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Principles of static, monocyclic systems (*) 
 

(By H. von Helmholtz) 
 

Translated by D. H. Delphenich 
___________________ 

 
 

 I understand the term monocyclic systems to mean those mechanical systems in whose 
interior one or more stationary, closed motions are present, but which, when there are 
several, have velocities that depend upon only one parameter.  I further assume that only 
conservative forces act between the individual bodies that define the system, which 
consist of relatively fixed constraints, while the external forces that must be added in do 
not necessarily need to be conservative.  I refer to the problems that I will treat as static 
whenever it is assumed that the variations that the state of the system experiences come 
about with such slight velocities that the system never deviates noticeably from those 
states in which it can continually abide under them. 
 The main interest of such investigations lies in the fact that the motion of heat, at least 
in its externally-observable effects, also exhibits the essential peculiarities of a 
monocyclic system, and in fact, the restricted mobility of the equivalent work that is 
ignored in the form of heat is added to the monocyclic systems under certain conditions.  
Indeed, the motion of heat is not monocyclic in the strict sense of the word.  Every 
individual atom obviously changes in the course of its motion, and first takes on the 
character of a monocyclic motion when all possible stages for the motion of an 
unimaginably large number of atoms are represented, if one also has that every individual 
stage starts from first this and then that atom. 
 In the theoretical examinations of heat motion − to the extent that they have been 
carried out, up to now − we must continually calculate with mean values of a sequence of 
values over time for a particle.  Those laws of motion that can thus be omitted, despite 
the fluctuation of the individual values, cannot be invalid in such a way that the mean 
value is taken over nothing by equal individual values for monocyclic systems.  In this 
sense, the present study connects with the theory of heat. 
 
 

§ 1.  Recapitulation of the laws of heat. 
 

 We assume that we can completely characterize the state of a body or systems of 
bodies whose parts all have equal temperature by the absolute temperature ϑ and a 
certain number of parameters pa that are chosen so that the variation of temperature with 

                                                
 (*) The first three paragraphs are essentially unchanged versions of my communications to the 
Akademie der Wiss. zu Berlin on 6 and 27 March 1884; the later ones include new generalizations, and are 
completely revamped. 



Helmholtz – Principles of static, monocyclic systems.                                      2 

changes in the quantities pa requires the absorption or exertion of no other forms of work 

than quantum heat.  In this case, the parameters pa must be spatial dimensions, taken in 
the broader sense.  It is quite customary that the total or partial volumes appear in them, 
but they can also express how much of a particular substance or how much electricity is 
found in a certain space. 
 I let Pa ⋅⋅⋅⋅ dpa denote the freely convertible work – hence, the work that is not 

converted into heat – that the system in question takes on from the outside when the 
parameter pa goes to the value (pa + dpa).  The quantity Pa is then the force moment of the 

internal forces that act to increase the parameter pa .  It seems to me that there would not, 

on the other hand, be any objection to referring to Pa as the force in the direction of pa , as 

one already does in many examples in the applications.  Each of the quantities Pa is, in 

general, a function of the ϑ and all of the pa .  How one is to find and distinguish the 

components of given external forces that maintain the individual Pa in equilibrium is 

treated sufficiently in the textbooks. 
 We further let U denote the total internal energy of the system and let S be its 
entropy; both quantities are likewise functions of ϑ and the pa .  Finally, we let dQ refer 

to the heat that enters the system during a vanishingly small change in the quantities ϑ 
and pa, as measured by its work equivalent.  As is known, one then has: 

 

(1)     
( )

.

dQ dU P dp

dSϑ
 = + ⋅
 = ⋅

∑ a a  

 
 These two equations define the foundations of the mechanical theory of heat.  From 
them, it follows in a well-known way that only a part of the heat dQ1 that enters into the 
body at the temperature ϑ1 can be converted into freely-convertible work.  If so much 
heat dQa at the temperature ϑa is given that ultimately the original state of the body can 

be again presented in a completely reversible process then one has: 
 

1

1

dQ

ϑ
 = 

dQ

ϑ
a

a

, 

and the quantum: 

dQ ⋅⋅⋅⋅ 1

1

ϑ ϑ
ϑ
−

a  = dQa ⋅⋅⋅⋅ 1ϑ ϑ
ϑ
−

a

a

 

 
is then converted into other work. 
 Allow me to make the following remarks in regard to what follows: The essential 
physical meaning of the temperature ϑ is that its equality or inequality between two 
bodies will decided whether, and in which direction, heat can flow from one of them to 
the other one.  Two bodies with equal temperatures that are in mutual contact do not 
affect the motion of heat in each other.  As long as complete equality of the temperatures 
between them can be found, they define, in turn, a single composite system of bodies to 
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which equations (1) can be applied.  If we distinguish the quantities that relate to the 
individual subsystems by the indices 1 and 2 then we have for simultaneous changes: 
 
     dQ1 = dU1 + ∑ (Pa ⋅⋅⋅⋅ dpa) = ϑ ⋅⋅⋅⋅ dS1 , 

     dQ2 = dU2 + ∑ (Pa ⋅⋅⋅⋅ dpa) = ϑ ⋅⋅⋅⋅ dS2 ; 

thus, if we add them: 
 

d(Q1 + Q2) = d(U1 + U2) + ∑ (P ⋅⋅⋅⋅ dp) = ϑ ⋅⋅⋅⋅ d(S1 + S2). 
 
In the last equation, the sum of the force moments is to be taken over both systems; (U1 + 
U2) is the total energy of the combined system, d(Q1 + Q2) is the total heat supplied, and 
the equation shows that (S1 + S2) is the entropy of the combined systems. 
 Without a heat supply − so dQ = 0 − one also has dS = 0 in each individual system, or 
S is constant for all reversible processes. 
 This is true for S1 and S2 as long as both bodies are isolated, but it is also true for the 
sum (S1 + S2) if they are combined at equal temperatures.  The conclusion that was 
reached by Clausius follows from this – viz., that the sum of the entropy values S can 
change under reversible processes, either separately or in combination. 
 As is easily seen, the same thing is true for arbitrarily many bodies that can be 
arbitrarily separate and combined at equal temperatures, and this consequence follows 
entirely from the two equations (1).  Since this theorem is true for unrestricted changes of 
the parameters pa and pb , it is also true in the case where fixed couplings of the two 

bodies introduce restrictions on the variability of the p. 
 The determination of the direction of heat flux or the existence of thermal equilibrium 
could also be resolved from the inequality or equality of the values of an arbitrarily-
chosen function of the temperature that determines its value uniquely.  From the fact that: 
 

ϑ1 = ϑ2 , 
it also follows that: 

f(ϑ1) = f(ϑ2). 
 
 As is known, the various thermometer scales of mercury, alcohol, and air 
thermometers give different functions of ϑ according to the type of thermometric body. 
 On the other hand, if one understands s to mean a function of S then one would have 
to set: 

dQ = ϑ ⋅⋅⋅⋅ S

s

∂
∂

 ⋅⋅⋅⋅ ds, 

and if one denotes: 

ϑ ⋅⋅⋅⋅ S

s

∂
∂

 = η 

then one gets: 
(1a)     dQ = η ⋅⋅⋅⋅ ds. 
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 As a function of S, s is, like it, a function of the pa and ϑ, which vanishes, from 

equation (1a).  Since η, from its definition above, is a function of ϑ and the pa , ϑ can be 

determined from η and pa , and η can be introduced in place of ϑ as an independent 

variable in the values of U, pa , and s.  The equations: 

 

(1b)    
( )dQ dU P dp

dsη
 = + ⋅
 = ⋅

∑ a a  

 
then have the same form as equations (1), but there is an important difference, namely, 
that η is no longer the quantity whose equality indicates the thermal equilibrium between 
two bodies.  This property relates to only one η = ϑ in the entire set of functions that are 
given by equation (1a). 
 Finally, one must direct one’s attention to a situation that I have already stressed in 
my first thermodynamic treatise of 2 February 1882.  No rapidly-changing forces enter 
into equations (1) as work done on the parts of the system; i.e., it is assumed that the 
changes dpa happen so slowly that the rapidly-changing forces that affect the masses in 

orderly motion vanish compared to the remaining equivalent works.  It is also further 
assumed that the variations of the individual parts of the system happen so slowly that a 
complete equalization of their temperatures comes about.  Therefore, equations (1) are 
true only for variations dϑ and dpa of vanishing velocity.  In this sense, the equations of 

thermodynamics that we spoke of are therefore also to be regarded as laws of the statics 
of thermal systems in the sense described above, and we have only to look for the 
analogue in the laws of statics of monocyclic systems.  Moreover, both of the laws of 
virtual velocities, which relate to completely immobile systems, are the same for those 
systems, since this also encompasses the conversions of work that are obtained for slow 
motion. 
 The substitution of the functions that enter into equations (1) into the differential 
quotients of a single function, as Massieu (*) first did, can, as Gibbs already pointed out 
(** ), can also be performed on the general formula (1b), if one employs η and the pa as 

independent variables.  One must then set: 
 

     dU = 
U U

d dp
p

η
η

 ∂ ∂⋅ + ⋅ ∂ ∂ 
∑ a

a a

, 

 

     ds = 
s s

d dp
p

η
η

 ∂ ∂⋅ + ⋅ ∂ ∂ 
∑ a

a a

, 

and when we set: 
(1c)      H = U – η ⋅⋅⋅⋅ s, 

                                                
 (*) Mémoires des Savants étrangers, t. XXII.  Journal de Physique par d’Almeida, t. VI, pp. 216. 
 (** ) Transactions Connecticut Acad. III, pp. 108-248; 343-524.  Silliman’s Journal 1878, XVI, pp. 441-
458.  
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it follows from equations (1b) that: 
 

     
U

p

∂
∂ a

 + Pa = h ⋅ s

η
∂
∂

, 

or 

(1d)    

,

,

.

H
P

p

H
s

H
U H

η

η
η

∂ = − ∂

 ∂= − ∂
 ∂= − ⋅ ∂

a

a

 

 
 These are the three relations that I used as the basis for the thermodynamic arguments 
in my earlier communications, where I restricted myself to the narrower case of η = ϑ.  
The function H is denoted by F there and called the free energy. 

 Naturally, the value of H differs with the choice of η.  The product: 
 

η ⋅⋅⋅⋅ s = ϑ ⋅⋅⋅⋅ s ⋅⋅⋅⋅ S

s

∂
∂

 

  
that enters into its value (1c) then varies with the choice of s as a function of S.  These 
various values of H are all force functions, in the Jacobi sense, for the mechanical 
behavior of the system then, but they correspond to the distinguishing condition that their 
special variable η must be constant.  The force function that I used is the isothermal one; 
however, as Gibbs showed, one can also define an adiabatic one, etc.; as equations (1b) 
show immediately, the latter coincides with the function U when one introduces pa and s 

as independent variables in it. 
 The fact that we can express the work equivalent of the heat quantity: 
 

dQ = dU + ∑ (Pa ⋅⋅⋅⋅ dpa) 

in the form: 
dQ = η ⋅⋅⋅⋅ ds, 

 
says nothing characteristic about the physical quantities that enter into it.  In any event, 
this conversion can then be accomplished for any sort of dependency between the 
functions U, Pa , and pa , when only the Pa vary continuously with the U and pa .  One 

must always be able to define the integral of the equation: 
 

dQ = 0 
in the form: 

s = const. 
or 

S = f(s) = const., 
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which expresses the law of adiabatic variations.  Therefore, if one has: 
 

0 = dU + ∑ [Pa ⋅⋅⋅⋅ dpa] 

 
for variations of the U and pa then one also always has: 

 

0 = 
s s

dU dp
U p

 ∂ ∂⋅ + ⋅ ∂ ∂ 
∑ a

a

, 

 
equations that follow from each other for arbitrary values of dU and dpa , moreover, only 

when: 
s

U

∂
∂

 = 
1 s

P p

∂⋅
∂a a

. 

 
If we then multiply the first of equations (1b) by ∂s / ∂U then we get: 
 

s

U

∂
∂

⋅⋅⋅⋅ dQ = ds, 

and if we define η by the equation: 

η ⋅⋅⋅⋅ s

U

∂
∂

= 1 

then this yields: 
dQ = η ⋅⋅⋅⋅ ds. 

 
 The characteristic feature of the physical properties of the heat quantity is then not the 
fact that the expression for dQ can be brought into the latter form, but is only found in the 
fact that one of the possible integrating factors η of the equation dQ = 0 must have the 
same value for any two bodies between which thermal equilibrium exists. 
 
 

§ 2.  The general equations of mechanics for polycyclic systems 
 

 We next assume an arbitrarily-composed mechanical system, between whose 
individual parts only conservative forces act, relatively fixed constraints exist, and whose 
momentary position is determined completely by a number of general coordinates pa (that 

must therefore necessarily be measurements of spatial quantities).  By contrast, as before, 
we let denote (−Pa) the moments of external forces, which do not need to be conservative, 

and which serve to increase the coordinates pa , such that: 

 
      Pa ⋅⋅⋅⋅ dpa 
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is the work done by the internal forces of the systems in overcoming any external force 
moment during the change dpa .  We further set, to abbreviate, the differential quotients: 

 

(2)      
dp

dt
a  = qa 

 
of the potential energy of the system equal to Φ and the continual (lebendige) force equal 
to L.  Under the stated conditions, the former – viz., Φ – is a function of only the 
coordinates pa , while the latter – viz., L – is a homogeneous function of second degree in 

the quantities qa whose coefficients are functions of the pa .  They will be regarded as 

independent variables in the definition of the partial differential quotients of L with 
respect to the pa and qa , and the relation between them that is expressed by equation (2) is 

not considered.  As is known, from the given behavior of the function L, it follows that: 
 

(2a)    2L = 
L

q
q

 ∂⋅ ∂ 
∑ a

a a

. 

 
 According to Lagrange, under these conditions, the equations of motion of the system 
are of the form: 

(2b)    Pa = − 
p

∂
∂ a

[Φ – L] − 
d L

dt q

 ∂
 ∂ a

. 

 If we set: 
(2c)      Φ – L = H 
 
and remark that since Φ is independent of qa , one has: 

 
L

p

∂
∂ a

 = − 
H

q

∂
∂ a

, 

 
then we can therefore also write the aforementioned equations of motion as: 
 

(2d)    Pa = − 
H d H

p dt q

 ∂ ∂+  ∂ ∂ a a

. 

The total energy is then: 
 U  = Φ + L 

 

(2e) = H − H
q

q

 ∂⋅ ∂ 
∑ a

a

. 

 
 We would like to introduce only the following restrictions on this most general 
expression for the equations of motion: 
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 1. For a special group of coordinates, which we would like to distinguish by the 
index b, and which we regard as rapidly-varying, we will assume that their variation 

corresponds to a type of motion that is closed in itself, and that neither Φ nor L changes 
noticeably during this motion such that both quantities can indeed be independent of the 
qb, but not the pb .  With this assumption, equation (2d) becomes: 

 

(3)     Pb = + 
a

d H

dt q

 ∂
 ∂ 

. 

 
 If we multiply both sides of this equation by qb ⋅⋅⋅⋅ dt and set: 

 
Pb ⋅⋅⋅⋅ qb ⋅⋅⋅⋅ dt = − dQb 

 
then dQb is the external work that is employed in the acceleration of the motion qb .  If, to 

abbreviate the notation, we then set: 

(3a)     
H

q

∂
∂ b

 = − sb  

then (3) yields: 
(3b)     dQb = qb ⋅⋅⋅⋅ dsb , 

 
in which the dsb denotes the complete differential of the quantity sb . 

 An example of such motions is the top moving without friction in a locus of axes that 
are defined symmetrically about the rotational axis.  If we set the parameter qb equal to 

the angular velocity then sb will be the moment of the rotational motion; i.e., the product 

of the moment of inertia and the angular velocity. 
 Another example is the flow of an inviscid fluid in a closed channel with elastic 
walls, so it is extensible in its cross-section and flexible and extensible in its length.  If 
we use qb to denote the volume of fluid that flows per second through each cross-section 

ω, the sb will be: 

sb = ∫ u ⋅⋅⋅⋅ dx, 

 
in which dx denotes a unit length of the axis of the channel and u = 1/ω ⋅⋅⋅⋅ q denotes the 
velocity of the fluid particle in the direction of dx. 
 
 2.  Moreover, we would like to assume (since this always happens in the 
aforementioned equations of the mechanical theory of heat) that the changes in all of the 
other parameters pa , and likewise the quantities qa , come about with vanishing velocity, 

such that all of the expressions that are multiplied by qa , dqa / dt, or dqb / dt are to be 

treated as vanishing quantities of first order. 
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 This assumes that the external forces that act on the system nowhere deviate far from 
the values that they must have in order to make pa and qb constant, such that all of the 

differential quotients with respect to time that enter into equations (2d) become very 
small, and the system is continually found very close to a stationary state in which it can 
persist for an arbitrarily long time.  We would like to call a system that satisfies these 
conditions polycyclic.  For such a system, equations (2d) reduce to: 
 

(3a)     Pa = − 
H

p

∂
∂ a

, 

(3b)     dQb = qb ⋅⋅⋅⋅ dsb , 

 

(3c)      sb = − 
H

q

∂
∂ b

. 

 
 Among the assumptions that were made up to now, one has that the function H that 
enters into equations (3) to (3c) will always have the value that was given in (2c): 
 
 H = Φ – L, 
 

 2L = − ∑ 
H

q
q

 ∂⋅ ∂ 
a

a

, 

 
and L will be an entire homogeneous function of second degree in the velocities qa .  

However, a variation can enter into the latter relation when one or more forces, which we 
would like to distinguish by the index c, are continually equal to zero, and we employ the 

corresponding equations: 

(4) 0 = 
H

p

∂
∂ c

 

 
in order to eliminate the quantities pc .  If we denote the expression for the value of H that 

one gets by eliminating the pc by H then one has: 

 

  
p

∂
∂ a

H
 = 

pH H

p p p

 ∂∂ ∂+ ⋅ ∂ ∂ ∂ 
∑ c

ca c a

, 

 

  
p

∂
∂ b

H
 = 

pH H

p p p

 ∂∂ ∂+ ⋅ ∂ ∂ ∂ 
∑ c

cb c b

. 

 
Due to equations (4), this reduces to: 
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p

∂
∂ a

H
 = 

H

p

∂
∂ a

, 

 

  
p

∂
∂ b

H
 = 

H

p

∂
∂ b

. 

 One still has: 
(4a)    H = Φ – L, 

(4b)    Pa = − 
p

∂
∂ a

H
, 

(4c)     sb = − 
q

∂
∂ b

H
, 

(4d)    L = ∑ [qb ⋅⋅⋅⋅ sb]. 
 
However, this value of L is no longer an entire, homogeneous function of second degree 
in the quantities qb , since equations (4) generally contain terms of second degree in the qb 

, and the values of the pc that this yields can be developed into functions of the qb that 

make terms of second degree in L enter into the values of Φ and the coefficients by the 
elimination of the quantities.  It is for just that reason then that the sb are also not 

homogeneous linear functions of the qb , as was the case before the elimination. 

 An example of such a case is the continual force of a top whose axis has a centrifugal 
regulator fixed on it whose rising and falling is not caused by a varying external force Pa , 

but only by continually-acting conservative forces (e.g., gravity, elastic springs), and 
therefore can be represented as a function of the rotational velocity.  In the value of the 
continual force, which is equal to one-half the product of the moment of inertia and the 
square of the rotational velocity, the aforementioned moment will then also depend upon 
this velocity. 
 Since it will later be necessary to stress this difference, we would like to call the 
system that includes all pc the complete one and the one that remains by the elimination of 

the pc the incomplete one. 

 
 

§ 3.  Monocyclic system. 
 

 As mentioned above, I would like to use these names for systems in which closed 
internal motions occur that are determined completely by only one parameter σ, along 
with the coordinates pa . 

 The simplest case of such a motion is given when only one velocity q enters in the 
system of § 2.  We then obtain the equations: 
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(5)      

,

,

,

.

H
P

p

dQ s dq

H
s

q

H
U H q

q

∂ = − ∂

 = ⋅


∂ = − ∂


∂ = − ⋅ ∂

a

a

 

From this, it follows that: 

dQ = dU + ∑ [Pa ⋅⋅⋅⋅ dpa] = s ⋅⋅⋅⋅ dq, 

 
These equations are of entirely the same form as the ones presented above for the motion 
of heat.  The velocity q enters in place of the temperature ϑ or the quantity η that it 
depends upon.  Here, as above, the quantity dQ means the work that is directed along the 
direct increase of the internal motion, except that this internal motion is now of a 
different type from the heat motion. 
 Thus, q is an integrating factor of the equation dQ = 0, here; however, as above, we 
can also preserve the form of the equations if we introduce a quantity (q ⋅⋅⋅⋅ ∂s / ∂σ) along 
with the pa as a parameter for the intensity of the motion, in which σ means a function of 

s.  However, the function: 

     H = U − q ⋅⋅⋅⋅ s

σ
∂
∂

 ⋅⋅⋅⋅ σ 

 
that is further introduced then loses the meaning that H takes on in (2c), namely: H = Φ – 
L. 
 It is noteworthy that in this simplest case of monocyclic motion the continual force: 
 

(5a)    L = − 1
2 q ⋅⋅⋅⋅ 

H

q

∂
∂

 = 1
2 q ⋅⋅⋅⋅ s 

 
is an integrating factor of the system.  If one defines S, which is chosen for this purpose, 

by the equation: 
     dQ = 2L ⋅⋅⋅⋅ dS = q ⋅⋅⋅⋅ ds 

then we get: 

      dS = 
ds

s
, 

      S = log s – log A, 

 
where A is an integration constant, or: 
 

(5b)   S = log
s

A
 
 
 

 = 1
2  log L + 1

2  log
2

s

A q

 
 ⋅ 

. 
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 Here, the analogy with the kinetic theory of gases emerges quite clearly.  The 
temperature ϑ is proportional to the continual force, and if we let J denote the 

mechanical heat equivalent, v, the volume of a unit mass, and let c and γ denote the heat 
capacities for constant pressure and volume, resp., then the entropy of the unit mass is: 
 

S = J ⋅⋅⋅⋅ γ ⋅⋅⋅⋅ log ϑ + J ⋅⋅⋅⋅ (c − γ) ⋅⋅⋅⋅ log v + C. 

 
In the present case, the ratio s / q is the moment of inertia of the rotating mass, which 
depends upon spatial measurements, like the v in the entropy of the gas, and indeed only 
upon them, as long as, perhaps, the quantities pc are not eliminated. 

 
 

§ 4. 
 

 The general case of monocyclic motion comes about when several velocities qb are 

present, which however will all be determined by one of them and the coordinates pa .  As 

is known, exceptionally manifold and varying relations between rotational velocities can 
also present themselves in mechanical apparatuses.  For example, a friction roller can run 
around the circumference of a rotating body that has different diameters at different 
places, and is shifted to and fro by centrifugal forces on the axis around which it rotates. 
 In general, we can represent such a coupling analytically by (n – 1) equations in the 
quantities pa and the n quantities qb .  As in other parts of mechanics where fixed 

constraints are assumed, we imagine the action of these fixed constraints to be such that 
they do not at all influence those motions that would come about by themselves under the 
action of the applied forces that would correspond to the equations of constraint, but that 
when deviations begin they exert such opposing forces as would hinder the deviation.  
Thereby, the fixed constraints always act in such a way that the forces that they produce 
add no contribution to the work that is done by the external forces.  The quantity of the 
force that it exerts in any state of the system is completely determined by this latter 
condition. 
 If we apply this to our composite monocyclic system then we will be able to represent 
the general form of the dependency of the velocities qb on each other, such that we can 

express each of them as a function of the pa and any new variable x that is introduced. 

 Since the sb can be represented by means of the system of equations: 

 

sb = − 
H

q

∂
∂ b

 

 
as functions of the pa and the qb , they can, in any event, be expressed as functions of the 

pa and x.  We would like to refer briefly to the system, after the introduction of the 

aforementioned fixed constraint, as the bound system. 
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 Under the assumptions that we made, which characterize the problem as a static one, 
it follows that the forces Pa act continually while the system does not change its state; in 

contrast, we neglect the changes of Pa that depend upon the velocity of the change of 

state.  On the other hand, the amount of work dQb enters in only as long as state changes 

occur.  Since both types of action are completely different, as they correspond to 
mutually independent time periods, forces P that are given by the fixed constraint, and 
which we would like to denote by P′ in order to distinguish them, also never preserve the 
equilibrium in the forces that do the work dQ′

b
, and conversely; the forces of each class 

must be separate in equilibrium. 
 From this, it first follows that the total work done by the forces P′

a
 satisfies: 

 

∑ [ P′
a

⋅⋅⋅⋅ dpa] = 0. 

 
Since the dpa must remain completely arbitrary when none of the degrees of freedom are 

lost by the introduction of the fixed constraint, one must have that all P′
a

 = 0 in this case, 

so the forces Pa also preserve their previous values in the bound system: 

 

(6)      Pa  = − 
H

p

∂
∂ a

. 

 
If we regard the sb as functions of the pa and x then this equation becomes: 

 

(6b)   dQ = 
s s

q dp q dx
p x

 ∂ ∂ ⋅ + ⋅   ∂ ∂  
∑∑ ∑b b

b a b

a b ba

. 

 
If we let U denote the internal energy of the system then: 
 

dU = dQ − ∑ [Pa ⋅⋅⋅⋅ dpa] . 

 
U is originally given as a function of the pa and qb ; if the latter were expressed in terms 

of the pa and x then this the equation: 

dQ = 0 
would take on the form: 

U U
P dp dx

p x

  ∂ ∂+ + ⋅  ∂ ∂   
∑ a a

a a

 = 0, 

 
whose integral we can write as: 

σ = const., 
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in which σ must be a function of the pa and x.  As above at the end of § 1, this would 

yield: 

 
U

P
p

 ∂ + ∂ 
a

a

 = λ ⋅⋅⋅⋅ 
p

σ∂
∂ a

, 

 

 
U

x

∂
∂

 = λ ⋅⋅⋅⋅ 
x

σ∂
∂

. 

 
As a result, equation (6b) assumes the form: 
 
(6c)      dQ = λ ⋅⋅⋅⋅ dσ . 
 
We can therefore refer to the function σ as the entropy of the bound system.  As we 
mentioned above, arbitrary functions of σ can also be chosen instead of this. 
 Up to now, the choice of the function x was completely arbitrary.  If we take it to be 
one of these σ then in (6b) one would have to set: 
 

dQ = λ ⋅⋅⋅⋅ dσ, 
 
and (6b) would then decompose into the sequence of equations: 
 

(6d)     
s

q
p

 ∂
⋅ ∂ 

∑ b

b

b a

 = 0, 

 

(6e)      
s

q
σ

∂ ⋅ ∂ 
∑ b

b

b

 = λ . 

 
Equations (6d) are linear, homogeneous equations in the qb .  We assume that the number 

of pa that are contained in them can be reduced to its smallest value by a suitable choice 

of them.  Namely, it can happen that n of the quantities pa enter into the values of the sb 

only in the form of less than n functions of them.  One would then be able to introduce 
these functions in place of an equal number of the pa .  If the number A of the indices a is 

equal to the number B of indices b after this reduction then the functional determinant of 

the sb with respect to the variables pa must be set to zero; i.e., there must exist an equation 

between the sa whose coefficients are independent of the pa that appear in equations (6d), 

but which still depend upon the σ.  We write this as: 
 
(6f)      F = σ, 
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in which F is a function of only the sb , and possibly also the p that do not enter into the 

values of the sb .  Therefore, the differentiation of them with respect to the pa and σ 

yields: 

(6g)     
sF

s p

 ∂∂ ⋅ ∂ ∂ 
∑ b

b b a

 = 0, 

 

(6g)     
sF

s σ
 ∂∂ ⋅ ∂ ∂ 

∑ b

b b

 = 1. 

 
If we compare these with equations (6d) and (6e) then that comparison would yield: 
 

(6i)      qb = − λ ⋅⋅⋅⋅ F

s

∂
∂ b

. 

 
If F were chosen arbitrarily as a function of the sb then, since the qb can be expressed as 

functions of the pa and sb , as we remarked above, equations (6i) would first yield B 

equations for the determination of the sb in terms of pa and λ, which, if they are mutually 

independent, define the action of the fixed constraint completely.  Finally, equations (6 f) 
determined the σ as a function of the sb (the pa and λ, resp.), or also the λ as a function of 

the pa and λ. 

  However, the same form of solution is also true for A > B and A < B.  It is now easy 

to convince oneself that in both cases equations (6 f) and (6i) are actually solutions for the 
system of equations (6d) and (6e), and if they are mutually independent then with the help 
of the equations that give the qb as functions of the sb , namely: 

 

(6k)      
H

q

∂
∂ b

 = − sb , 

 
they would yield values of the sb that satisfy all of the conditions of the problem. 

 However, one can also prove that this form for the solution has the required degree of 
generality (*), namely, it also applies to the case where A < B, and the number of 

equations (6d) is therefore smaller than the number of quantities sb , which should be 

determinate.  Namely, if one replaces the qb in equations (6d) with their values that are 

expressed in terms of the sb and pa by means of equations (6k) then equations (6d) would 

include only the quantities sb and pa .  When one takes arbitrary values of the sb for 

definite values of the pa , these equations admit further arbitrary values for all their first 

                                                
 (*) This problem is treated completely in regard to the case in which equations (6i) are not independent 
in the following article of L. Kronecker. 
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differential quotients, up to one of the s, which we would like to denote by s1 .  However, 
the differential quotients of the s1 with respect to the pa are then determined completely 

by equations (6d), but not the ∂s1 / ∂σ .  Thus, as long as the σ are kept constant, it is 
entirely unrestricted how the remaining sb should vary with increasing pa in each of the 

differential equations, with the exception of s1 .  How the s1 should vary is, however, 
given completely.  Precisely this freedom with regard to the constraints on the 
aforementioned function will be represented by the integral equation: 
 
(6f)      F = σ, 
 
if F is an arbitrarily-chosen function of all the sb, and therefore the given solution in each 

case is sufficiently general. 
 The given solution of the problem thus satisfies the demands of the problem when 
equations (6i) are not mutually independent; I reserve the aforementioned exceptional 
case for later treatment.  One thus has that all of the quantities qb , sb , λ are representable 

as functions of the pa and σ, and likewise also the original ones in the unbound state of 

the system are representable as functions of the values of Pa and U, as well as H, that are 

given by either the pa and qb (the pa and sb , resp.). 

 In the unbound system we can, as was already remarked by Gibbs in § 1, write the 
equation for the constancy of energy as: 
 

dU = [ ] [ ]q ds P dp⋅ − ⋅∑ ∑b b a a

b

, 

 
and represent the U, like the qb and Pa , as functions of the pa and sb .  This yields the 

relations: 

 
U

p

∂
∂ a

 = − Pa , 

 

 
U

s

∂
∂ b

 = qb . 

 
If the sb in U were replaced by their values in terms of pa and σ after imposing bounds on 

the system then we would like to denote the function U by U.  One then has: 

 

p

∂
∂ a

U
 = 

sU U

p s p

 ∂∂ ∂+ ⋅ ∂ ∂ ∂ 
∑ b

ba b a

, 

 

sU

s p

 ∂∂ ⋅ ∂ ∂ 
∑ b

b b a

 = 
s

q
p

 ∂
⋅ ∂ 

∑ b

b

b a

 = 0, 
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from (6d), so it follows that: 

Pa = − 
p

∂
∂ a

U
. 

Furthermore, one has: 

σ
∂
∂
U

 = 
sU

s σ
 ∂∂ ⋅ ∂ ∂ 

∑ b

b b

 = 
s

q
σ

∂ ⋅ ∂ 
∑ b

b

b

; 

therefore, from (6e): 

σ
∂
∂
U

 = λ. 

 
For the bound system, this would then yield the formula: 
 

dU = λ ⋅⋅⋅⋅ dσ  − [ ]P dp⋅∑ a a

a

, 

or, if we set: 
(6n)     H = U – λ ⋅⋅⋅⋅ σ 

 
and make the pa and λ into independent variables: 

 
dH = − σ ⋅⋅⋅⋅ dλ  − [ ]P dp⋅∑ a a

a

, 

respectively. 
 Thus: 

 
p

∂
∂ a

H
 = − Pa , 

 

 
λ

∂
∂
H

 = − σ 

 
agree with the formulas that were given for the simple, monocyclic system in the 
previous paragraphs, except that one does not necessarily find a function of s that has the 
same distinguished relation for the continual force as the s in equation (5a) does, and 
whose associated λ is equal to the continual force.  Under what conditions this comes 
about shall be examined in the next paragraphs. 
 
 

§ 5.  Conditions under which the continual force is an integrating factor. 
 

 In § 3 we found that the continual force is always an integrating factor for the simple, 
monocyclic systems.  We then ask whether, and under which conditions, this is also the 
case for the systems of moving parts with fixed constraints that we spoke of in § 4.  This 
question is also important for the analogy with the theory of heat, since in it, from the 
kinetic theory of gases, the temperature that defines the integrating factor is, in fact, 
proportional to the continual force of the internal motion, and the hypothesis that was 
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proposed by Boltzmann (*) and Clausius (** ), under which this is also the case in all other 
bodies, at least has a high degree of probability in its own right. 
 The continual force L of the system, whether it is bound or unbound, is, from (4d), 
given by the equation: 
(7)      2L = [ ]q s⋅∑ b b

b

. 

 
Since, in place of the value σ for entropy that was found in the previous paragraphs, any 
function of σ can also come under consideration, we would like to denote the entropy that 
belongs to 2L as an integrating factor by log σ.  Thus: 
 

(7a) dQ = 2L ⋅⋅⋅⋅ dσ
σ

, 

 = λ ⋅⋅⋅⋅ dσ, 
so, in this case, one has: 
(7b) 2L = λ ⋅⋅⋅⋅ dσ. 
 
If we substitute the values of qb from (6i) that correspond to the fixed constraint in 

equation (7) then we get: 

(7c)      2L = λ ⋅⋅⋅⋅ F
s

s

 ∂⋅ ∂ 
∑ b

b

, 

and due to equation (6f): 
F = σ  

(7b) can be written: 
2L = λ ⋅⋅⋅⋅ F. 

 
The condition for the continuous force to be an integrating factor is therefore: 
 

F = 
F

s
s

 ∂⋅ ∂ 
∑ b

b b

; 

 
i.e., the function F, which gives the value of the entropy of the bound system, is a 
homogeneous function of first degree of the moment of motion sb of the unbound system.  

From the assumptions that were made above in (7) and (7a), the quantities λ and σ stand 
in precisely the same relationship to L and dQ in the unbound system that the quantities q 
and σ do in the simple monocyclic systems of § 3.  We can thus appropriately refer to λ 
as the resultant velocity of the internal motion and σ as the resultant moment of motion 
that is associated with it.  Both of them are determined by the given derivatives up to a 
constant factor; all equations of this paragraph then remain unchanged when we set (nσ) 
in place of σ and, at the same time, λ / n in place of λ.  Since such a constant factor can 
take on an arbitrary sort of physical meaning, the unit that is given for σ is therefore also 
                                                
 (*) Wiener Sitzungsber. 8, part II (1866), 195-220. 
 (** ) Poggendorff Annalen 142 (1871), 433-461, § 14 and 15 of the treatise.  
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determined arbitrarily; if it is determined then that of λ will be determined as a result, 
since the product λ ⋅⋅⋅⋅ σ refers to a continuous force – i.e., a quantum of work.  It becomes 
preferable, in the sense of the proposed notation for both quantities, to regard λ as a 
velocity – i.e., the differential quotient of a spatial quantity by time – and σ as a moment 
of motion (mass times spatial quantity, times velocity).  Since the function F is a 
homogeneous function of first degree and: 
 

1
F

σ
⋅  = 1, 

 

the latter function can be represented as one of the quantities 
1

s
σ
 ⋅ 
 

b , which, from what 

was said above, are pure spatial quantities, and the constant coefficients that are included 
in the function F will then also need to be only pure spatial quantities. 
 As far as the quantities qb are concerned, they are expressed as functions of the sb by 

means of the equations: 

(3a)     sb = − 
H

q

∂
∂ b

, 

or, by eliminating some of the pc : 

(4c)      sb = − 
q

∂
∂ b

H
, 

 
respectively.  In the former case the sb are linear, homogeneous functions of the qb, while 

in the latter case they are non-linear and inhomogeneous, in general.  If one writes 
equations (6f) and (6i) as: 

(7h)     

,

1
1

q F

s

F

λ
σ σ

σ

∂ = ⋅ ∂

 ⋅ =


b

b  

 
then, by complete preservation of the pa , the quantities 1 / σ ⋅⋅⋅⋅ qb are linear functions of 

the sb / σ with coefficients that depend upon the parameters pa .  Only the (B + 1) 

quantities 1 / σ ⋅⋅⋅⋅ sb and 1 / σ ⋅⋅⋅⋅ λ then enter into the system of (B + 1) equations (7h) as 

unknowns, which are to be found by solving these equations as functions of the 
parameter pa .  This yields the fact that when the complete system of parameters pa is kept 

constant, all of the moments of motion sb and, accordingly, also all of the velocities qb of 

the system (which is, by the assumptions of this paragraph, bound) that are proportional 
to the values of σ, as well as the resultant velocity λ,  must vary. 
 This is, in general, no longer the case when a number of the parameters pc are 

eliminated, because then the condition posed – viz., the constancy of all the parameters – 
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can no longer be fulfilled, since the necessary forces Pc are lacking.  In fact, the qb are 

then no longer linear functions of the sb , and the quantity σ remains conserved in the 

equations when one seeks to bring the quantities sb into the form 1 / σ ⋅⋅⋅⋅ sb . 
 The manner of representing the mechanics of such a system is not merely in the sense 
(as was described in the conclusion of the previous paragraph for the general bound 
system) that it gives a complete analogue of the simple, monocyclic system, but one has, 
in addition, that the continual force has the same relationship to the parameters λ and σ as 
it does to the q and s in the simple system.  One also has that: 
 

H + 1
2 ⋅⋅⋅⋅ λ ⋅⋅⋅⋅ σ = Φ 

is the potential energy of the system. 
 However, an essential generalization enters into one relation.  The q of the simple, 
monocyclic system is the differential quotient with respect to time of a spatial quantity 
that determines the instantaneous position of the part that is regarded as in stationary 
motion, and the integral over time of q thus yields the difference between the initial and 
final values of this spatial quantity independently of the intermediate states of the system.  
In the present generalized system, this is no longer the case, and a spatial quantity whose 
differential quotient with respect to time would be the quantity λ no longer exists. 
 Finally, one can more precisely characterize the particular kind of fixed constraints 
between the moving parts of the system that are assumed in this paragraph.  It was 
already explained that the equation: 

F

σ
 = 1 

 
that characterizes the constraint here assumes that F is a homogeneous function of first 
degree of the quantities sb and that for just that reason the constant coefficients of this 

equation only need to be spatial quantities without including masses or time quantities.  
However, the entire type of constraint is, as the development above has shown, dependent 
upon the function F, and therefore also on its constants.  Only these enter into the values 
of the sb and qb as well-defined for the type of constraint. 

 Things are different in the general case of § 4 when F is not a homogeneous function 
of the first degree of the quantities sb .  In this case, the time differential of the quantity 1 

/ σ ⋅⋅⋅⋅ F, which should equal the singular (Einzahl), can vanish only when time quantities 
also appear in the constants that are measured in term of absolute units.  Time itself can 
not enter in, since the equation should be independent of time, but not differential 
quotients with respect to time like velocity and forces.  However, these must, in fact, 
exist in the system in order for it to be mechanically efficient.  Constant velocities could 
only be kept constant from the outside, and would thus collide with the assumed 
independence of the system and its monocyclic character.  However, forces that indeed 
have dt2 in the denominator can enter in as constants that remove time.  Such forces 
cannot be external forces, because everything in a complete system must be assumed to 
be variable.  On the contrary, constants that determine the efficiency of internal forces, 
like the constant a2 in the equation of the elastic force: 
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X = − a2 ⋅⋅⋅⋅ x, 
 

can possibly enter in; at least, as far as I know, nothing prevents this from the 
mathematical standpoint.  The mechanical tools that were found up to now for the 
continual evolution of motion, such as infinite strings, gears, and friction rollers always 
give only ratios of velocities that are independent of the velocity quantities, but can 
depend upon the position of the parts; an example of the latter is a friction roller for 
which the angle of their axis, or also the line on which they move, can vary.  Examples of 
the latter occur in, e.g., the integrating machines.  For that reason, I propose that 
constraints of that kind, which make the equation F = σ homogeneous in the sb and σ, and 

accordingly the continual force can exist as an integrating factor, can be distinguished as 
purely kinematical constraints.  As long as only such constraints are introduced, the 
continual force remains an integrating factor of the bound system (*). 
 I do not know how to find examples of the general form of the constraint, in which 
the ratio of the various velocities would be independent of those quantities for 
unchanging position of all moving parts.  The kinetic theory of gases also gives relations 
between the simultaneously-existing motions of the various parts of the system that 
comply with the law of purely kinematical constraints. 
 
 

§ 6.  Coupling of any two systems. 
 

 If two monocyclic systems that are originally put into a state by a suitable regulation 
of the external forces Pa that corresponds to the conditions of a definite type of fixed 

constraint then one can let such a fixed constraint enter between them without, moreover, 
perturbing the existing motion in so doing, and they can move further from then on while 
introducing new variations of the forces Pa while preserving this fixed constraint.  I 

would like to refer to this intermittently fixed constraint on states as a coupling of the 
system.  An analogous process occurs in heat motion when two bodies of equal 
temperature can be put into conductive contact without changing their internal motion 
such that they preserve their equal temperatures under new sufficiently slow changes. 
 Therefore, it could happen that the two systems in the position that they are given for 
the purpose of coupling also act upon each other with pressures or distant forces.  We 
would next like to assume that forces of this type, where they occur, can be known 
completely and the arbitrarily varying forces Pa can be calculated.  The coupling that we 

refer to as such would then only have to convert work quantities dQ from one system to 
the other one.  We can refer to such a coupling as a pure motion coupling.  Under this 
assumption, we can regard the coupling of the system as one of the fixed constraints 
whose law we discussed in the last two paragraphs.  Without the coupling, the two bodies 
are a dicyclic system that will change into a monocyclic system under the coupling. 
 Here, we once more proceed in complete analogy to the theory of heat.  If two bodies 
at equal temperature are put into heat-conducting contact then they preserve equal 
temperature from then on, at least for sufficiently slow changes under which the 

                                                
 (*) I have since found a further generalization of this theorem, and I hope to publish it soon. 
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constraint acts to exchange their internal motions.  In addition, they can also act upon 
each other by pressures and attractive forces, but these remain unperturbed in equilibrium 
with them and the remaining external forces under the simultaneous exchange of 
temperature.  Moreover, none of the forces Pa that act upon each body from the outside 

changes, due to the fact that the introduction of any change of its volume or molecular 
structure would now allow other supplies of heat to enter the body or emanate from it, 
since this would be the case without the constraint.  Herein lies an essential difference 
between the ways that actual and potential energy behave.  In the event that a change of 
state of a body admits the transfer of potential energy from the one body to the other, the 
force would be changed, by the principle of virtual velocities.  Heat does not, by any 
means, retain its character of actual energy, as was developed in our theorems of §§ 4 and 
5. 
 Of interest here is, in fact, the case in which a mechanical constraint is presented 
between two systems that have equal values of one of their integrating factors, in such a 
way that whenever this constraint exists the equality of the aforementioned factors must 
be preserved.  In order to refer to such a type of constraint briefly, I would like to call it 
an isomorphic coupling (ϊσον µόριον, equal factor).  Contact between two bodies of equal 
temperature is an example of this type, since temperature is an integrating factor of both 
bodies.  Another example would be that of two tops whose axes are linked in such a way 
that they must move with equal orbital velocities.  If equal rotation is already present by 
the introduction of the constraint then the coupling can be exhibited without perturbing 
the motions that are present.  Their axes can carry centrifugal regulators of different kinds 
that would regulate the location of those axes by means of forces Pa that would also 

immediately bring the orbital velocity to an arbitrary magnitude. 
 Two currents in annular pipes can be united into one ring without perturbing either of 
them when both have equal currents through each cross-section.  Stretching the channel 
reduces the current, while shortening it raises it.  In this way, one can give any two of 
them equal values. 
 Precisely the same considerations that follow from equations (1) for heat motion, and 
which I briefly recalled in § 1, are valid.  In this way, we get precisely the same laws for 
the possibility of obtaining work from the forces Pa at the expense of the internal motion 

of the system.  The basic assumption for this is then that we have no other means of 
acting directly upon the internal motion of the given monocyclic system except for 
isomorphic couplings with other systems, and that for any one of the systems that can be 
coupled a single integrating factor exists that allows the unperturbed coupling with 
equally large factors to another system, as would be the case in the examples presented 
above of centrifugal regulators or annular currents. 
 The fact that we cannot directly confront and alter the heat motion of the atom, which 
is indeed the case, also depends only upon the fact that we cannot introduce our effects 
on particular isolated atoms in particular directions but must always necessarily address 
all of a definite spatial region uniformly.  It is based upon only the restriction of the 
methods that we proposed and not upon anything intrinsic to the motion.  It is for just that 
reason that we can also assume similar restrictions of our demands on the problem for the 
analogous cases that we spoke of here without changing the nature of the problem. 
 If, as we did at the end of the previous paragraph, we assume purely kinematical 
constraints on both system, such that the continual force of the coupled system becomes 
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an integrating factor of this system then it follows further in relation to the possible types 
of coupling: Let η1 = η and η2 = η be the two integrating factors of the two systems that 
will be made equal by the coupling, and let σ1 and σ2 be the entropies that are associated 
with them, so: 

(8)     
1 1

2 2

1 2 1 2

,

,

( ).

dQ d

dQ d

dQ dQ dQ d

η σ
η σ

η σ σ

= ⋅
 = ⋅
 = + = ⋅ +

 

 
η is then also an integrating factor of the coupled system.  Under these conditions, the 
continual forces, since they are also integrating factors of the system in question, are of 
the form: 
 L1 = η ⋅⋅⋅⋅

1σΦ , 

 L2 = η ⋅⋅⋅⋅
2σΨ , 

 L1 + L2 = η ⋅⋅⋅⋅ 
1 2( )σ σ+Χ ; 

thus: 
(8a) 

1 2( )σ σ+Χ  = 
1σΦ + 

2σΨ . 

 
This latter equation, when differentiated with respect to σ1 and σ2 , gives: 
 
 X″ = 0. 

 
Thus, X is a linear function of (σ1 + σ2) and of the form: 
 

(8b) 
1 2

1

2

( ),

,

.

a b c

a c

b c

σ σ
σ
σ

Χ = + + +
Φ = + ⋅
Ψ = + ⋅

 

 
If we denote the resultant moments of motion of both systems by s1 and s2 , as they 
appear in the original problem, then we will have: 
 

 dQ1 = 2L1 ⋅⋅⋅⋅ 1

1

ds

s
 = η ⋅⋅⋅⋅ dσ1 , 

 

 dQ2 = 2L2 ⋅⋅⋅⋅ 2

2

ds

s
 = η ⋅⋅⋅⋅ dσ2 . 

Thus: 

(8c) 1

2

1 1 1

1 1

2 2 2

2 2

2 ,

2 .

ds d d

s a c

ds d d

s b c

σ

σ

σ σ
σ

σ σ
σ

 = = Φ +

 = =
 Φ +
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Since σ1 is a function of only s1 and σ2 is a function of only s2 , when this is integrated, 
that gives: 

(8d) 
2 2
1 1
2 2
2 2

log( ) log( ) log( ),

log( ) log( ) log( ),

c c

c c

s a c a

s a c

σ
σ β

 = + +
 = + +

 

 
where α and β denote integration constants, or: 
 

(8e) 
1

2

2

1
1

2

2
2

,

,

c

c

s
a c

s
a c

σ

σ

σ
α

σ
β

  Φ = + =  
 


 Φ = + =  
 

 

and 

(8f) 

2

1 1
1

2

2 2
2

,

.

c

c

L
s

L
s

αη

βη

  
 = ⋅ 
  


 
= ⋅ 

 

 

 
From this, it follows that a purely kinematical coupling can be performed isomorphically 
only when those integrating factors are set equal to each other that are the products of the 
continual force, an arbitrary constant, and a power of the resultant moment of motion, 
powers that have the same exponent on both sides of the equality. 
 In the examples above – viz., coupling of the rotational axes of tops and the annular 
currents – one has: 

q = 
2L

s
. 

 
In the kinetic theory of gases, ϑ is proportional to L itself. 
 
 

§ 7.  Equilibrium of the internal motion for three monocyclic systems. 
 

Finally, we have to look for the analogues of that characteristic property of heat motion 
that it makes possible to speak of the temperature of a body as a quantity, and which is 
summarized in the theorem: If each of two bodies is in thermal equilibrium with a third 
one then they are in equilibrium with each other. 
 The corresponding condition for three monocyclic systems can be formulated thus: 
One will find that the coupling equation between (2) and (3) is fulfilled whenever it is 
fulfilled by (1) and (2), on the one hand, and (1) and (3), on the other. 
 From this it follows, as is analytically uncomplicated to prove, that the coupling 
equation must be brought into the form: 
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(9)  ϕ1 = ψ2 = χ3 , 
 
where ϕ1 is a function of the parameters of the first system, ψ2 is such a function for the 
second system, and χ3 is one for the third system.  These three quantities would then 
represent the analogues of temperature for monocyclic systems. 
 Of the previously-discussed examples, the ones that fall under the condition that is 
imposed here are the top with equal rotational velocity of their coupled axes and the 
current in annular channels whose currents through the cross-sections must coincide. 
 Among these circumstances is the fact the general coupling equations (6i) must have 
the form (9); i.e., the two equivalent expressions: 
 

(9a)    1 2

1 2

q q
F F

s s


 = ∂ ∂

∂ ∂

 

 
can contain s1 and s2 simultaneously in both sides only in a common factor, which is 
omitted, and indeed, this factor must appear in the differential quotients of F, since q1 
contains only parameters of the first body, while q2 only includes parameters of the 
second one.  One must then have: 
 

(10)    
1

2

1

2

,

,

s

s

F

s

F

s

ϕ χ

ψ χ

∂ = ⋅ ∂
∂ = ⋅
∂

 

 
in which χ is a function of s1 and s2 .  From this, it follows that: 
 

2

1 2

F

s s

∂
∂ ∂

 = ϕ ⋅⋅⋅⋅ 
2s

χ∂
∂

= ψ ⋅⋅⋅⋅ 
1s

χ∂
∂

. 

 
Comparing the last equation with (10) shows that: 
 

(10a)    
1 2 2 1

F F

s s s s

χ χ∂ ∂ ∂ ∂⋅ − ⋅
∂ ∂ ∂ ∂

= 0; 

 
i.e., χ is a function of only F.  If we write: 
 

 
1

χ
 = 

d

dF

Χ
, 
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 ϕ = 
1

d

ds

Φ
, 

 

 ψ = 
2

d

ds

Φ
 

 
then equations (10) yield the integral: 
 
(10b) Χ = 

1 2s s CΦ + Ψ + . 

 
 Since the value of F must be equal to the entropy σ of the combined system, one can 
now regard Χ as a function of σ. 
 On the other hand, the coupling equation (9a) now becomes: 
 

(10c) 
1

1

s

q

ϕ
 = 

2

2

s

q

ψ
. 

 
If, as we have assumed, q1 is an integrating factor for the first system and q2 is one for the 
second system then every product of a q with an arbitrary function of the associated 
entropy is also an integrating factor for the system in question.  The quantities that were 
set equal to each other in equation (10c) above are then integrating factors that belong to 
the entropy values 

1s
Φ  and 

2s
Ψ , the coupling is an isomorphic one, and the mobility of 

the internal motion is, as was discussed in § 5, subject to restrictions that correspond to 
the ones on heat according to Carnot’s law. 
 This then shows in full generality that if monocyclic systems admit only those 
constraints amongst themselves for which the stated peculiarities of heat motion are 
valid, then the third essential peculiarity of heat that is expressed by Carnot’s law is also 
valid, which restricts mobility.  The stated two characteristics of the coupling are: 
 
 1. The external forces of each system depend upon only the instantaneous state of 
the system and not on the intrusive or adhesive linking with other systems.  The coupling 
is then a pure motion coupling and generates a new monocyclic system. 
 
 2. As long as the conditions of exchange of the internal motion between two or more 
systems are known, the equilibrium of the internal motion between them depends upon 
the fact that a well-defined function of the parameters of one of the individual motions 
has the same values as the corresponding functions of the other. 
 
 This well-defined function that plays the role of decreasing temperature in the theory 
of heat must then necessarily be an integrating factor of the system, from which the 
restricted mobility of the internal work follows.  On the other hand, it must be stressed 
that the first condition must also be fulfilled when any coupling is isomorphic and 
corresponds to the second of the conditions that were just proposed. 

 


