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Principles of static, monocyclic systems ()
(By H. von Helmholtz)

Translated by D. H. Delphenich

| understand the termonocyclic systents mean those mechanical systems in whose
interior one or more stationary, closed motions @esent, but which, when there are
several, have velocities that depend upon only one pananieigther assume that only
conservative forces act between the individual bodms define the system, which
consist of relatively fixed constraints, while theaesral forces that must be added in do
not necessarily need to be conservative. | reféhéqroblems that | will treat asatic
whenever it is assumed that the variations that tdite ©f the system experiences come
about with such slight velocities that the system neleiates noticeably from those
states in which it can continually abide under them.

The main interest of such investigations lies in det that the motion of heat, at least
in its externally-observable effects, also exhibits #®sential peculiarities of a
monocyclic system, and in fact, the restricted mobiifythe equivalent work that is
ignored in the form of heat is added to the monocygj&tems under certain conditions.
Indeed, the motion of heat is not monocyclic in thectssense of the word. Every
individual atom obviously changes in the course of its motand first takes on the
character of a monocyclic motion when all possiblages for the motion of an
unimaginably large number of atoms are represented, iflgonehas that every individual
stage starts from first this and then that atom.

In the theoretical examinations of heat motioio the extent that they have been
carried out, up to now we must continually calculate with mean values séguence of
values over time for a particle. Those laws of motiwet can thus be omitted, despite
the fluctuation of the individual values, cannot be invaliguich a way that the mean
value is taken over nothing by equal individual values for ragel@ systems. In this
sense, the present study connects with the theory bf hea

8 1. Recapitulation of the laws of heat.

We assume that we can completely characterizettite ef a body or systems of
bodies whose parts all have equal temperature by thdusddemperature? and a
certain number of parametgusthat are chosen so that the variation of temperatiihe

() The first three paragraphs are essentially unchangesionse of my communications to the
Akademie der Wiss. zu Berlin on 6 and 27 March 1884; thedates include new generalizations, and are
completely revamped.
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changes in the quantitigs requires the absorption or exertion of no other fosmsork
than quantum heat. In this case, the paramptaraist be spatial dimensions, taken in
the broader sense. It is quite customary that thédofaartial volumes appear in them,
but they can also express how much of a particular @utstor how much electricity is
found in a certain space.

| let P, Odp, denote the freely convertible work — hence, the work thanot
converted into heat — that the system in question takeBom the outside when the
parametep, goes to the valug(+ dp,). The quantityP, is then thdorce momenof the
internal forces that act to increase the parangeterlt seems to me that there would not,
on the other hand, be any objection to referring,tas theforce in the direction of p as
one already does in many examples in the applicati@ach of the quantitieB, is, in
general, a function of thé¢ and all of thep, . How one is to find and distinguish the
components of given external forces that maintae itidividual P, in equilibrium is

treated sufficiently in the textbooks.
We further letU denote the total internal energy of the system andslbe its

entropy; both quantities are likewise functionsfodnd thep, . Finally, we letdQ refer

to the heat that enters the system during a vanishinglil shaage in the quantitie#

andp,, as measured by its work equivalent. As is known, o ias:

) dQ=du+> (R Odp)
=J0dS

These two equations define the foundations of the mechanéay of heat. From
them, it follows in a well-known way that only a paftthe headQ that enters into the
body at the temperaturg, can be converted into freely-convertible work. If socim
heatdQ, at the temperaturé, is given that ultimately the original state of the padn

be again presented in a completely reversible probessane has:

4Q _ dQ
1 79c1 ,
and the quantum:
-3 -3
d 1 a = d 1 a
Q 5 Q, a

is then converted into other work.

Allow me to make the following remarks in regard to wf@lbws: The essential
physical meaning of the temperatufeis that its equality or inequality between two
bodies will decided whether, and in which direction, hezat flow from one of them to
the other one. Two bodies with equal temperatures tieatnamutual contact do not
affect the motion of heat in each other. As long@splete equality of the temperatures
between them can be found, they define, in turn, desc@mposite system of bodies to
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which equations (1) can be applied. If we distinguishghentities that relate to the
individual subsystems by the indices 1 and 2 then we foaw@multaneous changes:

dledUl-I-z(Pa Edpa) = 79|:US_,
dQ =dU + X (P, [p,) =SS ;
thus, if we add them:

d(Q1 + Qo) =d(U1 + Uy) + X (P THp) = F (S + S).

In the last equation, the sum of the force momernts e taken over both systemsd; +
U,) is the total energy of the combined syste(@: + Q) is the total heat supplied, and
the equation shows the (+ ) is the entropy of the combined systems.

Without a heat supply sodQ = 0—- one also hadS= 0 in each individual system, or
Sis constant for all reversible processes.

This is true forS; and$; as long as both bodies are isolated, but it istalsofor the
sum G + ) if they are combined at equal temperatures. The conolubmt was
reached byClausiusfollows from this — viz., that the sum of the entro@fuesS can
change under reversible processes, either separaialg@mbination.

As is easily seen, the same thing is true for arbigramany bodies that can be
arbitrarily separate and combined at equal temperaturdsth& consequence follows
entirely from the two equations (1). Since this theoigtrue for unrestricted changes of
the parameterp, andp, , it is also true in the case where fixed couplingshef two
bodies introduce restrictions on the variability o ph

The determination of the direction of heat flux log existence of thermal equilibrium
could also be resolved from the inequality or equalityhef values of an arbitrarily-
chosen function of the temperature that determinesite uniquely. From the fact that:

=,
it also follows that:
f(5) =1(5).

As is known, the various thermometer scales of uorgrcalcohol, and air
thermometers give different functions#ficcording to the type of thermometric body.

On the other hand, if one understasde mean a function dd then one would have
to set:

dQ:ﬂEfLS Cds
0s

J EfLS =n
0s
then one gets:

(19 dQ = s

and if one denotes:
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As a function ofS s is, like it, a function of the, and &, which vanishes, from
equation (3). Sinces, from its definition above, is a function éfand thep,, J can be
determined fromyyand p, , and /7 can be introduced in place & as an independent
variable in the values @f, p,, ands. The equations:

(1) {dQ= du+3 (R Cdp)

=nds

then have the same form as equations (1), but there im@ortant difference, namely,
that 77 is no longer the quantity whose equality indicateshikemal equilibrium between
two bodies. This property relates to only gne 4 in the entire set of functions that are
given by equation ().

Finally, one must direct one’s attention to a situatioat | have already stressed in
my first thermodynamic treatise of 2 February 1882. r&mdly-changing forces enter
into equations (1) as work done on the parts of theesyste., it is assumed that the
changedp, happen so slowly that the rapidly-changing forces alfffeict the masses in

orderly motion vanish compared to the remaining equivalarks. It is also further

assumed that the variations of the individual parts oftiséeem happen so slowly that a
complete equalization of their temperatures comes abdberefore, equations (1) are
true only forvariations d?and dp of vanishing velocity.In this sense, the equations of

thermodynamics that we spoke of are therefore aldee teegarded as laws of the statics
of thermal systems in the sense described above, andawee only to look for the
analogue in the laws of statics of monocyclic systefwreover, both of théaws of
virtual velocities which relate to completely immobile systems, areddme for those
systems, since this also encompasses the convergiamslothat are obtained for slow
motion.

The substitution of the functions that enter into éiquna (1) into the differential
quotients of a single function, &assieu(’) first did, can, asSibbsalready pointed out
("), can also be performed on the general formuly {flone employs7 and thep, as

independent variables. One must then set:

ouU oU
du=""mn+>| —p |,
on 7 Zu‘[ap p“}

a

0s ds
ds= —T[dn+ —[dp |,
on 7 Zu:{apa p“}
and when we set:
(19 H=U-n05

() Mémoires des Savants étrangers, t. XXII. Journal gsi@lre pad’Almeida t. VI, pp. 216.
(") Transactions Connecticut Acad. Ill, pp. 108-248; 343-53liman’s Journal 1878, XVI, pp. 441-
458.
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it follows from equations () that:

ou 0s

— +P,=h—,
ap, on
or
F)a = —a_H,
op,
oH
1¢ S=——,
(1) on
U=H-n Baﬂ
oan

These are the three relations that | used as #gie foa the thermodynamic arguments
in my earlier communications, where | restrictedself/to the narrower case gf= J.
The functionH is denoted by there and called theee energy

Naturally, the value dfl differs with the choice of). The product:

/7ES:z9DSDa—S
0s

that enters into its value Y1then varies with the choice sfas a function o8 These
various values oH are all force functions, in th@acobi sense, for the mechanical
behavior of the system then, but they corresporitiddaistinguishing condition that their
special variablez must be constant. The force function that | usdtie isothermal one;
however, assibbsshowed, one can also define an adiabatic one,at@quations [}

show immediately, the latter coincides with thechion U when one introduces, ands

as independent variables in it.
The fact that we can express the work equivalétiteoheat quantity:

dQ=dU +2 (P, [Hp,)
in the form:
dQ=n s

says nothing characteristic about the physical gusithat enter into it. In any event,
this conversion can then be accomplished for any eb dependency between the
functionsU, P, , andp, , when only theP, vary continuously with th& andp, . One

must always be able to define the integral of dngaéion:

dQ=0
in the form:
S= const.
or
S=fi = const.,
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which expresses the law of adiabatic variations. dfbee, if one has:
0=dU+2 [P, Odp,]

for variations of théJ andp, then one also always has:
0= L m@u+y| Ly |,
ouU op,

equations that follow from each other for arbitraryuesl ofdU anddp, , moreover, only
when:

o0s _1.0s
U R op

0s
ouU HQ=ds
and if we definey by the equation:
P02 =1
ou
then this yields:
dQ=n s

The characteristic feature of the physical prapsif the heat quantity is then not the
fact that the expression fdQ can be brought into the latter form, but is omlyrid in the
fact that one of the possible integrating factgrsf the equatiordQ = 0 must have the
same value for any two bodies between which theemallibrium exists.

8 2. Thegeneral equations of mechanicsfor polycyclic systems

We next assume an arbitrarily-composed mechamyatem, between whose
individual parts only conservative forces act, tie&ly fixed constraints exist, and whose
momentary position is determined completely by alper of general coordinatps (that

must therefore necessarily be measurements obspatntities). By contrast, as before,
we let denote-P,) the moments of external forces, which do not riedak conservative,

and which serve to increase the coordingfesuch that:

R, [dp,
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is the work done by the internal forces of the systenvercoming any external force
moment during the changlp, . We further set, to abbreviate, the differential qunse

dp
2 —% =
(2) ot Q.

of the potential energy of the system equabtand the continual (lebendige) force equal
to L. Under the stated conditions, the former — viz.~ is a function of only the
coordinatep, , while the latter — vizl. — is a homogeneous function of second degree in
the quantitiegy, whose coefficients are functions of the. They will be regarded as

independent variables in the definition of the partidfedential quotients ol with
respect to the, andqg,, and the relation between them that is expressed byi@g(2) is

not considered. As is known, from the given behavidgheffunctionL, it follows that:
@) 2 = Z{qa Ggﬂ -

According toLagrange under these conditions, the equations of motion o$yseem
are of the form:

(2°) pa:_i[cp_L]_iﬂ .
op, dt| aq,
If we set:
(29 d®-L=H

and remark that since is independent df, , one has:

oL __ oH

op, g,

then we can therefore also write the aforementiogedt@ns of motion as:

(Zd) Pa:—a_H.i.g a_H )
op, dt|oq
The total energy is then:
U=d+L

%) =H —Z{qa Bgﬂ

We would like to introduce only the following restrictions this most general
expression for the equations of motion:
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1. For a special group of coordinates, which we would likelistinguish by the
index b, and which we regard as rapidly-varying, we will assuha their variation

corresponds to a type of motion that is closed in jte@ldl that neithe® nor L changes
noticeably during this motion such that both quantitiesiocdeed be independent of the
q,, but not thep, . With this assumption, equatiorfY®ecomes:

3 P, =+ i{a—ﬂ .
dt| oq,

If we multiply both sides of this equation gytt and set:
P, [, [Ht = - dQ,

thendQ, is the external work that is employed in the acegien of the motiorm, . If, to
abbreviate the notation, we then set:

oH

(3) —— =-5
aq,

then (3) yields:

() dQ, =q, s,

in which theds, denotes the complete differential of the quargity

An example of such motions is the top moving withogtibn in a locus of axes that
are defined symmetrically about the rotational axis. dfset the paramete equal to
the angular velocity theg will be the moment of the rotational motion; i.e fproduct

of the moment of inertia and the angular velocity.

Another example is the flow of an inviscid fluid inclbbsed channel with elastic
walls, so it is extensible in its cross-section aledilble and extensible in its length. If
we useq, to denote the volume of fluid that flows per secondugloeach cross-section

a thes, will be:
S =fu [,

in which dx denotes a unit length of the axis of the channeluandl/w [0y denotes the
velocity of the fluid particle in the direction dk

2. Moreover, we would like to assume (since this alwagppens in the
aforementioned equations of the mechanical theory atj) ltleat the changes in all of the

other parameterns, , and likewise the quantitieg , come about with vanishing velocity,
such that all of the expressions that are multiplied)bydq, / dt, or dg, / dt are to be
treated as vanishing quantities of first order.
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This assumes that the external forces that adh@system nowhere deviate far from
the values that they must have in order to nm@akendq, constant, such that all of the

differential quotients with respect to time that eritéo equations (3 become very
small, and the system is continually found very clasa stationary state in which it can
persist for an arbitrarily long time. We would like ¢all a system that satisfies these
conditionspolycyclic For such a system, equation? 2duce to:

oH

3a Pa == — ’

) op,

(3" dQ, =q, s, ,
oH

(39 S =" ——-
00,

Among the assumptions that were made up to now, onghaaghe functiorH that
enters into equations (3) to’3vill always have the value that was given ifj:(2

H=d-L,

2L:—Z{%Eﬂ¥}

0q,

and L will be an entire homogeneous function of second demgrebe velocitiesg, .

However, a variation can enter into the latter refatvhen one or more forces, which we
would like to distinguish by the indexare continually equal to zero, and we employ the

corresponding equations:

@ 0=

op,

in order to eliminate the quantitips. If we denote the expression for the valuéldhat
one gets by eliminating the by $ then one has:

EEZ::QEL+§:{6H gﬁi},

ap, op, <|op op
99 _ a_H+2{a_Hga&} .
op, Op, | op 9p

Due to equations (4), this reduces to:
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99 _oH
op, op,
99 _oH
op, Op,
One still has:
(49 §=b—L,
09
4° P =-—",
(4°) =,
¢ 09
(4) S =-—,
aq,
(4 L =3 [q, Bs]-

However, this value df is no longer an entire, homogeneous function of secon@elegr
in the quantitiesy, , since equations (4) generally contain terms of sedegcee in thej,

, and the values of the that this yields can be developed into functions efghthat

make terms of second degreelirenter into the values @b and the coefficients by the
elimination of the quantities. It is for just that sea then that the, are also not

homogeneous linear functions of e, as was the case before the elimination.

An example of such a case is the continual forcetopavhose axis has a centrifugal
regulator fixed on it whose rising and falling is not caused lgirying external force, ,
but only by continually-acting conservative forces (egyavity, elastic springs), and
therefore can be represented as a function of the nmtielocity. In the value of the
continual force, which is equal to one-half the produdhefmoment of inertia and the
square of the rotational velocity, the aforementionednerd will then also depend upon
this velocity.

Since it will later be necessary to stress thisegihce, we would like to call the

system that includes al] thecompleteone and the one that remains by the elimination of
thep, theincompleteone.

§ 3. Monocyclic system.

As mentioned above, | would like to use these namesystiems in which closed
internal motions occur that are determined completelprdy one parameteg, along
with the coordinatep, .

The simplest case of such a motion is given when oméy\@locityq enters in the
system of § 2. We then obtain the equations:
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Pa :—a_H,
op,
dQ= sldq
(5) o= 0H
aq
U=H —qgﬂ.
0q

From this, it follows that:
dQ=duU + 2. [P, Tp,] = s g,

These equations are of entirely the same formeasies presented above for the motion
of heat. The velocity] enters in place of the temperatufeor the quantitys that it
depends upon. Here, as above, the quattyneans the work that is directed along the
direct increase of the internal motion, except tthas internal motion is now of a
different type from the heat motion.

Thus,q is an integrating factor of the equatid® = 0, here; however, as above, we
can also preserve the form of the equations ifmmduce a quantityg([Ds/ do) along
with thep, as a parameter for the intensity of the motiorwlmch o means a function of

s. However, the function:

that is further introduced then loses the meartiagjH takes on in (3, namely:H = ® —
L.
It is noteworthy that in this simplest case of moyclic motion the continual force:

(59 L:—%qD%—';=%qu

is an integrating factor of the system. If oneiesS, which is chosen for this purpose,

by the equation:
dQ=2L W& =q s

then we get:
ds = 35,
S
S =logs-logA,

whereA is an integration constant, or:

(5" S = Iog(ij =1 logL +1 Iog(Azsmj .
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Here, the analogy with the kinetic theory of gaseserges quite clearly. The
temperatures is proportional to the continual force, and if wa [ denote the

mechanical heat equivalent,the volume of a unit mass, and ¢eand )y denote the heat
capacities for constant pressure and volume, resp.thkentropy of the unit mass is:

S=JyOog#+3J Oc— ) Oogv +C.

In the present case, the rafid q is the moment of inertia of the rotating mass, which
depends upon spatial measurements, likestinethe entropy of the gas, and indeed only
upon them, as long as, perhaps, the quanptiase not eliminated.

§4.

The general case of monocyclic moticomes about when several velocitigsare
present, which however will all be determined by one effrtland the coordinatgs. As

is known, exceptionally manifold and varying relations betwetational velocities can
also present themselves in mechanical apparatuses xdfople, a friction roller can run
around the circumference of a rotating body that haerdiit diameters at different
places, and is shifted to and fro by centrifugal forcetheraxis around which it rotates.

In general, we can represent such a coupling analytibglip — 1) equations in the
guantitiesp, and then quantitiesq, . As in other parts of mechanics where fixed
constraints are assumed, we imagine the action sétfieed constraints to be such that
they do not at all influence those motions that wouolche about by themselves under the
action of the applied forces that would correspond ¢cetjuations of constraint, but that
when deviations begin they exert such opposing forcesoaddvhinder the deviation.
Thereby, the fixed constraints always act in such athalythe forces that they produce
add no contribution to the work that is done by the esfeiorces. The quantity of the
force that it exerts in any state of the systemommetely determined by this latter
condition.

If we apply this to our composite monocyclic systéentwe will be able to represent
the general form of the dependency of the velocdiesn each other, such that we can

express each of them as a function ofghand any new variabbethat is introduced.
Since thes, can be represented by means of the system of equations:

__oH
aa,

as functions of thg, and theg, , they can, in any event, be expressed as functiotieof
p, andx. We would like to refer briefly to the system, aftae tintroduction of the
aforementioned fixed constraint, as tend system
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Under the assumptions that we made, which charactéezproblem as a static one,
it follows that the force®, act continually while the system does not changstéte; in

contrast, we neglect the changesPpfthat depend upon the velocity of the change of
state. On the other hand, the amount of waipk enters in only as long as state changes

occur. Since both types of action are completelyediht, as they correspond to
mutually independent time periods, fordeghat are given by the fixed constraint, and
which we would like to denote ¥ in order to distinguish them, also never preserve the
equilibrium in the forces that do the wod{), and conversely; the forces of each class

must be separate in equilibrium.
From this, itfirst follows that the total work done by the forc@s satisfies:

2[R mp] =0.

Since thedp, must remain completely arbitrary when none of the degrefrsedom are
lost by the introduction of the fixed constraint, one ihasse that allP’ = 0 in this case,
so the force®, also preserve their previous values in the bound system:

_ OH

6 p, =- 1.
(6) ; .

If we regard thes, as functions of thp, andx then this equation becomes:
(6" Q=YY o £ dp +Z[qgﬁ} o>

) op, b ox
If we let U denote the internal energy of the system then:

dU=dQ-2. [P, p] .

U is originally given as a function of thge andq, ; if the latter were expressed in terms

of thep, andx then this the equation:
dQ=0

z a_U+Pa dpa +6_U|:dx:0’
op 0x

a a

would take on the form:

whose integral we can write as:
o= const.,
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in which o must be a function of the, andx. As above at the end of § 1, this would

yield:
a_U+ Pa =1 do ,
op, op,
0Xx 0Xx

As a result, equation {passumes the form:

(69 dQ=A0o.

We can therefore refer to the functienas the entropy of the bound system. As we
mentioned above, arbitrary functionsatan also be chosen instead of this.

Up to now, the choice of the functiomwas completely arbitrary. If we take it to be
one of theserthen in (6) one would have to set:

dQ=A0g,

and (6) would then decompose into the sequence of equations:

(6% Z_qh Bai} =0,

=L op,

98|
(6°) Zh:_qhggfa} =1.

Equations (8 are linear, homogeneous equations inghe We assume that the number
of p, that are contained in them can be reduced to its smatlest by a suitable choice

of them. Namely, it can happen timaof the quantitiegp, enter into the values of tlge

only in the form of less than functions of them. One would then be able to introduce
these functions in place of an equal number ofthe If the numbeRl of the indicest is

equal to the numbeB of indicesb after this reduction then the functional determinant of
thes, with respect to the variablgs must be set to zero; i.e., there must exist an equatio
between thes, whose coefficients are independent of phéhat appear in equations™6
but which still depend upon the We write this as:

(6) F=g
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in which F is a function of only the, , and possibly also thethat do not enter into the
values of thes, . Therefore, the differentiation of them with resp® thep, and o
yields:

g _6_F S | =
©) ;_asb%%} >

g _6_F S| =
(6% zb:_a%gt‘;;} 1.

If we compare these with equation§)(&nd (6) then that comparison would yield:

(6) g =—A0—.

If F were chosen arbitrarily as a functiohthe s, then, since the, can be expressed as
functions of thep, ands, , as we remarked above, equation$ y@uld first yield B
equations for the determination of than terms ofp, andA, which, if they are mutually

independent, define the action of the fixed constraint ¢éetely. Finally, equations (fa‘;
determined theras a function of ths, (thep, andA, resp.), or also thé as a function of

thep, andA.
However, the same form of solution is also true2for B and2( <*B. It is now easy

to convince oneself that in both cases equatiofisa@l () are actually solutions for the
system of equations c(}aand (6), and if they are mutually independent then with the hel
of the equations that give tiggas functions of ths, , namely:

(6 — =-5,

they would yield values of thg that satisfy all of the conditions of the problem.
However, one can also prove that this form for tflat®n has the required degree of
generality (), namely, it also applies to the case wh@lre< B, and the number of

equations (§ is therefore smaller than the number of quantiies which should be
determinate. Namely, if one replaces than equations @ with their values that are
expressed in terms of tlieandp, by means of equations{@hen equations {§ would
include only the quantities, andp, . When one takes arbitrary values of theor
definite values of th@, , these equations admit further arbitrary values fothelir first

() This problem is treated completely in regard to #gedn which equations'Y&re not independent
in the following article oL. Kronecker
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differential quotients, up to one of teewhich we would like to denote sy . However,
the differential quotients of the with respect to the, are then determined completely

by equations (8§, but not theds, / do. Thus, as long as the are kept constant, it is
entirely unrestricted how the remainiggshould vary with increasing, in each of the

differential equations, with the exception @f. How thes; should vary is, however,
given completely. Precisely this freedom with regaod the constraints on the
aforementioned function will be represented by thegirateequation:

(6) F=g

if F is an arbitrarily-chosen function of all teg and therefore the given solution in each

case is sufficiently general.

The given solution of the problem thus satisfies theadels of the problem when
equations (§ are not mutually independent; | reserve the aforemesdicexceptional
case for later treatment. One thus has that aHe@fuantities), , s, , A are representable

as functions of th@, and g, and likewise also the original ones in the unbounck siht
the system are representable as functions of thesvafile andU, as well adH, that are
given by either th@, andq, (thep, ands,, resp.).

In the unbound system we can, as was already rembagk&ibbsin § 1, write the
equation for the constancy of energy as:

du = >'[q, ] - > [ ROdg

and represent thd, like theq, andP, , as functions of thg, ands, . This yields the

relations:

a_U:—P’

ap, ‘

LU
ds,

If the s, in U were replaced by their values in termgpénd o after imposing bounds on

the system then we would like to denote the fumdtidoy i{. One then has:

a_u:a_mz{a_ug@i]
op, Op, G| ds Jp

24 g

= 0s, op, | 4
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from (6%, so it follows that;

S-S
op,
Furthermore, one has:
o _ 5 U 05 | _ Z[q g"’i}
o 4| 0s oo ~| ™ 00’
therefore, from (9:
L
do

For the bound system, this would then yield the formula:

du=A0lo - > [P [8p],

or, if we set:
(6") HN=U-Ao

and make the, andA into independent variables:

d$ = - oA - [P [Hp],

respectively.

Thus:
a_ﬁ = - Pa ,
op,
9 __,
0A

agree with the formulas that were given for the pd&n monocyclic system in the
previous paragraphs, except that one does notssdgdind a function of that has the
same distinguished relation for the continual foasethes in equation (8 does, and
whose associated is equal to the continual force. Under what cbods this comes
about shall be examined in the next paragraphs.

8 5. Conditions under which the continual forceisan integrating factor.

In 8 3 we found that the continual force is alwapsintegrating factor for the simple,
monocyclic systems. We then ask whether, and unvderh conditions, this is also the
case for the systems of moving parts with fixedst@ints that we spoke of in 8 4. This
guestion is also important for the analogy with theory of heat, since in it, from the
kinetic theory of gases, the temperature that dsfithe integrating factor is, in fact,
proportional to the continual force of the intermabtion, and the hypothesis that was



Helmholtz — Principles of static, monocyclic systems 18

proposed byBoltzmann(') andClausius(" ), under which this is also the case in all other
bodies, at least has a high degree of probability iovwts right.

The continual forcé. of the system, whether it is bound or unbound, is, fréf (
given by the equation:

(7) 2 =>1q5].

Since, in place of the valugfor entropy that was found in the previous parphsa any
function of gcan also come under consideration, we would likéeiaote the entropy that
belongs to R as an integrating factor by lag Thus:

(79 do=2 0%
o
=g
S0, in this case, one has:
(7 2L =)o

If we substitute the values @f from (6) that correspond to the fixed constraint in
equation (7) then we get:

(7 A=) EIZ{% %}

and due to equation'}6
F=0
(7°) can be written:
2L =A[F.

The condition for the continuous force to be aegnating factor is therefore:
F= Z{% Bai}
=L 0s

i.e., the functionF, which gives the value of the entropy of the bowydtem,is a
homogeneous function of first degethe moment of motios, of the unbound system.

From the assumptions that were made above in (@) the quantitiest and o stand

in precisely the same relationshiplt@nddQ in the unbound system that the quantiges
and o do in the simple monocyclic systems of 8§ 3. Wie ttaus appropriately refer to
asthe resultant velocity of the internal motiand o asthe resultant moment of motion
that is associated with itBoth of them are determined by the given demnestiup to a
constant factor; all equations of this paragragmtremain unchanged when we set)(

in place ofg and, at the same tim&,/ n in place ofd. Since such a constant factor can
take on an arbitrary sort of physical meaning,uhi that is given fow is therefore also

() Wiener SitzungsbeB, part Il (1866), 195-220.
(") PoggendorffAnnalen142 (1871), 433-461, § 14 and 15 of the treatise.
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determined arbitrarily; if it is determined then thatdoWwill be determined as a result,
since the producl o refers to a continuous force — i.e., a quantum of witrkecomes
preferable, in the sense of the proposed notation for dpadintities, to regard as a
velocity — i.e., the differential quotient of a sphtjaantity by time — andras a moment
of motion (mass times spatial quantity, times velgcitySince the functiorF is a
homogeneous function of first degree and:

LF =1,
g

the latter function can be represented as one of thﬁitiela(iﬁ;nj, which, from what
o

was said above, are pure spatial quantities, amddhstant coefficients that are included
in the functionF will then also need to be only pure spatial queesti
As far as the quantitiag are concerned, they are expressed as functiotie gf by

means of the equations:

oH
(3) S == ——,

aa,
or, by eliminating some of the :

0
) s=- 22,

aa,

respectively. In the former case theare linear, homogeneous functions of gqhewhile

in the latter case they are non-linear and inhomeges, in general. If one writes
equations (6 and () as:

$F

0s,

o]

b

Q>

(7

H qf
H‘

1
o

then, by complete preservation of the, the quantities 1 & [y, are linear functions of
the s, / o with coefficients that depend upon the paramepers Only the 8 + 1)
quantities 1 /o s, and 1 /o 04 then enter into the system @B (+ 1) equations (J as
unknowns, which are to be found by solving theseadgns as functions of the
parametep, . This yields the fact thathen the complete system of parameters kept
constant, all of the moments of motigrasd, accordingly, also all of the velocitiesaf

the system (which is, by the assumptions of thisgpaph, bound) that are proportional
to the values of; as well as the resultant velocily must vary.
This is, in general, no longer the case when abaunof the parametens. are

eliminated, because then the condition posed +thie.constancy of all the parameters —
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can no longer be fulfilled, since the necessary foR:eme lacking. In fact, thg, are
then no longer linear functions of tlsg, and the quantity remains conserved in the
equations when one seeks to bring the quangtiggo the form 1 /o[, .

The manner of representing the mechanics of such arsysteot merely in the sense
(as was described in the conclusion of the previous paragrapihefogeneral bound
system) that it gives a complete analogue of the simmbnocyclic system, but one has,
in addition, that the continual force has the sanaiogiship to the parametetsando as
it does to they ands in the simple system. One also has that:

H+1Wo=®
is the potential energy of the system.

However, an essential generalization enters intorelaion. Theq of the simple,
monocyclic system is the differential quotient widspect to time of a spatial quantity
that determines the instantaneous position of the pattishregarded as in stationary
motion, and the integral over time @thus yields the difference between the initial and
final values of this spatial quantity independently ofithermediate states of the system.
In the present generalized system, this is no longecabe, and a spatial quantity whose
differential quotient with respect to time would be thergiya A no longer exists.

Finally, one can more precisely characterize the pdatikind of fixed constraints
between the moving parts of the system that are assumgds paragraph. It was
already explained that the equation:

Q|m
1]
H

that characterizes the constraint here assumeg-tlsa homogeneous function of first
degree of the quantitie and that for just that reason the constant coefiisi of this

equation only need to be spatial quantities without inctudirasses or time quantities.
However, the entire type of constraint is, as the lopweent above has shown, dependent
upon the functior, and therefore also on its constants. Only thess @b the values
of thes, andq, as well-defined for the type of constraint.

Things are different in the general case of § 4 whénnot a homogeneous function
of the first degree of the quantitigs. In this case, the time differential of the quantit

/ o [F, which should equal the singular (Einzahl), can vanish whign time quantities
also appear in the constants that are measured inofestbsolute units. Time itself can
not enter in, since the equation should be independemimef but not differential
guotients with respect to time like velocity and forcddowever, these must, in fact,
exist in the system in order for it to be mechanicatficient. Constant velocities could
only be kept constant from the outside, and would thuddeolvith the assumed
independence of the system and its monocyclic chara¢tewever, forces that indeed
havedf® in the denominator can enter in as constants tmaowe time. Such forces
cannot be external forces, because everything in a ctarptstem must be assumed to
be variable. On the contrary, constants that deterthimefficiency of internal forces,
like the constana?® in the equation of the elastic force:
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X =-a? [k,

can possibly enter in; at least, as far as | know, ngtlprevents this from the
mathematical standpoint. The mechanical tools thaevieund up to now for the
continual evolution of motion, such as infinite stringears, and friction rollers always
give only ratios of velocities that are independentha& velocity quantities, but can
depend upon the position of the parts; an example ofatier lis a friction roller for
which the angle of their axis, or also the line on \Wwhlwey move, can vary. Examples of
the latter occur in, e.g., the integrating machines.r that reason, | propose that
constraints of that kind, which make the equafon o homogeneous in thg and g, and

accordingly the continual force can exist as an imtigy factor, can be distinguished as
purely kinematical constraints.As long as only such constraints are introduced, the
continual force remains an integrating factor of thertibsystem}.

I do not know how to find examples of the general fofrthe constraint, in which
the ratio of the various velocities would be indepehdeh those quantities for
unchanging position of all moving parts. The kinetiotlyeof gases also gives relations
between the simultaneously-existing motions of thdowuar parts of the system that
comply with the law of purely kinematical constraints.

§ 6. Coupling of any two systems.

If two monocyclic systems that are originally pubira state by a suitable regulation
of the external force®, that corresponds to the conditions of a definite typéxed

constraint then one can let such a fixed constratetr dretween them without, moreover,
perturbing the existing motion in so doing, and they cawenfiorther from then on while
introducing new variations of the forc&€s while preserving this fixed constraint. |

would like to refer to this intermittently fixed corsimt on states as @upling of the
system. An analogous process occurs in heat motiom e bodies of equal
temperature can be put into conductive contact withoutgihg their internal motion
such that they preserve their equal temperatures undesufgeiently slow changes.
Therefore, it could happen that the two systems irptisition that they are given for
the purpose of coupling also act upon each other with pressuidistant forces. We
would next like to assume that forces of this type, r@hiey occur, can be known
completely and the arbitrarily varying forcBscan be calculated. The coupling that we

refer to as such would then only have to convert work giestlQ from one system to
the other one. We can refer to such a coupling @sr@ motion coupling Under this
assumption, we can regard the coupling of the systeonasof the fixed constraints
whose law we discussed in the last two paragraphs. Withe coupling, the two bodies
are a dicyclic system that will change into a montcygystem under the coupling.

Here, we once more proceed in complete analogy tthdwey of heat. If two bodies
at equal temperature are put into heat-conducting cothact they preserve equal
temperature from then on, at least for sufficientlpws changes under which the

() 1have since found a further generalization of thémtem, and | hope to publish it soon.



Helmholtz — Principles of static, monocyclic systems 22

constraint acts to exchange their internal motiohs.addition, they can also act upon
each other by pressures and attractive forces, but thesen unperturbed in equilibrium
with them and the remaining external forces under tineullaneous exchange of
temperature. Moreover, none of the forEeghat act upon each body from the outside

changes, due to the fact that the introduction of anpgshaf its volume or molecular

structure would now allow other supplies of heat to etiterbody or emanate from it,

since this would be the case without the constraki¢rein lies an essential difference
between the ways that actual and potential energy beHauwhe event that a change of
state of a body admits the transfer of potentiatgné&om the one body to the other, the
force would be changed, by the principle of virtual velesi Heat does not, by any
means, retain its character of actual energy, aslessloped in our theorems of 88 4 and
5.

Of interest here is, in fact, the case in which a meickal constraint is presented
between two systems that have equal values of one ioirttegrating factors, in such a
way that whenever this constraint exists the equalitthhefaforementioned factors must
be preserved. In order to refer to such a type of cnstoriefly, | would like to call it
anisomorphic couplindioov uopiov, equal factor). Contact between two bodies of equal
temperature is an example of this type, since temperatane integrating factor of both
bodies. Another example would be that of two topssehaxes are linked in such a way
that they must move with equal orbital velocities.edfual rotation is already present by
the introduction of the constraint then the coupling lbarexhibited without perturbing
the motions that are present. Their axes can camntyifugal regulators of different kinds
that would regulate the location of those axes by meéarisrcesP, that would also

immediately bring the orbital velocity to an arbitranggnitude.

Two currents in annular pipes can be united into one ritigout perturbing either of
them when both have equal currents through each crossrse@&iretching the channel
reduces the current, while shortening it raises it. his way, one can give any two of
them equal values.

Precisely the same considerations that follow from taps (1) for heat motion, and
which | briefly recalled in 8§ 1, are valid. In this waye get precisely the same laws for
the possibility of obtaining work from the forcBs at the expense of the internal motion

of the system. The basic assumption for this is thah we have no other means of
acting directly upon the internal motion of the givennmoyclic system except for
isomorphic couplings with other systems, and that forcare/of the systems that can be
coupled a single integrating factor exists that allows uhperturbed coupling with
equally large factors to another system, as would bedke in the examples presented
above of centrifugal regulators or annular currents.

The fact that we cannot directly confront and alberteat motion of the atom, which
is indeed the case, also depends only upon the fact theanmet introduce our effects
on particular isolated atoms in particular directitng must always necessarily address
all of a definite spatial region uniformly. It is le@supon only the restriction of the
methods that we proposed and not upon anything intrinsietmotion. It is for just that
reason that we can also assume similar restricibosr demands on the problem for the
analogous cases that we spoke of here without changimgtines of the problem.

If, as we did at the end of the previous paragraph, wenas purely kinematical
constraints on both system, such that the contimraéfof the coupled system becomes
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an integrating factor of this system then it followsttier in relation to the possible types
of coupling: Letry = 7 andn» = 7 be the two integrating factors of the two systems tha
will be made equal by the coupling, and detand ¢z be the entropies that are associated
with them, so:

dQ =7 o,
(8) dQ, =7 Lo,

dQ=dQ+ dQ =7 0do, +0,).
n is then also an integrating factor of the coupled systé&nder these conditions, the

continual forces, since they are also integratingofacof the system in question, are of
the form:

La =nl®,,
Lo =nlW,,
Li+lo =7 0X ;.0
thus:
(89 Xigiay = Ppt W, .

This latter equation, when differentiated with respeaitando,, gives:
X" =0.
Thus, X is a linear function otf + ¢2) and of the form:

X =a+b+do, +0,),
(8°) ®=a+clo,,
1
WY =b+cly,.

If we denote the resultant moments of motion of begktems bys; ands, , as they
appear in the original problem, then we will have:

olQl:LDO';Sl = Mo ,

Thus:

()
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Since g is a function of onlys; and o is a function of onlys, , when this is integrated,
that gives:

(&) {Iog(qk) = log(a+ @)+ log(&"),

log(s*) = log(a+ @7,)+ log(5*),

wherea andf denote integration constants, or:

P, =a+cal=(%j C,
(8) N

®,_=a+co, =[ij :

2 B

and

n=L Eﬁﬁj ,
@) v

n=L, cﬁﬁj .

S

From this, it follows that a purely kinematical couplirapndoe performed isomorphically
only when those integrating factors are set equal to @en that are the products of the
continual force, an arbitrary constant, and a powehefresultant moment of motion,
powers that have the same exponent on both sides ed)tizdity.

In the examples above — viz., coupling of the rotatioras af tops and the annular
currents — one has:

q=—.
S

In the kinetic theory of gases$,is proportional td. itself.

8 7. Equilibrium of theinternal motion for three monocyclic systems.

Finally, we have to look for the analogues of that attersstic property of heat motion
that it makes possible to speak of the temperature oflg &® a quantity, and which is
summarized in the theorenf:each of two bodies is in thermal equilibrium with a third
one then they are in equilibrium with each other

The corresponding condition for three monocyclictesys can be formulated thus:
One will find that the coupling equation between (2) and g3)lfilled whenever it is
fulfilled by (1) and (2), on the one hand, and (1) and (3}the other.

From this it follows, as is analytically uncomplied to prove, that the coupling
equation must be brought into the form:
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9 PL=Yp=xs,

where ¢; is a function of the parameters of the first systgmis such a function for the
second system, angs is one for the third system. These three quantitiesldvthen
represent the analogues of temperature for monocydlierssg.

Of the previously-discussed examples, the ones tHatmirider the condition that is
imposed here are the top with equal rotational velocityheir coupled axes and the
current in annular channels whose currents throughrtdss-sections must coincide.

Among these circumstances is the fact the generaliogugmuations (¢ must have
the form (9); i.e., the two equivalent expressions:

a a _ G
&) oF “oF
os O0s

can contains; ands, simultaneously in both sides only in a common facidrich is
omitted, and indeed, this factor must appear in the differlequotients of~, sinceq:
contains only parameters of the first body, wigleonly includes parameters of the
second one. One must then have:

- ¢31 D(i
;
g = wsz EY’

in which y is a function of; ands, . From this, it follows that:

2
PF 0 X
0s,0s 0s, 0s,

Comparing the last equation with (10) shows that:

1e) OF Px_OF ox_
0s 0ds, ds 0s$

i.e., yis a function of only~. If we write:
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_do
¢_dq’

do
Y s

then equations (10) yield the integral:

(100 X=0 +W¥ _+C.

Since the value df must be equal to the entropyof the combined system, one can
now regardX as a function ot
On the other hand, the coupling equatioh) (®w becomes:

(107 G4 =%

S
“
N

If, as we have assumegj, is an integrating factor for the first system apds one for the
second system then every product off &ith an arbitrary function of the associated
entropy is also an integrating factor for the systemuestion. The quantities that were
set equal to each other in equation®(Xbove are then integrating factors that belong to
the entropy valuesb, and W, the coupling is an isomorphic one, and the mobility of

the internal motion is, as was discussed in 8§ 5, stibgerestrictions that correspond to
the ones on heat accordingG@arnot’s law.

This then shows in full generality that if monocycBgstems admit only those
constraints amongst themselves for which the statedlipetes of heat motion are
valid, then the third essential peculiarity of heat s expressed b@arnot’slaw is also
valid, which restricts mobility. The stated two chaeaistics of the coupling are:

1. The external forces of each system depend upon amlinshantaneous state of
the system and not on the intrusive or adhesive linkitly other systems. The coupling
is then a pure motion coupling and generates a new mdieosystem.

2. As long as the conditions of exchange of the matliemotion between two or more
systems are known, the equilibrium of the internal orotretween them depends upon
the fact that a well-defined function of the parametdrene of the individual motions
has the same values as the corresponding functidhe other.

This well-defined function that plays the role of desne@ temperature in the theory
of heat must then necessarily be an integrating faatdhe system, from which the
restricted mobility of the internal work follows. Q@hne other hand, it must be stressed
that the first condition must also be fulfilled whany coupling is isomorphic and
corresponds to the second of the conditions that wetgjoposed.



