
“Über die mechanischen Grundlagen der Thermodynamik,” Ann. d. Phys.  33 (1910), 537-552. 
 

 
On the mechanical foundations of thermodynamics 

 
By Paul Hertz 

 
Translated by D. H. Delphenich 

 
(Continuation from pp. 225) 

______ 
 

Contents 
 

 Page 
 

Part II.  Thermo-mechanical processes (the law of increasing entropy). 
 

§ 10. External coordinates (equation of state)………………………………………………………   1 
§ 11. Adiabatic processes………………………………………………………………………..   7 
§ 12. Reversible processes………………………………………………………………………. 11 
§ 13. Irreversible processes………………………………………………………………………. 12 
 

_______ 
 
 

Part II. 
 

Thermo-mechanical processes 
 

(The law of increasing entropy) 
 

§ 10.  External coordinates (equation of state) 
 

 One of the advantages of the Lagrange method is that it relieves us of having to 
specify the coupling equations.  In fact, the generalized coordinates are chosen such that 
it is not necessary for one to exhibit the condition equations between them.  However, we 
often encounter condition inequalities in the applications.  For example, the molecule in a 
gas can be enclosed in a container in such a way that the position of the molecule cannot 
go beyond the space in the container.  Now, it would be essential for our considerations 
for the system in each state to follow a path that corresponds to the direction of its 
velocity, so the path curve would possess no kink, and therefore all ε*-surfaces that occur 
would be closed and rounded everywhere.  Admittedly, that is not the case for the 
example that was just given, since the molecule will change its direction discontinuously 
at the wall.  If one thinks of, e.g., a “one-dimensional gas” (Fig. 4a) – i.e., a single 
material point that cannot leave a line segment – and appeals to Cartesian coordinates 
then the ε*-curve will consist of two separate pieces (Fig. 4b). 
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 If we would now like to extend our analysis to all of these cases then we would need 
only to assume that there is a potential energy between the walls of the container and the 
molecules.  It would then be unnecessary to impose any sort of restriction on the mass 
points.  The penetration of a molecule into the wall is also possible, although such an 
exceeding of the normal bounds would be linked with the appearance of a significant 
amount of potential energy.  Furthermore, since under these circumstances, the wall 
cannot define an absolute obstacle, all path curves will have to be continuous and 
nowhere have a sharp kink.  That would also correspond to the ε*-surface appearing to be 
closed and rounded.  In the cases that we have been concerned with, the ε*-curve might 
perhaps take the form that is suggested in Fig. 4c.  In order to ultimately arrive at the 
ideal limiting case of absolute rigidity, one needs only to assume that the potential energy 
will also become exceedingly large for even the slightest penetration of the surface of the 
wall.  It will then be impossible for the molecule to penetrate very far into the wall for 
finite initial energies.  Nevertheless, one can choose all of infinite space to be the domain 
of variation of the coordinates, and thus free oneself of the condition equations.  The 
choice of the potential energy will then also have the effect that the position of the 
molecule is restricted in practice to the interior of the container without assuming such 
inequalities. 
 The same argument will be true when the wall of the container is moving.  We would 
like to call such a moving container wall a piston.  Since the piston is moving, we must 
next treat the coordinates that determine it just like any other coordinates of the system 
and assume that they are likewise subject to a continual change.  Later, it will be shown 
that those fluctuations are extremely minor, and that will give us the right to make an 
exception for those coordinates. 
 We would like to consider an entirely special case in these paragraphs.  Let the 
container be a rectangular cylinder that is bounded by two congruent surfaces of area B 
that amount to the lid or piston and the base.  Let the piston move freely.  Its position will 
be determined by the coordinate a, namely, the volume between the base, the piston, and 
the outer surface of the cylinder.  A pressure h acts on a unit area, so the potential energy 
will be: 
      U = k ⋅⋅⋅⋅ h ⋅⋅⋅⋅ B, 
in which: 

      h = 
a

B
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means the height of the piston above the base.  One therefore also has: 
 
(145)     U = k a. 
 
 We would like to apply (42).  That equation will give us: 
 

(146)     a
a

ε∂
∂

 = 1
2 t. 

 
One must then address the determination of ∂ε / ∂a.  Now, the potential energy also 
contains a component that originates in the molecules that are found to be in direct 
contact with the piston, which is a summand that changes with a in a manner that is not 
easy to recognize.  In order to confront that difficulty, we assume generalized 
coordinates.  We next choose a Cartesian coordinate cross whose z-axis runs 
perpendicular to the plane of the piston, and set: 
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(148)     h = 
a

B
, 

 

(149a)     ϕi = iz

h
  (zi < h), 

 
(149b)     ϕi = 1 + (zi − h) (zi > h). 
 
These formulas shall be true everywhere, except in the immediate vicinity of zi = h.  
Here, they shall be replaced with functional relations that will mediate a continuous 
transition to the differential quotients.  However, that transition shall take place along a 
line segment that is extremely small, even in comparison to the small line segment that a 
molecule can penetrate into the piston, without provoking any appreciable potential 
energy. 
 If we change the q then the potential energy between the piston and molecule will 
change.  By contrast, it will remain unchanged when the q remains constant.  In fact, if 
we go to another value of a, while fixing the q, then, from (149), we will come to a new 
state in which one finds just as many molecules as before in the container’s interior, and 
in which the molecules will penetrate just as deeply into the piston as before.  If one 
would then like to calculate ∂ε / ∂a, where the partial differentiation with respect to a is 
performed with constant q, then one can ignore the potential energy between the piston 
and the molecule. 
 Now, from (147) to (149), one has: 
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(150)     3iqɺ  = iz

h

ɺ
 (zi < h), 

 
(151)     3iqɺ  = izɺ  (zi > h). 

 
We next consider the first case.  If one understands l3i to mean the component of the 
energy of the i th molecule in the z-direction then, from (150), one has: 
 

(152)     l3i = 
2

2
312

ih m
qɺ , 

so, from (1): 
      p3i = h2 mi 3iqɺ , 
 

(153)     3iqɺ  = 3
2

i

i

p

h m
. 

Thus, from (152), one has: 

      l3i = 
2

3
22

i

i

p

h m
; 

that is, from (148): 

(154)     l3i = 
2 2

3
22

i

i

p B

m a
. 

 By contrast, for: 
zi > h, 

one will have: 
     p3i = mi 3iqɺ , 

 

(155)    l3i = 21
312 im qɺ  = 

2
31

2 2
i

i
i

p
m

m
= 

2
31

2
i

i

p

m
. 

One will then have: 

 a 3il

a

∂
∂

= − 2 l3i  (zi < h), 

 

 a 3il

a

∂
∂

= 0  (zi < h). 

 From (145), one will then have: 
 

a
s

a

∂
∂

= k a + 32 i
i

l−∑ , 

 
in which only molecules that are found completely within the container will be 
considered.  However, the larger the container is, the smaller will be the fraction of the 
molecules that are in interaction with the piston.  We assume that the container is large 



Hertz – On the mechanical foundations of thermodynamics 5 

enough that we can neglect that fraction.  The sum can then be extended over all 
molecules, and one can write: 

a
s

a

∂
∂

= k a − 3
1

2 i
i

l
=
∑
n

, 

 
if one understands n = n / 3 to mean that number of all molecules.  By taking the mean, it 

will emerge from this that: 
s

a
a

∂
∂

 = 3
1

2 i
i

k a l
=

+ −∑
n

. 

 
However, since the same component of kinetic energy is assigned to each degree of 
freedom, one will have: 

(156)     3il∑  = 1
3

1
i

i

l
=
∑
n

= 1
3 L, 

 
in which the right-hand side means the total vis viva of the gas molecule.  We then get: 
 

s
a

a

∂
∂

 = 2
3k a L− , 

or, from (146): 

(157)     
2

t
 = 2

3k a L− . 

However, from (37), one has: 

(158)     L = 
2

n
t . 

Thus, one will have: 

k a  = t 
1

3 2

n + 
 

, 

or, since n is very large: 

(159)     k a  = 1
3 n t, 

so, from (158): 

(160)     k a  = 2
3 L. 

 
Equation (159) and (160) will be referred to as the equation of state. 
 The piston, whose mass might be denoted by M, will also possess kinetic energy.  
From (144), its mean will be: 

1

2

s
a

a

∂
∂
ɺ  = 2

2

1

2

M
a

B
ɺ , 

so, from (34), one must have: 

= 
3

2

k a

n
, 

and therefore: 
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(161)     
2a

a

ɺ
= 

23k B

M n
. 

 
Now, when we appeal to ordinary units, the right-hand side of this equation will be 
extremely small.  For instance, if only gravity acts upon the piston then: 
 

k

M
= 

g

B
, 

 
in which g means the acceleration of gravity, and one will have: 
 

(162)     
2a

a

ɺ
 = 

3g B

n
 

 
in that case.  However, since one has, in general (1): 
 

(163)     2u  < 2u , 
one will have: 

  
2

aɺ  ≤ 
a

n
 3 g B, 

 

  aɺ  ≤ 
3g B a

n a
. 

 
 If τ denotes the time it takes to traverse the ε*-surface once then the differential 
quotient aɺ  will have the same sign only in a fraction δτ of τ.  During that time, a will 
suffer a fluctuation ∆a, for which one will have the relation: 
 

(164)  
a

a

∆
 ≤ 

31 g B

n a
δτ . 

 
Obviously, the quantity on the right-hand side is extremely small, so we would be 
justified in assuming that a experiences no noteworthy changes.  Therefore, we can also 
drop the mean value symbol in (160) and write, more briefly: 
 

                                                
 (1) In general, for n arbitrary quantities, one will have: 
 

(u1 + u2 + … + un)
2 < n 2 2 2

1 2
)(

n
u u u+ + +⋯ . 

 
In order to prove that inequality, one develops the left-hand side according to the polynomial law and 

replaces each doubled product 2 ui uk with the larger sum 2 2

i k
u u+ . 
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(165)  k a = 2
3 L. 

 
 The energy generally also possesses a component that includes aɺ , but since it is equal 
to the nth part of the total kinetic energy, it can be neglected, and the energy can be 
regarded as a function of q, p, and a. 
 Now, when the force that acts upon the piston varies, from (165), a will also 
experience a change (1).  One can generate such a change in force by organic agencies, 
but we would not like to draw that possibility into the realm of our argument (2).  
However, still other cases are conceivable: It is possible that the gas that we have 
considered is coupled to a mechanical system whose influence is quite predominant in the 
combined system.  The complicated problem of treating a complex that is assembled in 
that way will simplify in this case by a kind of distribution of work.  In a first 
examination, we can infer the values that certain coordinates will assume as functions of 
time from the initial states of the influencing system and the mechanism of the influenced 
one, and we can do that independently of which initial state the influenced system 
possesses (3).  In the second case under consideration, the coordinates that were just 
determined will be treated as constants, and the motion of the influenced system will be 
treated by the principles of the first paragraph. 
 One can express that state of affairs by saying: Our system possesses coordinates that 
prove to be constant for thermal processes, but can be changed from the outside.  One 
calls such coordinates external coordinates or variable parameters of the system.  Thus, 
the volume a of a gas that is enclosed by a piston is an external coordinate. 
 We then now leave the way in which such a change is produced outside of view, and 
consider only the case in which the parameter a changes very slowly.  We imagine, e.g., a 
gas and suppose that the pressure that is exerted upon it varies gradually.  However, it is, 
in turn, necessary to assume that a potential energy exists between the piston and the 
molecule.  In fact, under these circumstances, nothing stands in the way of enclosing the 
q in the domain of variation from − ∞ to + ∞, so the space that is available to q will not 
change with a. 
 

§ 11.  Adiabatic processes. 
 

 The considerations of the previous paragraph make it understandable how the concept 
of external coordinates can be combined with our foundations.  We now set aside the 
specialization that we introduced and assume a system that possesses an external 
coordinate that varies by external agencies.  We demand that the energy should be a 
function of q, p, and a: 
(166)     ε = ε (q, p, q), 
 
and assume that in the example that was considered it would, in fact, be made plausible 
that: 

                                                
 (1) In order to exhibit it, one will require the energy equation, in addition to (165).  
 (2) H. Hertz, Mechanik, pp. 45.  
 (3) If one, e.g., atmospheric pressure k acts upon the piston then the respective a can be determined from 
(165).  The value of k depends upon the dynamics of the sea of air, so the particular initial state of the gases 
has an  infinitely small reaction on it. 
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 1. No couplings are prescribed between the q, p, and a (and also no condition 
equations). 
 2. The change in a is left to our whims. 
 3. The change in the q and p takes place according to equations (2) and (3). 
 
 If we let a be constant then we will have a mechanism of the kind that we considered 
in the first part of our investigation.  The changes in the q and p can be anticipated when 
one knows a, as long as ε is given as a function of the q and p.  If a is varied then a new 
functional dependency will appear between ε and q and p.  We can say: We go to a new 
mechanism.  We are then dealing with changes in the mechanism in the second part.  In 
that regard, it hardly needs to be remarked that the concept of mechanism possesses only 
a relative meaning.  If one regards a as a variable in the same way then one will be 
dealing with a new state manifold for the same mechanism.  However, it is convenient to 
appeal to the terminology that was just introduced. 
 An autonomous system always takes on new phases, but it will constantly keep the 
same ε.  ε can be changed by thermal effects, but ε (q, p) will still remain the same 
function.  A third kind of process is characterized by saying that the functional 
dependency between ε and p and q changes in such a way that the mechanism will be 
altered.  We must turn to the second part for that. 
 Thus, the mechanism shall be varied – i.e., an external coordinate a.  We ask what 
variation of V is linked to it.  That quantity must be changed for two reasons: 
 
 1. From (166), another ε will belong to the same q and p for a new choice of a.  
After a new choice of a, a phase for which ε was previously less than ε * can continue to 
satisfy that condition, and conversely.  Therefore, the same ε * will correspond to another 
V with a new choice of a. 
 
 2. The change in a is generally impossible, unless ε* itself is also given a new value.  
If we consider a change on these two grounds then we will write: 
 
(167)     V = V (a, ε *), 
 

(168) 
dV

da
 = 

V V

a a

ε
ε

∗

∗

∂ ∂ ∂+
∂ ∂ ∂

. 

 
We next seek to determine ∂V / ∂a. 

 P 

P′ 
δv 

ε*(a*) 

ε*(a* + δε*) 

 
Figure 5. 
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 With the original value a* of a, there will be a well-defined ε*-surface in whose 
interior all phases for which ε < ε* will lie.  Another ε*-surface will belong to the new 
value of a that might lie, e.g., inside the first one (Fig. 5).  If we understand δv to mean 
the distance between them then: 

(169)     δV = − do vδ∫ . 

How big is δv then? 
 Let P′ mean a point on the surface ε*(a* + δa*), and let P be the point on the surface 
ε*(a) that lies opposite to it.  If a = a* + δa* then the ε that belongs to P′ will be equal to 
ε*, by construction, so when the parameter a = a*, one will have, from (166): 
 

ε* − 
v

ε∂
∂

δε*. 

 
On the other hand, for a = a*, the ε that corresponds to P′ must likewise be equal to ε*, by 
construction, so for a = a*, εP′  will also be given by: 
 

ε* − 
v

ε∂
∂

δv. 

It follows from this that: 

(170)     δv = 
/

/

a

v

ε
ε

∂ ∂
∂ ∂

δa*, 

so, from (169): 

      
V

a

∂
∂

= − /

/

a
do

v

ε
ε

∂ ∂
∂ ∂∫ , 

or, from (18) and (19): 

(171)     
V

a

∂
∂

 = − 
V

a

ε
ε ∗

∂ ∂
∂ ∂

. 

 
 Secondly, the differential quotient ∂ε* / ∂a will be calculated.  We then give a small 
increment δa to a and ask what the associated change δε* in ε* would be.  We think of the 
variation δa as being broken into very many starting points that each bring about a 
change of da.  Each change da might last for a time interval that is small in comparison to 

the period of the system on the ε*-surface; on the other hand, the intervals between the 
individual changes da might be very large in comparison to the period.  The q and p will 

not change essentially during a process da; however, from (166), the energy ε will 

probably experience an increment of da ⋅⋅⋅⋅ ∂ε* / ∂a, and transport the system to a higher ε*-

surface.  In total, the increment δa will be linked with a change in energy of a
a

ε∂⋅
∂∑ d . 

 Here, one must understand that the arguments of the function are the phases over all 
possible energy surfaces.  However, infinitely-small, second-order errors will be 
introduced when each phase is replaced with the one on the original ε*-surface that 
corresponds to it.  Since the time interval between the individual da is large in 
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comparison to the period, all possible phases in the surface ε = ε* will occur as arguments 
∂ε / ∂a , and each of them according to its frequency in the total time.  One can then set: 
 

δε* = a
a

ε∂
∂∑ d , 

but that is: 

δε* = a
a

ε δ∂
∂

 

or (1): 

(172)     
a

ε ∗∂
∂

 = 
a

ε∂
∂

. 

 
Moreover, it follows from (168) and (170): 
 

(173)      
dV

da
 = 0. 

 
It is then impossible to arrive at other values of V by changing only the mechanism. 
 For this analysis, it was essential to assume that the domain of variation of the q and p 
is also the same for a varying path; i.e., that no couplings exist between the a, q, and p.  If 
such a coupling were present then it could happen that the surface that runs at a distance 

of δv = 
a v

ε ε∂ ∂
∂ ∂

 inside of ε = ε* contains phases that are no longer admissible for a = a* 

+ δa*.  One also now sees how it is necessary to consider the potential energy between 
molecules and the wall whenever one is given a molecular system that includes a wall.  
For example, in the case of ideal gases, one can introduce Cartesian coordinates if they 
are not considered.  A drop in the piston would then leave the ε*-surface essentially 
unchanged, except that only a very small fraction of it would cease to be admissible.  One 
would then have ∂V / ∂a = 0, which would not be compatible with (173) and (168), since, 
from experiment, ∂ε* / ∂a ≠ 0.  The contradiction is resolved as long as one assumes a 
potential energy that also becomes infinite for a finite penetration.  Moreover, the 
differential quotient ∂ε / ∂v that appears in (170) will become infinite at some places.  
One would do best in that case to appeal to the generalized coordinates that were 
introduced in the preceding paragraphs. 
 The changes that we are concerned with here, like the ones that were considered in § 
8, will be induced by the influencing system.  Thus, our entire approach to the proof will 
be based upon equation (166) essentially.  That will demand that the energy of the 
influencing system can be determined from q, p, and a with no hindsight of the past (cf., 
pp. 7).  Now, the external coordinates a of the influenced system are connected with 
certain external coordinates of the influencing system, and thus, a change in the 
mechanism of the influenced system, a change in the mechanism of the influenced 
system, and thus, with a change in the energy components that are assigned to the 
observable coordinates in the influencing system, with mechanical work.  On the other 
                                                
 (1) For the complete analysis, cf., J. W. Gibbs, pp. 153 (158), et seq.  
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hand, no energy can be transferred in the manner that was depicted in § 8 during the 
process, since otherwise equation (166) would not be valid.  Physically, that means that 
the external system loses no heat energy, but only mechanical energy, or that no heat is 
introduced immediately into the system in question.  Such processes are called adiabatic, 
and one can thus express (173) as: The quantity V remains constant under adiabatic 
processes. 
 

§ 12.  Reversible processes. 
 

 According to Einstein (1), the general thermo-mechanical process is composed of an 
isopycnic one and an adiabatic one.  The increase dε* of the energy will be equal to the 
sum of the thermal energy dQ that is given by external systems and the mechanical 
energy – dA that they contribute.  Therefore: 
 
      dε* = dQ – dA 
or 
(174)     dQ = dε* + dA. 
Now, one will have the equations: 

(155)     
dQ

t
 = d ln V, 

 

(176)     
dQ
∫
t

 = ln V + const. 

 
In the first case, dQ = 0, and that will contain our statement in (173).  In the second case, 
dA = 0, and our assertion will be a consequence of (174) and (144) (2).  Thus, if the 
general mechanical-thermal process can be composed of adiabatic and isopycnic ones 
then one will generally have: 

(177)    
dQ
∫
t

 = 
d dAε ∗ +
∫

t
 = S + const. 

 
(178)     S = ln V (3). 
 
The quantity S = ln V can then be referred to as entropy. 
 Due to the invertibility of the mechanical equations, the adiabatic influence of a 
system must prove to be reversible.  From (173), the entropy will be preserved by it.  An 
isopycnic change of state will then be reversible when the influencing system possesses 
almost the same temperature as the influenced one.  From (177), the total entropy will not 
be changed by such a process.  One can then deduce: In a closed system the entropy is 
conserved by reversible processes. 
 
 

                                                
 (1) A. Einstein, I, pp. 429, et seq.; II, pp. 178, et seq.  
 (2) A. Einstein, II, pp. 180.  
 (3) J. W. Gibbs, formula 485.  
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§ 13.  Irreversible processes. 
 

 Let two systems Σ1 and Σ2 be given with different temperatures 1′t  and 2′t , resp., 

whose energies 1ε ′ , 2ε ′ , resp., belong to functions 1V′  and 2V′ , resp.  One can then find a 

pair of values1ε ′′ , 2ε ′′  that are different from 1ε ′ , 2ε ′ , resp., for which one has: 

 
(179)     1ε ′′  + 2ε ′′  = 1ε ′ + 2ε ′ ,  

 
(180)     t1 1( )ε ′′  = t2 2( )ε ′′ . 

 
From (61), (63), (65), among all of the pairs of values that satisfy (179), the pair 1ε ′′ , 2ε ′′  
will give V1(ε1) V2(ε2) its greatest value.  Thus: 
 
(181)    1 1 2 2( ) ( )V Vε ε′′ ′′  > 1 1 2 2( ) ( )V Vε ε′ ′ . 

 
However, from what we said in § 5 and (180), the bodies will take on the energies 1ε ′′  and 

2ε ′′  after the resulting contact.  Thus, if S′ denotes the total entropy before the contact and 

S″, the total entropy after it then, due to (181) and (178), one will have: 
 
(182)     S″  > S′. 
 
Contact between two bodies of different temperatures will lead to an increase in the 
entropy. 
 However, it follows from this that such processes are irreversible, and since they 
alone among the purely thermal processes are irreversible, we can further state: Entropy 
increases for irreversible thermal processes (1). 
 If we employ the fact that, the state of the system-pair will be more probable after 
contact in the proof then we will have introduced no new mechanical axiom, but merely 
inferred a consequence from the concept of probability.  The physical assumptions that 
were used up to now were based upon only the fact that all phases in the ε*-surface would 
always be traversed again.  However, the fact that the system-pair will be found with 
greatest probability in the most probable phase by a sudden break at a random point in 
time follows from an axiom that precedes any mechanics, and belongs to merely the 
theory of probability itself.  Thus, one cannot speak of a continuous change in the 
quantity S = ln V.  That function is not defined at all, in a certain sense, for a well-defined 
time point, but only for a time interval in which the ε*-surface can be traversed several 
times.  A new ε*-surface will be traversed by a circulation after contact, and ln V1 + ln V2 
will have a value that is larger than before by a finite amount. 

                                                
 (1) Despite the invertibility of all mechanical processes, it is no contradiction to speak of irreversibility 
in a mechanical theory.  When two systems that were previously separate are combined, one will artificially 
generate a lower value on the curve V1 (ε – α) V2 (α), which can hardly ever be separated in the natural 
course of two permanently-coupled systems.  Cf., J. W. Gibbs, pp. 150 (153).  P. and T. Ehrenfest, 
Mathematisch-naturwissenschaftl. Blätter, no. 11 and 12, 1906; Phys. Zeit. (1907), 311, et seq. 
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 In order to make the concept of probability more precise, we can also think of a 
virtual ensemble of N system-pairs.  They might possess all possible positions on the 

curve f(α) before contact.  After contact, and the resulting separation, the majority of 
them will be found on the summit of the curve f(α).  In other words: The phase that is 
most probable in the temporal ensemble of the individual system-pairs will be assumed 
by the majority of them.  However, not only does each phase of the system-pair possess a 
probability inside of its temporal ensemble, but the distribution of the N system-pairs 

over the phases will possess one, as well.  Thus, the concept of probability will be 
regarded in a well-defined sense that was first given by Boltzmann and applied in a 
completely different way from what we did here.  When one, like Einstein (1), assumes 
that more probable distributions will follow more improbable ones, one will thus 
introduce a special assumption that is based upon no sort of evidence and is not at all 
required by the proof.  Such an assumption was generally made by Gibbs (2), and seems 
to me to be applicable, despite the objections that were raised against it (3). 
 Whereas the representation of entropy that was chosen here would change 
discontinuously under the separation, the Gibbs theory led to a continuous change in 
entropy.  The fact that the concept of virtual ensembles is physically justified was shown 
in § 5.  By contrast, the definition of entropy that is based upon them is linked with 
another difficulty.  In order to verify the characteristic property [formula (177)] of the 
expression for entropy that is presented in that way, one must define the temperature to 
be the modulus of a canonical ensemble.  However, such a definition does not need to 
possess any physical meaning.  Therefore, it seems to me, at least up to now, that the 
definition of entropy that was given here, which likewise goes back to Gibbs and 
deviates from the Einstein definition only inessentially, is preferable. 
 
 Heidelberg, 24 May. 
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 (1) A. Einstein, II, pp. 184.  In addition, the use of the canonical ensemble complicates the physical 
interpretation.  The theory of probability was used in a different sense – namely, the one here – in a second 
derivation by Einstein, III, pp. 326. 
 (2) J. W. Gibbs, pp. 150 (pp. 153).  
 (3) E. Zermelo, Jahresberichte der deutschen Mathematiker-Vereinigung 15 (1906), pp. 238.  T and P. 
Ehrenfest, Wiener Ber. 115 (1906).  


