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 The conditions for equilibrium of an elastic rod that is very thin in comparison to its 
lengths upon one end of which some forces act, while the other end remains fixed were 
first presented by Kirchhoff (** ).  In that article, Kirchhoff had remarked that those 
conditions possess the same form as the equations that define the motion of a rigid body 
that rotates around a fixed point.  That agreement between the two different problems 
thus seems to offer not only the possibility of directly evaluating the explicit formulas 
that were already presented for the various cases of rotation in order to ascertain the 
equilibrium state of the elastic rod, but also comparing, step-by-step, each process in the 
rotation of bodies with the corresponding one for the deformation of a rod and perhaps 
conversely arriving at new questions to ask about the former from the reciprocal 
relationship between the two problems.  Now, an investigation of the equilibrium of a 
general elastic rod might not connect up with the problem of rotation, since the known 
works on that subject (*** ) were concerned with a wire that was equally-flexible in all 
directions.  Therefore, I have addressed the question more closely and indeed initially 
under the assumption that only a force-couple acts upon the free end of the rod.  The 
analogue of that can be found in the rotation of a body about its center of mass, which is a 
type of motion that can be treated in a sufficiently-clear way by the coupling of the 

                                                
 (*) An excerpt of this study appeared in the Sitzungsberichten der bayer. Akad. d. Wiss. (1883), 82-
110. 
 (** ) “Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes,” Crelle’s 
J., Bd. 56, pp. 285-313. 
 (*** )  Among them, one must, above all, include the investigations of the “elastic line” by Bernoulli 
and Euler [De curvis elasticis, Lausanne and Geneva, 1744, 4th ed., and the treatises of Binet [Comptes 
rendus, 18, pp. 1115-1119], Wantzel [ibid., pp. 1197-1201], et al.  Cf., the bibliography in Navier, De la 
résistance des corps solides, XII-XXII, Paris, Dunod, 1874, 8th ed. 
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analytical work of Jacobi (*) with the known intuitions of Poinsot (** ), as I sought to 
show in my doctoral dissertation (*** ). 
 The investigation splits into essentially two parts: First the expressions for the 
magnitudes of the bending and twisting in each individual cross-section are examined.  In 
the case of motion, those quantities will correspond to the angular velocities around the 
three principal axes of the body through the center of mass.  Now, just as one can 
construct two cones from the latter, according to Poinsot, and one can arrive at a clear 
picture of the rotation from its successive rolling, so can two skew surfaces be generated 
by the quantities of bending and twisting that will make the transition from the straight 
and untwisted elastic rod to its bent and twisted equilibrium state more meaningful by 
their successive bending.  Everything that one does with angular velocities (Poinsot’s 
cone, resp.) can be carried over to the deformation quantities of bending and twisting (the 
skew surfaces, resp.).  By contrast, questions that relate to the form of the bent rod cannot 
be answered by considering the rotational problem.  The second half of the treatise is 
concerned with them; in particular, with the presentation of the equations for the bent 
elastic centerline, with the different types of the latter, and with special cases of the 
problem. 
 The results of the study will be found to be discussed more precisely in the individual 
paragraphs.  It might only be emphasized that the present problem of the bending and 
twisting of an elastic rod – for the general case, as well as for the special case – is much 
more extensive than that of motion, mainly on the grounds that the two resistances of the 
rod to bending are likewise individually different from the resistance to twisting, like 
bending and twisting themselves, while the three principal moments of inertia of the body 
that correspond to those resistances to deformation are quantities of the same type.  
Whereas for the latter, it would suffice to enter into a single arrangement of their 
magnitudes, in the present problem, the resistance to twisting must be distinguished from 
the three possibilities for the three resistances, in relation to whether it is numerically 
smallest, intermediate, or largest. 
 
 

Defining the problem 
 

1. 
 

 We imagine a straight and untwisted elastic rod whose cross-section is very thin (viz., 
infinitely thin) in comparison to the length L of the rod – i.e., a wire – hold the one end 
fixed and let a force-couple of intensity l whose axis possesses an arbitrary direction act 
upon the cross-section of the free end.  We then bend the straight elastic centerline or axis 
of the rod (i.e., the connecting line of the centers of mass of the individual cross-sections) 
into a curve, and at the same time, rotate the cross-section of each point P on the 
centerline around the tangent to the latter line at P: The rod will appear to be bent and 
twisted. 

                                                
 (*) Sur la rotation d’un corps, Op. II, pp. 139-197.  
 (** ) “Théorie nouvelle de la rotation des corps,” Liouville’s J. (1851), pp. 9-129, 289-336.  
 (*** ) “Das Rollen einer Flächen 2. Grades auf einer invariablen Ebene,” Munich, 1880 or Prog. der 
Kreisrealsch. Munich, 1881.  
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 If one chooses the tangent to be the Z′-axis and the principal axes of inertia of the 
cross-section to be the X′, Y′-axes then X′, Y′, Z′ will define the rectangular coordinate 
system of the three principle axes of the rod.  With them, one can think of the resistance 
by which the rod opposes the intended deformation as a principal resistance to bending in 
the case of X′, Y′ and a principal resistance to twisting in the case of Z′. 
 Before the action of the force-couple l, the Z′-axes will all fall along the straight rod 
axis and the X′, Y′-axes will be mutually parallel.  After deformation, the positions of the 
three principal axes will become increasingly different, and thus dependent upon the arc-
length s, as one increases s from its starting point P in the cross-section at the free end.  
They will be known as soon as one is given their inclination cosines: 
 

a, b, c ; a′, b′, c′ ; a″, b″, c″ 
 
from the three fixed coordinates: 

X, Y, Z, 
 
resp., of a system that is congruent to X′, Y′, Z′ as function of s. 
 Now, according to Kirchhoff, the determination of the a, b, c initially leads to the 
same equations that appear in the rotation of a rigid body around its center of mass O, 
namely, to Euler’s equations (*): 
 

  A ⋅⋅⋅⋅ dp

ds
 + (B – C) q r = 0, 

(1)  B ⋅⋅⋅⋅ dq

ds
 + (C – A) r p = 0, 

  C ⋅⋅⋅⋅ dc

ds
 + (A – B) p q = 0. 

 
 One therefore has the correspondence: 
 
    The three principal axes of inertia X′, Y′, 
Z′ through the center of mass O of the 
rotating body 

    The three principal axes X′, Y′ (bending 
and Z′ (twisting) through a point P of the 
elastic centerline of the rod 
 

    The principal moments of inertia A, B, C 
of the body about X′, Y′, Z′ 

    The principal moments of resistance A, 
B, and C of the rod to bending around X′, Y′ 
and to twisting around Z′ 
 

    The force-couple l that produces motion     The force-couple l that acts upon cross-
section of the free end 

                                                
 (*) We learn about that from the book by Clebsch: Theorie der Elasticität fester Körper, 1862, pp. 211.  
Except for different notations for the quantities A, B, C, p, q, r, our formulas will differ from those of 
Clebsch by the fact that we shall always have to set ds, instead of – ds, since we count the arc length s from 
the free end, while Clebsch thinks of it as being measured from the fixed end.  The force-couple is thought 
to rotate to the right. 
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        The advance ds along time s (s is 
counted from the starting time s0 = 0) 

    The advance ds along the arc length s of 
the centerline (s is measured from the free 
end s0 = 0) 
 

    The angular velocity components p, q, r 
about the three principal axes X′, Y′, Z′ at 
the time s 

    The curvature components (*) p, q for 
bending around X′, Y′ and r for the twisting 
around Z′ at the arc length s 
 

    The components AP, Bq, Cr of the 
instantaneous exciting force-couple around 
X′, Y′, Z′ that are precisely suitable to 
produce the angular velocities p, q, r 
around those axes 
 

  The components Ap, Bq, Cr of the force-
couple at a point P of the elastic centerline 
that is produced by the applied couple l, 
which indicates the stress at that point, so it 
will be precisely suitable to generate the 
curvature components p, q, r themselves 
 

 
 It follows from the analogy between the components of the angular velocity and the 
curvature that the latter components can be composed and decomposed in exactly the 
same way as the former.  For the present problem, that will mean: 
 

    Θ = 2 2 2p q r+ +  is the magnitude of 

the angular velocity at the time s along the 
instantaneous rotational axis Θ 

    Θ = 2 2 2p q r+ +  is the magnitude of 

the curvature; i.e., of the total deformation 
at a point at an arc length of s along the 
instantaneous curvature axis Θ 
 

    l = 2 2 2 2 2 2A p B q C r+ +  is the 

magnitude  of the exciting force-couple at 
the time s along the instantaneous force-
couple axis l 
 

    l = 2 2 2 2 2 2A p B q C r+ +  is the 

magnitude  of the stress that arises at the 
arc length s along the instantaneous stress 
axis l 
 

   Θ′ = 2 2p q+  is the component of the 

instantaneous angular velocity Θ relative to 
the principal plane X′ Y′ at time s 
 

  Θ′ = 2 2p q+  is the component of the 

instantaneous curvature Θ relative to the 
plane X′ Y′ of the cross-section; i.e., the 
magnitude of pure bending at the distance s 
 

 
 If one has solved Euler’s differential equations then the relations: 
 
(2)  da = (br – cq) ⋅⋅⋅⋅ ds,      da′ = (b′ r – c′ q) ⋅⋅⋅⋅ ds,      da″ = (b″ r – c″ q) ⋅⋅⋅⋅ ds, etc. 
 

                                                
 (*) Here, “curvature” stands for “deformation.”  The usual concept of “curvature” in the theory of 
curves is replaced with “bending” here.  Cf., Thomson and Tait, Handbuch der theor. Physik, no. 593, et 
seq., 1874. 
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will serve to determine the nine inclination cosines a, b, c, …, c″.  Moreover, the latter 
are connected with each other by way of the conditions: 
 
(3)   a = b′c″ – b″c′,      a′ = b″ c – b c″,      a″ = b c′ – b′ c, etc., 
 
which arise from an orthogonal substitution. 
 The tangent Z′ to a point P of the elastic centerline defines angles with the fixed 
coordinate axes X, Y, Z whose cosines are c, c′, c″, resp.  One will then have the 
differential equations: 
 
(4)    dx = c ⋅⋅⋅⋅ ds, dy = c′ ⋅⋅⋅⋅ ds, dz = c″ ⋅⋅⋅⋅ ds, 
 
for the coordinates x, y, z of the point P relative to that system. 
 If one integrates them then one will get the coordinates x, y, z as functions of s ; i.e., 
the equations of the bent centerline.  However, if the quantities p, q, r of the bending and 
twisting are known for a point P of the latter, and furthermore, the positions of the three 
principal axes X′, Y′, Z′ that go through it will be given in terms of a fixed coordinate 
system X, Y, Z, and if each coordinate of P relative to that system is expressed in terms of 
s, moreover, then the equilibrium state of the elastic rod can be considered to be 
essentially known. 
 
 

Curvature ratios of the individual cross-sections 
 

2. 
 

 One can derive the following integral equations from Euler’s equations, upon 
multiplying by Ap, Bq, Cr ; a, b, c ; a′, …, c″ and adding each time, while considering the 
relation (2): 
 
(5)  A2 p2 + B2 q2 + C2 r2 = const. = l 2, 
 

(6)    
1

2

2 2 2
3 1 2

const. ,

const. ,

const. .

Apa Bqb Crc l

Apa Bqb Crc l

Apa Bqb Crc l l l l

 + + = =
 ′ ′ ′+ + = =
 ′′ ′′ ′′+ + = = = − −

 

 
 They imply the theorem for rotation: 
 
 The force-couple l that acts upon the body remains constant in intensity and location 
during the entire duration of the motion.  Its plane is an invariable plane and its axis is 
an invariable axis in space. 
 
 When this theorem is adapted to the rod, it reads: 
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 The stress that appears in each cross-section as a result of the force-couple l that acts 
on the cross-section at the free end is represented by a force-couple that possesses a 
constant magnitude and position, along with l.  The plane and axis of the latter will then 
possess an invariable position and direction in space. 
 
 If one multiplies Euler equations by p, q, r, resp., and adds them then one will get: 
 
(7)     A p2 + B q2 + C r2 = const. = h, 
 
which can also be written: 

(8)     Θ ⋅⋅⋅⋅ cos (Θ l) = const. = 
h

l
. 

 For the rotational problem, that means: 
 
 The components of the instantaneous angular velocity Θ along the invariable axis of 
the applied force-couple l remains constant for the entire duration of the motion. 
 
Direct translation will imply that: 
 
 The components of the curvature Θ of a cross-section along the invariable direction 
of the stress l in it is constant for all cross-sections. 
 
 Naturally, it cannot be concluded from this that the projection of the elastic centerline 
onto the invariable plane that is perpendicular to the l axis is a circle.  The curvature 
component h / l that acts around l is composed of bending and twisting, so it is not the 
magnitude of a pure bending.  Since the bending axis always falls in the cross-section 
through a point along the centerline, bends can also be composed and decomposed only 
around axes that lie in the cross-section, and are thus perpendicular to the arc length ds, 
using the method of projection.  If one would like to know the magnitude of a pure 
bending that takes place along an arbitrary line then a simple multiplication by the cosine 
of the angle of inclination would not suffice, but one would have to successively apply 
the two easily-proved theorems: 
 
 The bending of the projection of a space curve onto a plane that subtends an angle of 
α with the osculating plane is equal to the bending of the space curve, multiplied by 
cosα  or sec2 α, according to whether the plane is parallel to the arc-length element ds 
or the principal normal, resp., at the curve point considered. 
 
 If one regards the quantities p, q, r of the angular velocity of the rotating body, which 
vary with time s, as the coordinates of a point P relative to the three principal axes X′, Y′, 
Z′, when one carries the instantaneous rotational axis of the angular velocity Θ of rotation 
as a line segment from the center of mass O in the direction of each instantaneous 
rotational axis, then equations (5) and (7) will represent two ellipsoids, the latter of which 
is Poinsot’s central ellipsoid.  Its axes are identical to the three principal axes of inertia, 
their lengths are proportional to the square roots of the principal moments of inertia A, B, 
C.  The fourth-order space curve that is defined by the simultaneous existence of the 
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aforementioned equations is Poinsot’s polhode and the second-degree cone that implies, 
viz.: 
 
(9)    A p2 (Ah – l 2) + Bq2 (Bh – l 2) + Cr2 (Ch – l 2) = 0 
 
is the cone of the polhode. 
 If one likewise constructs the momentary curvature axis Θ from the curvature 
components p, q, r, which vary with arc length s, then all of the axes will be parallel to 
the generators of a second-degree cone (9) and their totality will define a skew surface, 
namely, the surface of the polhode (*).  If one carries the magnitude of the curvature Θ 
along each axis Θ as a line segment from the point P of the centerline then the end points 
of all such lines lie along a transcendental curve, namely, the polhode (*).  See paragraph 
5 on that topic. 
  
 

3. 
 

 The Poinsot cone (9) of the polhode is always real, so the three differences that 
appear in its equation cannot all possess the same signs.  If we assume that A > B > C, 
which is allowed by the fact that the moments of inertia all have the same type, then it 
will follow that: 

Ah – l2 > 0, Ch – l2 < 0, Bh – l2 ≠ 0 ; 
i.e.: 
 
 The cone of the polhode is never described around the axis of the middle moment of 
inertia, but only around that of the largest or smallest moments. 
 
 Naturally, one cannot take A > B > C arbitrarily for the rod, because the resistance of 
the rod to twisting depends upon other influences, just as one of the resistances to 
bending (** ) does.  One must then distinguish whether the former is the smallest, middle, 
or largest of the three principal resistances.  For that reason, we assemble: 
 

A > B > C ; B > C > A ; C > A > B. 
 
 Since the cone (9) is also always real here, the first of these cases will imply that: 
 

Ah – l2 > 0, Ch – l2 < 0, Bh – l2 ≠ 0 , 
 

as above, and analogously for the other two assumptions.  That means: 
 
 The second-degree cone whose generators are parallel to the curvature axes in the 
rest position of the rod never seems to be described around the axis of the numerically 

                                                
 (*) While preserving Poinsot’s terminology.  
 (** ) Clebsch, loc. cit., pp. 196.  
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middle of the three principal resistances, but only around the largest or smallest of the 
resistances. 
 
 If one constructs the axis of the force-couple l that acts momentarily relative to the 
body, which is assumed to be at rest, from the components Ap, Bq, Cr in the same way 
that one constructs the instantaneous rotational axis Θ from p, q, r then one will once 
more get a second-degree cone, namely, the cone of the force-couple axes.  Once again, it 
is only described around the principal axes of the largest or smallest moments of inertia, 
which is why one suitably assumes that the initial position of the axis of the applied 
couple is in the principal plane of the central ellipsoid that is constructed from the 
principal axes of largest and smallest moments.  The initial position of the instantaneous 
axis of rotation then falls in that plane. 
 If one constructs the axis of the stress l that appear at each point P of the undeformed 
elastic centerline of the rod from the stress components Ap, Bq, Cr then they will once 
more be parallel to the generators of a second-degree cone, and their totality will again 
define a skew surface, namely, the skew surface of the force-couple axes.  Since the cone 
that was referred to is always described around the principal axis of the largest or 
smallest principal resistance, the axis of the force-couple l that acts upon the cross-section 
at the free end can be, at best, assumed to be in plane that is defined by those two axes.  
For example, it will fall in the free cross-section when the resistance to torsion is 
numerically the middle of the three resistances. 
 The inequalities that are implied by establishing the orders of magnitude A > B > C, 
namely: 

Ah – l2 > 0, Ch – l2 < 0, Bh – l2 ≠ 0 , 
 

give one information about the position of the second-order cone whose generators are 
defined by the instantaneous rotational axes (are parallel to the instantaneous curvature 
axes, resp.).  Now, the same thing can also be explained differently: For the rotation, they 
mean: 
 
 The distance from the invariable plane to the midpoint of the central ellipsoid can 
never be larger than the largest semi-axis of the ellipsoid nor smaller than the smallest 
one, but only larger or smaller than the middle semi-axis. 
 
One can also accept a similar interpretation for the problem of the rod when one 
describes the ellipsoid (7) that corresponds to the central ellipsoid for a point P of the 
elastic centerline.  However, one can explain the inequalities in a sense that is more 
suited to the essence of elastic rods when one writes: 
 

Ap

l
> 

/p h

l
, etc., 

h Ap

l l
⋅ > p, etc., 

instead of Ah – l2 > 0, etc. 
 Two theorems follow from a consideration of the relation (8): 
 
 The ratios of the stress components along the principal axis of largest, smallest, 
middle resistance to the unvarying stress l along the force-couple axis is greater, smaller, 
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greater or smaller, resp., for all points than the ratio of the curvature components that 
are estimated along that same axis. 
 
 The projection of the constant curvature h / l that appears in the invariable direction 
of the stress axes onto the axis of greatest, smallest, middle resistance will be greater, 
smaller, greater or smaller, resp., than the curvature component that comes to light 
along it. 
 
 Since the cone of the instantaneous rotational axes seems to be described around the 
axis Z′ of the principal moment of inertia C for Bh – l 2 > 0, around the X′-axis of the 
moment A for Bh – l 2 < 0, the component r can never be zero in the former case, and the 
component p can never be zero in the latter.  That must be the case, since Euler’s 
equations allow one to represent p, q, r as being proportional to sin am u, cos am u, ∆ am 
u (u = n ⋅⋅⋅⋅ s, n constant), r (p, resp.) must be proportional to ∆ am u in those cases [†].  
Since the aforementioned initial position of the force-couple axis falls in the X′ Z′-plane, 
moreover, one must have B q0 = 0, so q0 = 0 ; i.e., q must be proportional to sin am u, and 
indeed Bh – l 2 ≠ 0, for both cases.  By substituting the elliptic functions in equations (1), 
(5), and (7), values for p, q, r will easily follow that are found in Jacobi’s paper “Sur la 
rotation.”  Moreover, one can combine the two distinguished cases Bh – l 2 < 0 and Bh – l 
2 > 0 into a single one by assuming the sequence A > B > C for Bh – l 2 < 0 and A < B < C 
for Bh – l 2 > 0.  Of course, two different central ellipsoids will be determined in that 
way.  If one would like to assume A > B > C, and thus choose the first central ellipsoid, 
then under the transition from Bh – l 2 < 0 to Bh – l 2 > 0, one would have to switch p and 
r, A and C, X′ and Z′ in Jacobi’s formulas. 
 Since entirely the same considerations relative to the cone whose generators are 
parallel to the instantaneous curvature axes pertain to the problem of the rod, only 
Jacobi’s expressions for p, q, r when A > B > C need to be written down.  One will get 
the formulas for B > C > A, C > A > B by cyclically permuting the quantities A, B, C and 
p, q, r.  If we choose the axis to be that of the force-couple that acts upon the cross-
section of the free end s = 0 in the quadrants that are defined by the positive halves of the 
principal axes of largest and smallest resistances (which does not coincide with the initial 
position that Jacobi chose for the rotation, moreover) then p, q, r will be expressed as 
follows: 
 
 I. A > B > C. 1. Bh – l2 > 0. 
 

  p = 
2

( )

l Ch

A A C

−
−

 ⋅⋅⋅⋅ cos am u = 
l

A
sin ϕ0 ⋅⋅⋅⋅ cos am u , 

 

  q = 
2

( )

l Ch

B B C

−
−

 ⋅⋅⋅⋅ sin am u =
( )

( )

l A A C

A B B C

−⋅
−

 sin ϕ0 ⋅⋅⋅⋅ sin am u , 

  

                                                
 [†] Translator’s note: The notation “am” refers to elliptic functions, as will become apparent shortly. 
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  r = 
2

( )

Ah l

C A C

−
−

 ⋅⋅⋅⋅ ∆ am u =
l

C
 cos ϕ0 ⋅⋅⋅⋅ ∆ am u . 

 
  2. Bh – l 2 < 0. 
 

  p = 
2

( )

l Ch

A A C

−
−

 ⋅⋅⋅⋅ ∆ am u =
l

C
 cos ϕ0 ⋅⋅⋅⋅ ∆ am u , 

 

  q = 
2

( )

Ah l

B A B

−
−

 ⋅⋅⋅⋅ sin am u =
( )

( )

l C A C

C B A B

−⋅
−

 sin ϕ0 ⋅⋅⋅⋅ sin am u , 

  

  r = 
2

( )

Ah l

C A C

−
−

 ⋅⋅⋅⋅ cos am u = 
l

C
cos ϕ0 ⋅⋅⋅⋅ cos am u . 

 
II. B > C > A. 1. Ch – l 2 > 0. 
 

  p = 
2

( )

Bh l

A B A

−
−

 ⋅⋅⋅⋅ ∆ am u =
l

A
 cos ϕ0 ⋅⋅⋅⋅ ∆ am u , 

 

  q = 
2

( )

l Ah

B B A

−
−

 ⋅⋅⋅⋅ cos am u = 
l

B
 sin ϕ0 ⋅⋅⋅⋅ cos am u , 

  

  r = 
2

( )

l Ah

C C A

−
−

 ⋅⋅⋅⋅ sin am u = 
( )

( )

l B B A

B C C A

−⋅
−

sin ϕ0 ⋅⋅⋅⋅ sin am u . 

(10) 
  2. Ch – l 2 < 0. 
 

  p = 
2

( )

Bh l

A B A

−
−

 ⋅⋅⋅⋅ cos am u =
l

A
 cos ϕ0 ⋅⋅⋅⋅ cos am u , 

 

  q = 
2

( )

l Ah

B B A

−
−

 ⋅⋅⋅⋅ ∆ am u = 
l

B
 sin ϕ0 ⋅⋅⋅⋅ ∆ am u , 

  

  r = 
2

( )

Bh l

C B C

−
−

 ⋅⋅⋅⋅ sin am u = 
( )

( )

l A B A

A C B C

−⋅
−

cos ϕ0 ⋅⋅⋅⋅ sin am u . 

 
III. C > A > B.  1. Ah – l 2 > 0. 
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  p = 
2

( )

l Bh

A A B

−
−

 ⋅⋅⋅⋅ sin am u = 
( )

( )

l A B A

A C B C

−⋅
−

sin ϕ0 ⋅⋅⋅⋅ sin am u , 

 

  q = 
2

( )

Ch l

B C B

−
−

 ⋅⋅⋅⋅ ∆ am u = 
l

B
 cos ϕ0 ⋅⋅⋅⋅ ∆ am u , 

  

  r = 
2

( )

l Bh

C C B

−
−

 ⋅⋅⋅⋅ cos am u = 
l

C
sin ϕ0 ⋅⋅⋅⋅ cos am u . 

 
  2. Ah – l 2 > 0. 
 

  p = 
2

( )

Ch l

A C A

−
−

 ⋅⋅⋅⋅ sin am u = 
( )

( )

l B C B

B A C A

−⋅
−

cos ϕ0 ⋅⋅⋅⋅ sin am u , 

 

  q = 
2

( )

Ch l

B C B

−
−

 ⋅⋅⋅⋅  cos am u = 
l

B
 cos ϕ0 ⋅⋅⋅⋅ cos am u , 

  

  r = 
2

( )

l Bh

C C B

−
−

 ⋅⋅⋅⋅ ∆ am u = 
l

C
sin ϕ0 ⋅⋅⋅⋅ ∆ am u . 

 
 The modulus κ and the constant n in u = n ⋅⋅⋅⋅ s are: 
 
I. A > B > C. 1. Bh – l 2 > 0. 
 

  κ = 
2

2

( )( )

( )( )

A B l Ch

B C Ah l

− −
− −

 = 
( )

( )

C A B

A B C

−
−

tan ϕ0 , 

 

  n =
2( )( )B C Ah l

ABC

− −
 = 

1 ( )( )B C A B

C A B

− −⋅ cos ϕ0 . 

 
 2. Bh – l 2 < 0. 
 

  κ = 
2

2

( )( )

( )( )

B C Ah l

A B l Ch

− −
− −

 = 
( )

( )

A B C

C A B

−
−

cot ϕ0 , 

 

  n =
2( )( )A B l Ch

ABC

− −
 = 

1 ( )( )A B B C

A BC

− −⋅ sin ϕ0 . 
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 In this, ϕ0 means the angle that the axis of the applied couple, which certainly falls in 
the plane of the principal axes of largest and smallest resistances, makes with the 
principal axis of smallest resistance.  For A > B > C and Bh – l 2 > 0, one will then have 
Bq0 = 0, Ap0 = l sin ϕ0, Cr0 = l cos ϕ0 for the cross-section at the free end, and as a result 
of equations (5), (7): 
 

Ah – l 2 = 
2l

C
(A – C) cos2 ϕ0 ,  l 2 – Ch = 

2l

A
(A – C) sin2 ϕ0 . 

 
 If one generally takes the angles between the force-couple axis and the three principal 
axes X′, Y′, Z′ (µ, ν, ρ, resp.) then since it will follow from (5), (7) that: 
 

Bh – l 2 = 2
0Ap (A – B) – 2

0Cp (B – C) = cos2 µ 
A B

A

− − cos2 ρ ⋅⋅⋅⋅ B C

C

−
, 

 
instead of: 

Bh – l 2 ≠ 0, 
one can write: 

cos

cos

µ
ρ

 ≠ 
( )

( )

A B C

C A B

−
−

. 

 
 The direction of the force-couple axis will then determine whether one has Bh – l 2 > 
0 or Bh – l 2 < 0. 
 
 If that direction lies in one of the two planes that go through the principal axis Y′ of 
the middle bending and possess the equation: 
 

x

y

′
′
= 

( )

( )

A B C

C A B

−±
−

 

 
then one will have Bh – l 2 = 0 and one will enter into a special case (cf., § 10). 
 
The same arguments will apply to the other five conventions. 
 
 

4. 
 

 It first follows from the equations for p, q, r that the latter are generally periodic in u 
with period 4K, up to sign, but they will also assume the same values for 2K ± u, such 
that the absolute values of the bending and twisting only need to be computed for a piece 
of the rod whose length is established by the values of the parameters u and K, and is 
therefore K / n.  Depending upon which of the six conventions above one chooses, the 
curvature of the elastic rod will yield different peculiarities.  One can see the type and 



Hess – The bending and twisting of an infinitely-thin elastic rod 13 

manner of their alteration by means of the easily-understood abbreviations in the 
following tables, which can be exhibited for A > B > C, Bh – l 2 > 0 and Bh – l 2 < 0: 
 
 
 u = 0 

 
< K = K < 2K = 2K < 3K = 3K < 4K = 4K 

1. + pmax + p 0 − p − pmax − p 0 + p + pmax 
 0 + q + qmax + q 0 − q − qmax − q 0 
 + rmax + r + rmin + r + rmax + r + rmin + r 

 
+ rmax 

2. + pmax + p + pmin + p + pmax + p + pmin + p + pmax 
 0 + q + qmax + q 0 − q − qmax − q 0 
 rmax + r 0 − r − rmax − r 0 + r + rmax 
 
 Other tables are true for the other four conventions.  One sees from them that: 
 
 If the resistance of the rod to torsion is the middle (II) of the three principal 
resistances then the twisting of the rod cannot result continually in the same sense, but 
there will necessarily exist cross-sections such that the rod seems to have been twisted in 
the opposite sense on their two sides.  Those cross-section themselves will experience no 
rotation in their planes, and for all other cross-sections that lie at equal distances to the 
left or right of them, the absolute value of the twisting will be the same. 
 If the resistance to torsion is the smallest (I) or largest (III) of the three principal 
resistances then the sense of the torsion can never change in one of the two sub-cases [I.1 
and III.2 (*)]: All cross-sections of the rod seem to have been rotated in the same sense, 
and the magnitude of the torsion will alternate between a minimum and a maximum. 
 By contrast, in the other two sub-cases (I.2 and III.1), it is the direction of the twisting 
that will again alternate. 
 
 Similar theorems are true for each component of bending.  If a resistance to bending 
is numerically the middle value of the three resistances then the sense of the bending 
along its axis will always alternate through 0, since wherever the bending component is 
zero, the principal plane through the critical axis and the torsion axis will be the 
osculating plane of the elastic centerline.  If a resistance to bending is numerically the 
smallest or the largest resistance then the sense of the bending component can alternate in 
each of the two sub-cases, but not in the other. 
 As far as the intensities of the curvature components are concerned, the component 
that acts along the principal axis of largest or smallest resistance will become larger as 
that resistance becomes smaller, the applied force-couple becomes stronger, and the 
inclination of the axis of the force-couple to the principal axis in question becomes 
smaller.  Those theorems are then true for the sub-case that one also decides upon.  The 
components of the curvature along the principal axis of the middle resistance increases in 
intensity for two of the two different distinguishing sub-cases: For the first one, if the 
applied force-couple and the inclination of its axis with respect to the axis of smallest 

                                                
 (*) See the previous paragraphs for the geometric meaning of this.  
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resistance increases then the two extreme resistances will become larger and the middle 
one will become smaller.  For the second one, that will be true when the applied force-
couple and the inclination of its axis with respect to the axis of greatest resistance 
increase and the two extreme resistances become smaller.  By contrast, the components in 
that sub-case will increase with increasing middle resistance only when it is greater than 
one-half the largest resistance.  If the middle resistance is smaller than one-half of the 
largest one then the component will drop with an increase in the middle resistance. 

 The total curvature Θ = 2 2 2p q r+ +  that is composed of the curvature components 

p, q, r will be a maximum for the free end and for each point of the rod whose parameter 
value u is an even multiple of 2K and a minimum for the points that are determined by 
odd multiples of u.  Their intensities will grow larger with increasing strength of the 
force-couple, and with the decreasing of each of the three resistances and the inclination 
angle between the axis of the force-couple and the principal axis of smallest resistance. 

 The magnitude Θ′ = 2 2p q+  of pure bending at the points of the elastic centerline 

that are established by the parameter values u = 0, 2K, 4K, …, will be a maximum when 
the resistance to twisting is the middle of the three resistances and a minimum as long as 
it is the smallest one.  If the resistance to twisting is numerically the largest then one will 
have a maximum or minimum according to whether it is greater or less than the sum of 
the resistances to bending.  For n = K, 3K, 5K, …, minima or maxima, resp., will appear.  
The intensity of the bending will generally increase for an increase in the intensity of the 
applied force-couple and for a diminishing of the three principal resistances.  By contrast, 
the strength of the bending can increase or decrease for an increasing angle of inclination 
between the axis of the force-couple and the axis of least resistance. 
 
 

The transfer of the straight and untwisted elastic rod to its equilibrium position 
by means of the successive bending of two skew surfaces 

 
5. 

 
 During an infinitely-small time interval ds, a rigid body that rotates around its center 
of mass O will rotate around the instantaneous axis of rotation OΘ with an angular 
velocity Θ1 , so in that way an axis O Θ2 that is close to the axis O Θ1 will be taken to a 
position Oϑ2 and will be itself an instantaneous axis of rotation, moreover.  The body will 
rotate around it with an angular velocity of Θ2 .  Under repeated rotation, a neighboring 
position O Θ3 to O Θ2 will be transferred to O ϑ3 , in order to be an axis of rotation in the 
next moment, etc.  It seems as if the cone O Θ1 Θ2 Θ3 … of instantaneous rotational axes, 
which one can construct from the component p, q, r for the body, which is thought to be 
at rest, rolls without slipping on another fixed cone Oϑ1 , ϑ2 , ϑ3 , … in space with which 
it has a generator in common with the latter at each moment, namely, the instantaneous 
axis of rotation.  The cone O Θ1 Θ2 Θ3 … is Poinsot’s cone of the polhode, which was 
mentioned already in paragraph 2, while the cone O ϑ1 ϑ2 ϑ3 … is Poinsot’s cone of the 
herpolhode.  The end points  Θ1 Θ2 Θ3 … (ϑ1 ϑ2 ϑ3 … , resp.) of the instantaneous 
rotational axes define the curves of the polhode and herpolhode.  Of the two, the polhode 
is a fourth-order space curve that lies on the central ellipsoid, while the herpolhode is a 
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transcendental plane curve with no inflection points (*) that lies in the invariable plane of 
the applied force-couple. 
 If one imagines that the magnitude and direction of the instantaneous curvature Θ at 
each point P of the elastic centerline of the straight and untwisted rod is determined from 
the curvature components p, q, r then the line PΘ that arises will give the axis around 
which the arc-length element ds will be deformed, as well as the magnitude of the 
deformation.  If one now starts from the free end P1 and rotates the arc-length element 

1 2P P  along the curvature axis P1 Θ1 through the prescribed quantity Θ1 ⋅⋅⋅⋅ ds (when one, 

say, rotates the arc-length element through the magnitude of bending 1′Θ  ⋅⋅⋅⋅ ds around the 

axis of pure bending and then through the magnitude of twisting r1 ⋅⋅⋅⋅ ds around the rod 

axis), holds 1 2P P  fixed and rotates 2 3P P  along P2 Θ2 through Θ2 ⋅⋅⋅⋅ ds, once more holds 

2 3P P  fixed and rotates 3 4P P  along P3 Θ3 through Θ3 ⋅⋅⋅⋅ ds, etc., then those successive 

rotations will take the straight elastic centerline to its equilibrium position and each cross-
section will be rotated in its plane.  The curvature axes P1 Θ1 , P2 Θ2 , P3 Θ3 , …, which 
previously defined a skew surface (namely, the surface of the polhode that was 
mentioned in § 2) will now lie on a new skew surface whose guiding line is the bent 
elastic centerline.  Following Poinsot’s cone of the herpolhode, we call it the skew 
surface of the herpolhode and the transcendental curves that are analogous to the ones 
that are defined by the endpoints of the instantaneous curvature axes are the polhodes and 
herpolhodes.  We then see that: 
 
 The transfer of a straight and untwisted elastic rod whose one end is acted upon by a 
force-couple (*) to its equilibrium position can be rationalized by the bending of a flexible 
skew surface into a fixed skew surface with which the former has a generator in common 
at each moment, namely, the instantaneous curvature axis.  The guiding lines of the two 
surfaces are the straight and bent elastic centerlines of the rod. 
 
 In our case of the effect of just one force-couple, the generators of the skew surface 
are parallel to the generators of a second-degree cone, while those of the fixed skew 
surface will be parallel to the generators of a transcendental cone.  The coordinates of the 
polhode for the rotation problem relative to the three principal axes of inertia OX′ Y′ Z′ 
are given directly by: 

x′ = p,  y′ = q,  z′ = r . 
 

The equations of the cone of the polhode are then: 
 

x′ = ω ⋅⋅⋅⋅ p, y′ = ω ⋅⋅⋅⋅ q, z′ = ω ⋅⋅⋅⋅ r , 
 
in which ω means an arbitrary constant whose elimination, in conjunction with the 
elimination of u, through which p, q, r is expressed according to (10), will again allow the 
equation of the cone to take the form (9).  If ω runs through a series of values then one 

                                                
 (*) Cf., my dissertation that was cited above.  
 (*) This theorem is true in general.  
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will get curves that are similar to the polhode (ω = 1) and each of which can naturally be 
considered to be the polhode. 
 For the straight elastic rod, the equations of the polhode – i.e., the curve of the 
endpoints of the instantaneous curvature axes – relative to the system of principal axes X′, 
Y′, Z′ that is established in the cross-section at the free end are: 
 
(12)   x′ = p,  y′ = q,  z′ + s = r. 
 
In these equations, s = u / n, and the values of the quantities p, q, r are obtained from the 
equations (10).  Since the substitution can be accomplished in six ways, there will also be 
six different types of polhodes, which can, however, be reduced to three essentially-
different ones, which are characterized by the fact that in the equation z′ + s = r for the 
magnitude of twisting r, one can first introduce the function sin am u, then cos am u, and 
thirdly, ∆ am u.  The equations will show that (†): 
 
 The polhode for the elastic rod is a transcendental curve that lies on a second-degree 
cylinder that is described around the straight rod axis.  Its projection onto the plane of 
the cross-section X′ Y′ – i.e., the profile of the cylinder – is a complete ellipse, as long as 
the resistance to torsion is the smallest or largest and at the same time the sense of the 
twist never alternates through zero [I.1 and III.2 of (10) (*)].  The projection will be an 
arc of an ellipse as long as the resistance to torsion is again the smallest or largest, but 
cross-sections can exist that are not rotated in their planes (I.3 and III.1).  The projection 
is an arc of a hyperbola whenever the resistance to torsion is the middle of the three 
principal resistances (II).  The projection of the polhode onto the other two principal 
planes Y′ Z′ and Z′ X′ are wave-like when the running curves have the type of sinusoids.  
They either do not cut the rod axis at all [for the plane Y′ Z′ in the cases II.2 and III.1, 
Fig 3] or they will cut the axis.  Therefore, all of the inflection point can be found on the 
same side of the axis [I.2 and II.1, Fig. 2] or on different sides of the latter [I.1 and III.2, 
Fig. 1]. 
 
 The equations of the flexible skew surface or the surface of the polhode can be easily 
derived from the equations (12) of the polhode, with the addition of a proportionality 
factor ω : 

(13)   x′ = ω ⋅⋅⋅⋅ p, y′ = ω ⋅⋅⋅⋅ q, z′ + 
u

n
 = ω ⋅⋅⋅⋅ r . 

 
By varying ω, one will obtain a whole family of curves that are similar to the polhode, 
and each of which can be regarded as the polhode.  By eliminating the quantity ω and the 
variable u that appear in p, q, r, one will get the equation for the transcendental surface in 
Cartesian coordinates. 
 Constructing the equation of the herpolhode and its skew surface requires that one 
must know the equations of the bent elastic centerline.  If the coordinates of a point P of 
the latter relative to the fixed coordinate system X, Y, Z (x, y, z, resp.) are those of the 

                                                
 (†) Translator: The cited figures were not available at the time of translation.  
 (*) For the geometric meaning, see § 3.  
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corresponding point of the herpolhode – i.e., the endpoint of the curvature axis Θ (ξ, η, ζ, 
resp.) that exists at P – then the equations of the herpolhode will be: 
 
 ξ – x = a p + b q + c r, 
 η – y = a′p + b′q + c′r, 

 ζ – z = a″p + b″q + c ″r = const. = 
h

l
, 

 
in which a, b, c, …, c″ mean the inclination cosines of the coordinate systems X, Y, Z and 
X′, Y′, Z′.  The equations of the skew surface of the herpolhode can again be obtained 
from the foregoing ones by the addition of a factor ω.  The functions that appear in both 
systems of equations can, moreover, seem to be transcendental and so complicated that 
their actual presentation as functions of u would seem pointless. 
 
 

The curvature of the entire rod. 
 

6. 
 

 In order to find the form of the curve into which the elastic centerline will be bent, we 
recall the essence of the curvature components p, q, r.  They were generally periodic in u 
with a period of 4K.  We will then have: 
 
 The bent elastic centerline of the rod is a periodic curve.  All points whose parameter 
values differ by multiples of the quantity 4K will possess the same curvature ratios, and 
all curve segments that are bounded by such points will be congruent. 
 

 The magnitude of the bending Θ′ = 2 2p q+  can never be zero, except when p = q = 

0.  However, from equations (1), that will happen only when the applied force-couple 
rotates around the torsion axis, so p = q = 0 will still be true.  If one ignores that special 
case in which the elastic centerline remains straight, and thus possesses infinitely-many 
inflection points, then one can say that: 
 
 The bent elastic centerline possesses no inflection points. 
 
 Of all the projections of the latter curve, the projection onto the invariable plane of 
the force-couple is the simplest.  If, in order to consider it, we take the invariable 
direction of the force-couple to be the Z-axis, so the plane of the force-couple will be the 
XY-plane of our fixed coordinate system (whose origin might lie at the free end) then the 
inclination cosines a″, b″, c″ of the principal axes X′, Y′, Z′ with respect to the Z axis will 
follow directly: 

(14)    a″ = 
Ap

l
, b″ = 

Bq

l
, c″ = 

Cr

l
. 
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 If one defines the magnitudes of bending for a point on the projection of the 
centerline onto the XY-plane in accordance with the viewpoint that was taken in the 
context of the discussion of the composition and decomposition of bends in § 2, then one 
will get, after some calculation: 
 

(15)    Θxy = 

( )3
21

a p b q

c

′′ ′′+

′′−
= l2 ⋅⋅⋅⋅ 

( )
2

3
2 2 2

h Cr

l C r

−

−
. 

 
In order for the bending Θxy to be constant, r must be constant, and in order for it to be 0, 

in particular, r would have to equal /h C .  The latter assumption would again lead to 

the case of p = q = 0 – i.e., the case of simple torsion.  r = constant assumes that p = 0, q 
= constant or conversely.  As a result of (1), that can be fulfilled when the two resistances 
to bending A, B are equal for an arbitrarily-placed force-couple, but when they are 
unequal, that condition can be fulfilled only for a force-couple that has been rotated 
around one of the principal axes X, Y of the cross-section.  The former case represents the 
bending of an isotropic rod into a helix, while the latter represents the bending of the 
general rod onto a circle (cf., infra).  Except for those special cases: 
 
 The projection of the elastic centerline onto the plane of the applied force-couple can 
never be a circle, not can it possess isolated inflection points. 
 
 Since Θxy is periodic in u with a period of 2K, due to the square of r, and an 
examination will point to the impossibility of finding a maximum or minimum of the 
bending Θxy between two successive values of the period, one will then have: 
 
 The projection of the elastic centerline onto the invariable plane will prove to be a 
transcendental curve that is always bent in the same sense, its segments that are bounded 
by two periodic values are congruent, and there will be a maximum of the bending at one 
end, while there will be a minimum at the other. (Fig. 10) 
 
 The projections of the rod curve onto the other fixed coordinate planes YZ and ZX – 
and thus onto an arbitrary plane in space – can first be investigated when one has defined 
the inclination cosines a, b, c, a′, b′, c′ in terms of u.  Namely, the magnitudes of bending 
Θyz , Θzx , read entirely like the quantity Θxy , when one substitutes the cosines a, b (a′, b′, 
resp.) in place of a″, b″.  That will show: 
 
 Assuming the aforementioned cases of circular bending and pure torsion, the elastic 
centerline cannot be a plane curve.  Its projections onto other planes than the invariable 
plane of the force-couple will not be periodic.  In particular, under projection onto a 
circular cylinder, the elastic centerline can be coiled only in the case of circular (helical, 
resp.) bending. 
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7. 
 

 Just as in the case of the projections of the bent elastic centerline onto ones in the 
invariable XY-plane, among all the coordinates of a point P along that line, the z- 
coordinate is the simplest one, and it gives the distance from the point to that plane.  
From (14), the cosine c″ of the inclination angle of the tangent PZ′ with respect to the 
axis of the force-couple will be: 

c″ = 
C

l
 ⋅⋅⋅⋅ r, 

 
which is proportional to the twist r, so all of the considerations that could be applied to 
the behavior of r in § 4 will also be true for them.  In particular, from (10), c″ can take on 
six types of values, of which, three are essentially different; for the coordinates (4), they 
will correspond to: 

z = c ds′′ ⋅∫ = 
C

r du
ln

⋅ ⋅∫ . 

 
Three different forms appear according to whether the functions sin am u, cos am u, 

amu∆ , resp., enter into r.  Now: 
 

 sin am u du⋅∫ =
1

ln
κ

(∆ am u – κ ⋅⋅⋅⋅ cos am u), 

 

 cos am u du⋅∫ =
1

κ
 arcsin (κ sin am u), 

 

  am u du∆ ⋅∫ = arcsin (sin am u) = am u . 

 
The integration constants that enter into the right-hand side are determined by the special 
choice of coordinate system.  It is known that the axis of the force-couple will be in the 
plane of the principal axes of smallest and largest resistances.  If one calls that axis Z* (*), 
once and for all, so the invariable plane will be XY, and one chooses the Y-axis such that 
it coincides with the principal axis of the middle resistance that is drawn in the cross-
section at the free end then one will achieve congruence of the coordinate systems X, Y, Z 
and X′, Y′, Z′ for all three cases.  The following figures give information about their 
relative positions: 
 
 
 
 
 

                                                
 (*) One might call the axes Z, X, Y, corresponding to the conventions A > B > C, B > C > A, C > A > B, 
and achieve many simplifications in that way.  However, on the whole, the considerations would probably 
become more complicated. 
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 I. II. 
 

y 
y′ 

x x′ 

z′ 

z 

ϕ0 

 

y 

y′ x 

x′ 

z′ 
z ϕ0 

 
 

III. 
 

y 

y′ 

x x′ 

z′ 

z 
ϕ0 

 
 
 The values of the z-coordinate can be inferred from the following table: 
 
I.  A > B > C 1.  Bh – l 2 > 0 

 
2.  Bh – l 2 < 0 

      G ⋅⋅⋅⋅ z = am u 
 

    G ⋅⋅⋅⋅ z = arcsin (κ ⋅⋅⋅⋅ sin am u) 

II. B > C > A      (16) 1.  Ch – l 2 > 0 
 

2.  Ch – l 2 < 0 

 
 G ⋅⋅⋅⋅ z = ln 

 am cos am 

1

u uκ
κ

∆ − ⋅
−

 

 

G ⋅⋅⋅⋅ z = ln 
 am cos am 

1

u uκ
κ

∆ − ⋅
−

 

III. C > A > B 
 

1.  Ah – l 2 > 0 2.  Ah – l 2 < 0 

 G ⋅⋅⋅⋅ z = arcsin (κ ⋅⋅⋅⋅ sin am u)      G ⋅⋅⋅⋅ z = am u. 
 
 In this, we have set: 

1 : G = 
( )( )

AB
C

A C B C± − −
, 

 
in which the sign in the denominator must be chosen that will make that denominator 
positive. 
 As one sees, the expressions for z depend essentially upon the behavior of the 
resistance to twisting C : If it is numerically the middle of the three resistances then z will 
be logarithmic, and if it is the smallest or largest then it will be expressed cyclometrically 
by elliptic functions.  The following characteristic fact has decisive importance for the 
shape of the elastic centerline: 
  
 If the resistance of the rod to torsion is the middle of the three principal resistances 
then the helically-bent elastic centerline will lie completely on the side of the invariable 
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plane of the force-couple that acts upon the free cross-section, while it will contact the 
plane at the free end, as well as those locations for which the value of the parameter u 
takes on multiples of 4K.  All points that have the same arc-length distance to the left or 
right of the contact points have the same distance from the plane.  For u = 2K, 6K, …, 
the curve contacts a parallel plane whose distance from the plane of the force-couple is 
equal to: 

 z2K = 
1 1

ln
1G

κ
κ

+⋅
−

  (see Fig. 8). 

For u = K, 3K, …, one will have: 
zK = 1

2  z2K . 

 
 If the resistance of the rod to twisting is the smallest or largest of the three principal 
resistances then, from § 4, the sense of the twist will never change in each of the two sub-
cases that pertain to each case (namely, I.1 and III.2).  Now, with those assumptions, the 
z-coordinate will increase continually, so the elastic centerline will lie completely on one 
side of the invariable plane of the force-couple and will move ever further from it.  The 
shape of the curve is precisely the same between parallel planes through points with the 
parameter values 2K, 4K, 6K, …, and one will have: 
 

 zµ,K = µ ⋅⋅⋅⋅ zK = 
1

2G

πµ⋅ ⋅   (Fig. 7) 

 
 If the resistance to twisting is the smallest or the largest and the sense of the twist can 
change (I.2 and III.1) then z will once more be periodic in u and the elastic centerline 
will intersect the invariable plane of the force-couple for u = 0, 2K, 4K, …, and as it 
alternates above and below that plane, it will, in due course, contact two parallel planes, 

each of which possesses a distance of zK = 
1

G
⋅⋅⋅⋅ arcsin κ from the plane of the force-

couple.  (Fig. 9) 
 
 As far as the proportionality factor 1 : G is concerned, it should emphasized that, in 
contrast to the factors that appeared before, it is independent of h and l (when taken 
absolutely), so it will be represented by the same expression for all six sub-cases in the 
classification.  That is: 
 
 The relative strength 1 : G with which the elastic centerline spirals up the invariable 
plane of the force-couple does not depend upon the intensity and direction of application 
of the couple, but only upon the magnitudes of the three resistances to deformation. 
 
 Since the values of zK depend upon only h and l in the case B > C > A, since they 
enter into κ, the variation of zK in the other two cases can be attributed to a variation in 
1:G .  That shows that: 
 
 If the resistance to twisting is the smallest of the three principal resistances then the 
spiral into which the elastic centerline is bent will rise ever more steeply from the plane 
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of the force-couple as that resistance gets smaller and as the resistance to bending gets 
larger.  If the resistance to twisting is the largest then the steepness of the spiral will 
increase as that resistance increases and the resistance to bending decreases. 
 
 If the resistance to twisting is the middle one then the degree of steepness of the curve 
will be essentially influenced by inequalities that exist between the resistances A, B, C, 
except for the fact that the inclination ϕ0 of the axis of the force-couple with respect to 
the principal axis of smallest resistance will enter into κ. 

_________ 
 
 
 Previously, the distance z from a point on the elastic centerline to the plane of the 

couple that acts upon the cross-section at the free end was given in the form z = c ds′′ ⋅∫ = 

C
r ds

l
⋅ ⋅∫ .  However, r ds⋅∫  is nothing but the total magnitude T of the torsion for a 

piece s of the elastic rod (as measured from the free end), so: 
 

(17)     T = 
l

z
C

⋅ . 

 
 That is: The total torsion of a piece of the elastic centerline of length s (measured 
from the free end) will be measured by the distance from the endpoint to the invariable 
plane of the applied force-couple, up to a constant. 
 
 In particular, that total torsion will increase continually as long as the twisting cannot 
change its sense.  It will be zero, without becoming negative as long as the twist changes 
its sense and the resistance to twisting is the middle one, while it will go through zero 
into negative values as long as the sense of the twisting can change and the resistance to 
twisting is the smallest or largest. 
 This total torsion of an arbitrarily-bounded piece of the rod will be measured simply 
by the difference between the distances from the bounding points to the invariable plane 
of the force-couple.  Moreover, it can also be zero when the resistance to twisting is the 
middle one. 
 Since these theorems about the total torsion can be derived from the behavior of the 
twist r (§ 4), they will verify the distance z (the three positions, resp.) that the elastic 
centerline can assume with respect to the invariable plane of the force-couple. 
 The quantity T is nothing but the angle through which a cross-section will be rotated 
with respect to the cross-section at the free end.  For the point with the parameter value K 
that will imply: 

TK = K

l
z

C
⋅ . 

 
 If one would prefer that the cross-section u = K were rotated with respect to the cross-
section at the end through a well-defined angle λ then a condition equation would result 
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between λ and the resistances A, B, C that does or does not include the angle ϕ0 between 
the axis of the applied force-couple and the principal axis of smallest resistance. 
 
 

8. 
 

 We shall now construct the expressions for the coordinates x, y of a point P on the 
elastic centerline (for the inclination cosines c, c′ of the tangent PZ′ with respect to the 
axes X, Y of the fixed coordinate system, resp.). 
 It easily follows from equations (2) and (3) that: 
 

dc dc
c c

ds ds

′′ ⋅ − ⋅ = a″ p + b″ q. 

 
If one substitutes the values for a″, b″ from (14) in these equations and observes the 
relation (7) then, since the left-hand side can be extended to a total differential, one can 
write: 

− c2 ⋅⋅⋅⋅ ( / )d c c

ds

′
= 

1

l
 (Ap2 + Bq2). 

Now, one has: 

c2 + c′2 = 1 – c″2 = 
2

1

l
 (A2 p2 + B2 q2), 

so one might set: 

 c = 2 2 2 21
A p B q

l
+ ⋅⋅⋅⋅ cos ψ, 

 

 c′ = 2 2 2 21
A p B q

l
+ ⋅⋅⋅⋅ sin ψ. 

 
If one substitutes these values in the differential equation above and writes u / n for s then 
one will get: 

(18)    dψ = −
2 2

2 2 2 2

l Ap Bq

n A p B q

+⋅
+

 ⋅⋅⋅⋅ du. 

 
p and q must be replaced with functions of u in these equations.  As is known, there exist 
six different pairs of values for p, q in all, so there will be six distinct solutions.  
However, in the foregoing sections, we have emphasized that is it essential for the elastic 
centerline to possess periodicities with no inflection points and always appear to be 
doubly-curved, and indeed completely independently of the orders of magnitude of the 
three moments of resistance A, B, C.  Those curves will possess essentially the same type 
in all six cases, and since the characteristic behavior of z has already been discussed, it 
will suffice to present the cosines c, c′ (the coordinate x, y, resp.) for a single assumption, 
say for: 

A > B > C, Bh – l2 > 0. 
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 As one can easily show, the auxiliary angle ψ that was introduced above is the angle 
between the line of intersection of the plane of the cross-section X′ Y′ through a point P 
of the elastic centerline and the invariable XY-plane, on the one hand, and the fixed Y-
axis, on the other.  It is nothing but the Euler angle ψ between the nodal line N of a rigid 
body that rotates around its center of mass and the fixed Y-axis in the invariable XY-
plane.  All that one needs to do then it is adapt the value of ψ to Jacobi’s work (*).  If one 
sets: 

ψ = ψ′ + n′ ⋅⋅⋅⋅ u 
then that will imply: 

(19)    ψ′ = 
1 ( )

log
2 ( )

u ia

i u ia

Θ +⋅
Θ −

. 

 
In these expressions, ia and n′ mean constants that are defined by the equations: 
 

 
1

i
⋅⋅⋅⋅ sin am ia =

2( )C Ah l

A

−
, 

 

 n′ =
( )

l

An ia

∂+
∂

log Θ (ia). 

 
ψ′ is obviously the angle between the line of intersection of X′ Y′ and XY and a new axis 
in the XY-plane that does not, however, lie fixed in that plane, like Y, but seems to move 
with an angular velocity of n′ / n in the negative sense.  Now, one can just as well refer 
the coordinates of the point P of the centerline to the fixed coordinate system X, Y, Z as to 
a system that consists of the invariable Z-axis, the moving axis (Y), and a moving axis (X) 
that is perpendicular to them.  The angle ψ′ will be periodic for the latter system, so when 
one looks for the projection of the point P on the rod onto the invariable plane, it would 
probably be best to proceed by using the position of the line (Y) for the values of s (i.e., u) 
considered and calculate the rectangular coordinates with respect to the latter.  According 
to Jacobi (*), that will imply that the inclination cosines (c), (c′) of the principal axis Z′ 
(which is the tangent to the elastic centerline, here) with respect to the moving axes (X), 
(Y) are: 

 (c) = 1

1

(0)

2 ( ) ( )ia u⋅ ⋅Θ
H

H
 ⋅⋅⋅⋅ [Θ (u + ia) + Θ (u – ia)], 

(20) 

 (c′) = 1

1

(0)

2 ( ) ( )i ia u⋅ ⋅Θ
H

H
 ⋅⋅⋅⋅ [Θ (u + ia) + Θ (u – ia)] . 

 
One can obtain the inclination angles c, c′ of the tangent PZ′ with respect to the fixed 
axes X, Y as soon as one substitutes the values of (c), (c′) in the equations: 
 
                                                
 (*) Jacobi, loc. cit., pp. 157-159.  
 (*) Loc. cit., pp. 162. 
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 c =    (c) ⋅⋅⋅⋅ cos n′ u + (c′) ⋅⋅⋅⋅ sin n′ u, 
(21) 
 c′ = − (c) ⋅⋅⋅⋅ sin n′ u + (c′) ⋅⋅⋅⋅ cos n′ u . 
 
The inclination cosines (c), (c′) are periodic in u of period 2K, while c, c′ have no 
periodicity.  One will obtain expressions analogous to (17) for the inclination cosines (a), 
(a′ ) [(b), (b′), resp.] of the axes X′ and Y′ with respect to the moving axes (X), (Y).  At the 
same time, they can be taken from Jacobi’s work, but here they are less interesting than 
the inclination cosines (c), (c′) of the tangent to the rod Z′. 
 
 

9. 
 

 The Θ-functions that appear in formulas (20) and (21) can be replaced with infinite 
series.  That must happen as soon as one would actually like to define the coordinates (x), 
(y), and x, y of a point P on the elastic centerline relative to the moving system (X), (Y) 
and the fixed system X, Y by integrating the equations: 
 

 
( )d x

ds
= (c), 

( )d y

ds
= (c′), 

 

 
dx

ds
= c, 

dy

ds
= c′ . 

 
If we also replace the closed expressions that were obtained for the z-coordinates in 
paragraph 8 with infinite series (at least, for A > B > C and Bh – l2 > 0) then the 
coordinates will take the following forms: 
 
 I. Moving coordinate system (X), (Y), (Z). 
 
 By performing the integration of the Jacobi series (*), upon introducing the 
abbreviations (** ): 

n ⋅⋅⋅⋅
K

π ⋅⋅⋅⋅ s = u = 
K

π ⋅⋅⋅⋅ v, 

 
a

K
= b,  ( / )K Ke π ′− ⋅ = q, 

 

2 ( )( )l A C B C

C AB

− −⋅ = 2l ⋅⋅⋅⋅ G = D, 

 

                                                
 (*) Cf., the beginning of the work “Sur la rotation.”  
 (** ) In the treatise in the Münch. Ber., one will find, incorrectly, q = l… printed instead of q = e… and (A 
– B) ⋅⋅⋅⋅ C2, instead of A ⋅⋅⋅⋅ B ⋅⋅⋅⋅ C2. 
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one will get the coordinates (x), (y), (z): 
 

 D ⋅⋅⋅⋅ (x) = ( )
/ 2 2

/ 2 / 2
2 2

1

2 (1 ) sin
2

1 (1 )(1 )

b
b b

b b b

q q q v
v q q

q q q

µ µ

µ µ
µ

µ
µ

∞
−

− +
=

+ ⋅⋅ − − ⋅
− − −∑  

 

(22) D ⋅⋅⋅⋅ (y) = ( )
2 2

/2 /2
2 2

1

(1 ) sin
24

(1 )(1 )
b b

b b

v
q q

q q
q q

µ µ

µ µ
µ

µ

µ

∞
−

− +
=

+ ⋅
+ ⋅

− −∑ , 

 

 D ⋅⋅⋅⋅ (z) = v + 
2

1

sin
4

(1 )

q v

q

µ

µ
µ

µ
µ

∞

=

⋅⋅
+∑ . 

 
 II. Fixed coordinate system X, Y, Z. 
 
 If, in addition to the previous abbreviations, one also introduces: 
 

m = 
K

π
⋅⋅⋅⋅ n′ 

then one will have: 
 

 D ⋅⋅⋅⋅ x = 
/ 2

/ 2
2

1

2 sin ( )
sin 2

(1 ) ( ) (1 )

b
b

b b

q q m v
mv q

m q m q

µ

µ
µ

µ
µ

∞

+
=

⋅ −⋅ +
− − −∑  

 

  − / 2
2

1

sin( )
2

( ) (1 )
b

b

q m v
q

m q

µ

µ
µ

µ
µ

∞
−

−
=

⋅ −
+ −∑ , 

 

(23) D ⋅⋅⋅⋅ y = 

2
/2

2 /2
2

1

sin
4 2

sin 4
(1 ) 2 ( ) (1 )

b
b

b b

m
q v

q mv
q

m q m q

µ

µ
µ

µ

µ

∞

+
=

− ⋅  
 ⋅ +

− − −∑  

 

  −

2

/2
2

1

sin
2

4
( ) (1 )

b
b

m
q v

q
m q

µ

µ
µ

µ

µ

∞
−

−
=

+ ⋅  
 

+ −∑ , 

 D ⋅⋅⋅⋅ z = D ⋅⋅⋅⋅ (z). 
  
 

Special cases that arise from special locations of the applied force-couple 
 

10. 
 

 If force-couple that acts upon a rigid body rotates around the principal axis of the 
largest or smallest moment of inertia then the motion will proceed continually around that 
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axis with uniform angular velocity.  The magnitude of the latter is equal to (intensity of 
the force-couple) : (moment of inertia).  The cones of the polhode and herpolhode will 
coincide with the permanent axis of rotation.  The state of motion is stable – viz., small 
perturbations of the rotational axis will produce only minor oscillations about its rest 
position. 
 
 If the force-couple that acts upon the cross-section at the free end of the rod rotates 
around the principal axis of largest or smallest resistance to deformations, and if that 
principal axis the torsion axis then the elastic centerline of the rod will remain straight, 
and the rod will be only uniformly twisted.  The magnitude of the twisting is equal to 
(intensity of the force-couple) : (resistance to torsion).  The flexible and fixed skew 
surface, as well as the curves of the polhode and herpolhode that lie on it, coincide in the 
axis of the rod.  If the principal axis is one of pure bending then mere bending without 
twisting into a circle will be produced.  The curvature of the latter is (intensity of the 
force-couple) : (resistance to bending).  The skew surfaces of the polhode and herpolhode 
are parallel to the axis of the force-couple in the circular cylinder, so the curves will 
coincide in a circle.  The equilibrium state is stable in both cases: viz., if one pushes the 
rod from its equilibrium position slightly then it will again seek to return to it. 
 
 If the force-couple that acts upon a body (A > B > C) rotates around a line that 
belongs to one of the two planes that go through the principal axis Y′ of the middle 
moment of inertia and have equations relative to the principal axis system X′, Y′, Z′ : 
 

x

y

′
′
= 

( )

( )

A B C

C A B

−±
−

, 

 
then (cf., the concluding remarks in § 3) Bh – l2 = 0, and the elliptic functions that appear 
in p, q, r will reduce to logarithmic ones.  The rolling cone of the instantaneous rotational 
axis will likewise go to two planes through the Y-axis: 
 

x

y

′
′
= 

( )

( )

C B C

A A B

−±
−

, 

 
and the polhode will go to two ellipses.  The herpolhode will become a spiral, and the 
cone of the herpolhode will be wound correspondingly.  The sub-cases of Bh > l2 and Bh 
< l2 will coincide. 
 Of course, the assumption that Bh – l2 = 0 also admits the singular solution p = 0, r = 
0, so from Euler’s equations (1), one will have q = const. = q0 .  That is, when the applied 
force-couple acts around the Y′-axis of the middle moment of inertia B itself, the rotation 
around that axis will proceed continually and with constant velocity.  In this case, the 
state of motion is labile: viz., it might take only a minor perturbation to immediately 
upset the central ellipsoid and allow the phenomena that were described before to come 
about. 
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 If the force-couple that acts upon the elastic rod rotates around a straight line that 
belongs to one of the two characteristic planes that go through the principal axis of the 
middle resistance, and whose equations for A > B > C, etc., are: 
 

x

y

′
′
= 

( )

( )

A B C

C A B

−±
−

, etc., 

 
relative to the system of three principal axes then the modulus κ of the elliptic functions 
in p, q, r will be equal to 1, and formulas (10) will go to the following ones: 
 
 I. A > B > C. 
 

p = 
2

( ) 2

( ) 1

u

u

l A B C e

A B C A e

− ⋅
− +

, r = 
2

( ) 2

( ) 1

u

u

l C A B e

C B A C e

− ⋅
− +

, 

 

q = 
2

2

1

1

u

u

l e

B e

−⋅
+

. 

 
 II. B > C > A. 
 

(24)  p = 
2

( ) 2

( ) 1

u

u

l A B C e

A C B A e

− ⋅
− +

,  q = 
2

( ) 2

( ) 1

u

u

l B C A e

B C B A e

− ⋅
− +

, 

 

r =
2

2

1

1

u

u

l e

C e

−⋅
+

. 

 
 III. C > A > B. 
 

   q = 
2

( ) 2

( ) 1

u

u

l B C A e

B C B A e

− ⋅
− +

,  r = 
2

( ) 2

( ) 1

u

u

l C A B e

C A C B e

− ⋅
− +

, 

 

p =
2

2

1

1

u

u

l e

A e

−⋅
+

. 

 
The sub-cases Bh – l2 > 0 and Bh – l2 < 0, etc, coincide.  From what was said above, as 
well as the formulas, that will imply: 
 
 As long as the resistance to torsion is the middle one, the surface of the polhode will 
go to a pair of planes through the axis of the rod, the polhode ξ = p, η = q, ζ = − (u / n) + 
r will go to a plane curve that lies in one or the other plane according to whether the axis 
of the applied force-couple lies in one or the other of the two “characteristic” planes that 
correspond to those planes.  The projection of the elastic centerline onto the plane of the 
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cross-section will be a line segment.  The projections onto the other principal planes will 
be curves that run asymptotically to the axis of the rod.  The curve of the polhode will 
then approach the axis of the rod asymptotically at the same time (Fig. 4). 
 
 If the resistance to torsion is the largest or smallest of the three principal resistances 
to deformation then the projection of the polhode onto the plane of the cross-section will 
be a quadrant of an ellipse, and the projections onto the other two principal planes will 
be curves that run asymptotically to two lines that are parallel to the axis of the rod. (Fig. 
5). 
 The bending Θxy (15) of the projection of the elastic centerline onto the invariable 
plane of the force-couple is known to depend upon r.  It will no longer periodic in u here, 

but will rise or fall continually according to whether r enters into the quotient 
2

2

1

1

u

u

e

e

−
+

 or 

2 1

u

u

e

e +
.  That is: 

 
 The projection of the elastic centerline onto the invariable plane of the force-couple 
no longer possesses periodic curvature, but winds into a spiral,, in complete analogy to 
the corresponding case of Poinsot’s spiral.  The spiral will then run from one fixed circle 
(s = 0) asymptotically to a second one that is concentric to it (s = ∞) as long as the 
resistance to torsion is not the middle one (Fig. 12); By contrast, it will run from a fixed 
circle (s = 0) asymptotically to its center (s = ∞) as long as the resistance to torsion is 
smaller than the one resistance to bending and larger than the other one. (Fig. 11). 
 
 The elastic centerline itself appears to be a curve that loops around the axis of the 
force-couple.  In the first of the aforementioned cases, it will move more and more distant 
from that axis without exceeding a certain limiting distance, moreover, and in the second 
case, it will approach the axis closer and closer. 
 
 Just as rotation under the assumption that Bh – l2 = 0 (A > B > C) yielded the singular 
solution p = 0, r = 0, q = q0 , the same thing will be true here.  One will see that: 
 
 When the force-couple rotates around the principal axis of the middle moment, mere 
torsion or circular bending will be produced once again, except that the equilibrium state 
of the elastic rod will be labile: viz., a small perturbation will suffice to take the elastic 
centerline, which remains straight or curved into a circular arc, to an entirely new curve 
with the aforementioned properties. 
 
 

Special cases that arise from special choices of the three principal resistances 
 

11. 
 

 If two principal moments of inertia of a body that rotates around its center of mass are 
equal to each other then the moment of inertia around the all of the lines that are drawn in 
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the plane of the two principal axes will be equal.  The polhode and the herpolhode will go 
to a circle, their cone will go to a circular cone, and the rotation will be completed 
continually with uniform velocity around the instantaneous axis of rotation. 
 If two principal moments of resistance of the elastic rod are equal to each other then 
one must decide which moments they are.  If the resistances A, B to bending are equal 
then the rod will be isotropic, so each of the lines of resistance that are drawn in the plane 
of the cross-section will be equal (= A = B).  If one calls the inclination angle of the axis 
of the force-couple with respect to the axis of torsion λ then (10) will imply that: 
 

 p = 
l

A
⋅⋅⋅⋅ sin λ ⋅⋅⋅⋅ cos u, 

 

(25) q = 
l

A
⋅⋅⋅⋅ sin λ ⋅⋅⋅⋅ sin u, 

 

 r = 
l

C
⋅⋅⋅⋅ cos λ = r0 . 

 

The twist r, as well as the bending Θ′ = 2 2p q+ , will be constant, so from (15), one 

will also have Θxy = 
sin

l

A λ⋅
; i.e.: 

 
 The elastic centerline will be bent into an ordinary helix around the invariable 
direction of the axis of the force-couple under uniform twisting.  Its pitch angle is 90o – λ.  
The radius of the circular cylinder that it lies upon is equal to the product of the constant 
resistance to bending and the sine of the pitch angle, though which, the axis of the force-
couple is inclined with respect to the axis of the rod, divided by the intensity of the 
applied couple.  The cylinder will then become narrower as the applied force-couple gets 
stronger and the smaller that the resistance to bending gets, and the closer that the axis 
of the force-couple gets to the axis of the rod. 
 
 The consideration of ξ = p, η = q, ζ = − (u / n) + r0 implies that: 
 
 The polhode goes to an ordinary helix around the axis of torsion, while its flexible 
skew surface will go to an ordinary helicoid.  The pitch angle of the helix is α = 

2

2

2
arctan

( ) sin 2

A C

A C l λ
 ⋅
 − ⋅ ⋅ 

, and the radius of the circular cylinder that it lies on will be 

sin

A

l λ⋅
.  The circular cylinder will then become wider as the strength of the applied 

force-couple increases, the larger the angle between its axis and the axis of the rod 
becomes, and the smaller that the equal resistance to bending become.  The pitch will get 
larger as that resistance and the resistance to twisting does, and the smaller that the 
angle between the force-couple and the axis of the rod becomes. 
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 If the force-couple rotates around an arbitrary principal axis of the cross-section then 
the constant twist will go to zero, and simply a circular bending will be produced. 
 If one resistance to bending (e.g., B) and the resistance to twist C are numerically 
equal then if the case A > C (= B) is satisfied, the curvature components p, q, r will be: 
 

 p =
l

A
⋅⋅⋅⋅ sin ϕ0 , 

 

(26) q =
l

C
⋅⋅⋅⋅ sin ϕ0 ⋅⋅⋅⋅ sin u, 

 

 r =
l

C
⋅⋅⋅⋅ cos ϕ0 ⋅⋅⋅⋅ cos u . 

 
One learns from the fact that ξ = p, η = q, ζ = − u / n + r : 
 
 The surface of the polhode goes to a plane that is perpendicular to the principal axis 
of the unequal principal resistance to bending, so the polhode will go to a plane curve.  
Their projections onto the two principal planes through that principal axis are straight 
lines, and the projection onto the three parallel principal planes is a sinusoidal curve 
whose inflection points lie on the axis of the rod. (Fig. 6) 
 
 The elastic centerline itself cannot be represented by equations of a simpler form.  Its 
projection onto the invariable plane of the applied force-couple will again prove to have 
periodic curvature when: 

Θxy = 
2 2 2

0 0
2 2 2 3/2

0 0

sin cos sin

(sin cos sin )

C A ul

AC u

ϕ ϕ
ϕ ϕ

+⋅
+

. 

 
The period of u is 2π this time. 
 If the three principal moments of inertia of the rotating body are equal to each other 
them its central ellipsoid will go to a cone, and every axis around which the force-couple 
rotation will be a permanent axis of rotation. 
 If the three resistances A, B, C that oppose the deformation of the rod are equal to 
each other (= A) then the three curvature components p, q, r will be constant.  The 
equations ξ = p0 , η = q0 , ζ = − s + r0 show that the surface of the polhode goes to a plane 
through the torsion axis, and the polhode goes to a straight line that is parallel to itself.  If 
the force-couple rotates around one of the principal axes of the isotropic cross-sections 
then mere circular bending will arise, while in any other case, the elastic centerline will 
be bent into a helix.  Therefore, this case of equality of the three moments of resistance A, 
B, C of the rod does not differ essentially from that of the equality of the resistance to 
bending A, B, in contrast to the problem of rotation, which will be greatly simplified 
when one goes from the equality of two principal moments of inertia to the equality of all 
three. 
 If the sum of two principal moments of inertia of the rotating body is equal to the 
third one then the body would go to a plate, and the central ellipsoid would arrive at the 
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characteristic limits that Poinsot emphasized.  Furthermore, the rotation would proceed 
essentially the same as it does in the general case. 
 If the sum of the two resistances to bending is equal to the resistance to twisting of 
the elastic rod then the elastic centerline will be deformed into a curve of constant 
bending, so it will follow from Euler’s equations (1) that: 
 

p2 + q2 = const. 
 

Moreover, it will not possess equations that are essentially simpler than they are in the 
general case, nor will the polhode and its surface be specialized. 
 
 Munich, in July 1883. 
 

__________ 
 


