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On the physical meaning of the principle of least action

(By H. von Helmholtg

Translated by D. H. Delphenich

When | speak of the principle of least action in thigck; | would not like for that
term to be understood in just the original form tRatL. M. de Maupertuipublished in
1744 (), which received a precise determination for the vanaficondition and a
complete proof only much later, moreover, and mainlyLagrange Rather, | would
desire that this term, as the oldest and best-known sheyld subsume the various
transformed forms of that theorem that were deriveanfit later bySir W. Rowan
Hamilton (7). The latter presented the two differential equatidva C. G. J. Jacobi
later combined into a single one in which the common soafdhese transformations
lay, along with many other possible ones, while the phlyagsumptions with which the
calculations started were in no way changed as a result.

The aforementioned researcher first applied the mpimaf least action to only the
mechanics of ponderable bodies and represented thensiofi@ system as being either
freely mobile or rigidly coupled to another mass poimta chain. The physical
assumptions from which he started were then given eaterily Newton'slaws of
motion and the manner by which one cared to define theoptemmon that would
correspond to the action of rigidly-coupled mass pomechanically. However, he
further showed that once one first learns how to taipertius’sintegral correctly, the
validity of the law of constancy of energy must bsuased (). At first, this must seem
to be a substantial restriction on the domain oifthtglof the principle of least action, but
more recent physical investigations have established tbkatatih of the constancy of
energy is also valid in general, and that apparent rastridoes not, in fact, restrict
anything. However, one must know completely all of #enk that the equivalence of
energy can take for a process being examined in ordecltale them in calculations.
On the other hand, it might seem questionable whettier ghysical processes that
might enter in, and which are not treated simply by mee# the motions of ponderable
masses anblewton’slaws of motion, and in which one operates with enepggnta, can
also be grasped by the principle of least action.

0) Histoire de I’Acad. des Sciences de Paris, 1744, Aprik-18istoire de I'’Acad. Royale de Berlin
(1746), pp. 267.

(") Philosph. Transact! (1834), 247-308; (1834), 95-144.

(") Maupertuishimself did not see that; he held that his principle mase general than that of the
conservation of vis vivas. Histoire de 'Acad. delBe(1746), pp. 285. €. J. G. Jacobdiscussed this
point in the beginning of his Lecture VI on dynamics.
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I will choose one ofHamilton’s forms to be the most convenient form for the
principle of least action in the investigations thatl Wwé carried out here, which is the
one that allows external forces that depend upon tinaettapon the mechanical system
considered, whose internal forces are only conservates. If we denote the potential
energy of the system bly and thevis viva by L then the function (viz.Hamilton’s
principal function) whose time integral will be a minim for the normal motion
between end points will be:

H=F-L,
while the energy of the system will be:
E=F+L.

In this, F depends upon only the coordinates, wihilés a homogeneous function of
second degree of the velocities.

The functionH is the one in terms of whose differential quotiehisyrange
expressed the forces that act upon the moving system tienoutside. Since that
function plays an important role in all of the probletiat will be treated here, | would
like to propose the name kinetic potentialfor it, due to just that relationship with the
forces. An entire series of corresponding namesliféerent special chapters of physics
has already been proposed. Thus, they incledd. Neumann'spotential of two
electrical currents anfR. Clausius's() electrodynamical potentiald. W. Gibbs(")
called the same thermodynamic function that | calfeee”energy” théorce function for
constant temperaturewhile P. Duhem ("), by contrast, called that function the
thermodynamic potential There thus exist sufficient examples for the newiagh of
terminology.

The principle of least action can then be expressddillaws:

The mean value of the kinetic potential that is calculated for equalelengents is a
minimum for the actual path of the system (a limiting value for lomggervals,
respectively), in comparison to all other neighboring paths that lead fheminitial
position to the final positions in the same amount of time.

For a state of rest, the kinetic potential goes tovdtees of the potential energy (the
potential in the sense that was used up to now, respegtivélg do not need to take the
mean value for them, since the values that were diffawhile in motion will all be equal
to each other here. For a state of rest, our thetinem says simply thahe potential
energy must be a minimum for equilibrign

Jacobishowed that the functiod can also include time explicitly with making the
construction of the variation and differential equagitimat follow from it impossible. |

have employed it in order to add a sgn{P, (p,] to H, in which thep, are coordinate

(*) This Journal, Bd. 85, pp. 85. AlsoWiedemann’&nnalen, Bd. I, pp. 36.
(") Transact. Connecticut Academy Ill, pp. 108-248; 343-53dliman’s JournalXV1 (1878), 441-

(") Le Potential Thermodynamiquearis, 1886.
(" It should be remarked th&uler already sought to base the principle of least actidiat way,
but he took the mean valuefgfnot that of F — L). Histoire de I’Acad. Royale de Berlin, 1751, pp. 175.
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and theP, mean the forces that act in the direction of the dioates, while the latter are
taken in a sense that will be discussed in more detlmWwb TheP, will be considered to
be given functions of time that are, however, indepenhadé¢ the coordinates. In this
form, the minimum principle will yield theagrangeequations for the forcd?,, and in
that way, an entire series of special investigatitived are based upobagrange’s
equations of motion will also be subsumed by the somewmbadified principle of least
action. Where it is necessary to distinguish that fremtiprinciple from the original one,
| would like to call it thdaw of minimum kinetic potentialThe form that.agrangegave
to the equations of motion is, in fact, important, duehe fact that we can apply it to
cases in which processes are at work that are norleagenally resolvable in various
ways, such as friction, galvanic resistance, etc., andihich equilibrium must exist
between the conservative forces that are includéagnange’sformula.

Now, there are other work equivalents, besides the paittemd actual energies of
ponderable masses, namely, thermal, electrodynamrchklactromagnetic ones. Up till
now, the motion of heat has generally only been coresdas an especially complicated
form of the motion of exclusively ponderable atoms. wieer, since ether waves
simultaneously radiate from warm bodies, this retrnc[which can, in fact, be derived
from Carnot's law under simpler assumptions, &ausius () and Boltzmann (")
showed] should be considered to be a hypothesis that imdetpate initially; the action
of other forces (e.g., electrodynamical ones) canneibkided with any confidence.

| have proved that, by contrast, the known laws wémgble heat processes can, in
fact, be expressed in the formlafgrange’sequation of motion, and thus also the law of
minimum kinetic potential, in my papers dhe statics of monocyclic motiorfs ).
However, that shows that temperature, which measuresttéhesity of thermal motion,
enters into the function to be integrated in a vempmiacated form, as do the velocities,
when one defines the values of the vivain the ponderable system. In the cited papers,
| showed that the same formulas could also be trué, eertain restricting assumptions,
for systems of ponderable masses through the eliminafi@ertain coordinates, such
that there is no contradiction between the appearahsach complicated forms and the
application ofLagrange’sequations of motion. However, if one would like torrethe
general properties of systems that are governed by thapbeiraf least action then it
would be necessary to drop the older, narrower assumpiabrine velocities enter into
just the values of theis vivag and indeed in the form of a homogeneous function of
degree two, and to examine how things behave whéna function of the coordinates
and velocities of arbitrary form.

The fact thatchemical forces(whenever we can compel them to act in only a
reversible way) followCarnot’'s law has indeed been confirmed experimentally in just a
small number of cases, but they are all the more aepaable since they exhibit
measurable relations between processes of an appareiélyifferent nature').

() PoggendorffAnnalen,142 (1871), 433-461.
(') Wiener Sitzungsberichtel 1 (1866), Abt. I, pp. 195-220.
(") This Journal, Bd. 97, pp. 112-123.
(" Cf., my three papers on the thermodynamics of champiocesses. Sitzungsberichte der Berliner
Akademie, 1882, 2 Feb., 27 July; 1883, 31 May. — A good survey afidkerials that were used up to now

is in the book ofP. Duhenthat was cited above.
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Finally, observations of the distant electromagnetid alectrodynamic effects of
closed, electric currents have led to expressions éptimderomotive and electromotor
forces that are closely linked with the ones thagrangegave for the mechanics of
ponderable bodies. The first to give such a formuladibthe laws of electrodynamics
wasF. E. Neumann, st.). For him, the velocities of the electric currentise., the set of
all electricity that goes through a surface element encitnductor that is bounded by
material particles in a unit time appeared as velocities. Lat®/, Weberand Clausius
gave other forms in which relative or absolute velesitof electrical quanta in space
entered in place of current velocities. The conseqsentdhe various formulations
agree completely for closed currents; for unclosed ctgrémey differ. To the extent that
facts are known in this latter domain, they show N@tmann’daw is inadequate when
one includes only the motions of electricity in condustor one’s calculations while
applying it. Moreover, one must also consider the meata@f electricity in insulators that
Faraday and Maxwell considered, which might occur under increasing or dimimgsh
dielectric polarization. The previously-observed effemit unclosed currents also fit into
Neumann’'daw, thus-extended.

However, a deviation in the form of the functions frone ones for ponderable
masses also exists here. For electrodynamical plemmnthe velocities of electricity
appear as functions of degree two whose coefficientseter, will refer to rectangular
coordinates, not constants, like the masses in the valudg® vis vivaon ponderable
systems. Secondly, linear functions of velocityl wiiter whenever permanent magnets
act.

It was precisely my investigations into the form oé€ tkinetic potential that is
required byMaxwell’s theory of electrodynamics that led me to the preseslinuinary
investigations.

The theory of light has also subsumed all of itsmfacts under the hypothesis that
the ether is a medium with properties that are sintdathe solid-elastic ponderable
bodies. The known difficulties in the theory ofleetion and refraction will be even
easier to defeat bylaxwell’s hypothesis. However one might cleave to one or the othe
meaning, one would have to consider the principle of le@ask to be valid for the
motion of light, at least to the extent that its phv@ena can be explained by that theory.

That already implies that the domain of validitytiee principle of least action goes
far beyond the limits of the mechanics of ponderablagsp@nd thaMaupertuis’shigh
hopes for its absolutely general validity seem to becagmbiing fulfillment, so tenuous
was the mechanical proof and so contradictory wereriéaphysical speculations that
the author himself knew about at the time.

Nowadays, it is regarded as highly probable that itagggmeral law for all reversible
natural processes, and as far as the irreversible ayresoncerned (e.g., the generation
and conduction of heat), their irreversibility does re#¢m to be in the nature of things,
but only rests upon the limitations of our tools that reakémpossible for us to arrange
disorganized atomic motions or to make the motion obtms that take part in the
motion of heat go precisely backwards.

() Cf., my papers in the theory of electrodynamics. sThiurnal, Bd. 72, pp. 57; Bd. 75, pp. 35; Bd.
78, pp. 273.
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In every case, it seems to me that the generalityabf the principle of least action
has been insured to the extent that it can occupy apaugikion as a heuristic principle
and a guide for any attempts to formulate the laws wfalasses of phenomena.

In addition, it has the advantage of summarizing @ilddtions that are influential for
the class of phenomena under consideration in thewast scope of a formula, and thus
giving a complete overview of everything that is essential

By this state of affairs, | find it useful for the @eal principle to give an overview of
the proof and the general consequences, which can be kegpbnetr whenever one
applies only known methods to somewhat extended assuraptid have therefore
endeavored to highlight the consequences that are codoeitieobservable behavior,
and which, when combined, will, in turn, serve as ancaetor of the validity of the
principle in the domain in question.

In 8 1, the law of minimum kinetic potential is develdpeith the greatest possible
freedom in the nature of the functiel) andLagrange’sequations of motion are derived
from it. The eliminations by which such general forms a0 occur for systems of
ponderable bodies are discussed.

In 8§ 2, the constancy of energy is derived from oumfof the principle, and one
learns how to calculate the value of energy fromvedlae of kinetic potential. It is:

E=H- H{qaaai}

0q,

whereq, are the velocities. That will show that the priteipf least action is not always
valid, conversely, in any case where the constancynefgy is true. The latter then
expresses more than the former, and finding what it espses addition will be our
problem. At the same time, some mechanical and physioaésses will be specified in
order to be able to refer to them as explanatory elesipr the contents of the first two
paragraphs, as well as the following ones, and to maksighdicance of the principle
intuitive.

8 3 then treats the opposite problem, namely, that ofidg H from E. That must
involve integrating the aforementioned differential equatiand that will introduce
arbitrary integration constants that must be homogenkemasions of degree one in the
0o - This step is meaningful, insofar as it will then beegpossible to find the kinetic
potential from a complete knowledge of the dependencyhef dnergy upon the
coordinates and velocities, and thus all of the laws @tian for the system, assuming
that the principle of least action is valid. One Ww#l able to find the terms that are linear
in 9o, Which correspond to “hidden motions,” with no difficultiésr the most part.

8 4 treats the interdependencies between the forcesrthaimultaneously exerted
upon the system in different directions and its acaa@tans and velocities. That
subsumes a series of interesting connections with phydiemomena, such as, e.g., the
one betweemmpere’selectromagnetic and electrodynamic laws, on the oné,hend
the law of induction, on the other; a series of therynadhic laws — e.g., the relationship
between the raising of the pressure on a containedbgasssing its temperature and the
raising of temperature by compression, and the correspgprizBhavior for thermo-
electric and electro-chemical processes. Finally, care also prove, in turn, that the
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principle of least action is valid whenever the ideggendencies between the forces that
were detailed in 8§ 4 exist. That proof is, however, defeto a later communication.

In 8 5,Hamilton’stheorem, in its general form, will be recapitulateat] & 8§ 6, the
reciprocity theorem that flows from it for the chasge the forward and reverse motion
that result from small impulses after a certain tinas elapsed will be given. Some
reciprocal relationships that | myself have verifieddound and light in previous papers,
but only for systems at rest, fall within that scope.

Finally, in 8 7, the moment of motion shall be introdl@e place of the velocities,
which will yield another form of the variational probleind along with the already-
known altered representations of the values of theefoaoother reciprocity law for
forward and backward motion, as well.

81
Formulation of the principle.

| assume that the instantaneous state of the systdmdies in question is given
completely by a sufficient number of mutually-independsodrdinates, ; | denote the

velocities of evolution by:

dp,
1 =,
(1) %= 5

Furthermore, | leP, denote the force with which the system of moving bodes upon
the change in the coordingbg, such that+€ P,) will be the external force that must act
upon the system in the direction of the coordimmtan order for the assumed motion of

the system to be able to happen in the assumed way.
The forcesP,, which were introduced bliagrange are, in general, aggregates of

force components that themselves can act upon diffaats of the system, and thus
their magnitudes and composition are defined in such a keyR, [Odp,) is the work
that the forceP, does outwardly when the coordinate changes fpprto (p, + dp,),
whereasP, will perform no work wherp, remains unchanged while arbitrary variations
of the remaining coordinatgs occur.

In the sequel, we shall assume that the quanHti@se functions of time, but they are

independent of the coordinates during the given period frefgtot =t; . LetH be a
function of the coordinates and velocities, of whiclg will first demand only that it
must have finite first and second differential quotiemti$h respect top, andq, at all

positions of the path that evolves during the stated pien®d. Moreover, we define the
integral:

(19) cp:fdtz{H +Y[P Dpa]},
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in which thep, are varied in such a way that their variatigpswill be zero fort =t and

t = t1, but they will be arbitrarily-differentiable functierof time at the intermediate
times. It then follows from known methods of theiadonal calculus that one will have:

(19 b =0

when one has:

e o=p + OH _d[oH
op, dt|oq

during the duration of the motion.
As is known, these are the equations of motion fersystem in the form that was
given bylLagrange

Elimination of coordinates. In the original applications of the principle to the
motions of a free system of material points, agdaaly remarked in the introductia,
had the form:

H=F-L,

in which F shall be a function of only the, , andL shall be a homogeneous function of
degree two of the, whose coefficients depend upon ghe. For a free system, the
number of coordinateg, is three times as large as the number of mass pihiatsare

present.

However, in many cases, a decrease in the numbenadinates can occur without
changing the form of the representation that was givequations (3, (1°), and (£).

Among these cases, the one that has been treateaplkshow is then one in which
the degrees of freedom of the system are restricted-ogledfixed constraintswhich
can be expressed mathematically as equations in the cat@sli The composition of the
functionH from F andL that was given above and the behavior of the last inwctibns
will not change as a result of that, but the numlferadable coordinates can be reduced
substantially.

Another noteworthy reduction in the number of coordinatsirs when individual

ones of them, which we would like to denote by the ingleappear in the values éf
only through their differential quotients, so the corresponding forc€ need to be

equal to zero. Under these circumstances, equatifnsuiich express the value of the
P,, will reduce to:

_djoH
? ° _dt{a%}
or

(2% oH __ C, -

oq,
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One can employ these equations, which are linearertl{q, , respectively), to
express the, in terms of the remaining velocities and fh)e and then eliminate them

from the value oH. We denote the expression for the valuéiahat arises from this
elimination by$). One will then have:

29 :6_H+z{a_Hg&}_

op, Op, | 9q 0Jp

Thus, with consideration given to®|2

H _ o [,
——a{ﬁ g[cbm]}-

Pa
If we set:
(2°) H-lcm] =H’
b

then we will find that:

oH _ on

op, op,
and likewise:

oH _ on

dg, 0q,

oH' d|oH’

2¢ = —+—| —.
@) p=- 21 d{aqj

The functionH’ thus enters in this case, which is free ofdhandp, , but also includes
terms that are linear in th and originate in the values of tlgg and it completely

replaces the original function in the definitiontbé& equations of motions2

Examples of this are the rotations of a top arousdsymmetry axis, when its
direction, but not its angular velocity, can chamageund that axis, and furthermore, the
motion of a system that is referred to a rectangrdardinate system that is rotating; e.g.,
the Earth.

Corresponding to this analogy that is given by rtechanics of ponderable bodies,
we would meanwhile also like to refer to other sagéphysical processes in which the
function H includes terms that are linear in the velocitiexases with hidden motipn
although at the moment there are cases in whickxistence of such a hidden motion is
not confirmed beyond a doubt, such as for the ateyn between magnets and electrical
currents. It is known that it was adopted for th@gnet byAmpére it also showed its
influence in the electromagnetic rotation of thang of polarization of light, as SW.
Thomsorremarked, even when no perceptible electric ctiaets upon it.
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This case is distinguished from the one in whithncludes the velocities only in
terms of degree two essentially by the fact that tbean cannot go backwards under the
same conditions unless the hidden motions are simultayeeusised.

Other eliminations can bring about even more com@d&rms for the functioh,
at least for restricted classes of motion; | haveutised such cases in my first treatise on
the monocyclic motions ), We can choose the conditions of that eliminasomewhat
differently here. One assumes that a group of codefing, is present whose

corresponding). enter into the values of thes vivaonly multiplied by each other, but
2
. . . L H
not combined into products with tlag in this group, such that agaT: 0; moreover,
Q. 06,
one assumes that the ford@salways remain equal to zero. Under these circumstance
motions of the system are possible for whichgheemain continually constant, so tte

= 0. The equations of motion for this class of motisingplify due to the fact that when
all g. = 0, one will also have all:

— =0.

o0,
We thus get from (:

oH
3 0=———,
(3) 20
(3a) Pb:—a_H.i.ga_H )
op, dt|dq

Now, if equations (3), whose number is equal to that ofpthsucceed in expressing
these quantities as functions of theandq, then one can eliminate thge from H by

means of the values thus-obtained, where, in gert¢nalll be a complicated function of
theq, that we would like to denote Isy. From the principles of differential calculus, one
will then have:

6_5:6_H+Z_6_Hga&—
op, Op, c_apc ag_

6_5:6_H+Z_6_Hga&—
dog, 0q, c_apc aq_

thus, due to equations (3), one will have, in turn:

(3b) a_H = 6_53 and a_H = 6_53

op,  0p, oq,  0d,

() This Journal, Bd. 97, pp. 120-122.
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The equations of motion {Bthen reduce to:

(3C) P, =-— 6_5§+£{6_5§}
op, dt|dq

in which only thep, andq, appear, and generalfy is no longer the sum of a function of
the coordinates and a homogeneous function of degree tiwe eélocities.

However, if the originaH is such a function, and thus no hidden motions will have
any influence, then equations (3) will be of degree twihé, ; the value of the, can

then remain unchanged (even when it is multi-valueagmall of theg, simultaneously

change their signs, from which, it will follow theéte total motion can also go backwards
in this case.
In the mechanics of ponderable masses, problems in whecfunctionH includes

the velocitiesq, in terms of first or higher degree can be referrecagoncomplete
problems insofar as a part of the possible motions is excludad, a part of the
coordinates that are necessary for the determinatitdreqdosition of the system does not
enter into the functiol, and certain forces are constantly set equal to zerthey can
no longer be determined arbitrarily.

Functional determinant of the moment of motidfor the sake of brevity, we would
like to denote the quantiti@$l / dq, that enter into the previous derivatives by:

oH
(3d) Sa =T
odq,
and call thes, moments of motion.For the motion of a free system that is referred to

rectangular coordinates, they correspond to the produbeoiass and velocity, whose
differential quotient with respect to timeNewton’smeasure of the corresponding force

component:
X= g[m[—ld—x} )
dt dt

In the cases that were summarized, the influencetlieainertia of the moving masses
exerts upon a well-defined type of motion was differeoinf that of the position of the
masses. Thus, e.g., for a rotational motion of addodidy, the moment of motion is
equal to the moment of inertia, multiplied by the angwialocity. In that sense, the
guantitiess, now measure the influence that the inertia of the momags has, and its
acceleration enlists a corresponding part of the fofeaotion, as equations 91show.

In the original, complete problems of the mechanicpasfderable bodies, tlge are

linear, homogeneous functions of thewhose coefficients are functions of tpe, in
general, and one then has a system of linear equations:
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() s, = ZB: mh]

which will represent thej, as linear, homogeneous functions of thevhen they are
solved for those variables. That representation wouldagossible if the determinant

.. 0s ’H
of the quantltlesa—“ (the 9
b a
cannot come about without thds viva being zero for certain motions with finite
velocities. Namely, sinck is an essentially positive, homogeneous function gfeke

two of theq, , one will have:

, resp.) were identically zero. However, the lati@se

2L=7[q,8].

If the aforementioned determinant were zero thenfahes, , and correspondinglly, as
well, could be zero without the, needing to be zero.

The condition that the determinant of equatior¥ (8 not identically zero can also
be expressed as followNo identity can exist between the quantiticarsl p , with the
exception of the q and for that reason, tleg can always be represented as functions of
thes, and thep, .

This relationship will not be changed if we safiudual s, equal to constants, as in
the case of hidden motions, or also set them dquadro, as in the case of the eliminated
p, - The value of the remainirg will not be changed by those variations. Since th

same thing is also true for the electrical motiamsl reversible heat motions, to the
extend that their physical laws have been ascedaip to now, there is, up to now, no
physical motivation to consider the exceptionalesagn which the determinant in
equations (3 might be equal to zero, and for that reason gsaimption will be made
from now on that the determinant cannot be idelyiaero, except for at most special
values of thep, .

Once that condition has been established, thati@mal problem can be expressed in
such a way that the equations that were singledrotite beginning of this paragraph,
namely:

dp,
1 =,
(1) %= 5

will be assumed in it.
As above, leH be a function of th@, andq, , and let theP, be functions of time.

One sets:

_ (b dpa H
(1% ch_.LO dt{H_zK%_Ej%-k FgDpaH

a

and demands that:
(18) &Dl =0
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must be true for arbitrary variations of thgandq, , which are both to be treated as
independent variables. One should hgwe= 0 at the time$ andt;, while thedq, also

remain arbitrary.
The variation ofj, yields:

] B 0°H (dp,
) O_Za:{aqaaobtédt q“ﬂ’

2
which implies equations (1), since the determinant ofgge:— should not vanish
0. 0G,

identically.
The variation of the, is performed as above, and will yield the same result.

If one denotes the function of thgandq, that enters into ¢ by:

E:H—g{qaagqﬂ}

a

(this is the energy, as will be shown in the nexageaph) then one will get:
o folery] e oce)

| cite this form here, since we will encounter an agalis form in the conclusion, and
both of them can be regarded as very exotic when aretsnup with them in physical
investigations before one knows for sure which quantitiescabe referred to g3, , q, ,

ands, .

On the other hand, it is precisely these forms #rat included in the complete
statement of the problem.

§2.
Relationship to the principle of the constancy of energy.

If one multiplies the equations of motiorf)lin sequence, by, and adds them then
one will get:

a aq: a

|

s 5] Bl

If we set:
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g H
@) E=H Z{q Bgﬂ

as we have done up to now, then we can write:
(4% > [P, ] ait+ 2 ot = 0,
‘ dt

The sum that enters into this is the work that thief®, does on the environment in the

time intervaldt, and that will then imply that the quantigy continually increases or
decreases according to whether that force does positivegative work, respectively. It
will then follow from this thattE denotes the energy supply of the system, expressed in
terms of its coordinatgs, and velocities, .

It emerges from this that the principle of least atwhen it is taken in the form of 8
1, always includes the principle of the constancy ofggner

On the other hand, the principle of least action a¢ necessarily true in all
conceivable cases that are subject to the law of thetaacy of energy. One can make
many supplements to the system of equatiofjstiat do not at all affect the derivation
of equations (3, but they will probably cancel the summation in theatanal formula.
For example, one adds a tergn[{,) to those equations {lthat have the index in their

terms, and a term-(¢ 0j,) to the ones that have the indgxin which ¢ is any function

of the coordinates. If, in order to derive the energy egguiawe then multiply the former
equation byq, and the latter one bg, then the extra terms will drop away, and the

constancy of energy will not be affected. By caostirghe corresponding variation:
¢ [qb I:ﬁ)a _qa Eﬁ)b]

can be considered to be the complete variation ohetifun of thep, andq, under the
integral only wherp depends upon the variableg (,) and ¢, [p,)-

If the function ¢ that enters into the supplementary terms is indepernufettie
velocities then the corresponding motion will notrbeersible. However, we can make
@ into a linear function of the velocities; the entim®dtion can then go backwards, as
well.

Since one can install such terms in any arbitrarily-ehgsir of equations from the
system (), a great multitude of cases are conceivable in wiieHaw of the constancy
of energy is valid, but not that of least action.

It then follows from this that when the latter piple is true, it will express a special
character of the conservative natural forces tlapegsent that is not already present as a
result of their being defined to be conservative fordésminating this idea more clearly
will be the objective of the investigation that follsw
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Explanatory example:

Since it will be repeatedly desirable to cite examgle the sequel in which the
significance of the theorems that are obtained besamaeitive, | shall allow myself to
cite some suitable spaces here to the extent tlahécessary to characterize them, and
to which | can refer briefly, not only for the contewif this and the following paragraphs,
but also later on.

I. Example of top.Let the top be a rotating body on a gimbal mountifige outer
ring a might rotate around a vertical axis, and wedetenote the angle of rotation, when
measured from a well-defined vertical plane in spadee second rin rotates inside of
the first one around a horizontal axis, and | shalldetenote the angle between the
planes of the ringa andb. The rotational axis of the top lies in the rimgt right angles
to the rotational axis betweamandb. Let the angle between a reference meridian on the
top and the plane df be y; let the moment of inertia of the top around its rotetl axis
be 2, and let the moment of inertia around one of its eqiztaxes by»B; that of the

ring itself will be neglected. Thas vivaon the top will then be:
L=21% [Ed—y+COS,3Gd—aT +19 sinz,[z’[é%j2 +(%j2
(4) 2 dt dt | 2 dt dt
H=-L.

That will yield the forced\, B, C that tend to increase the angtes, y; respectively:

a __d dy a P

(4% A= dt{ﬁlmosﬁtﬁ dt+ cos@[—l%}%ﬂsuﬁﬁ[—la},

b . dy a’l da . a) &8
4" B = mBm'B[E_dt+COS’8%}_dt+%DSIrﬁDCO§[é_dtJ %Gd_f’

c __ 4y a
4) C= dt{ﬁltﬁ o +COS’8BC;7}}'

The forceA is simply a rotational moment that makes the ciectetate, and likewiseB
makesb rotate. HoweverC rotates the circle relative tg so it must have its pivot bt
If the forceC is absent then Pwill imply that:

d - d_y a =
4) QLEF " +cos,6’[—l(jj—t} C.

That will yield the value oH’, according to (9:
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c . da)® (dBY o
+1——1B[sin* Bll— | +| — | |+cltosBE—,
D/ [E 'g[édtj (dtj:l ¥ dt

and the values of the forces, when derived in atzmure with (8), (4°), and (4):

(49 H’

Azi[cﬁtosﬁ— B[Sinz,[z’Bdfa} ,
(4" dt dt

_ crain g8 : da\ .. &°f
B—cﬁlnﬁ%+%&|nﬁtbos@[éaj %GC;_E

The first constant term in the value ldf can be omitted, since it enters into just the
arbitrary constant of the value &f the last term the linear one that is absent ftben
value ofL.

[I. Example: Electrodynamic effect of closed, circudarrents on the potential law
()
We would like to understanij to mean the current intensity of thi8 circular current

andp, to mean the coordinates of the ponderable mas$®esevis vivawe shall neglect.
The functionH has the form:

(5) H= _%ZZ[QM LD, 0],

in which Q,,. are functions op, , and each of the two successive indicesdc refer to
all current circles. The induced electromotivecés, which | would like to denote Idy,
are:

(57 ¢, = —ZE Q. Eﬂc)} |

=) pa:%zz{%mh mc} |

If a permanent magnet whose position is given leydbordinatey is involved then a
series of linear terms will be addedHahat | would like to denote ky, and which will
have the form:

(59 h= Y[R ],

in which theR, are functions of the coordinatpsandp, . The calculation of the forces
comes about here by the same methods. The tetat@lynamic energy is:

() See, among others, my paper in this Journal, Bd. 72, p®.70-7
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E:H—;{Jh%} =-H.

The functionh will vanish, since:
h=>13 2 =0,
. 0J,

| have shown that th& = — H that enters into this, like the vis viva on ponderable
masses, is a necessarily positive quantity for closecermsr (). In addition,E is a
homogeneous function of degree two in the, and the same considerations can be

applied to it as the ones that were discussed at theféndl, in which the determinant of
2

the quantitiesaj—; cannot be equal to zero identically.
a b

[ll. Example. Thermodynamicg~or a suitable choige of coordinates, the laws of
reversible thermal processes can be represented forthe” ):

Fi :—i[F— |_] E{ﬁ}

P} dt| a
—Q:—ﬁpﬂ["’—ﬂ.
dt dt| 99
. o o0
(6?) E=3 199379 L.

In this, § is what | called the “free energy,” which is a ¢tion of the coordinates, and

the absolute temperatueg andL is the vis viva of the visible motions of the hgav
masses, and thus a function of fhend theg, that is homogeneous of degree two in the
latter and independent & dQ is the amount of heat that enters the body iretement

of time dt — i.e., the work that is done by the environmerind only forces that bring

about the motion of heat will be exerted.
We will get this form, with different variables hen we set:

9% __

6:9_3

then lets denote a function @, and further set:

() This Journal, Bd. 72, pp. 86t seqand pp. 125.
(") See this Journal, Bd. 97, pp. 112-117. The vis viva ofigible motionsL is added in order to
insure the completeness that is desirable here.
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ﬂdézn,

(6b) 0s
—~_or98 _

H=F 19% nis.

If we now expres$l ands as functions of thg, and 77 then the equations above can be
written [loc. cit, Abh. I, eq. (D]

(6c) £:+§Dd_s :/7Dd_s,
dt dt dt
0 d| oL
6° P, =— - [H--—|Z|,
(6) ; 6pa[ ] dt{aql
(6% E :H—/7D6—H +L.
on

These equations, like the first ones (6)),(Bave entirely the same form (dbg. cit, §
3) as the ones for the motion of a monocyclic systdmse kinetic potential idH— L),
and for whichs denotes the velocity amngl the moment of motion of the monocyclic
motion.

If we letP(; denote the force that is exerted in the directiornefelocity, then we
will have:

(6) Py O Ot = - dQ.

The analogy with théagrangeexpressions thus remains true here, as well, and in
that way that entrop$ of the motion might depend upon the moment of masiohthe
monocyclic motion. In this case, this possibility loé¢ toupling of equally-warm systems
of bodies to a larger system, and the kinetic thebgases lead one to assume that:

g =si,
S:—a—S =C dogs.
03

Thus, for any given system of bodies, the temperaturedNmiket to be proportional to
the vis viva of the heat motion, &ausiusandBoltzmannapparently already sought to
before me ). The later applications of our example are independithe question of
the relationship between the functidhands.

() In a communication to the Berlin Academy (Sitzungisiée 8 December 1884), | have expressed
this theorem more definitively, but then | recognizeat ta step in the proof could not be justified without
demanding a further restricting condition whose physicaéning | still do not know how to interpret,
although | hope this will come to pass. | must theesfmrcept that the objection tHatBoltzmanmmade
against that paper (Wiener Sitzungsberichte (2), Abh. X82ll,8 October 1885) is justified in that regard.
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The motion of heat can apparently be regarded as agciaby far-reaching example
of the elimination of the coordinatgs, and for that reasohl can be a complicated
function of # or n. However, my investigations into the combined monocygyistems

have shown that many combined forms of motions thaakheady quite similar to the
internal molecular motions of warm bodies can alad k& the same laws.

§3.
The derivation of the kinetic potential from the value of energy.

For the physical investigations, it is usually easier rande certain to recognize what
the factors are that influence the energy supply ofysgem of bodies, and thus, to
determine the value of the functi&j than it is to find all of the laws of the variations
and determine the kinetic potential from that. We tluse to the examination of the
extent to which the latter can be determined from theevaf the energy supply.

We assume that the quantifyhas been found as a function of theandq, . For the
form of that function, equation (4) implies that:

U H
@) E=H ;h%?}

It follows from this that:

oE 0°H
7 — == O—.
(") = gha%m}

For the variation of the functio® that is given in equation {jLthat is necessary in
order to construct the equations of motion, it mustdsimed that the first and second
differential quotients oH always remain finite along the path that is traversgdhe
system. Thus, it follows from equation (7) that wiadirg, = O, alloE / dq, will also be

equal to zero.
Other restrictions of the functiold that are implied by the physical interpretation
might be mentioned only briefly here.

1) For a free system, the coordinates that are involvied te only the relative
positions of the masses of the system, because the peocess of motion must be
capable of proceeding for the same relative positiotiseofnasses everywhere in space.

2) The value oE must have a minimum for finite separations of the smasand
finite velocities; otherwise, the supply of work in tégstem would be infinitely large.
Thus, the value dE must necessarily be a positive quantity for infinitelgreasingy, . |
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have sought to show the inadmissible consequencesfdlatv from the opposite
assumption for the electrodynamic theoryfWebe).

Equation (4) next easily implies that whéh can be represented as a sum of
homogeneous, entire functions of t)eof differing degrees, the same thing will be true

for E. If we denote a homogeneous function of degrettheq, by P, , and if:

(7 H=>[P]

then

(7 E=>I[1-n)P],
or.

E:Po—Pz—ZD:g,etC.

The termsP; of first degree drop out from the value Bf Py corresponds to the
potential energy, which is independent of the mutiwhich we have denoted by
above, andP,, to (- L). Higher terms enter into the problems of the Ima@ics of
ponderable bodies only in the altered cases intwbie eliminated certain coordinates
p..

Moreover, the problem that was posed can alsoobeedwhen E is an entirely
arbitrary function of the velocitiethat satisfies only the condition that was podsavae
that, from equation (7), adlE / dq, will approach the value zero when tje= 0. For our
purposes, it will be sufficient to retain the deteration that was made above, in which
the coefficients in the system of equations (7)usthde finite, although there will also be
cases in which those integrable coefficients wdngldome infinite.

In order to solve our problem, we would like td: se

(8) Q. =X

in place of theg, in the values oE andH, and understang to mean a variable factor
whose variation will indeed change the absoluteieslof theg, , but not their mutual

ratios.
After that substitution has been made, | will denihhe functiondd andE by H" and
E’” One then has:

(&) %E _ {qa E@} -

X - oq,

Since alloE / g, = 0 when allg, = 0, from the convention that was made for equatio
(7), but, from equation (8), that will happen owlizenx = 0, that will imply that:

() This Journal, Bd. 72, pp. 85, § 4 to § 7; Bd. 75, pp. 35-6Helmholtz Gesammelte
Wissenschaftliche Abhandlungen, Bd. I, pp. 684.
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(8" ‘Z—E: 0,  when x=0,
X

and indeed, from our assumptions, for very smalE / dx must become proportional to
x itself, if not a higher power of On the other hand, we have:

ox 0q,

so:

o H _ Hi_ g
(89 x%-Z{q{lB‘%}- E'+H/

a

and therefore:

] 2 ]
(8d) 6_E :_XD_G |_2| _
)4 ox

If yet a second solution exists for the differentgiation (&):
(8c) E’:H’—lesi,
X

which we would like to denote by, then:
— 4 r” a 4 .
O=H'—-H"—xE—[H'-HT;
0x

log H'—H” =logx + logC,
or
H'—H” =x[T,

in whichC can be a function of the, . However, if H'— H”) can also be represented as
a function of they, , which are free of, then it can be only homogeneous of first degree.

We now need only to find a particular integral of equat@in
We will obtain one when we first write equatiofi)(#r x = 0:

Eo=Ho,
and deduce this from {8

(E —B)=H'- I-lo)—XD:—X[H’— Hol.

Dividing by will give this:
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H’—HO}
—.

1 0
- —(E’ - =2
XZ( Eo) ax[

From the discussion that was made fob),(8he quantity on the left-hand side is also
finite for x = 0, and we then obtain by integrating between thedixwt 0 andx = 1:

EO Hx+ Hq,

(8) H/—Ho=- [E2

0 X2

in which the integration constaHh , as was remarked, can be any homogeneous function
of degree one in the, .

E is then derived uniquely frotd by means of equation (4), while in the derivation
of H from E, the functionH;, which corresponds to the “hidden” motions, will remain
undetermined. Whether such terms of first degree mix with ether will be ascertained
in special problems mostly from the conditions under tvitie motion can take proceed
backwards.

If one then knows which physical quantities in the gatf E in the problem in
guestion are to be treated as coordinates and which,csties then one can, as a rule,
solve the problem that was posed here. However, thesipmases can occur in which
resolving the state question seems to be uncertain.

§4.
The general characteristics of the forces on moving systems.
It is known that the forces that act upsystems at restrom the outside, which
satisfy the law of the constancy of energy, exhibitaterlegitimate relations with each

other that are expressed in the equations:

R _ R

a

aph apa

and that when these equations are fulfilled, the valuth® potential energy can be
found.

One likewise finds that similar relations that arglied immediately by.agrange’s
expressions for the forces can be presefiechoving systemihat are subject to the law
of minimum kinetic energy. They are thus not metelype regarded as functions of the

coordinateg,, as in the systems at rest, but also as functiotiseofelocitiesy, and the
accelerations:

, _d
(©) Q=
Equation ():
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e p - OH d[oH
op, dt|oq
immediately yields:

oH 0°H 0°H
P,=——+ + |-
op, ;{Maqm’} ;{Maqm}

A. Forces and accelerations.

As one sees, when represented in this form, the daace linear functions of the
accelerations. The coefficient of tigg in the value of the forcB, can thus be written:

@ o, _ 9°H _ R ;
dg, 09,09, Oq,

i.e.: If the accelerationg, makes the force Rarger by a certain amount then the same
increase in the acceleratiom| will make the force Plarger by the same amount

Whether such an influence is present in a given casetowill depend upon whether the
2

aq, aq,
zero, for example, for the motions of a completebefsystem of ponderable masses
when they are referred to rectangular coordinates. ryEwelividual force component
affects the acceleration only in the direction & toordinate to which it is refers.
For the top in example | of § 2, we have:

guantities are non-zero or equal to zero, respectively. Thedstuantities are

0A _ 0B

=" = 0’

aﬁ" aa"

0A _oC

—= — =-2A[kosp,
ay’ oda" A
_aC = a_B = 0

6,3" aV’ !

in which a”, 8", y” denote the accelerations of the angleg, y; resp.
In example Il for the electrodynamic effects, one has

0P, _0¢, _,
aJ, daq
o¢, _ d¢,
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The former equation says: Since the ponderomotive forteeafircular current does not
depend upon thaccelerationof the current, the induced electromotive force cam adg
depend upon thaccelerationof the current conductor (but possibly upon the velogitie
in both cases). The latter equation says that when fiven position and form of the
circular currentd andc, a rise in the forc€, that acts upob cause an increase Jnby

electromagnetic induction, the same rise in the faceill produce the same effect on
\]b-
This reciprocal relationship is not present in examplgor the thermodynamic

effects, since theis vivaL of heavy masses does not depend upon the temperature, and
therefore the product [, will not enter into the value of(—L) = H.

B. Relations between forces and velocities.

It follows further from equations (7) that:

o ___OH _ oH gl{ d°H }
a9, op,0q, 0podq dfoqogq
Thus:
£+E:2G(l_ o°H }
&) dg, 0q, dt:aqaq
_ocfl aﬂzzgd{ﬁ]
dt| aq, dt| 0q

In the very great number of cases, where:

@) oP, _ R _ o°H
dg, dq, 0q,0q,

= const.,

it will follow that:

(@) * o0,
aqh aqa

i.e.,when a rise in the velocity, épr the same position and acceleration makes theefo
P, increase, a corresponding rise in @ill diminish the force P. The case in which the
prerequisite (9 is fulfilled have already been remarked in the examhlaswere cited

in A. They best show the extended meaning of this thedretralso the fact that one

must control the fulfilment of the prerequisite, b&famne applies the simpler theorem
(9, instead of the generally correct on8)(9

Example I. If a force that increases the angle- i.e., the axis of the top tends to
move from the vertical — causes a greater precessiawiadn a then a force that causes
the precessional motion to accelerate will bring the @ the vertical line.
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Example II. Electromagnetic induction, according to Lenkhe motion of two
circular currents with respect to each other that isdpced by ponderomotive,
electrodynamical forces will bring about electromotireuced forces that act against
the currents.

The corresponding relationship will be true for the iolobf a magnet relative to a
current conductor.

Example Ill. Thermodynamics. When rises in temperature raispréssure of a
system of bodies, compression of them will raise the temperature.

For this case, we can write equatiof) (@fter multiplying both sides by, using the
notations and explanations of § 2 for this example:

oP,
6 logn’

[ o W1 =
(99 or, from 6 ):

M o5
oqg, | dt 0 Iog/7

@—/7 =1 Z{ }OGC%GE

Now, from (6), one has:

dt
Thus, one has:

0 | dQ 0s
o — | ==|=nO=.
®) aqa[dt} T o,

From (6'), one had:

p=— O rho1- d{aL}
op, dt| 0q,

and sincd. is independent df, one will have:

2
@) b __ ¥H _ s
on  9dp,0n 9p,

by which, in conjunction with (§, the validity of equation & will be confirmed, and
thus, also the applicability of our general theorem.usThany of the functiong in
equation (B can be regarded as the velocity, except tHat/ dt must then
correspondingly mean the acceleration. Also, theptzatured, in turn, belongs to the
integrating denominatay such that one also has:

sl ) g
oqg, | dt dlogd’
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Since one must hawk? / dt = 0 in this application,ai[%} will be the velocity with

a

which the heat enters when the parampjencreases with the velocity, whil2 remains

constant. This will give the formulation of the thexm that was given above.
The same considerations can also be applied to veesiele parts of thermoelectric
and electrochemical processes.

Peltier's phenomenon: If warming at one place id@sed conductor brings about an
electrical current then the same current will praducooling there(ignoring the
formation of heat by the resistance of the conductor.)

Electrochemistry: If warming of a constant galvaelement raises the electromotive
force then the current in it will make the heatelat( ).

However, the formulas above not only exhibit the serfshe change, but also, at the
same time, they give one information about how one @eal with the quantities.

C. Relations between the forces and coordinates.

Finally, it follows from equation (9) that:

aa_aa_d{ ?H  9%H }

o op, op, di|aqop 0qap
_,d|0F _oF
2dt| agq, dq, |

For the case of rest, where the right-hand sidebeiltero, this will yield the general
law of conservative forces:

9) oF, _0R .
aph apa

However, the same condition is also fulfilled whea thotion proceeds temporarily in
such a way that the right-hand side d) (@ equal to zero. Thus, we can also apply the
law (9) in order to define a force function for the forceswarm bodies (monocyclic
systems, resp.), in the event that only one of tietions 7 in equation (B) remains
constant during the motion. If we therefore negléet wis vivaL on the associated
motions then from equationYethen we will have simply:

Pa:—a_H’
op,

() See my treatises on the thermodynamics of chenpicalesses. Sitzungsberichte der Berliner
Akademie, 1882, 2 Feb., pp. 24-26; 1882, 27 July, pp. 825-835.
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so our equation (Pwill be fulfiled. However, we will almost alwaybe in this case
when we are concerned with the mechanics of terreboies that contain more or less
heat. Even when the bodies are in a state of viaatnal motion, we can, e.g., define
force functions for the molecular forces for thelastic effects by means of the law that
was proved here, and apply them as if their state oflilegum were one of stable
equilibrium in absolute rest.

Here, | would like to remark that the reciprocal relaghips that were expressed in
the equations:

(@) LA
aqh aqa

& R LR _,4lR]
og, 0ddq, dt| aq

9"

in conjunction with the fact that tH& are linear functions of thg,, which one can write
as:

(9 o =,
dq, 0q

and with the previously-given definitions:

dp

1 :_a,
) %=
, _ dg,

9 =,
9) % =5

are sufficient to prove that kinetic potentialexists such that the forde could be

expressed in terms of the differential quotients ofi ithe way that.agrangegave, and
that the equations of motion could be reduced to the plenoideast action.

The relationships between the forces that were surmethhere thus include a way
of completely characterizing the motions that tha subject to the principle of least
action.

The proof of this theorem can be given immediatehhwite previously-prepared
tools of analysis for the case in which no more thaeettcoordinatep, are present.
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However, theorems from the theory of potentials fumgiin spaces of three dimensions
will be used for that. If one would wish to go on to emcoordinatep, then one would

need the corresponding theorems for a larger numbeoafdinates. They can be
defined to the extent that they are necessary forpoanf. However, since that is
something that is interesting in its own right, itreseo me that it would not be suitable
to go into that peripherally, and for that reasavould prefer to give the stated proof on
another occasion.

Other general characteristics of the motions that pédee under the principle of least
action will be described in the next paragraphs.
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On the physical meaning of the principle of least action.

(Continuation of the paper on page 137 of this volume)
(By H. von Helmholtg

Translated by D. H. Delphenich

§5.
Generalization of Hamilton’s differential equation.

Hamilton has taught us how to represent the funcdorthat he defined, under
somewhat restricting assumptions, to be:

4
¢ = jto(F—L)Edt

as a function of timé=t; —tp and the values of the coordinates at the tinaadt, . We
would like to denote the moments of motion for timby p, ands, and the ones for time
to, byp, ands,, resp. It is assumed that the changes ipjlairing the time interval{

—1tp) result from the laws of motion. The value of theegral that is denoted s can
then be calculated as a function of fep,, andt, and for this kind of representation, we

will have:

f3[0)

- = _Sa’
op,

fh[0)

_ = 5a’
op,

aﬁ = E
ot

(10)

or

(107 dd =E it - Y [s, (pl + > s, Ocb] -

This entire conversion can also be performed utiteextended assumptions that were
made in 8 1 (. For the present purposes, it will suffice totdis under that assumption

() AsC. G. J. Jacobhas already remarked in his lectures on dynamics. Lexte
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thatP, = 0. Moreover, the functioH might be an arbitrary function of thee andq, , as

long as it fulfills the continuity condition that weediscussed above.
As is known, the first two systems of equations (10)oétained by carrying out the
partial integrations that convert the variatiordoby thed, into a variation byyp, . The

differential quotient with respect to tingsb / dt that enters into the third of equations
(20) will be obtained for unvaried values of {eandp, when we look for the change in

the value ofd that occurs as a result of an actual motion fongtleening of the time by
dt. Thus,p, will increase byg, (dt, and on the other hand, equatiof) (dhows that the

stated variation o® equals the final value &f [Ht. Thus:
0P 0P
HO™t=<—+>» | — Cdt,
{ ot z{apa m“}}

or, from the first equations (10) and (4):
0D _ E

ot

The following relations between the quantit®s s, , E now result from equations
(10) when those quantities are represented as functisghsm, , p, , andt:

0s, _ 0§
op, op,’
ad) % %
aph apu
Os, _ 0,
op, Op,
0 _ 3
0 ot
(10) P,
a_E = 65‘1
op, ot
When these conditions are fulfilled:
(10% E Dt Yy [s, Cdp] +> [ 5, Ocb] =do

will be the complete differential of a functionthiep,, p,, andt.
Moreover, if the quantitie, s, , ands, that enter into the differential equation 1.0
are to correspond to the energy and moment of mdto a possible motion of the
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system that is not acted upon by external forces theg will not be completely
independent of each other. In fact, Hamilton has shown already, the equations of
motion of the system can be represented by the systequations:

(109 s, = const.

Since thes, are functions of the, , of t, and of thep, , in general, the, will become
functions of time from this, and the ands, , which represent integration constants, can
be determined, so the position of the system will bergfee later instants. Now, if one
substitutes the value pf that is thus obtained in the valueEofor a conservative system
then it would be converted into a function of ghyeands, that cannot, however, be
dependent upon time for any longer. If we revert to egogsiti10) then this will say that:

oo _ (oo
(10) o E[p“’ap j

a

or thata first-order differential equation must exist between the diftexequotientso®
/ ot and0® / dp, of the functior®® whose coefficients depend upon onlyiihe

However, we can likewise traverse the path of aesydbackwards from a certain
final position, in which we will have to treat the vaduef thep, ands, as if they were

constant. The equations:
S, = const.

will then yield the quantitieg, as functions of and the fixed values &f andp, . When
these values of theg, are substituted into the functi&h it will prove to be a function of
the s, andp,, from which,t must be absent. It follows from this that there tmhes a
second differential equatidior the function®:

oo _ (oo
(1(?) E _G[pa!ap ja

a

between the differential quotiends / ot and d® / dp, whose coefficients depend upon
only thep, .

Hamilton gave a specific form to these two differential equationghe function®,
since he considered the two components components efdtieokinetic potential to be
given, and indeed in the older, more restricted, forinjeahere we seek only the most
general character of those equations that simultanecasigsponds to the principle of
the conservation of energy and that of least action.

This also comes down to saying that any pair of assaldatnds, should be values

of the same function at the beginning and the entieofime intervat. If we apply the
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differential equation (ﬂ) to very small time intervals then for actual motions, the
guantities will have to be set to:

(1d1) P. —P. =0 Et’

and thesey, will approach the values of the velocity all the molesely as becomes
smaller. Likewise, however, the differencg € s,) must also approach zero with
decreasing. If the differential equation (fpand these auxiliary conditions are fulfilled
then thevariational problemwill also be fulfilled.

To that end, one needs only to hold pheconstant, and vary thg in the way that
they would change when one varies the time intedvdbr an unperturbed traversal of
the motion; thus:

,=0 and dp,=q, [t
From (10), this will imply that:
ab = {E -2 [s, O]} Ot
or

(10) ® = [ dt@E- T s g}

in which, one must takg, s,, andg, under the integral sign to have the actual values that

they have at timé which is the start of the corresponding motion. tTifidhe previous
representation of the functieh, and the differential equation (JGmplies that this value
of ® must satisfy the minimum condition for the actuathpaf the system that is
retraced. Namely, when we think of the path of theesystrom the position that is
denoted by O to the one that is denoted by 2 as being dividad ioyermediate, variable
position, which we will denote by 1, then from ()10

@Pg =Py 1+Py 5.

If we now vary the coordinates of the intermediateitjuss then, from (16), we will
have:

Mg 2== Py 2= —Z[Sa Dnpl,

and as a result:
&Do, 2= 0.

As is easily seen, this can be carried over toraitrary subdivision of the path into
arbitrarily many pieces, and that will imply thdtet integral®, » will not vary when
makes any sort of small changes to the intermegaséions.

The minimal theorem depends upon the fulfillmehthe differential equation (£
and for the extended form &f, as well as for the original, more restricted fottmat
LagrangeandHamilton started with.
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The conditions that exist between the quantities ¢h&r into the differential (£
that were discussed in this paragraph reduce to one equatiagivilssE as a function of

thep, ands, when one employ€. G. J. Jacobi'§) conversion.

§ 6.
Reciprocity for the forward and rever se motions.

| call the motion of a systemeversiblewhen the sequence of positions that it passed
through during its forward motion can also be traversedhéydverse motion without the
action of other forces, and with the same interntedianes for each pair of equal
positions. The reverse motion will be possible whenviiaes of the kinetic potential is

not changed when one changes the signs af allHowever, if products and powers of
the g, of odd degree occur, which happen, e.g., for the interfer@nicelden motions (8

1), then the motion will be reversible only when imechanically possible to also make
some of the constants (viz., the velocities of the hiddetions) negative in such a way
that the quantity\H does not change in value under a simultaneous settinggatives
values of these constants andcgll This is easily obtained from a considerationhef t

equations of motion £1 when one considers thdt must also assume the opposite sign
under reversal.

Law of reciprocity.

In my acoustic investigations ), | proved a law of reciprocity that | easily extedde
to small oscillations around a stable equilibrium positadnan arbitrary, oscillating,
mechanical system in my lectures. However, it isevggneral, and true for any moving
system that is subject to the law of least actiontswa reversible motion.

The original motion A will be unchanged when one keeps all initial pos#ibtise
to unchanged, but increases one of the moments of m@tioy ;. In that way, the

coordinate p must increase by d@t time t. If one then changes the moment of mogion s
in the reversed motion when it goes through the valu# the coordinates by the same

amount that one changed then the coordinate; will be changed by just as much as p
after the time interval £ t; —t.

Since alldt anddp, must be zero, we will have:

(11) ds, = Z{asu mpb}.

op,

() Jacobij loc. cit, Lecture XX.
(") “Theorie der Luftschwingungen in Réhren mit offenen Entithis Journal, Bd. 57, pp. 27-30.
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Of these, onlys; should be non-zero. For the sake of brevity in ouatrant, we would
like to write:

(11a) O-b: Cl:__.

From (1(5), the quantitiess,, , are the same as tleg , . We denote the determinant
of the quantitiess, , by D, . If these are not identically zero then, from emunest (11),
with the restriction that was made, we will have:

(11b) dp, =

By contrast, if we demand that dfp, = 0, and likewise alils, = 0, with the exception
of ds , then we will get, with consideration given to {1 the corresponding equation:

for the forward motion. For the reverse motion, signs of the moments of motion are
inverted, and thus, those of tbg, , as well; thus, one will have:

dlogD
(119 dpy = 2929y
do,,

for them. It will then follow from the combination efjuations (1% and (1%) that:
dp; :ds; =dp; : ds,

with which, the theorem that was expressed abovebeifiroved.

As far as theexceptional casés concerned, in which the determin&ng, is equal to
zero identically, in that case, tdg, would not necessarily be equal to zero whemlall
are also equal to zero, without exception. Now, sineembtion of the system must be
determined completely, and therefore, the values optheould not be double-valued
during the course of timeif the initial positions, and the initial velocities were given at
the start of the time interval this exceptional case could occur only if thevere not
determined completely by the values of #he which we excluded in the concluding

remarks of 8 1. It is therefore unnecessary to pay @egtan to that exceptional case.
The sudden changes in the values of ¢heand thes, here, under which, the

coordinates themselves should suffer no changes in vh&ies, would come about

mechanically in such a way that one lets foregact during a very small time interval,
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but with corresponding intensity. In that way, theiaas rising degrees of velocities can
be traversed without also having to change the posifidhectime at which the greatest
velocity is attained notably. For such an assumptidallows from equation (1) that:

—jPaEdt:sl—so.

SinceP, denoted the force that was exerted upon the moving systemthe outside, in
the notation that was used there ) will be the opposite external force that is requiire

in order to bring about the desired change in motion.
Following SirW. Thomsonwe would like to refer to such a force effect gauah in

the direction of the coordinate, p In that regard, one must remark that, in general, th
forcesP, are aggregates of components that act upon different gfathe system, and
are distributed in such a way that the aggregate ofdércperforms no work under any
variation of the remaining coordinates, except fipr Moreover, since we have to

distinguish between forward and reverse motion, it wdaddpreferable to consider
values of theals, that increase the forward moment, as well as displacementyp, that

increase the distancp,(~p,), to be positive for the forward motion, while for tlexerse
motion, values of thels, that increase the reverse moments() and displacements-(
dp,) that increase the distange € p,) are considered to be negative, and to treat them as
equivalent to the positive changediy anddp, for the forward motion.

The reciprocity theorem can then be expressed as:

If a push that increases only the momerity ds, at the initial position of the forward
motion has increased the coordinate of the final positidoyp after the time interval t
then an equivalent reverse push that increases the reverse mpmghtoy the same

amount at the earlier final position would provoke the equivalent rexdrarge in the
coordinatep, after time t.

§7.
Introducing the moment of motion as an independent variable, in place of velocity.

The differential equation (fp gives many opportunities for the transformation of
values by a different choice of independent variables, wHemilton (') has already
partially employed. However, since he assumed thavithvivawas a homogeneous
function of second degree in the velocities there,,Heshall allow myself to carry out
those of these conversions under which the action tefeed variable forces does not

() Philosph. Transact., 1835, pt. |, pp. 98-100. — SeeJatsubi loc. cit, Lect. XIX.
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need to be excluded for the general form of the probl@ne will get them when one
replaces the velocitieg in the values of (E, resp.) with the moments of motigp.

We have considered the kinetic poteritlalo be a function of thp, andq, . Thus:

oH oH

12 dH = —[dp +—[dq |.
(12) ZLDQ P q}
We have denoted:

oH

-— =5,.

0dq,

It then follows from this that:
oH

(12 dE:d[H+Z(sa[bu)]:Z{ﬁmpcﬁqlﬂjg]

If the determinant of the quantitiés, / dq, is not equal to zero then we can introduce the
p, ands, as variables, in place of theandg, , and, from (12), that will yield:

oH _ 0E

op, Op,
_dp, _ 0E
%= Tos

a

In this,H is assumed to be a function of gheand theg, for the partial differentiations,
but E is assumed to be a function of fheands, .
That will imply the value of force that was given(1°):

__OE ds

" 9p. dt’
(12b) pa
dp, _O0E
dt 9s’

e E
(12) H=E Z{sagg}

The corresponding variational problem will takeasomewhat different form from the
one thatHamiltongave to it:

_ ds
(12d) W= Lo dt E+Za‘[ pa(Fg+ - m
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In this, P, are regarded as functions of only time, &h)ds a function of thp, ands, .
One varies the, and thes, independently of each other and demands thatghe O at
the limits of the time interval. The condition:

H=0

will then give the two systems of equations of mot{d@@’) with no other auxiliary
equations.

In this manner of representation, we do not at all gdigeneed to know the kinetic
energy, but we must know the quantitgeshat we can derive from tleg for the general
form of theE only by means ofl.

We will obtain the corresponding form of the diffietial equation (1) for the case
in which theP are equal to zero when we add to both sides of that equadiomely:

(10% do = E [t - 2. (s, Tp,) + 2 (s, Cp,),
the term:
d {2 (s, p,) - 2 (s, CHp,)}-
That will give:
12) d{dHZ[sa Ol =Y s, ] = EDdt+ D] pOd§ ->] p, Eﬂ}

= dw.

Thus, ifE, thep, , and thep, are represented as functions of tinaad thes, ands, then:

op, _ 9p,
ds, 05’
9, _ Opy
ds, O0s
op, __0p,
(12) 2. 25
O0E _ 0p,
o, ot
OE _ 0p,
85, ot

The middle equation of this system can be emploggélin, like (1), in order to define
a second reciprocity theorenby which, a displacemed, is performed at the start of

the time intervat, while all otherp, and alls, remain unchanged; let be changed bys,
after the time interval. Under the reverse motion, orgy will be changed byyp,, and
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the moment; will be changed byx; after the time interval One will then have, once
more:

(1%) O &= st G,

assuming that the determinant of the equations:

d)a = ;|:g§: Ijjsh:|

is not equal to zero. Ifit is then the two positiank be reciprocal foci of the motion.

Berlin, April 1886.




