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The conditions for equilibrium of an elastic rod tlgatery thin in comparison to its
lengths upon one end of which some forces act, whilether end remains fixed were
first presented byirchhoff (7). In that article Kirchhoff had remarked that those
conditions possess the same form as the equationdetra the motion of a rigid body
that rotates around a fixed point. That agreement betwese two different problems
thus seems to offer not only the possibility of dire@valuating the explicit formulas
that were already presented for the various casestafiian in order to ascertain the
equilibrium state of the elastic rod, but also comugarstep-by-step, each process in the
rotation of bodies with the corresponding one for th@metion of a rod and perhaps
conversely arriving at new questions to ask about the éiorfrom the reciprocal
relationship between the two problems. Now, an invastig of the equilibrium of a
general elastic rod might not connect up with the proldémotation, since the known
works on that subject () were concerned with a wire that was equally-flexibleall
directions. Therefore, | have addressed the questiar tlosely and indeed initially
under the assumption that only a force-couple acts upofradeend of the rod. The
analogue of that can be found in the rotation of a bodutats center of mass, which is a
type of motion that can be treated in a sufficiesiar way by the coupling of the

()  An excerpt of this study appeared in the Sitzungsberideemayer. Akad. d. Wiss. (1883), 82-
110.

(")  “Ueber das Gleichgewicht und die Bewegung eines unendilishen elastischen Stabes,” Crelle’s
J., Bd. 56, pp. 285-313.

(™) Among them, one must, above all, include the invetitigs of the “elastic line” byBer noulli
and Euler [De curvis elasticisLausanne and Geneva, 1744, etl., and the treatises Bfnet [Comptes
rendus,18, pp. 1115-1119Wantzel [ibid., pp. 1197-1201]et al. Cf., the bibliography iNavier, De la
résistance des corps solidedI-XXIl, Paris, Dunod, 1874, 8ed.
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analytical work ofJacobi () with the known intuitions oPoinsot (), as | sought to
show in my doctoral dissertation §.

The investigation splits into essentially two partgstFthe expressions for the
magnitudes of the bending and twisting in each individuakesestion are examined. In
the case of motion, those quantities will corresponthéoangular velocities around the
three principal axes of the body through the center afsn Now, just as one can
construct two cones from the latter, accordindPéinsot, and one can arrive at a clear
picture of the rotation from its successive rolling, an two skew surfaces be generated
by the quantities of bending and twisting that will malke transition from the straight
and untwisted elastic rod to its bent and twisted egiuhiv state more meaningful by
their successive bending. Everything that one does wghlanvelocities Poinsot’s
cone, resp.) can be carried over to the deformation itjearaf bending and twisting (the
skew surfaces, resp.). By contrast, questions thderelahe form of the bent rod cannot
be answered by considering the rotational problem. Thendelalf of the treatise is
concerned with them; in particular, with the presemtaof the equations for the bent
elastic centerline, with the different types of tla¢tdr, and with special cases of the
problem.

The results of the study will be found to be discdssere precisely in the individual
paragraphs. It might only be emphasized that the prgsebtem of the bending and
twisting of an elastic rod — for the general case, @t ag for the special case — is much
more extensive than that of motion, mainly on theugds that the two resistances of the
rod to bending are likewise individually different frometresistance to twisting, like
bending and twisting themselves, while the three princmahents of inertia of the body
that correspond to those resistances to deformatiorgueaeatities of the same type.
Whereas for the latter, it would suffice to enteroird single arrangement of their
magnitudes, in the present problem, the resistance $trtgvimust be distinguished from
the three possibilities for the three resistanceselation to whether it is numerically
smallest, intermediate, or largest.

Defining the problem
1

We imagine a straight and untwisted elastic rod wiosss-section is very thin (viz.,
infinitely thin) in comparison to the lengthof the rod — i.e., avire — hold the one end
fixed and let a force-couple of intensltyvhose axis possesses an arbitrary direction act
upon the cross-section of the free end. We then Itensttaight elastic centerline or axis
of the rod (i.e., the connecting line of the centérmass of the individual cross-sections)
into a curve, and at the same time, rotate the cras®iseof each pointP on the
centerline around the tangent to the latter lin€:athe rod will appear to be bent and
twisted.

()  Surlarotation d’'un corpsOp. II, pp. 139-197.
(") “Théorie nouvelle de la rotation des corps,” Liouvdld. (1851), pp. 9-129, 289-336.
(") “Das Rollen einer Flachen 2. Grades auf einer inkbeia Ebene,” Munich, 1880 or Prog. der

Kreisrealsch. Munich, 1881.
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If one chooses the tangent to be Htaxis and the principal axes of inertia of the
cross-section to be the’, Y-axes thenX’, Y, Z’ will define the rectangular coordinate
system of the threprinciple axesf the rod. With them, one can think of the resistance
by which the rod opposes the intended deformation as apgaimesistance tbendingin
the case oK', Y’and a principal resistancetigistingin the case of .

Before the action of the force-couplehe Z-axes will all fall along the straight rod
axis and theX’, Y-axes will be mutually parallel. After deformationetpositions of the
three principal axes will become increasingly differamg thus dependent upon the arc-
lengths, as one increasesfrom its starting poinP in the cross-section at the free end.
They will be known as soon as one is given theirmation cosines:

abc;a b,c:;a”’b"c"

from the three fixed coordinates:
XY, Z,

resp., of a system that is congruenktoY’, Z’ as function os.

Now, according t&Kirchhoff, the determination of tha, b, c initially leads to the
same equations that appear in the rotation of a rigi¢y boolund its center of mas3
namely, toEuler’s equations ):

AD—z +B-0qr=0,
dqg _
(1) BD£+(C—A)rp—O,

CDd—C+(A—qu:O.
ds

One therefore has the correspondence:

The three principal axes of inerdd Y/, The three principal axe§’, Y’ (bending
Z’ through the center of mas3 of the| andZ’ (twisting) through a poinP of the
rotating body elastic centerline of the rod

The principal moments of inertdg B, C The principal moments of resistance A
of the body abouX’, Y, Z* B, andC of the rod to bending around!; Y’
and to twisting around’

The force-coupléthat produces motion The force-couplhat acts upon cross-
section of the free end

() We learn about that from the book Giebsch: Theorie der Elasticitét fester Kérpet862, pp. 211.
Except for different notations for the quantiti&sB, C, p, g, r, our formulas will differ from those of
Clebsch by the fact that we shall always have todsginstead of -ds since we count the arc lengtfrom
the free end, while Clebsch thinks of it as being nreakfrom the fixed end. The force-couple is thought
to rotate to the right.
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The advancels along times (s is
counted from the starting tingg = 0)

The angular velocity componerdsq, r
about the three principal axes, Y’, Z” at
the times

The componentsAP, Bg, Cr of the
instantaneous exciting force-couple arol
X% Y, Z’ that are precisely suitable
produce the angular velocitiep, q, r
around those axes

The advancds along the arc length of
the centerlineq is measured from the free
endsy = 0)

The curvature components { p, q for
bending around”’, Y”andr for the twisting
aroundZ’ at the arc length

The componentdp, Bg, Cr of the force-
Irmbuple at a poinP of the elastic centerline
fdhat is produced by the applied couple
which indicates thetressat that point, so it
will be precisely suitable to generate the
curvature componenis q, r themselves

It follows from the analogy between the componefitge angular velocity and the
curvature that the latter components can be composediesaimposed in exactly the

same way as the former. For the presen

© = | p°+q° +r? is the magnitude o
the angular velocity at the tingalong the
instantaneous rotational axas

| = \/A2p2+ B*’f+ Cr* is the
magnitude of the exciting force-couple

the times along the instantaneous forg
couple axid

@ =, p°+q° is the component of the @

instantaneous angular veloc®yrelative to
the principal plan&’ Y’ at times

t problemwihahean:
f ©=,p°+qg°+r? is the magnitude of
the curvature; i.e., of the total deformation
at a point at an arc length efalong the
instantaneous curvature ax®

| = \/A2p2+ B*’f+ C°’r* is the
anagnitude of the stress that arises at the

erc lengths along the instantaneowssress
axis|

\ P+ is the component of the

instantaneous curvatur® relative to the
plane X’ Y’ of the cross-section; i.e., the
magnitude of pure bending at the distasce

If one has solve&uler’s differential equations then the relations:

(2) da=(0r—-cgs da=@'r-c’

() Here, “curvature” stands for “deformation

Qs dad'=@®"'r-—c'q s etc.

" The usuwahcept of “curvature” in the theory of

curves is replaced with “bending” here. Gfthomson andTait, Handbuch der theor. Physiko. 593 et

seq, 1874.
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will serve to determine the nine inclination cosiae®, c, ..., c". Moreover, the latter
are connected with each other by way of the conditions

(3) a=bc"-bc, a=b"c-b¢, a =bc-b'c etc.,

which arise from an orthogonal substitution.

The tangenZ’to a pointP of the elastic centerline defines angles with thedfixe
coordinate axes{, Y, Z whose cosines are, c’, c’, resp. One will then have the
differential equations:

(4) dx=clls dy=c’Ms dz=c" s

for the coordinates, y, z of the pointP relative to that system.

If one integrates them then one will get the coordsatg, z as functions o§; i.e.,
the equations of the bent centerline. However, ifgientitiesp, g, r of the bending and
twisting are known for a poirR of the latter, and furthermore, the positions oftthree
principal axesX’, Y, Z" that go through it will be given in terms of a fixed odinate
systemX, Y, Z, and if each coordinate &frelative to that system is expressed in terms of
s, moreover, then the equilibrium state of the elastid can be considered to be
essentially known.

Curvatureratios of theindividual cross-sections
2.

One can derive the following integral equations fr&uler’'s equations, upon
multiplying by Ap, Bqg, Cr;a, b, c;a’, ..., c" and adding each time, while considering the
relation (2):

(5) A2 p* +B? f + C*r? = const. 3 2,

Apa + Bgb+ Crc=const= |,
(6) Apd + Bgb+ Cré=const= ],

Apd + Bg+ Cré=const= J=, F-F-E
They imply the theorem for rotation:
The force-couple | that acts upon the body remains constant in intensity atiorioc
during the entire duration of the motion. Its plane is an invariable planatarakis is

an invariable axis in space.

When this theorem is adapted to the rod, it reads:
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The stress that appears in each cross-section as a result of teectmrple | that acts
on the cross-section at the free end is represented by a foupdecthat possesses a
constant magnitude and position, along with I. The plane and axis of the |dktidrew
possess an invariable position and direction in space.

If one multipliesEuler equations by, g, r, resp., and adds them then one will get:
(7) A" +B ¢ +Cr?=const. =h,

which can also be written:
(8) © [kos P |) = const. =|D

For the rotational problem, that means:

The components of the instantaneous angular vel@cdlong the invariable axis of
the applied force-couple | remains constant for the entire duration ahttien.

Direct translation will imply that:

The components of the curvat@eof a cross-section along the invariable direction
of the stress | in it is constant for all cross-sections.

Naturally, it cannot be concluded from this that thgqmt@mn of the elastic centerline
onto the invariable plane that is perpendicular tolthe&is is a circle. The curvature
componenth / | that acts arountlis composed of bending and twisting, so it is not the
magnitude of a pure bending. Since the bending axis alfadlgsin the cross-section
through a point along the centerline, bends can alsompased and decomposed only
around axes that lie in the cross-section, and arepayeendicular to the arc lengtls,
using the method of projection. If one would like tooknthe magnitude of a pure
bending that takes place along an arbitrary line themplsimultiplication by the cosine
of the angle of inclination would not suffice, but ameuld have to successively apply
the two easily-proved theorems:

The bending of the projection of a space curve onto a plane that subtends anfangle
a with the osculating plane is equal to the bending of the space curvepliealby
cosa or seé a, according to whether the plane is parallel to the arc-length element ds
or the principal normal, resp., at the curve point considered.

If one regards the quantitipsq, r of the angular velocity of the rotating body, whic

vary with times, as the coordinates of a poltelative to the three principal ax¥s Y/,

Z', when one carries the instantaneous rotational@Xhe angular velocit® of rotation

as a line segment from the center of m@s# the direction of each instantaneous
rotational axis, then equations (5) and (7) wiinesent two ellipsoids, the latter of which
is Poinsot’s central ellipsoid Its axes are identical to the three principasaaf inertia,
their lengths are proportional to the square robtse principal moments of inertiy B,

C. The fourth-order space curve that is definedth®y simultaneous existence of the
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aforementioned equations Beinsot’s polhodeand the second-degree cone that implies,
viz.:

(9) A (Ah=1) +B (Bh=1) +Cr*(Ch-1) =0

is thecone of the polhode

If one likewise constructs the momentary curvature &igrom the curvature
component, g, r, which vary with arc lengtls, then all of the axes will be parallel to
the generators of a second-degree cone (9) and theitytatdlidefine a skew surface,
namely, the surface of the polhodg (If one carries the magnitude of the curvatBre
along each axi® as a line segment from the polhbf the centerline then the end points
of all such lines lie along a transcendental curve, hartiee polhode’). See paragraph
5 on that topic.

3.

The Poinsot cone (9) of the polhode is always real, so the tlliflerences that
appear in its equation cannot all possess the same digwe assume thah >B > C,
which is allowed by the fact that the moments of ineall have the same type, then it
will follow that:

Ah-f>0, Ch-F<0, Bh-Fz0;
i.e.:

The cone of the polhode is never described around the axis of the matdentof
inertia, but only around that of the largest or smallest moments.

Naturally, one cannot take> B > C arbitrarily for the rod, because the resistance of
the rod to twisting depends upon other influences, just asobribe resistances to
bending () does. One must then distinguish whether the forsnéirei smallest, middle,
or largest of the three principal resistances. Fatrrgmason, we assemble:

A>B>C; B>C>A; C>A>B
Since the cone (9) is also always real here, thedirthese cases will imply that:
Ah-F>0, Ch-f<0, Bh-Ffz0,

as above, and analogously for the other two assumptidret. nfeans:

The second-degree cone whose generators are parallel to the curvatisrenathe
rest position of the rod never seems to be described around the dkes miimerically

() While preservingPoinsot’s terminology.
(") Clebsch, loc. cit, pp. 196.
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middle of the three principal resistances, but only around the largesmaflest of the
resistances.

If one constructs the axis of the force-coupthat acts momentarily relative to the
body, which is assumed to be at rest, from the coemisAp, Bg, Cr in the same way
that one constructs the instantaneous rotational@i®m p, g, r then one will once
more get a second-degree cone, namely, the cone foirtigecouple axes. Once again, it
is only described around the principal axes of the lagesmallest moments of inertia,
which is why one suitably assumes that the initial pmsibf the axis of the applied
couple is in the principal plane of the central ellipsdidttis constructed from the
principal axes of largest and smallest moments. Tihialiposition of the instantaneous
axis of rotation then falls in that plane.

If one constructs the axis of the stre#isat appear at each poltof the undeformed
elastic centerline of the rod from the stress compts#ep, Bg, Cr then they will once
more be parallel to the generators of a second-degrex end their totality will again
define a skew surface, namely, the skew surface of the-fmuple axes. Since the cone
that was referred to is always described around the prinaa of the largest or
smallest principal resistance, the axis of the foragsted that acts upon the cross-section
at the free end can be, at best, assumed to bena fiat is defined by those two axes.
For example, it will fall in the free cross-sectiovhen the resistance to torsion is
numerically the middle of the three resistances.

The inequalities that are implied by establishing the srdémagnitudeA > B > C,
namely:

Ah-f>0, Ch-F<0, Bh-Fz0,

give one information about the position of the secontkiocone whose generators are
defined by the instantaneous rotational axes (are paralldlet instantaneous curvature
axes, resp.). Now, the same thing can also be exgldifferently: For the rotation, they
mean:

The distance from the invariable plane to the midpoint of the centrpkeiti can
never be larger than the largest semi-axis of the ellipsoid nor snibl@ the smallest
one, but only larger or smaller than the middle semi-axis.

One can also accept a similar interpretation for pheblem of the rod when one
describes the ellipsoid (7) that corresponds to theralesllipsoid for a pointP of the
elastic centerline. However, one can explain the irégsain a sense that is more
suited to the essence of elastic rods when one writes:

¥>#, etc., I—hE@>p,etc.,

instead ofAh — F > 0, etc.
Two theorems follow from a consideration of thetiela(8):

The ratios of the stress components along the principal axis of largyesti|est,
middleresistance to the unvarying stress | along the force-couple axisategremaller,
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greater or smaller, resp., for all points than the ratio of the cuneatomponents that
are estimated along that same axis.

The projection of the constant curvaturé lhthat appears in the invariable direction
of the stress axes onto the axis of greatest, smallest, micidtarece will be greater,
smaller, greater or smaller, resp., than the curvature component tiraeg to light
along it.

Since the cone of the instantaneous rotational se@®sto be described around the
axis Z’ of the principal moment of inerti@ for Bh — [? > 0, around th&-axis of the
momentA for Bh — |% < 0, the componentcan never be zero in the former case, and the
componentp can never be zero in the latter. That must be Hs®,csinceEuler’s
equations allow one to repres@ng, r as being proportional to sin amcos amu, A am
u (u = n Os, n constant)y (p, resp.) must be proportional amu in those cases][
Since the aforementioned initial position of the focoewple axis falls in th&X” Z*-plane,
moreover, one must haBeq = 0, sog, = 0 ; i.e.,qg must be proportional to sin amand
indeedBh — 1% # 0, for both cases. By substituting the elliptic fumasi in equations (1),
(5), and (7), values fag, q, r will easily follow that are found idacobi’s paper “Sur la
rotation.” Moreover, one can combine the two distingeiscaseBh — I < 0 andBh — |
2> 0 into a single one by assuming the sequéne® > C forBh —1°<0andA<B<C
for Bh — |2 > 0. Of course, two different central ellipsoiddlveie determined in that
way. If one would like to assunfe> B > C, and thus choose the first central ellipsoid,
then under the transition froBh — I> < 0 toBh — 12 > 0, one would have to switghand
r, AandC, X"andZ’in Jacobi’s formulas.

Since entirely the same considerations relativehto done whose generators are
parallel to the instantaneous curvature axes pertaithgéoproblem of the rod, only
Jacobi’s expressions fop, g, r whenA > B > C need to be written down. One will get
the formulas foB > C > A, C> A > B by cyclically permuting the quantitis B, C and
p, q, r. If we choose the axis to be that of the force-cotipd acts upon the cross-
section of the free ersl= 0 in the quadrants that are defined by the positive hafubg o
principal axes of largest and smallest resistances (vdaiekl not coincide with the initial
position thatJacobi chose for the rotation, moreover) theng, r will be expressed as
follows:

I.A>B>C. 1.Bh-F>0.

_ | 1?-Ch .
p=,——— [kos amu = —sin @ [os anu,
A(A-C) A
2 _ —
ﬂ Ckin amu :I—D M sin @ [Bin amu ,
B(B-C) A\ B(B-Q

[l Translator's note: The notation “am” refers tbpgic functions, as will become apparent shortly.
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_ Ah-1? N
r= | ——— Mamu=— cos@, [N amu.
C(A-0O C
2.Bh—12<0.
2_
p= ﬂ A amu :I— cos@go [N amu,
A(A-C) C

— 2 —
AT in amu =1 g/ SAZ0) sin ¢o Osin amu
B(A- B c\B(A-B
_ 12
r= AN s amJ:I—cos¢o [tos anu .
C(A-0O C

I.B>C>A. 1.Ch-12>0.

_ [ Bh-1
p_ .
A(B-A

_ | I*=Ah b
g=,|———— [kos anmu = — sing, [tos anu,
B(B- A B
2 _ —
T-AL IZBinamuzI—D Msin¢o|:lsinamu.
C(C-A B\ C(C-A

A amu ZIZ cos¢@go [N amu,

(10)
2.Ch-I*<0.
_ | Bh=F |

p=,|——— [kos anu=— cos¢, [tos anu,

A(B- A A
2_

q= LA o gmu= L sin go I\ amu,,

B(B- A B
— 2 —

_Bh-IP Ckin amu:I—D Mcos¢o [kin amu .
Cc(B-0 A\ C(B-0O

Il. C>A>B. 1.Ah—12>0.

10
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p= IZ_—Bh Ijsinamuzl—D msin%ﬂsinamu,
\j A(A-B A\ C(B-0O

_ | Ch=F |
g=,|—— A\ amu=— cos¢, [N amu,
B(C-B B
2_
r= "-Bh Ebosarmzl—sin¢olibosarm.
C(C-B C
2.Ah—12>0.

—_— 2 —
p= Ch=I [kin amu:I—D Mcos¢oljsin amu,
A(C-A B\ AC-A
_ 12
q= Ch=lP Ocos amJ:I— cos¢y [tos anu ,
B(C-B B

_ [ 12-Bn

r=,|—— I]Samuzl—sin%mamu.
C(C-B C

The modulusc and the constamtin u =n [k are:

.A>B>C. 1.Bh-12>0.

—— L tandy,

= [(A- B(I°-Ch _ |C(A-B)
(B-C)(Ah-F) A(B-C)

= [(B=C)(Ah-F) :iD\/(B—C)(A— B) c0sds.
ABC C AB
2.Bh-1%°<0.
K:\/(B—C)(,?h— F) - [AB-O 4
(A-B)(I*-Ch C(A-B)
Go [ (A= B)(1>-Ch) :ED\/ (A-B)(B- C) sin do .
ABC A BC

11



Hess — The bending and twisting of an infinitely-thlisséc rod 12

In this, o means the angle that the axis of the applied couplehveertainly falls in
the plane of the principal axes of largest and snmallesistances, makes with the
principal axis of smallest resistance. Por B >C andBh—I 2> 0, one will then have
Bogp = 0,Ap =1 sin go, Cro =1 cosgy for the cross-section at the free end, and as & resu
of equations (5), (7):

Ah—IZ:EZ(A—Qco§¢o, I2—Ch=|'—A\(A—Qsir12¢o.

If one generally takes the angles between the foople axis and the three principal
axesX’, Y, Z' (i, v, p, resp.) then since it will follow from (5), (7) that:

Bh—12= ARS(A—B - O} (B~ O = cod 4 =2~ cos pTe——,

instead of:
Bh—12%0,

Cosy A(B-C)
cosp C(A-B
The direction of the force-couple axis will theetermine whether one h&s —1 % >
0orBh-I%<0.

one can write:

If that direction lies in one of the two planesttiga through the principal axis "of
the middle bending and possess the equation:

X_, [A(B-9
y "\ C(A-B

then one will have Bh -*I= 0and one will enter into a special ca@s., § 10).

The same arguments will apply to the other fivevemtions.

4.

It first follows from the equations fq, g, r that the latter are generally periodicuin
with period &, up to sign, but they will also assume the sameegafor X + u, such
that the absolute values of the bending and tvgstimly need to be computed for a piece
of the rod whose length is established by the wahfethe parametens andK, and is
thereforeK / n. Depending upon which of the six conventions &oxe chooses, the
curvature of the elastic rod will yield differenequliarities. One can see the type and
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manner of their alteration by means of the easily-tstded abbreviations in the
following tables, which can be exhibited far>B > C, Bh —1%> 0 andBh — 1°< 0:

u=0 <K =K < 2K =2K < 3K =3K < 4K = 4K
1. + Pmax +p 0 -p ~ Pmax -p 0 +p *+ Pmax
0 +Q *+ Omax +q 0 -q ~ Omax -q 0
+ I'max +r + I'min +r + I'max +r + 'min +r + I'max
2. + Pmax +p *+ Pmin +p *+ Pmax +p + Pmin +p *+ Pmax
0 +Q *+ Omax +q 0 -q ~ Omax -q 0
I'max +r 0 =TI — I'max -r 0 +r + INmax

Other tables are true for the other four conventidbse sees from them that:

If the resistance of the rod to torsion is the mid@lig of the three principal
resistances then the twisting of the rod cannot result continuallyeirsdme sense, but
there will necessarily exist cross-sections such that theaenhs to have been twisted in
the opposite sense on their two sides. Those cross-section tlesmedlexperience no
rotation in their planes, and for all other cross-sections that lie at lediséances to the
left or right of them, the absolute value of the twisting willH@esame.

If the resistance to torsion is the small@3tor largest(lll) of the three principal
resistances then the sense of the torsion can never change in oadved gub-casgs.1
and 111.2 ()]: All cross-sections of the rod seem to have been rotated in the sase s
and the magnitude of the torsion will alternate between a minimum and enumaxi

By contrast, in the other two sub-ca¢ke® and I11.1),it is the direction of the twisting
that will again alternate.

Similar theorems are true for each component of bgndif a resistance to bending
is numerically the middle value of the three resistanthen the sense of the bending
along its axis will always alternate through 0, sinceerelier the bending component is
zero, the principal plane through the critical axis ahd torsion axis will be the
osculating plane of the elastic centerline. If astaace to bending is numerically the
smallest or the largest resistance then the senke denhding component can alternate in
each of the two sub-cases, but not in the other.

As far as the intensities of the curvature componem@s@ncerned, the component
that acts along the principal axis of largest or smaflesistance will become larger as
that resistance becomes smaller, the applied forcee«dgitomes stronger, and the
inclination of the axis of the force-couple to the phiadiaxis in question becomes
smaller. Those theorems are then true for the ssb-t&@t one also decides upon. The
components of the curvature along the principal axisehtlidle resistance increases in
intensity for two of the two different distinguishinglscases: For the first one, if the
applied force-couple and the inclination of its axis wispect to the axis of smallest

() See the previous paragraphs for the geometric meahthis.
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resistance increases then the two extreme resistanitégcome larger and the middle
one will become smaller. For the second one, thitb@itrue when the applied force-
couple and the inclination of its axis with respect te Hxis of greatest resistance
increase and the two extreme resistances become snByleontrast, the components in
that sub-case will increase with increasing middle remst@anly when it is greater than
one-half the largest resistance. If the middle tasee is smaller than one-half of the
largest one then the component will drop with an ireaa the middle resistance.

The total curvatur® =,/ p>+qg°+ r” that is composed of the curvature components

p, g, r will be a maximum for the free end and for each pofrihe rod whose parameter
valueu is an even multiple ofR and a minimum for the points that are determined by
odd multiples ofu. Their intensities will grow larger with increasingestgth of the
force-couple, and with the decreasing of each of theethesistances and the inclination
angle between the axis of the force-couple and theipaihaxis of smallest resistance.

The magnitud®’ =,/ p>+¢° of pure bending at the points of the elastic centerline
that are established by the parameter value®, X, 4K, ..., will be a maximum when
the resistance to twisting is the middle of the thiemastances and a minimum as long as
it is the smallest one. If the resistance to twistsBinumerically the largest then one will
have a maximum or minimum according to whether it isgreor less than the sum of
the resistances to bending. For K, 3K, 5K, ..., minima or maxima, resp., will appear.
The intensity of the bending will generally increasednrincrease in the intensity of the
applied force-couple and for a diminishing of the threequpal resistances. By contrast,
the strength of the bending can increase or decreasa focreasing angle of inclination
between the axis of the force-couple and the axis ef kesistance.

Thetransfer of the straight and untwisted elastic rod to its equilibrium position
by means of the successive bending of two skew surfaces

5.

During an infinitely-small time intervals a rigid body that rotates around its center
of massO will rotate around the instantaneous axis of rota@® with an angular
velocity ©1 , so in that way an axiS O, that is close to the ax@ ©; will be taken to a
positionO%, and will be itself an instantaneous axis of rotatioareaver. The body will
rotate around it with an angular velocity®f. Under repeated rotation, a neighboring
positionO O3 to O ©, will be transferred t® &, in order to be an axis of rotation in the
next moment, etc. It seems as if the cor®;@, Os ... of instantaneous rotational axes,
which one can construct from the compongng, r for the body, which is thought to be
at rest, rolls without slipping on another fixed c&d, , &, J;, ... in space with which
it has a generator in common with the latter at eaoment, namely, the instantaneous
axis of rotation. The con® ©; ©, O3 ... is Poinsot’'s cone of the polhode, which was
mentioned already in paragraphwhile the cone @ &, & ... is Poinsot’s cone of the
herpolhode The end points®, 0,03 ... (% J5 ... , resp.) of the instantaneous
rotational axes define the curves of the polhode and heigmlh®f the two, the polhode
is a fourth-order space curve that lies on the cenliipseid, while the herpolhode is a
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transcendental plane curve with no inflection pointshat lies in the invariable plane of
the applied force-couple.

If one imagines that the magnitude and direction ofitbantaneous curvatu® at
each point of the elastic centerline of the straight and untwlistel is determined from

the curvature componengs q, r then the lineP® that arises will give the axis around
which the arc-length elememnts will be deformed, as well as the magnitude of the
deformation. If one now starts from the free éhdand rotates the arc-length element

ﬁ along the curvature ax; ©; through the prescribed quanti®s [ds (when one,
say, rotates the arc-length element through the magnitudenoling ©; s around the
axis of pure bending and then through the magnitude ofitgyist (ds around the rod
axis), holdsP, P, fixed and rotates®, P, alongP, @, through®, [ds once more holds

P, B, fixed and rotates?, P, alongP; ©3 through®; Ods etc., then those successive

rotations will take the straight elastic centerlingtsaequilibrium position and each cross-
section will be rotated in its plane. The curvatutes®; ©;, P, ©,, P3 @3, ..., which
previously defined a skew surface (namely, the surfacehef golhode that was
mentioned in 8) will now lie on a new skew surface whose guiding limeéhe bent
elastic centerline. FollowingPoinsot’s cone of the herpolhode, we call it thkew
surface of the herpolhodend the transcendental curves that are analogou® tongs
that are defined by the endpoints of the instantaneoustateaxes are the polhodes and
herpolhodes. We then see that:

The transfer of a straight and untwisted elastic rod whose one encets @obdn by a
force-couplg() to its equilibrium position can be rationalized by the bending of a flexible
skew surface into a fixed skew surface with which the formea baserator in common
at each moment, namely, the instantaneous curvature axis. The guidingf lthestwo
surfaces are the straight and bent elastic centerlines of the rod.

In our case of the effect of just one force-cougle, generators of the skew surface
are parallel to the generators of a second-degree cdnle, those of the fixed skew
surface will be parallel to the generators of a tramdertal cone. The coordinates of the
polhode for the rotation problem relative to the threaqypal axes of inerti®X’ Y’ Z’
are given directly by:

4

X =p, y’'=q, Z=r.
The equations of the cone of the polhode are then:
X = wlph, y’'= wly, Z = wlt,
in which w means an arbitrary constant whose elimination, inucaton with the

elimination ofu, through whichp, q, r is expressed according to (10), will again allow the
equation of the cone to take the form (9).aifuns through a series of values then one

() Cf., my dissertation that was cited above.
() This theorem is true in general.
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will get curves that are similar to the polhode= 1) and each of which can naturally be
considered to be the polhode.

For the straight elastic rod, the equations of the qudh- i.e., the curve of the
endpoints of the instantaneous curvature axes — retatie system of principal ax&s,
Y’, Z’that is established in the cross-section at theeineleare:

(12) X =p, y’'=q, Z +s=r.

In these equations,= u/ n, and the values of the quantitigsg, r are obtained from the
equations (10). Since the substitution can be accomglish&x ways, there will also be
six different types of polhodes, which can, however rdmuced to three essentially-
different ones, which are characterized by the faat in the equatiod + s =r for the
magnitude of twisting, one can first introduce the function sin anthen cos am, and
thirdly, A amu. The equations will show thaf)(

The polhode for the elastic rod is a transcendental curve that liessencand-degree
cylinder that is described around the straight rod axis. Its praactinto the plane of
the cross-section X’ — i.e., the profile of the cylinder — is a complete ellipselong as
the resistance to torsion is the smallest or largest and at the samadhe sense of the
twist never alternates through zefiol and 111.2 of (10) Z)]. The projection will be an
arc of an ellipse as long as the resistance to torsion is again théesimai largest, but
cross-sections can exist that are not rotated in their plén@snd I11.1). The projection
is an arc of a hyperbola whenever the resistance to torsion is the notidhe three
principal resistancegll). The projection of the polhode onto the other two principal
planes YZ’and Z X’ are wave-like when the running curves have the type of sinusoids.
They either do not cut the rod axis at dbr the plane YZ’in the case$l.2 andlll.1,

Fig 3] or they will cut the axis. Therefore, all of the inflection paiw be found on the
same side of the axjs2 andll.1, Fig. 2] or on different sides of the lattfitl andlll.2,
Fig. 1].

The equations of the flexible skew surface or the sarfdt¢he polhode can be easily
derived from the equations (12) of the polhode, with thdtiaddof a proportionality
factor w:

(13) X = wlh, y’ = wlh, zZ+

By varying as one will obtain a whole family of curves that amitar to the polhode,
and each of which can be regarded as the polhode. By diimgithe quantitywand the
variableu that appear ip, g, r, one will get the equation for the transcendentdasarin
Cartesian coordinates.

Constructing the equation of the herpolhode and its skevace requires that one
must know the equations of the bent elastic centerlihthe coordinates of a poiit of
the latter relative to the fixed coordinate systény, Z (x, y, z, resp.) are those of the

(") Translator: The cited figures were not availablthattime of translation.
() For the geometric meaning, se8.§
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corresponding point of the herpolhode — i.e., the endpbifite curvature axi® (¢, 1, ¢,
resp.) that exists & — then the equations of the herpolhode will be:

f—x=aptbg+tcr,
n-y=ap+bqg+cr,

h
{—z=a'p+b"g+c"r =const. =|—

in whicha, b, c, ..., c" mean the inclination cosines of the coordinate sys¥ri, Z and
X4 Y, Z. The equations of the skew surface of the herpolhodeagain be obtained
from the foregoing ones by the addition of a faatorThe functions that appear in both
systems of equations can, moreover, seem to be émohsctal and so complicated that
their actual presentation as functionsiatould seem pointless.

The curvature of theentirerod.
6.

In order to find the form of the curve into which thastic centerline will be bent, we
recall the essence of the curvature compongrdsr. They were generally periodic in
with a period of K. We will then have:

The bent elastic centerline of the rod is a periodic curve. Afitpavhose parameter
values differ by multiples of the quantiti{ will possess the same curvature ratios, and
all curve segments that are bounded by such points will be congruent.

The magnitude of the bendi® = / p>+ ¢° can never be zero, except wigen g =

0. However, from equations (1), that will happen only wten applied force-couple
rotates around the torsion axis, e q = 0 will still be true. If one ignores that special
case in which the elastic centerline remains stra@id, thus possesses infinitely-many
inflection points, then one can say that:

The bent elastic centerline possesses no inflepbants.

Of all the projections of the latter curve, the pctign onto the invariable plane of
the force-couple is the simplest. If, in order to sider it, we take the invariable
direction of the force-couple to be tAeaxis, so the plane of the force-couple will be the
XY-plane of our fixed coordinate system (whose origin mighat the free end) then the
inclination cosines”, b", ¢" of the principal axeX’, Y’, Z’with respect to th& axis will
follow directly:

(14) w:%& br==2,  ¢'==
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If one defines the magnitudes of bending for a point an giojection of the
centerline onto theXY-plane in accordance with the viewpoint that was takethén
context of the discussion of the composition and deasition of bends in 8, then one
will get, after some calculation:

a'p+bq _ 20 h—-Cr?

e e

In order for the bendin®,y to be constant, must be constant, and in order for it to be O,
in particular,r would have to equal/ h/C. The latter assumption would again lead to

the case op =q =0 - i.e., the case of simple torsion= constant assumes that 0,

= constant or conversely. As aresult of (1), taat be fulfilled when the two resistances
to bendingA, B are equal for an arbitrarily-placed force-coudtet when they are
unequal, that condition can be fulfilled only forf@ace-couple that has been rotated
around one of the principal ax¥sY of the cross-section. The former case represbats
bending of an isotropic rod into a helix, while tlater represents the bending of the
general rod onto a circle (cinfra). Except for those special cases:

(15) Oyy =

The projection of the elastic centerline onto thenp of the applied force-couple can
never be a circle, not can it possess isolate@atitbn points.

Since O,y is periodic inu with a period of K, due to the square of and an
examination will point to the impossibility of fimy a maximum or minimum of the
bendingBy, between two successive values of the period, dihéhen have:

The projection of the elastic centerline onto theariable plane will prove to be a
transcendental curve that is always bent in theesaanse, its segments that are bounded
by two periodic values are congruent, and there ala maximum of the bending at one
end, while there will be a minimum at the oth{&iig. 10)

The projections of the rod curve onto the otheedicoordinate planeéZ andZX —
and thus onto an arbitrary plane in space — cahlfg investigated when one has defined
the inclination cosines, b, ¢, &, b', ¢ in terms ofu. Namely, the magnitudes of bending
Oy, Oy, read entirely like the quantiy,,, when one substitutes the cosiaeb (a, b,
resp.) in place od’, b". That will show:

Assuming the aforementioned cases of circular mgndnd pure torsion, the elastic
centerline cannot be a plane curve. Its projectionto other planes than the invariable
plane of the force-couple will not be periodic. particular, under projection onto a
circular cylinder, the elastic centerline can bdled only in the case of circular (helical,
resp.) bending.
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7.

Just as in the case of the projections of the bastielcenterline onto ones in the
invariable XY-plane, among all the coordinates of a pdhtalong that line, the-
coordinate is the simplest one, and it gives the distdram the point to that plane.
From (14), the cosine” of the inclination angle of the tangelZ’ with respect to the
axis of the force-couple will be:

C’ T

:IED',

which is proportional to the twist so all of the considerations that could be applied to
the behavior of in 84 will also be true for them. In particular, from (16),can take on
six types of values, of which, three are essentiaffemint; for the coordinates (4), they
will correspond to:

zZ= jc”[dszﬁq'r [du.

Three different forms appear according to whetherféimetions sin amu, cos amu,
Aamu, resp., enter into. Now:

jsin amu u="1n (A amu — k [Tos anu),
K

1 . .
jcos amu[tu=— arcsin  sin amu),
K

jA amu [du= arcsin (sin anu) = amu .

The integration constants that enter into the figdnd side are determined by the special
choice of coordinate system. It is known that @lkes of the force-couple will be in the
plane of the principal axes of smallest and largesistances. If one calls that axis(4,
once and for all, so the invariable plane will>0¢ and one chooses thifeaxis such that

it coincides with the principal axis of the middiesistance that is drawn in the cross-
section at the free end then one will achieve ceegee of the coordinate systeKysy, Z
and X', Y, Z’ for all three cases. The following figures givdormation about their
relative positions:

() One might call the axe& X, Y, corresponding to the conventiohss B>C,B>C>A C>A> B,
and achieve many simplifications in that way. Howewerthe whole, the considerations would probably
become more complicated.
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x’/y X

The values of the-coordinate can be inferred from the following table:

. A>SB>C 1. Bh—-1?>0 2. Bh-1°<0
Gz=amu G [ = arcsin k [kin amu)
I.B>C>A (16) 1.Ch-1?>0 2. Ch-1°<0
GEk:InAamu—KEbosanm GEk:InAamu—KEbosanm
1-« 1-«
. C>A>B 1. Ah—17>0 2.Ah—1°<0
G [ = arcsin & [kin amu) G [ =amu.

In this, we have set:

1:G:C\/ AB :
+(A-C)(B-0O

in which the sign in the denominator must be chosen thatméke that denominator
positive.

As one sees, the expressions mdepend essentially upon the behavior of the
resistance to twistin@ : If it is numerically the middle of the three reaisces thea will
be logarithmic, and if it is the smallest or largdstrt it will be expressed cyclometrically
by elliptic functions. The following characteristicctahas decisive importance for the
shape of the elastic centerline:

If the resistance of the rod to torsion is the middle of the threeipal resistances
then the helically-bent elastic centerline will lie completatythe side of the invariable
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plane of the force-couple that acts upon the free cross-section, itvhiilk contact the
plane at the free end, as well as those locations for which the vathe phrameter u
takes on multiples afK. All points that have the same arc-length distance to the left or
right of the contact points have the same distance from the plane. F@Ku6K, ...,
the curve contacts a parallel plane whose distance from the plane fafrtleecouple is
equal to:

1+k

(h— (see Fig. 8).

2 = &
« G 1-«

Foru=K, 3K, ..., one will have:

N

K =35 Zx .

If the resistance of the rod to twisting is the smallest or largethe three principal
resistances then, fro84, the sense of the twist will never change in each of the two sub-
cases that pertain to each case (hamelyandlil.2). Now, with those assumptions, the
z-coordinate will increase continually, so the elastic centerlieliicompletely on one
side of the invariable plane of the force-couple and will move evtrefufrom it. The
shape of the curve is precisely the same between parallel pfaoegh points with the
parameter valuegK, 4K, 6K, ..., and one will have:

zy,K:uEkK:éEuBg (Fig. 7)

If the resistance to twisting is the smallest or the largesttaadense of the twist can
change(l.2 and Ill.1) then z will once more be periodic in u and the elastic centerline
will intersect the invariable plane of the force-couple for 0, X, 4K, ..., and as it
alternates above and below that plane, it will, in due course, contagiavedlel planes,

each of which possesses a distancexof zél:larcsink from the plane of the force-

couple. (Fig. 9)

As far as the proportionality factor 1G:is concerned, it should emphasized that, in
contrast to the factors that appeared before, it ispgw#ent ofh andl (when taken
absolutely), so it will be represented by the same esjedor all six sub-cases in the
classification. That is:

The relative strength : G with which the elastic centerline spirals up the invariable
plane of the force-couple does not depend upon the intensity and direction o&tamplic
of the couple, but only upon the magnitudes of the three resistancesrtoatedn.

Since the values dk depend upon onlip andl in the casdB > C > A, since they
enter intok, the variation ofx in the other two cases can be attributed to a vanian
1:G. That shows that:

If the resistance to twisting is the smallest of the three jpahcesistances then the
spiral into which the elastic centerline is bent will rise rewvmre steeply from the plane
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of the force-couple as that resistance gets smaller and as theanegidb bending gets
larger. If the resistance to twisting is the largest then tieepness of the spiral will
increase as that resistance increases and the resistance to bendingsdscre

If the resistance to twisting is the middle one ttiendegree of steepness of the curve
will be essentially influenced by inequalities that existween the resistancés B, C,
except for the fact that the inclinatigiy of the axis of the force-couple with respect to
the principal axis of smallest resistance will entéo k.

Previously, the distancefrom a point on the elastic centerline to the plah¢he
couple that acts upon the cross-section at the freavasdjiven in the forma = jc” [ds=

IEEJ'r [ds. However,jr [ds is nothing but the total magnitudeof the torsion for a

pieces of the elastic rod (as measured from the free end), so
(17) T=—[x.

That is: The total torsion of a piece of the elastenterline of length s (measured
from the free end) will be measured by the distdnme the endpoint to the invariable
plane of the applied force-couple, up to a constant

In particular, that total torsion will increase cowially as long as the twisting cannot
change its sense. It will be zero, without becomiegative as long as the twist changes
its sense and the resistance to twisting is the mioide while it will go through zero
into negative values as long as the sense of thengistin change and the resistance to
twisting is the smallest or largest.

This total torsion of an arbitrarily-bounded piece @ tbd will be measured simply
by the difference between the distances from the diagrpoints to the invariable plane
of the force-couple. Moreover, it can also be zehemthe resistance to twisting is the
middle one.

Since these theorems about the total torsion canrineeddrom the behavior of the
twist r (8 4), they will verify the distance (the three positions, resp.) that the elastic
centerline can assume with respect to the invariabie éthe force-couple.

The quantityT is nothing but the angle through which a cross-sectidirowirotated
with respect to the cross-section at the free dtat.the point with the parameter vakie
that will imply:

|
Te=—02,.
<=t

If one would prefer that the cross-section K were rotated with respect to the cross-
section at the end through a well-defined anbthen a condition equation would result
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between! and the resistancés B, C that does or does not include the argjdetween
the axis of the applied force-couple and the principal @ssnallest resistance.

8.

We shall now construct the expressions for the coomlnaty of a pointP on the
elastic centerline (for the inclination cosinesc’ of the tangenPZ’ with respect to the
axesX, Y of the fixed coordinate system, resp.).

It easily follows from equations (2) and (3) that:

c’B‘LC—ch—dz a'p+b"aq
ds ds

If one substitutes the values faf, b” from (14) in these equations and observes the
relation (7) then, since the left-hand side can be detkmo a total differential, one can
write:
—&d¥¥9:%m&+&ﬁ
s
Now, one has:

P+0%2=1-¢?= |i2 (A2 p2 +B? qz),
SO one might set:

= i—L A p® + B*qff [osy,

A’ + B Ckin ¢

If one substitutes these values in the differentiabéiqn above and writas/ n for sthen
one will get:

2 2
(18) dy=-1pP BT oy

I
n A2p2+BZq2

p andq must be replaced with functions win these equations. As is known, there exist
six different pairs of values fop, g in all, so there will be six distinct solutions.
However, in the foregoing sections, we have emphasieagdg it essential for the elastic
centerline to possess periodicities with no inflectmyints and always appear to be
doubly-curved, and indeed completely independently of the oodarsagnitude of the
three moments of resistandeB, C. Those curves will possess essentially the same type
in all six cases, and since the characteristic behaviarhas already been discussed, it
will suffice to present the cosinesc' (the coordinate, y, resp.) for a single assumption,
say for:

A>B>C, Bh-I*>0.
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As one can easily show, the auxiliary angi¢hat was introduced above is the angle
between the line of intersection of the plane ofdiess-sectiorX” Y’ through a poinP
of the elastic centerline and the invarialéplane, on the one hand, and the fixed
axis, on the other. It is nothing but thaler angley between the nodal lind of a rigid
body that rotates around its center of mass and xeel ¥-axis in the invariableXY-
plane. All that one needs to do then it is adapt @heevofy to Jacobi’s work (). If one
sets:

Y=g+

then that will imply:
1 ©u+ia)
19 '= —[bg———=.
(19) v 2 gG)(u—ia)

In these expressionis andn’' mean constants that are defined by the equations:

Y
:_]_'Esinamia: M,
i A
| 0 .
f=—+ log © (ia).
An o(ia) 9 (2)

’is obviously the angle between the line of intetisecof X’ Y”and XY and a new axis
in the XY-plane that does not, however, lie fixed in thaingl, likeY, but seems to move
with an angular velocity of’ / n in the negative sense. Now, one can just as reft
the coordinates of the poiRtof the centerline to the fixed coordinate sysben, Z as to

a system that consists of the invariablaxis, the moving axisyf, and a moving axisX)
that is perpendicular to them. The angtewill be periodic for the latter system, so when
one looks for the projection of the poldton the rod onto the invariable plane, it would
probably be best to proceed by using the positidheline ) for the values o$ (i.e., u)
considered and calculate the rectangular coordinaitd respect to the latter. According
to Jacobi (), that will imply that the inclination cosines)( (¢') of the principal axi€’
(which is the tangent to the elastic centerlinggh&vith respect to the moving axe§) (

(Y) are:

_ H,(0) - .
(© = 2T, (2) () O (u+ia) +© (u-ia)],
(20)
(c) = H.(0) O (u+ia) +© (u—ia)] .

 2iH,(a)®W)

One can obtain the inclination anglesc' of the tangenPZ’ with respect to the fixed
axesX, Y as soon as one substitutes the values)p{d) in the equations:

() Jacobi, loc. cit, pp. 157-159.
() Loc. cit, pp. 162.
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c = () [Tosn u+(c) kinn' u,
(21)
¢ =—(c) inn"u+ (c') (tosn' u.

The inclination cosinesc), (c') are periodic inu of period X, while ¢, ¢ have no
periodicity. One will obtain expressions analogous to {d7)he inclination cosinesy,
(@’) [(b), ('), resp.] of the axex”andY’with respect to the moving axes)( (Y). At the
same time, they can be taken frdacobi’s work, but here they are less interesting than
the inclination cosines), (c’) of the tangent to the rogf.

0.

The ©-functions that appear in formulas (20) and (21) can beaeglavith infinite
series. That must happen as soon as one would acikelty Idefine the coordinates)(
(y), andx, y of a pointP on the elastic centerline relative to the moving syse), (Y)
and the fixed systerq, Y by integrating the equations:

d(x) _ d(y) _

C), —22=(C),
&S © ds ()
ds ds

If we also replace the closed expressions that wbtaireed for thezcoordinates in
paragraph8 with infinite series (at least, foh > B > C and Bh — 1> > 0) then the
coordinates will take the following forms:

I.  Moving coordinate systenx}, (Y), (2).

By perfor[ning the integration of thdacobi series (), upon introducing the
abbreviations():

nd =u="no,
K K

Ii‘ - b, oK 1K) — a

2 _[(A-C)(B-C)_ A G =D
C AB ’

() Cf., the beginning of the work “Sur la rotation.”
(") In the treatise in the Miinch. Ber., one will findgdnrectly,q =1... printed instead af =e... and &
— B) O instead ofA [B .
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one will get the coordinateg)( (y), (2):

_ 20”7 —b/2 /2 o’ (L+ of*)Einuv
P = gvald ¢ﬁ£ua¢MMCW%

- O“(1+ qz")E‘sinz’L;V

(22) D y) = W+ d) D ey

_ g Binuv
DO2 = v+ E
U= lﬂ(1+q2ﬂ)

II. Fixed coordinate systeiq Y, Z.
If, in addition to the previous abbreviations, one atsmduces:

m:EEh’
Vid

then one will have:

s
2q Einmv+ qulzz q' Sin(m-u)v

m(1 ml-d) F (M=) (1= g*°)
qP'? g” Bin(m-x)v
Z(m+,u)(1 o )’
49" mv . @ Binz(mz_ﬂjv
23 DOy= ———Bin*—+4g""?
=3) Ve S 2 Y L e o)
L g Binz(m;’ujv
— AgM2
T )
D [z =D [02).

Special casesthat arise from special locations of the applied for ce-couple
10.

If force-couple that acts upon a rigid body rasaégound the principal axis of the
largest or smallest moment of inertia then the amowill proceed continually around that
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axis with uniform angular velocity. The magnitude of ther is equal toirjtensity of
the force-couple: (moment of inertia  The cones of the polhode and herpolhode will
coincide with the permanent axis of rotation. The stateotion isstable— viz., small
perturbations of the rotational axis will produce only enimscillations about its rest
position.

If the force-couple that acts upon the cross-section at the freefeéhd md rotates
around the principal axis of largest or smallest resistance to defasmsgtiand if that
principal axis the torsion axis then the elastic centerline of taewill remain straight,
and the rod will be only uniformly twisted. The magnitude of theingis$ equal to
(intensity of the force-couple) (resistance to torsion). The flexible and fixed skew
surface, as well as the curves of the polhode and herpolhode that tiecomcide in the
axis of the rod. If the principal axis is one of pure bending then bwrding without
twisting into a circle will be produced. The curvature of the tae(intensity of the
force-couple) (resistance to bending)The skew surfaces of the polhode and herpolhode
are parallel to the axis of the force-couple in the circular cylmd® the curves will
coincide in a circle. The equilibrium statedsble in both cases: viz., if one pushes the
rod from its equilibrium position slightly then it will again seeketurn to it.

If the force-couple that acts upon a body X B > C) rotates around a line that
belongs to one of the two planes that go throughptingcipal axisY’ of the middle
moment of inertia and have equations relative to the paheixis systenX’, Y’, Z":

X . A(B-0O)
y “\C(A-B’
then (cf., the concluding remarks i88Bh — F = 0, and the elliptic functions that appear

in p, g, r will reduce to logarithmic ones. The rolling conelad instantaneous rotational
axis will likewise go to twglanesthrough they-axis:

X_,|C(B=C

Yy VAA-B'
and thepolhodewill go to two ellipses. The herpolhodewill become aspiral, and the
coneof the herpolhode will be wound correspondingly. THe-sases oBh > 1% andBh
<12 will coincide.

Of course, the assumption ttitt — F = 0 also admits the singular solutiprs 0,1 =

0, so fromEuler’s equations (1), one will hawe= const. =qp . That is, when the applied
force-couple acts around tié-axis of the middle moment of inerti&aitself, the rotation
around that axis will proceed continually and with corstegfocity. In this case, the
state of motion idabile: viz., it might take only a minor perturbation to imradly

upset the central ellipsoid and allow the phenomenavibed described before to come
about.
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If the force-couple that acts upon the elastic rodtest around a straight line that
belongs to one of the twcharacteristicplanes that go through the principal axis of the
middle resistance, and whose equationsAforB > C, etc., are:

. [A(B-0
"V C(A-B’

X
yl

etc.,

relative to the system of three principal axes ttennmodulusk of the elliptic functions
inp, g, r will be equal to 1, and formulas (10) will go to the follog/ones:

. A>B>C.
ID=I— A(B—C)DZé’ | r:I—
A\ B(C-A ¢é'+1 C
q_l_ 2u_1
B e+1
II. B>C>A
(24) p:I— A(B—C)DZé’ |
A\ C(B-A ¢é'+1
r_l_ 2u_1
C +1
1. C>A>B.

_ 1 [B(C-A) _2¢

4= B\ C(B—A)Dé“+1’
_I_ 2u_1
PoA @+l

2¢'
E :
é'+1

C(A-B)
B(A-0

| [B(C=A _2¢
B e A @1

| fC(A— B) _ 2¢€
r=— B ,
C\ A(C-B ¢é'+1

The sub-caseBh — £ > 0 andBh — £ < 0, etc, coincide. From what was said above, as

well as the formulas, that will imply:

As long as the resistance to torsion is the middfie, the surface of the polhode will
go to a pair of planes through the axis of the rib@, polhodef =p, n=q, {=—-(u/n) +
r will go to a plane curve that lies in one or tbéher plane according to whether the axis
of the applied force-couple lies in one or the otbiethe two “characteristic” planes that
correspond to those planes. The projection ofelastic centerline onto the plane of the
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cross-section will be a line segment. The projections onto the @iherpal planes will
be curves that run asymptotically to the axis of the rod. The airttee polhode will
then approach the axis of the rod asymptotically at the samegfimet).

If the resistance to torsion is the largest or smallest othihee principal resistances
to deformation then the projection of the polhode onto the plane of the exigmswill
be a quadrant of an ellipse, and the projections onto the other two principalsplatie
be curves that run asymptotically to two lines that are parallel t@xeof the rod(Fig.
5).

The bending®yy (15) of the projection of the elastic centerline ortte invariable
plane of the force-couple is known to depend upoh will no longer periodic iru here,

2U
I . . . . -1
but will rise or fall continually according to whetheenters into the quotlen‘iu—+1 or
e

U

. That is:

e2u +1

The projection of the elastic centerline onto theariable plane of the force-couple
no longer possesses periodic curvature, but wintts & spiral,, in complete analogy to
the corresponding case Bbinsot’s spiral. The spiral will then run from one fixedcle
(s = 0) asymptotically to a second one that is concerttrigt (S = ) as long as the
resistance to torsion is not the middle qi&y. 12);By contrast, it will run from a fixed
circle (s = 0) asymptotically to its centds = «) as long as the resistance to torsion is
smaller than the one resistance to bending andelatigan the other on€Fig. 11).

The elastic centerline itself appears to be a cuhat loops around the axis of the
force-couple. In the first of the aforementionades, it will move more and more distant
from that axis without exceeding a certain limitidigtance, moreover, and in the second
case, it will approach the axis closer and closer.

Just as rotation under the assumption Bet £ = 0 (A > B > C) yielded thesingular
solutionp=0,r =0, =, the same thing will be true here. One will Hes:

When the force-couple rotates around the princgpas of the middle moment, mere
torsion or circular bending will be produced oncgagn, except that the equilibrium state
of the elastic rod will be labile: viz., a smallrpgbation will suffice to take the elastic
centerline, which remains straight or curved intaiecular arc, to an entirely new curve
with the aforementioned properties.

Special casesthat arise from special choices of the three principal resistances

11.

If two principal moments of inertia of a body thmatates around its center of mass are
equal to each other then the moment of inertiaratahbe all of the lines that are drawn in



Hess — The bending and twisting of an infinitely-thlisséc rod 30

the plane of the two principal axes will be equal. pb#ode and the herpolhode will go
to a circle, their cone will go to a circular con@dathe rotation will be completed
continually with uniform velocity around the instantane@xis of rotation.

If two principal moments of resistance of the etastid are equal to each other then
one must decide which moments they are. If the egietA, B to bending are equal
then the rod will besotropic so each of the lines of resistance that are drawlimei plane
of the cross-section will bequal(= A = B). If one calls the inclination angle of the axis
of the force-couple with respect to the axis of torsidhen (10) will imply that:

p= i [kin A [Tosu,
A
(25) = i [kinA [Binu,
A
r= i [LosA =rg.
C

The twistr, as well as the bendir® = 4/ p>+g°, will be constant, so from (15), one

I :
;e

will also have©,y = —
ALSInA

The elastic centerline will be bent into an ordipdnelix around the invariable
direction of the axis of the force-couple underfomn twisting. Its pitch angle B0° — A.
The radius of the circular cylinder that it liesapis equal to the product of the constant
resistance to bending and the sine of the pitcHeartgough which, the axis of the force-
couple is inclined with respect to the axis of tbd, divided by the intensity of the
applied couple. The cylinder will then become pasmr as the applied force-couple gets
stronger and the smaller that the resistance todoemngets, and the closer that the axis
of the force-couple gets to the axis of the rod.

The consideration af=p, 7 =09, {=- (u/ n) +ro implies that:

The polhode goes to an ordinary helix around this ax torsion, while its flexible
skew surface will go to an ordinary helicoid. Tp#ch angle of the helix isr =

2
arcta ZDAZC. , and the radius of the circular cylinder that itsi@n will be
(A-C)0°Bin24
IB"A;M . The circular cylinder will then become wider as tteength of the applied
[

force-couple increases, the larger the angle betwige axis and the axis of the rod
becomes, and the smaller that the equal resistembending become. The pitch will get
larger as that resistance and the resistance teting does, and the smaller that the
angle between the force-couple and the axis ofatidbecomes.
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If the force-couple rotates around an arbitrary princad of the cross-section then
the constant twist will go to zero, and simply a daciending will be produced.

If one resistance to bendin¢e.g.,B) and theresistance to twist Gre numerically
equalthen if the cas@ > C (= B) is satisfied, the curvature components, r will be:

.
] :K [Bin ¢o ,

(26) q :'E Cin do ChinU,

r :IE [Los¢@, [kosu .

One learns from the fact thdt=p, 7=q, {=—-u/n+r:

The surface of the polhode goes to a plane that is perpendicular to the priaxipal
of the unequal principal resistance to bending, so the polhode will go to a plare cur
Their projections onto the two principal planes through that principal axésstraight
lines, and the projection onto the three parallel principal planes is a @idalscurve
whose inflection points lie on the axis of the r@dg. 6)

The elastic centerline itself cannot be representezhbgtions of a simpler form. Its
projection onto the invariable plane of the applied decouple will again prove to have
periodic curvature when:

o= sin” g, + Acos ¢, sifiu
¥ AC (sin® g, + cod g, siffu ¥’

The period ol is 27rthis time.

If the three principal moments of inertia of the rimigitbody are equal to each other
them its central ellipsoid will go to a cone, and ewxig around which the force-couple
rotation will be a permanent axis of rotation.

If the threeresistances AB, C that oppose the deformation of the rod egealto
each other (=A) then the three curvature componepisy, r will be constant. The
equationsE=po , /7 =qo, { =— S+ o show that the surface of the polhode goes to a plane
through the torsion axis, and the polhode goes to a dtiaighthat is parallel to itself. If
the force-couple rotates around one of the principal akélse isotropic cross-sections
then mere circular bending will arise, while in any otbase, the elastic centerline will
be bent into a helix. Therefore, this case of equafityre three moments of resistafge
B, C of the rod does not differ essentially from that leg £quality of the resistance to
bendingA, B, in contrast to the problem of rotation, which will geeatly simplified
when one goes from the equality of two principal momehisestia to the equality of all
three.

If the sum of two principal moments of inertia okthotating body is equal to the
third one then the body would go to a plate, and theaegitipsoid would arrive at the
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characteristic limits thaPoinsot emphasized. Furthermore, the rotation would proceed
essentially the same as it does in the general case.

If the sum of the two resistances to bending is equal to the resistancestiogwf
the elastic rod then the elastic centerline will beodeéd into a curve o€onstant
bending so it will follow fromEuler’s equations (1) that:

p’ + g = const.

Moreover, it will not possess equations that are esdlgnsimpler than they are in the
general case, nor will the polhode and its surface beadped.

Munich, in July 1883.



