr3) 

 
can be defined, in which the indices ρp can assume four values for each p, corresponding 
to the four wave functions of the Dirac theory of the spin electron, and from which the 
desired probability can be calculated from: 
 

1

4

1Nρ ρ =
∑
…

| 
1 Nρ ρϕ
…

( qi1 … qiN , Mrλ, Pr3) |
2. 

 
These functions satisfy simple differential equations, without it being necessary to 
introduce any sort of omissions or approximations.  It is clear that the comparison of the 
results of the quantum theory of wave fields with those of the non-relativistic 
Schrödinger theory of the many-body problem (viz., waves in configuration space) will 
be eased by the introduction of such functions.  One can also derive those functions along 
a detour to the functions Φ(Ns, Mrλ , Pr 3) that were defined in the previous paragraphs, 
but we prefer to follow a direct path. 
 First, we would like to exhibit the Schrödinger equation that belongs to the 
Hamiltonian function (42) and the auxiliary condition for the functional with the 
variables Nρ (xi) = ρ ρψ ψ∗ , Mrλ , Pr 3 that corresponds to C = 0.  The most important part of 

the argument will then be the transition from Nρ (xi) to qi1, ρ1, ρp,… qiN , ρN as variables. 
 According to (43), (48), and (50), one will have: 
 

Φk = 
, ,
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1/2 1/2 3 3
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4

r r
i i

r r rh h
k r r k

r r

h
v M e e M v Q

i

λ λ
π πχ χλ

λ λ
λ π

−

=
− +∑∑ ∑ ,  (58a) 

 
 

Πk = 
, ,

2 2
1/2 1/ 2 3 3

2 2
1,2

1
( )

4 2 2

r r
i i

r r rr rh h
k r r k

r r

v vh
v M e e M v P

c i c

λ λ
π πχ χλ

λ λ
λ π

−

=
+ +∑∑ ∑ . (58b) 

In this: 
 

1
rv λ = 1 1 2 2 3 33

2 2 22 8
cos sin sinr r r r

k r r r
r

c f x x x
L c c c

λ πν πν πνε ε ε
ν

⋅ ⋅   (59) 

(and cyclic permutations), 
 
if kf

λ  is set equal to the matrix: 
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2 1 2
12 2 2 2

1 2 1 2

2 31
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2 2
1 2 3
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1
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ε ε ε ε
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ε εε ε
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    (48′) 

 
for each r.  We see that the εr,k are the components of the unit vector in the direction of 

the wave normal 2 1k
k

ε = 
 
∑ , and for each r, we have set: 

 

κ = v′ ε1, λ = v′ ε2, µ = v′ ε3 
2L

c
ν ν ′ = 
 

. 

 
It follows from this that: 

div E = − 4πc div Π 
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32

,1 1 ,2 2 ,3 3 33

2 2 28 8
sin sin sin

2
r r r r

r r r r
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x x x P
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ν πν πν πνπ ε ε ε⋅ ⋅ ⋅∑ , 

 
which will yield the equation: 

div E + 4π e ρ ρ
ρ

ψ ψ∗∑  = 0 

 
is solved for Pr3 by means of the Fourier  theorem: 
 

Pr3 + e 0 ( )r ix dVρ ρ
ρ

υ ψ ψ∗∑∫ = 0,   (60) 

 
in which υ0r is defined by (54).  Furthermore, from (42), when one drops the zero-point 
energy of the radiation, the Hamiltonian function will be: 
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We now write the two relations (60) and (61) as operator equations that act upon the 

function ϕ { Nρ (xi), Mrλ , Pr3}.  For that, we consider that 
2 i

he
π χ±

 converts the value M into 

M ∓  1, resp. and that Qr3 is replaced with 
32 r

ih

Pπ
∂

∂
.  We will then have: 

 

3 0 ( ) ( )r r i iP e x N x dVρ
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 
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∑∫  ϕ { Nρ (xi), Mrλ , Pr3} = 0.   (60′) 
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∫  ϕ { Nρ (xi), Mrλ , Pr3} 

+ ( )
1,24

r k
k

r

h
e i dVλ

ρσ ρ σ
λ

υ α ψ ψ
π

∗

=
⋅ ⋅∑ ∑ ∫  

× [(Mrλ + 1)1/2 ϕ { Nρ (xi), …, M1 , Mrλ + 1, …, Pr3}  
− 1/2

rM λ  ϕ { Nρ (xi), …, M1 , Mrλ − 1, …, Pr3}] 

+ e ( )3

32
r k
k

r r

ih
dV

Pρσ ρ συ α ψ ψ
π

∗ ∂
∂∑ ∫  ϕ { Nρ (xi), …, M1 , …, Pr 3}= 0. (61′) 

 
It is now important to see how operators of the form: 
 

,

( )if x dVρσ ρ σ
ρ σ

ψ ψ∗∑∫   and  
,

( )i
k

f x dV
x

σ
ρσ ρ

ρ σ

ψψ ∗ ∂
∂∑∫  

 
(the f are c-numbers) act upon a functional Φ{ Nρ (xi)} when Nρ (xi) = ρ ρψ ψ∗ , and one has 

the C. C. R.: 
[ψρ, σψ ∗′ ] = δρσ δ (r, r′); 

 
moreover, one wishes to know the result when it acts upon ϕ (qi1, …, qip , …, qiN). 
 The required transformation theory has been developed several times already (†).  
However, it is convenient to first replace the ψ (xi) with step functions, and then to go to 
configuration space, and only at the end will the functions once more be allowed to 
become continuous.  Thus, let the cells inside of which ψ* and ψ have equal values be 
chosen to have then same volumes ∆V, and set: 
 

, ixaρ = ψρ (xi),  , ixaρ
∗ = ( )ixρψ ∗  ∆V, 

such that one will have: 
                                                
 (†) P. A. M. Dirac, Proc. Roy. Soc. (A) 114 (1927), 243; P. Jordan and O. Klein, Zeit. Phys. 45 
(1927), 751; P. Jordan, ibidem 45 (1927), 766; P. Jordan and E. Wigner, ibidem, 47 (1928), 631. 
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[ , ixaρ , , ixaσ
∗ ]± = 

i ix xρσδ δ
′
, 

 
in which the xi run through only discrete values.  One sees that for a fixed total number N 
of particles (this assumption is essential at first): 
 

, ixNρ  = , ixaρ
∗

, ixaρ  

will possess the eigenvalue: 

1
p i ip

N

x q
p

ρρδ δ
=
∑ , 

 
in which several pairs of values ρp, qp can also coincide. 
 

Nρ (xi) = ( )ixρψ ∗ ψρ (xi) = lim 
1

V∆ , ixaρ
∗

, ixaρ  

 
then has the eigenvalues: 

1

( )
p p

N

i i
p

x qρρδ δ
=

⋅ −∑ , 

 
in which the Dirac δ-function now appears. 
 The transition to configuration space – i.e., the association of: 
 

ϕ (ρ1, q1, …, ρN, qN) with  Φ ,{ }
ixNρ  

 
results from the equations: 

1 1 2 2

1 1 1 1

1 1 2 2

(1) (

1/2
, 1 1

1/ 2

, 1 1

1/ 2

(1) (2)
, , 1 1 1 1 1 1 1 1(2)

 times

(1 , ,1 ,1 ) ( !) ( , , , , ),

!
(1 , ,2 ,1 ) ( , , , , )

2!

( !)
( , , ) ( ,

!

N N

N N

q q q N N

q q q

q q

N N

N q q

N
q q q

N
N N q q q q

N

τ τ

ρ ρ ρ

ρ ρ ρ τ τ τ τ

ρ ρ

τ

ϕ ρ ρ

ϕ ρ ρ ρ

ϕ ρ ρ ρ ρ

− −

Φ =

 Φ =  
 

 
 Φ =  
 
 
∏

… … …

… … … …

… … … …
�����

2) times

).















�������

 (62) 

 
One sees that all pairs ρp, qp are different from each other in the first row, while two pairs 
are equal to each other in the second row, and in the last one generally N(1), N(2), … 
values will coincide.  For Einstein-Bose statistics, ϕ(ρ1 q1, …, ρN qN) is symmetric in 
this, and for the exclusion principle, it is antisymmetric; in the latter case, only the first 
row of (62) will be in force. 
 For the sake of simplicity, the further calculations will be performed for the Einstein-
Bose statistics.  One will then have: 
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, ixaρ
∗  = ,1/2 xi

i

i

xN e ρ
ρ

− Θ
; , ixaρ  = , 1/2xi

i

i

xe Nρ
ρ

Θ
, 

 

and ,xi
i

e ρ± Θ
 converts , ixNρ  into , ixNρ ± 1, resp., as an operator.  We will then have: 

 

, , , ,
, ,

i i i

i

x x x
x

f a aρ σ ρ σ
ρ σ

∗ 
 
 
∑ Φ ,{ }

ixNρ′ ′  

 
= 1/2 1/2

, , , , ,
, ,

( 1) { , }
i i i i i i i i

i

x x x x x x x x
x

f N N Nρ σ ρ σ ρ ρρ σρ
ρ σ

δ δ δ δ′ ′ ′ ′ ′ ′+ Φ − +∑    (63) 

 
For a well-defined ρ, σ, xi, the argument of Φ on the right-hand side will differ from the 
one on the left-hand side by the fact that the value of N in the cell ρ, xi is reduced by one, 
while the value of N in the cell σ, xi is increased by one; if the value of N were equal to 
zero in the cell ρ, xi then the factor 1/ 2

, ixNρ  would ensure that the right-hand side would 

vanish.  If we replace , ixNρ′ ′  with the eigenvalue 
p i ip

x qρ ρ
ρ

δ δ′ ′⋅∑ , in particular, and perform 

the transition to configuration space according to (62) then we will get: 
 

, , , ,
, ,

i i i

i

x x x
x

f a aρ σ ρ σ
ρ σ

∗ 
 
 
∑  ϕ (ρ1 q1, …, ρN qN) 

 
= , ,

, ,
i p i ip

i

x x q
x p

fρ σ ρρ
ρ σ

δ δ∑ ∑  ϕ (ρ1 , qi 1, …, σ,  qi p, …, ρN , qiN)  

= , ,p ip
q

p

fρ σ
σ
∑∑  ϕ (ρ1 qi 1, …, σ,  qi p, …, ρN qiN) .         (64) 

 
The factors 1/2 1/ 2

, ,( 1)
i ix xN Nρ σ +  in (63) thus drop out in comparison to the combinatorial 

factors that arise in (62).  The transition to the continuum can then be completed with no 
further assumptions.  One will have: 
 
 

1 Nρ ρϕ
…

(q1, …, qN) = lim (∆V)−N / 2 ϕ (ρ1, q1, …, ρN, qN), 

 Φ{ Nρ (xi)} = lim (∆V)−N / 2 Φ ,{ }
ixNρ . 

For: 

Nρ (xi) = ,
1

( )
p p

N

i i
p

x qρ ρδ δ
=

⋅ −∑ , 

we will get the association: 
 

( ) ,
1

( ) ( ) ( ) ( )
p p

N

i i i i i
p

f x x x dV x qρσ ρ σ ρ ρψ ψ δ δ∗

=

 
Φ − 
 
∑∫  
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→ 
1, 1

1

( ) ( , , )
p p p p N

p

N

i i iN
p

f q q qρ σ ρ σ ρ
σ

ϕ
=
∑∑ … …

… .   (65) 

 
In particular, for fρ, σ = δρ, σ f, it will follow that: 
 

( ) ,
1

( ) ( ) ( )
p p

N

i i i i
p

f x N x dV x qρ ρδ δ
=

 
Φ − 
 
∑∫  → 

1 11
1

( ) ( , , )
p N

N

i i i N
p

f q q qρ ρϕ
=
∑ …

… .      (66) 

 
One likewise shows that: 
 

,
, 1

( ) ( )
p p

N

i i i
pk

f x dV x q
x

σ
ρσ ρ ρ ρ

ρ σ

ψψ δ δ∗

=

  ∂ Φ −  ∂   
∑ ∑∫  

 

→ 
1, 1

1

( ) ( , , )
p p p p N

p p

N

i i i N
p k

f q q q
qρ σ ρ σ ρ

σ
ϕ

=

∂
∂∑∑ … …

… .  (67) 

 
As would emerge from the arguments of Jordan and Wigner, the statements (65), (66), 
(67) will also remain correct for the case of the exclusion principle when the function ϕ is 
assumed to be antisymmetric in the pairs ρp, qp .  (The sequence of arguments ρ1, q1, …, 
ρN, qN is thus definitive for the determination of certain signed functions.) 
 We can immediately rewrite our equations (60′), (61′) in configuration space.  We 
will get: 

13 0 1 3
1

( ) ( , , , , )
N

N

r r ip i iN r r
p

P e q q q M Pρ ρ λυ ϕ
=

 
+ 

 
∑ … …  = 0.  (68) 
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E M hv P q q M Pλ λ ρ ρ λ
λ
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2 4
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i qρ σ ρ σ ρ σ ρ λ
σ

α α ϕ
π
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+ e ,
1,2 , ,

( )
4 p p

p

r k
k ip

r k p

h
i qλ

ρ σ
λ σ

υ α
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∑ ∑ ∑  

× 
1

1/2
1 3( 1) ( , , , 1, )

p Nr ip r rM q M M Pλ ρ σ ρ λϕ + + … … … …  

− 
1

1/2
1 3( , , , 1, , )

p Nr ip r rM q M M Pλ ρ σ ρ λϕ + … … … …  

+ e 
1

3
, 3

, , 3

( ) ( , , )
2 p p p N

p

r k
k ip ip r r

r k p r

ih
q q M P

Pρ σ ρ σ ρ λ
σ

υ α ϕ
π

∂
∂∑ ∑ … …

 = 0. (69) 

 
 The extent to which these equations can be approximated by the Schrödinger 
equation in configuration space will be examined more closely by R. Oppenheimer in a 
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paper that will appear soon.  The self-energy of the electrons will also give rise to 
complications here. 
 Let it be mentioned how one is to generalize the process that was applied here for the 
transition to configuration space for the case in which annihilation processes are present.  
In that case, the number of particles will no longer remain constant.  However, it is 
possible to work with a system of functions: 
 

ϕ (Mrλ , Pr3), ϕ (qi1, M rλ , Pr3), …, ϕ (qi1, …, qi N , Mrλ , Pr3), … 
 
in different-dimensional spaces that correspond to the cases in which zero, one, …, N, … 
particles are present, respectively.  These functions will then be linked by a simultaneous 
system of differential equations for a given theory.  It would create no difficulty to 
exhibit that system of equations for the particular extra terms that were given in § 2, 
equation (12).  However, that should be avoided, since those particular terms hardly 
admit any physical interpretation. 
 

__________________ 
 

 


