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Thefoundations of physics
By
David Hilbert in Gottingen

Translated by D. H. Delphenich

What follows is essentially a correction of the talder papers’j that | published on
the “foundations of physics” and the remarks regardmagnt that F. Klein published in
his notice ) “Zu Hilbert’s erster Note tiber die Grundlagen der Physilth only minor
editorial revisions and alterations that should make ghingre understandable.

The unifying mechanistic ideal in physics that was creatatidogreat researchers of
the previous generation and was established during the regjassfcal electrodynamics
must ultimately be abandoned today. The introductichdevelopment of the concept
of a field gradually exhibited a new possibility for our petwepof the physical world.
Mie was the first to point to a path, along which, thesvly-emerged “unifying field-
theoretic ideal,” as | would like to call it, can be deaaccessible to a general
mathematical treatment. While the older mechanistinception immediately took
matter itself to be its starting point, and determirtedyi means of a finite number of
discrete parameters, the new field-theoretic ideth@physical continuum — viz., the so-
called space-time manifold — served as its foundatidnthel form of the laws of the
universe were previously differential equations with areependent variable then now
they would necessarily be expressed in terms of pdirffalential equations.

As | showed in my first notice, the profound problemesteent and mental picture of
Einstein’s general theory of relativity now finds itenplest and most natural expression
along the path that was embarked upon by Mie, and, at the 8me, a systematic
extension and rounding-off in a formal context.

Some meaningful treatises on this state of affaarse lappeared since the publication
of my first notice. | shall mention only the deep dndliant investigations of Weyl and
the publications of Einstein, which are rich in even mefvesatzen and ideas. However,
Weyl later altered his path of research in such a waty balikewise arrived at the
equations that | had proposed, while Einstein, on the otded, hultimately returned
directly to the equations of my theory in his later pulises, although he repeatedly
started from difference and mutually distinct Ansatzen.

| certainly believe that the theory that | shall depethere contains a residual nucleus
and creates a framework, inside of which there is gsefficroom for the future

() Géttinger Nachr.: First notice, submitted on 20 Nov. 1%Egond notice, submitted on 23 Dec.
1916.
() Géttinger Nachr.: Submitted in 25 Jan. 1918.
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construction of physics in the spirit of a unifying figlteoretic ideal. In each case, it is
also of epistemological interest to see how thellsminber of simple assumption that |
posed in axioms I, 11, 1ll, IV will suffice for the catruction of the entire theory.

Admittedly, whether or not the purely field-theoratitifying ideal (some extensions
and modifications of which might possibly be necessarygefinitive enough to make it
possible to address the existence of negative and poseietagls, in particular, as well
as the consistent formulation of the laws that goveematomic interior, will have to be a
problem for the future.

Part |.

Let xs (s = 1, 2, 3, 4) be any coordinates that essentially specifyorddygoint
uniquely; viz., the so-calledvorld-parameters(i.e., the most general space-time
coordinates). Let the quantities that characteriz@liemomena at; be:

1. The gravitational potentiats,, (1, v =1, 2, 3, 4), which were first introduced by

Einstein, and have a symmetric tensor character umdarhgtrary transformation of the
world-parameterss ; they define the coefficients of the invariant differahform:

>g,, dx'dx.
)75

2. The four electrodynamical potentials, which have a vector character in the
same sense, and which define the invariant linear form:

> q.dx,.

Physical phenomena are not arbitrary, since one musy ¥ke following axioms,
moreover:

Axiom | (Mie’s axiom of the world-function31). The law of physical phenomena is
determined by a world-function H that contains ftbiéowing arguments:

g dg
1 Vs = £ ’ = £ ’
(1) Ou Ouu —6)(, ik 3% 0%,
0
(2) qS ] qSI = qS ) (Sa I = 11 21 31 4)1
0%

() Mie’s world-function does not refer to this argumprecisely; in particular, Born returned to the use
of argument (2). However, the introduction and employmeisuoch a world-function into Hamilton’s
principle is precisely characteristic of Mie’s elettynamics.
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and indeed the variation of the integral:

[ HJgdw

(9==19uw| dw=dx d,dx dx)
must vanish for each of the 14 potentigls, @ .

The arguments:
g = 99" = 99"
3) ¢, g =T g =

0% 0% 0%

can obviously appear in place of the arguments (1), in hwhi¢ means the sub-
determinant of the determinant @) that relates to its elemegi,, divided by ¢ g).
The ten Lagrangian differential equations:

(4) N_—QH—Zia*/—gH+Z o aJ_Q’H:o W v=1,2,3,4)

09" 0% 09" a0x0%x 04/’

for the ten gravitational potentials then follow froAxiom |, and then the four
Lagrangian differential equations:

(5) a\/——gH_Zia\/——gH: 0 Cn =1, 2,3, 4).
g, 0% 00,

Let it be remarked, once and for all, about the difiéial quotients with respect to
g, 9/, g that appear in (4) and subsequent formulas that due sythetry in,

v, on the one hand, and knl, on the other, the differential quotients with respeaft,
g/ are understood to mean that one applies a factor b21resp.) to them according
to whetheru = v or u# v, resp., and furthermore multiplies the differential tiprs with
respectg,’ by 1 (1/2, 1/4, resp.) according to whetper vandk =1 (= v andk # I,

resp.) orw# vandk =1 (u# vandk £1, resp.).
For the sake of brevity, we shall denote the leftdhsides of equations (4), (5) by:

WoHl,. [JoHI,.
resp.

Equations (4) can be called thasic equations of gravitatioand equations (5), the
basic equations of electrodynamics
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Axiom Il (Axiom of general invariance’)j. The world-function H is an invariant
under an arbitrary transformation of the world-parameteys x

Axiom 1l is the simplest mathematical expressiorthef demand that the coordinates
should have no physical meaning in and of themselves, basesgronly a numbering of
the world-points, such that the concatenation of theerg@ls g, gs is completely
independent of the type of numbering. _

In what follows, we shall employ the easily-provadtfthat ifp’ (j = 1, 2, 3, 4) means
an arbitrary contravariant vector then the expression:

p””=ZS‘,(9é‘”pS—g“‘°‘ﬁ£—dSF§) [Dé=a—pjj
represents a symmetric, contravariant tensor, lEméxpressiorr):
p= g(q.s Pram).
Moreover, we state two mathematical theorems, wiead as follows:

Theorem 1. If J is an invariant that depends upgff, g/, g,” then one will
always have:

aJ aJ aJ
—Ag" + ——Ag" +——A "j+ [—A +—A jZO
Z[ag g’ o % 2 8q * ag, ™

identically in all arguments and for every arbiyraontravariant vectqp®.
In this, one has:

A =g+ I H,

v vV M 0A H
Agt =—;9£ "+ 6?q ,

v v m v v azA luv
Agy :_;(gﬁ P+ O B+ Gen A+ ox gx( ,

() Mie had already posed the demand of orthogonal invariafestein’s fundamental concept of
general invariance finds its simplest expression ino#xIl that is posed above, even if Hamilton’s
principle played only a supporting role for Einstein, arsifanctionsH were in no way invariants, nor did
they include the electric potentials.

() p should not be confused with the covariant ve&ay, p° that is associated witht.

S
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Ads == 0,P,

m . 0AQ,
AqSk = _Zm:qsm pk + aXS .
Theorem 1 can also be expressed as follows:

If Jis an invariant, angs is an arbitrary vector, as before, then one will hénee
identity:

aJ
6 — p°* =PQ),
(6) Z ox. p )
in which one sets:
P=Py+Pyq,
0 0 0
P - p,uv + v + v ,
g ﬂ;k[ agpv pﬂ aglpv ql(l ag;klvj
0 0
Py = p—+p— |
! %"{ ! Jq A aqkj
and one has the abbreviations:
, _ op*” , _ 0°p” 0
pr =2 =P P =D
0%, 0X, 0% 0,

The proof of (6) is simple to obtain. This identityolsviously correct whep® is a
constant vector, and its invariance in general wilbfe from that.

Theorem 2. If J is an invariant that depends upgff, g/, 9/, Qs Osk as in
Theorem 1, and the variational equations/(ﬁ J with respect taf*” (with respect tay,,
resp.) are denoted ljy/EJ]W ([\/EJ]#, resp.) , and if one further sets:

o =Y(Vos], ¢ <[V, 9

i =-2 ;[JEJLS ¢ +[V 93] g

to abbreviate then the identities:
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. di.
7 Is= = s=1,2,3,4
(7) s IZ ox ( )
will be true.
Theorem 2 contains a general mathematical theofeas (its essential core that was
my guiding principle for the construction of the theormdawhich is expressed as

follows:

If F is a function ofn quantities (that are functions af, X, X3, Xq) and their
derivatives, and if the integral:

dew

is invariant under arbitrary transformations of the foorld-parameterss, xz, X3, X4 then
four of the equations in the systemroELagrangian differential equations that belong to
the variational problem:

5]Fdw:o

will always be a consequence of the remaining 4, in the sense that four linearly-
independent relations between théagrangian derivatives d¥ with respect to each of
the n quantities and their total differential quotients widspect toxi, Xz, X3, Xa Will
always be fulfilled identically.

In order to prove Theorem 2, we consider a finite pieté¢he four-dimensional
universe. Furthermore, lpf be a vector that vanishes, along with its derivatiossthe
three-dimensional outer surface of that region. Acogrth the definition oP, one will
have:

P(\/_J)—fP(J)uzaJ;pf fP(J)uz{ J_m\ﬁ;gj
PWEY = ax o P Z{J_p%ﬁ J g"%@

If we integrate this equation over the world-reginmuestion then due to the form of the
divergence on the right-hand side and the assumptip® that will give:

[P/ gd) aw =0.

() Emmy Noether gave the general proof of this theorémvariante Variationsprobleme,” Géttinger
Nachr., 1918, Heft 2). Indeed, in my first notice, thentiies that were given in Theorem 2 were stated
only for the case in which the invariant depended ugiirand its derivatives; however, the method of
proof that was set down there and reproduced in thideaisigust as true for our general invaridn@s
well. The identities were first derived in their gaadeform by F. Klein, on the basis of the method of
infinitesimal transformations (“Zu Hilbert's ersteroté¢ tber die Grundlagen der Physik,” Gott. Nachr.,
1917, Heft 3).
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Due to the way that the Lagrangian derivative is defined,also has:

(Vo] ¢+ 3V a1, p) ws=o0
The integrand can be written in the form:

Z(I p +|spl
here. From the formula that then arises:

[ > Gip+ip)dw =0,

we obtain:

>([i-%3

and with it, the statement of Theorem 2, as well.

jsda) 0,
0%

Some further axioms are required in order to deter the world-functiomd. Should
the basic equations (4), (5) of gravitation andctetelynamics contain only second
derivatives of they*” thenH would have to be composed additively of a linearcfion
with constant coefficients of the invariant:

K=2.9"K,
Y78

in whichK,, means the Riemann curvature tensor:

0 |uk 0 |uv HK|[AV UV [AKk
e Sl ot Bl HAH )
)ﬂ/ a)g( KA A K A K
and an invariant that depends upon onty", g/, gs, Gsk - We make the following
special assumptions:

Axiom |Il (Axiom of gravitation and electricity). The world-function H has the
form:
H=K+L,

in which K is the invariant that arises from the Riemann tensor. ~the curvature — and
L depends upon only"q gs, Osk -
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Thus, the gravitational equations will assume the form:

(8) [JoK]| = - oat (1 v=1,23,4),

v og*”

and the electrodynamical equations will assume the form:

L
9) > — 0 0/gL _ oL (h=1,2 3 4).
f 0%, 0q, 6qk
In order to determine the expression g KJ , one next specializes the
Hv

coordinate system in such a way that all of @ vanish for the world-point in
guestion. In that way, one will find that:

VoK] =Va(K,~20,K)
If we introduce the notatiof,, for the tensor:

_toaL
Jg 9™

then the gravitational equations will read:

K/IV_%g/IV L :T/IV .

On the other hand, we apply Theorem 1 to the iawérl and thus obtain:

(10) Z % W(g“” o+ g™ ) - Z—qs a,

—Z (qsmn + O P+ 0, P2) =

skm

Setting the coefficients opl, equal to zero in the left-hand side of this wikklg the

equation:
aqsk aqks;
or
) oLy

aqsk aC‘ks;
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I.e., the derivatives of the electrodynamical potentjaippear only in the combinations:

Mks = Osk — Cks-

With that, we recognize that by our assumptions, therieavial will depend upon
merely the components of the skew-symmetric invar@mddr:

M = (Mys = Rot @s),

in addition to the potentialg”’, g ; i.e., the so-called electromagnetic six-vector. It
follows further from this that:

oL _ 0L s
aqsk aI\/Iks

is a skew-symmetric, contravariant tensor, as watadact that:

oL _

—=r
aq,
IS a contravariant vector.
If one applies the notations that we introduced thenetkctrodynamical equations
will assume the form:

(12) 1 26\/3 H™ " (h=1, 2, 3, 4).

Ja&  ox

One recognizes a generalization of one of the systef Maxwell equations in these
eqguations; one obtains the other one from the ensat

Mis = Osk — Cks
by differentiation and addition:

M, , M, OM,,

(13)
0% 0% 0%

=0 t,ks=12,3,4).

We then see that the form of these “generalizedvwé#bequations” (12), (13) is already
determined, in essence, by the requirement of gémesariance, and thus, upon the basis

of Axiom Il. If we set the coefficients op;, equal to zero on the left-hand side of the
identity (10) then, with the use of (11), we widtg

22 oL g’um_an,_ a_LM =0 w=1,23,4),

(14) — .
H ag aqn S a M ms

SO

2y 2 gm= S H™M, T,
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or

2 0 L

or=0 m=#v),

v

With that, one gets the representatiof af:
=2 9
U
T = LT,

The expression on the right agrees with Mie’s etaoagnetic energy tensor, and we then
find thatMie’s energy tensor is nothing but the generallyainant tensor that arises by
differentiating the invariant L with respect to tgeavitational potentials g,, which is a
situation that | first proved in the necessarilyroav connection between Einstein’s
general theory of relativity and Mie’s electrodynesn and which then convinced me that
the theory that is developed here is correct.

Applying Theorem 2 to the invariaktwill yield:

(15a) ;[\/E KLV g +2Zm:%{zﬂl[\/_g KLS gumj = 0.
Applying it to L will yield:
(15b) Z;(-ﬁ ) g +2z ( ~JoT )

+ z[ﬁ LL qﬂs—za%([ﬁ LL as) =0 6=1,2 3,4).

As a consequence of the electrodynamical equatie@gbtain from this that:

(16) S T, g +2y N9 J_T

These equations (16) can also be obtained as adquasce of the gravitational equations
on the basis of (15a). They have the meaning@b#sic mechanical equations. In the

case of special relativity, for which tlyg, are constants, they will go to the equations:
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AN
>3 =0

which express the conservation of energy and impulse.
It follows from equations (16), on the basis of the idies (15b), that:

>[Vou], 0.5 (Vo] a)=o

(17) zﬂ“{mﬂs Vo LL B qszﬂ“%([ﬁ LL)} =0;

i.e., four mutually-independent linear relations between lbsic electrodynamical
equations (5) and their first derivatives will follow fnothe gravitational equations (4).
That is the precise mathematical expression of theeotiom between gravitation and
electrodynamics that governs the entire theory.

SinceL should not, by our assumption, depend upon the derivativgs, af must be
a function of four certain invariants that correspond M@’'s special orthogonal
invariants, and the two simplest of them are:

Q = z anM kl gmkgnl

k,I,m,n

and
q=.9.q g
k,l

The simplest and (in regard to the structur&)élosest Ansatz fol is, at the same time,
the one that corresponds to Mie’s electrodynamics, lyame

L=aQ+f(q) (a = const.).

According to this Ansatz, one obtains the followingtieins between the quantities that
appear in the generalized Maxwell equations:

HkS: 4a MkS
- =2'(q) d-
in which one sets:
Mk — zgk#gﬁv M#V ,
Uy
d =29
|

For the entirely special case of:

f(@) =849 (B= const.),
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it follows that the “current vector® will be proportional to the contravariant vecer

Part I1.

The connection between the theory and experimenk Ishaliscussed more closely.
Another axiom is required for this.

Axiom 1V (Space-time axiom)The quadratic form:

(18) G (X1, X2, X3, Xa) = 3.9, X, X,

shall be such that in its representation as a sdrfoor squares of linear forms insX
three of the squares will always appear with pesitsigns, and one of them will always
have a negative sign.
The quadratic form (18) yields themetric of a pseudo-geometrpr our four-
dimensional world oks . The determinarg of theg,, proves to be negative.
If a curve:
Xs = X«(P) s=1,2,3,4)

is given in this geometry, whexg(p) mean any real functions of the paramggethen it
can be divided into pieces, along each of which the esipres

of % o dx d
dp dp’ dp dp

does not change its sign. A piece of the curve for hvbie has:

is called ssegmentand the integral:

1ol

when taken along this piece of the curve, is thendalielength of the segmen# piece
of the curve or which:

is called aime ling and the integral:
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SIzE

when taken along that piece of the curve, will be caleproper time of the time line.
Finally, a piece of the curve along which one has:

In order to make this concept of our pseudo-geometry wuitve imagine that we
have an ideal measuring instrument — viz., ligget-clock — by means of which we can
determine the proper time along any time line.

We next show that one can succeed in calculatingahes ofg,, as functions oxs
with the help of this instrument, as long as one onlyoduces a certain space-time
coordinate system . In fact, we choose any ten time-lines that alvarat the poinis
in question from various directions, such that whenetiat end point takes on the
parameter valup, it will yield the equation:

dA9Y | (dx _
SN8) iz

for each of the ten time lines at the end point; ig,tthie left-hand side will be known as
soon as we have determined the proper tiffleby means of the clock. If we now set:

dx® 2 dx? o g’ 20 aoy
(dpj dp dp [ dpj ( dpj

Xm(lO) 2 d){m) d)flo) d)iw) 2 dl 1O
dp dp dp dp dp

X2 XX, o X u

to abbreviate, then we will obviously have:

D(0)
62 1
ou

(19) G (X =~

SO we can, at the same time, pose the condition:

® g
ou
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as necessary for the directions of the ten chosanltnes at the poing(p).
If G is calculated from (19) then the application of thecpss to any ftime line

that ends aks(p) will yield:
dAW Y _ (X
=G ,
&)l

and this equation would then be a test of the validityhefinstrument, as well as an
experimental confirmation of the fact that the assuongtof the theory apply to the real
world.

The axiomatic construction of our pseudo-geometry can b®rpexd with no
difficulty: First, one poses an axiom, upon whose basgill then follow that length
(proper time, resp.) must be an integral whose integeanekrely a function ofs and its
first derivatives with respect to the parameter; pertia@svell-known envelope theorem
for geodetic lines might serve as such an axiom. Seomedneeds an axiom that would
make the theorems of pseudo-Euclidian geometry (i.e.plth principle of relativity at
infinity) true. Here, the axiom that was posed by EsBhke {) would be especially
suitable, which says that the condition of orthogdypahould be reciprocal for any two
directions, whether they are segments or time lines.

Let us now briefly summarize the main facts that Mhenge-Hamilton theory of
differential equations teaches us about our pseudo-geometry.

Each world-pointxs belongs to a second-order cone that has its vertgxaaid is
determined by the equation:

G(Xl—Xl, XZ_X21 >Q3_)Q31 X4_X4) = 0

in the running point coordinates§ ; it is called thenull conethat is associated with the
point xs. The totality of all null cones defines a four-dimenal field of cones that is
associated with, on the one hand, the “Monge” diffeaéaquation:

of 9% 9% dx dx)
dp dp dp dp

and, on the other hand, the “Hamilton” partial diffei@nequation:

(20) L[ of of of of
0x, 0%, 0% 0%,

whereH means the reciprocal quadratic fornGo

H(U1, Uz, Us, Uy) = ZQ#VU#UV .
v

() “Raumliche Variationsprobleme mit symmetrischeafsversalitatsbedingung,” Leipziger Berichte,
Math.-phys. KI.68 (1916), pp. 50.
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The characteristics of Monge’s, and likewise tholselamilton’s, partial differential
equation (20) are the null geodetic lines. The totalityalbfnull geodetic lines that
emanate from a certain world-pomf(s = 1, 2, 3, 4) generate a three-dimensional point
manifold that might be called thene-sheaththat belongs to the world-poiat. The
time-sheath possesses a nodesatvhose tangent cone is precisely the null cone that
belongs tas . If we bring the equation of the time-sheath int® firm:

Xa = @ (X1, X2, X3)
then

f=Xs— @ (X1, X2, X3)

will be an integral of Hamilton’s differential equati¢20). The totality of all time-lines
that emanate from the poiagwill lie completely inside of that four-dimensioralbset
of the universe that has the time-sheat& ass its boundary.

With these preparations, we turn to the problemanisalityin the new physics.

Up to now, we have regarded all coordinate systertisat emerge from any one of
them by way of an arbitrary transformation as equialeThis arbitrariness must be
restricted if we would like to ensure that if two worldigs that lie along the same time-
line can be related to each other as cause and effecit thenld not then be possible to
transform such world-points into simultaneous oneswelfdistinguishx, as theproper
time coordinate then we will propose the following déiom:

A proper space-time coordinate system is one for which théoviadg four
inequalities are fulfilled:

9. g O G2 O1s
(21) 011> 0, i Ox 92 9] >0, Qaa<O,
921 92
O3 932 Uss

along withg < 0. A transformation that takes such a space-timedowie system into
another proper space-time coordinate system will deagabper space-time coordinate
transformation.

The four inequalities express the idea that the null ¢baeis associated with any
world-pointas lies completely outside of the linear space:

X4 =2as.
By comparison, the line:
X1=ag, X2 =az, X3 =az

is contained inside of it; the latter line will always a time line then.
Let any time-linexs = x(p) be given, moreover; since:

G(%j <0,
dp

it will then follow that one will always have:
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(L
dp

in a proper space-time coordinate system, and as a riggujproper time coordinate
must always increase (decrease, resp.) along a time-fimgce a time-line remains a
time-line under any coordinate transformation, two drqubints along a time-line can
never take on the same value of the time coordxalbg a proper space-time coordinate
transformation; i.e., it is impossible to transformnth®go that they will be simultaneous.

On the other hand, if the points of a curve can dgtuaé transformed into
simultaneous ones then the transformation of thateconust obey:

X4 = const., ie., d—X“:O,
dp
SO
dx, dx, dx,
Gl—| = —HL v v=1, 2, 3),
(dpj ﬂzg"” dp dp . )

and the right-hand side is positive here, due to thetfiree of our inequalities; the curve
thus-characterized will then be a segment.

We then see that the concepts of cause and effedtietlad the basis of the principle
of causality will also not lead to any sort of internahtradictions in the new physics, as
long we always append the inequalities (21) to our basic egsati.e., we restrict
ourselves to the use pfoperspace-time coordinates.

In place of it, let us refer to a special space-timerdinate system that will prove to
be useful later on, and which | would like to catbaussian coordinate systesince it is
a generalization of the geodetic polar coordinate systeatsGauss introduced into the
theory of surfaces. Let any three-dimensional spacgiven in our four-dimensional
universe that is such that every curve that runs througlsplaae is a segment — viz., a
segment spaceas | would like to call it; lek;, X, X3 be the coordinates of any point in
that space. At any point, X, X3 of it, we now construct the geodetic line that is
orthogonal to it, which will be a time-line and will lbssociated witkx, as the proper
time along it. We assign the coordinaxgsx,, Xs, X4 to the point of the four-dimensional
universe thus-obtained. As is easy to see, one will: have

1,2,3

(22) G(Xs) = 2,9, X, X, = X

in these coordinates; i.e., the Gaussian coordinatemsyis characterized analytically by
the equations:
(23) Q14 = 0, Oo4 = 0, O34 = 0, Oaa = 1.

Due to the assumed behavior of the three-dimensionatgp= 0, the quadratic form in
the variables<;, X;, X3 that appears in the right-hand side of (22) is necegsarditive-
definite; i.e., the first three of the inequalities (2t fulfilled, and since that would also
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be true for the fourth one, the Gaussian coordinatemsyatways proves to bepaoper
space-time coordinate system.

We now return to the study of the causality principlphysics. We see that its main
content is the fact (which has been true of every ipalysheory up till now) that the
values of physical quantities and their temporal derivatire the future can be
determined uniquely when one knows those quantities in tlsemitel he laws of physics
up to now have indeed, without exception, found their egmesin a system of
differential equation which are such that the numbefunttions that appear in them
essentially agrees with the number of independent diftexl equations, and thus the
known Cauchy theorem on the existence of integralgfterential equations will then
immediately serve as the basis for the proof of fenztt

Now, our basic equations of physics (4) and (5) arepbyeans, of the type that was
just characterized; moreover, as | have shown, fouhem are a consequence of the
remaining ones. We can regard the electrodynamical egaafh) as consequences of
the ten gravitational equations (4), and we will thus havg ten essentially mutually-
independent equations (4) for the 14 potengals gs .

As long as we maintain the demand of general invariéorcthe basic equations of
physics, the aforementioned situation is also essemdhecessary. Namely, if there are
other invariant equations for the 14 potentials that are imdigme of (4) then the
introduction of a Gaussian coordinate system by means ofM@3lJ yield a system of
equations for the ten physical quantities:

Ouv wv=1 2 3), Os (s=1,2,3,4)

that would be, in turn, mutually-independent, and sinceethes more than ten of them,
they would define an over-determined system.

Under such circumstances then, it is in no way passiblconclude the values of
physical quantities in the future uniquely from the knowledgehe in the present and
the past. In order to show this intuitively with anmyde, let our basic equations (4) and
(5) be integrated in the special case that corresponitie toresence of a single electron
that is constantly at rest, such that the 14 potentials

Ouv = Qv (X1, X2, X3),
Os = Qs (X1, X2, X3)

prove to be well-defined functions ®f, xo, X3 that are all independent of the timg and
in such a way that the first three components?, r® of the four-density might vanish,
moreover. We thus apply the following coordinate tramsétion to the potentials:

X =X, for X, <0,
x, = X+e¥  for %>0,

X2 = X,

I

X3 =X,
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Xa = X,.

For x, < 0, the transformed potentiatg,, , g, are the same functions of, x,, X, as
the guv , Os in the original variablesy, X, X3 , while for x, > 0, theg,,, g, will also
depend upon the time coordinai¢ in an essential way; i.e., the potentia§,, o

represent an electron that is at rest up to tipe 0, but then it is set in motion.

Therefore, | believe that only a more detailed urtdading of the idea that is at the
basis of the principle of general relativif) ill serve to maintain the causality principle
in the new physics, as well. Corresponding to the essehdhe new principle of
relativity, we must, in fact, require the invariancenot only the general laws of physics,
but also endow every individual statement in physics aitlnvariant character, if it is to
have any physical sense, which is harmony with the tfett any physical fact must
ultimately be capable of being established by light-clock® 5 by instruments of an
invariant character. Just as in the theory of curves and suyfacgstement for which
the parameter representation of the curve or surfasebban chosen will have no
geometric meaning for the curve or surface itself whenstaeement does not remain
invariant under an arbitrary transformation of the patamar cannot be brought into an
invariant form, in physics, we must also say that a@estant that does not remain
invariant under any arbitrary transformation of the coatginsystem isphysically
meaningless.For example, in the case that is considered aboveddléctron at rest, the
statement that it is at rest at time= 1 has no physical meaning, since that statement is
not invariant.

Now, as far as the causality principle is concernleel,physical quantities and their
temporal derivatives might be known for the preserdny given coordinate system. A
statement would then have physical meaning only wheniitvariant under all of the
transformations for which present values that are assutoebe known remain
unchanged. | claim that statements of this kind dredesérmined uniquely for the future;
i.e., the causality principle is true in this form:

All statements about the 14 physical potentials, g in the future will follow
necessarily and uniquely from knowing them in the present as long aar¢helysically
meaningful.

In order to prove this assertion, we employ a Gansgace-time coordinate system.

The introduction of (23) into the basic equations (4) witbduce a system of just as
many partial differential equations for the ten potésttia

(24) Ouv (wv=1,2,3), Os (s=1,2,3,4);

if we integrate it on the basis of the given initialues forx, = 0 then we will find the
values of (24) fox, > 0 in a single-valued way. Since the Gaussian cooedsystem is

() In his original, now-abandoned, theory (Sitzungsbéeicter Akad. zu Berlin, 1914, pp. 1067), A.
Einstein especially postulated four non-invariant equatfonghe g,, in order to salvage the causality
principle in its older form.
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itself established uniquely, all of the statements abdbmupotentials (24) that refer to that
coordinate system will have an invariant character.

The forms in which physically meaningful — i.e., invatia- statements can be
expressed mathematically are quite manifold.

First. This can come about by means of an invariant coordiyaters. The well-
known Riemannian coordinate system is just a usefuhfair gurpose as the previously-
employed Gaussian one, and for that matter, any cadedisystem in which the
transformed electricity and unit density appear to be stade of rest. If as in the
conclusion to Part f(g) denotes the function of the invariant:

q=> 69 ¢
ki

that appears in Hamilton’s principle then:
r°=2(q) @ = 2f'(q) D 9q
|

is the four-density of electricity. It representsomttavariant vector, and is therefore can
be transformed to (O, O, O, 1) in a region of the uswen whichf’(q) # O and the four-
potential is nowhere-vanishing. After that transformatie four components of the
four-potentialgs will be expressible in terms of tlyg, from the four equations:

1
q =0 =1, 2,73), E q = ——,
§| g q 6 ) | gq 21'(q)

and any relation between tbg, in this coordinate system is then an invariartestent.

There can be special coordinate systems for péaticsolutions of the basic
equations; e.g., in the case that is treated belbw centrally-symmetric gravitational
field, r, 9, ¢, t define a coordinate system that is invariant ugtations.

Second. The statement that coordinate system can be foumdwhich the 14
potentialsy,.,, gs will have certain well-defined values in the fugwr fulfill certain well-
defined relations is always an invariant, and tleeeg physically meaningful, statement.
The mathematically-invariant expressions for suchstatement will be obtained
eliminating the coordinates from each relation.e Tase above of the electron at rest will
serve as an example: The essential and physicainmgful content of the causality
principle is expressed here in the statement tbata suitable choice of space-time
coordinate systeman electron that is at rest for time< O will also be continually at
rest, in all of its parts, for the futuxg > 0.

Third. A statement will also be invariant, and will tefare always have physical
meaning, when it is valid for any arbitrary cooatm system, since otherwise the
expressions that appear would need to possesmalfgfinvariant character.
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According to my way of explaining things, physics is a {fdimensional pseudo-
geometry whose metrg,, is coupled to the electromagnetic quantities —tioematter —
by the basic equations (4) and (5). With that knowledge Jcagemmetric question will
now become ripe for solution, namely, the questiorwbé&ther, and in what sense,
Euclidian geometry — about which, we only know from reathtics that it is a logically
consistent structure — also possesses any validibaiity.

The old physics, with its concept of absolute time, swoieslthe theorems of
Euclidian geometry and put them at the foundations ofgaryicular physical theory
from the outset. Even Gauss proceeded in an only lglighfferent way: He
hypothetically constructed a non-Euclidian physics in whighitopped only the parallel
axiom from the theorems of Euclidian geometry, whilespreing absolute time. The
measurement of the angle of a triangle with largeedsions then showed him the
invalidity of this non-Euclidian physics.

The new physics of Einstein’s general principle oétigity assumes a completely
different position with respect to geometry. It isséd upon either Euclidian or some
other well-defined geometry from the outset in order tdude the actual physical laws
from it, since otherwise the new theory of physics lMoyield the geometrical and
physical laws, at a single blow, from one and the sHamilton principle, namely, the
basic equations (4) and (5), which teach us how the nggirie and at the same time, the
mathematical expression for the physical phenomenagradfitation — is concatenated
with the valuegys of the electrodynamical potentials.

Euclidian geometry ia doctrine that is remote and foreign to modern phystesce
the theory of relativity rejects Euclidian geometryaageneral assumption for physics, it
teaches us moreover that geometry and physics haegavalent character and rest
upon a common foundation easescience.

The aforementioned geometric question comes down texdmination of whether,
and under which assumptions, the four-dimensional EuclgBando-geometry:

0.-1 0,,=1 05=1,0,="1

(29) 6,, =0, (U#V)

is a solution of the gravitational equations (the only r@gsblution of it, resp.)
The gravitational equations (8) read:

[Vax], +48E <o

w ogh

|:\/E K:|;1V: \/E(va _% K gpv)'
By substituting the values (25), one will get:

(26) REl KLV: 0

in which:
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and for:
gs=0 6€=1,2,3,4)
one will have:
dJgL _ o
ag*” ’

i.e., the pseudo-Euclidian geometry will be possible wHenfahe electricity is at a
distance. The question of whether this is also necegsahys case — i.e., of whether
(under what additional conditions, resp.) the values (@8)lae values of,, that emerge
from a coordinate transformation are the only reguldut®ns of equations (26) — is a
mathematical problem that will not be discussed hegeireral.

In the case of pseudo-Euclidian geometry, we have:

Ouv = W,
in which:
K1=1, Y2 =1, K3=1, Vas =1,
Y = 0 Ww# ).

For any metric that is close to this pseudo-Euclidiamgoy, one will have the Ansatz:

(27) Ouv :M1v+5h,uv+---,

in which €is a quantity that converges to zero apglare functions o%. | shall make the
following two assumptions about the metric (27):

|.  Theh,, might be independent of the variabigs
II. Theh,, might exhibit a certain regular behavior at infinity.

Now, should the metric fulfill the differential equais (26) for all, it would follow
that theh,, must necessarily fulfill certain linear, homogenease;ond-order partial
differential equations. If one, like Einstei), (sets:

(28) N = Ky _%5;”2 Kss (K = Kup),
ow=0 Wz ),
ow=1
and assumes the four relations:
ok
29 —£ =0 =1,2,3,4
(29) Z ox. W )

then these differential equations will read as follows:

() “Naherungsweise Integration der Feldgleichungen dewi@tmn,” Berichte d. Akad. zu Berlin
(1916), pp. 688.
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(30) Ok =0,
in which we have set:
0> 0% 9% 0?2
= + + - ,
ox; 0% 0% 0X

to abbreviate.

Due to the Ansatz (28), the relations (29) are restgassumptions for the functions
h,y. 1 would like to show that if one performs a suitainiinitesimal transformation of
the variablesx;, X2, X3, X4 then these restricting assumptions will be fulfilleg the
corresponding functions),, after the transformation. To that end, one detersnfoar

functionsgi, @2, @3, @ 10f the variables that satisfy the differential equation

(31) 9, = EaTZ” Z

resp. By means of the infinitesimal transformation:

Xs = X'S + & ¢s,
guv Will go to:

: 09, 09,
=QuteE +£y 4, +
v = G Za: O 0x, Za: % 3%,

or, due to (27), into:
9, =Vwte+th, ..,
in which one has set:

h, =hu,+ 99, +%.
“ ox, 0x,

/i
If we now choose:

k/fV = h;zv 2 ,uvz Ils
then, due to (31), these functions will fulfill the Biis conditions (29), and we will get:
h;zv = k/fV - %éuvzkss (k/IV = kV/I)'

Due to assumption |, the differential equations (30), wielst be true as a result of
what we did above in order to find tkg,, will go to:

ok, 0%, %K, _ o
o oG 0%
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and, since the assumption Il — when interpreted in asmoreling way — will allow one
to conclude that thk,, approach constants at infinity, it will then follow tithey must
constant everywhere; i.e.:

By varying the metric of the pseudo-Euclidian geometry, under assumipéoddl,
it is not possible to arrive at a regular metric that is not lilkseypseudo-Euclidian and
that will, at the same time, correspond to a universe that ifrekectricity.

The integration of the partial differential equation§)(% achieved in yet another
case that was first treated by Einstéfh &nd Schwarzschild). In what follows, | will
point out a path for this case that makes no assumpaiba#i about the gravitational

potentialsg,, at infinity, and will also be advantageous for my rlatesestigations, as
well. The assumptions on thg, are the following ones:

1. The metric is referred to a Gaussian coordinate myst@&cept that, is left
arbitrary; i.e., one has:
014=0, 024=0, 034=0.

2. Theg,, are independent of the time coordingie
3. Gravitatiorg,, is centrally-symmetric with respect to the coordinatgiio.
According to Schwarzschild, when one sets:

X1 =TI COSJ,

X2 =T SinJ cosg,
X3 =r singsin @,
Xa =1,

the metric that corresponds to the most general of @émesenptions will be represented
by the following expression in polar coordinates:

(32) F(r) dr® + G(r) (d27? + sirf3 dg ) —H(r) df,

in which F(r), G(r), H(r) are arbitrary functions af If we set:

r = G(r)

then we will be justified in interpreting, J, ¢ as spatial polar coordinates in the same
way. If we introduce in place ofr into (32) and then once more drop the * sign then
the following expression will arise:

(33) M(r) dr® + r> d2 + r? sirfd dg 2 —W(r) df,

(*% “Perihelbewegung des Merkur,” Sitzungsber. d. Akad. exif8(1915), pp. 831.
() “Uber das Gravitationsfeld eines Massenpunktes,” Bigber. d. Akad. zu Berlin (1916), pp. 189.
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where M(r), W(r) mean two essentially arbitrary functions rof The question is now
whether, and how, they are to be determined in the gerstral way in order that the
differential equations (26) would happen to be satisfied.

To that end, the given expressiokg,, K, which were known in Part |, must be

calculated. The first step in this process is to exltiist differential equations of the
geodetic lines by varying the integral:

g e 2 e (5

We get the following equations for its Lagrangian equations:

2 2 2
O:d—£+—— dr) dz9 JLEPRNC dg) 1W dt ’
dp dp dp M dp 2 d

2 2
0= d f Zﬂ%—smﬂ cos? @ :
dp® rdp dp dp
d'f 200 dp 0009 O
dp2 r dp dp dp df
oo d W dr dt
dp® W dp df

Here, in and in the calculation that follows, thieme symbol will refer to the derivative
with respect ta. By comparing these with the general differengigiations for geodetic

lines:
d2>§+z Hv|dx, dy _
dp® “Z'| s/ dp dp

. V| . .
we can assign the following values to the bracketi®ls {,u } in which we have not
s

given the ones that vanish:

{11} :EM, {2 2} :—L, {33} :—Lsinz 79,
1 2M 1 M 1 M

33
{ } = - sind cosd,
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_ 1w 1MW 1 w? w

2M 4 M? 4|\/|W2 rmM

= 297K,
W1 w2 M’ _gl\/rw__z+ 2 ) Wi
"MW 2MW2E T rMZ 2MEW P O PM MW

Since:

Jg =MW rsing,

one will have:

] 485

and if we set:

M:L, W:\Nzﬂ
r

in whichm andw are unknown functions of then we will finally get:

!

2 [
g= {rw J—Zwm sinJ,

N

such that the variation of the four-fold integral:

mj K./ g drds dg dt

will be equivalent to the variation of the simple ontai:
jwrrf dr,

and will lead to the Lagrangian equations:

(34) m =0,
w =0.

One easily convinces oneself that these equationfgct, demand the vanishing of all
K. . They then represent essentially the most gesetation of equations (26) under
the assumptions 1, 2, 3 that were made. If wetakex to be the integral of (34), where
a is a constant amngl = 1, which obviously implies no essential resioict then (33) will
imply the desired metric in the form that was fimind by Schwarzschild:
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(35) G (dr, 49, dp,d) = T dr* +17 49 + 17 sit 9 dp? T ot

The singularity of this metric at= 0 then appears only when one takes 0; i.e.,with
assumptions 1, 2, 3, the metric of pseudo-Euclidian geometry is theegalar metric
that corresponds to a universe that is free of electricity.

Fora# 0,r = 0, and for positiver, alsor = a, prove to be places at which the metric
is not regular. Therefore, | shall call a metric gravitational fieldg,, regular at a
location when it is possible to introduce a coordinatgesy by an invertible, single-
valued transformation such that in that system, theesponding functionsg,, are

regular at that location; i.e., they are continuous @ifferentiable arbitrarily often at that
location and have a non-zero determirngint

Regardless of whether in my way of looking at thingy aabular solutions of the
basic physical equations immediately represent redtliig, precisely the solutions with
non-regular locations that are an important mathealaticeans of approximating
characteristic regular solutions, and in that sensem fthe procedures of Einstein and
Schwarzschild, the metric (35) that is not regularrferO andr = a can be regarded as
an expression of the gravitation of a mass that isiloiged centrally-symmetrically in
the neighborhood of the origif. In the same sense, the mass can be regarded as the
limiting case of a certain distribution of electrictyound a point, so | shall foresee that
one might derive the equations of motion at that peonfmy basic physical equations.
The question of the differential equations for the motblight is dealt with similarly.

According to Einstein, the following two axioms migddérve as a substitute for the
derivation of the basic equations:

The motion of a mass point in a gravitational fieldepresented by a geodetic line
that is a time-line.

The motion of light in a gravitational field is repeesed by a null geodetic lin&?),

Since the world-line that represents the motion wibas point must be a time-line, as
we can easily see, it will always be possible to brivegrhass point to rest bypsoper
space-time transformation; i.e., there preper space-time coordinate systems, relative
to which the mass point is constantly at rest.

The differential equations of the geodetic line for teatral gravitational field (35)
originate in the variational problem:

2 2 2 2
JJ. LI I B L +r2sin? | _r-apd dp=0,
r-aldp dp dp r Ldp

(*3 Transforming the location = & to the origin, as Schwarzschild did, is not recommende my
opinion; furthermore, the Schwarzschild transformaisomot the simplest one for that purpose.

(** Laue has shown how one can derive this theorem thenelectrodynamical equations by passing to
the limit of zero wavelength for the special cask sfaQ.
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so after a well-known process they will read:

2

(36) g +r? @ +r%sin? d¢ _f-apdt = A

r—aldp dp dp r \ dp

2
(37) i[rzﬁj—rzsinﬂ coﬁ(%j =0,
dp dp dp
(38) 2 si? 992 —
dp
(39) rradt ¢
r dp

in which A, B, C mean integration constants.

| shall next prove thahe path curves in thefp-space always lie in a plane that goes
through the center of gravitation.

To that end, we eliminate the paramgierom the differential equations (37) and
(38), in order to obtain a differential equation fdas a function of. It is identically:

(40) i(rzﬁj :i(rzﬂgdﬁj :(2 dr ds erZfJ(%j @ dp
dpl dp) dp( dp dp dg dp  dg? )| dp % dp

On the other hand, differentiating (38) with reggeq will produce:

(2r—sm219+ 2?2 sing co¥9— j(d(ﬂj Slﬁﬁ =0,
d¢ dg )\ dp

and if we deduce the value dffg / dp? from this and insert it into the right-hand side o
(40) then that will give:

d(rzdﬂj {dzﬁ_ZC tﬁ[dﬁ” [d¢j
dpl dp dg? dp dp

Equation (37) then assumes the form:

d*g
dg?

2
-2 cotﬂ(%j = sin & cosJ,
dp

which is a differential equation whose generalgnééreads:
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sindcos @+a) +bcosd=0,
in whicha, b mean integration constants.

The desired verification is then performed with that # the further discussion of

the geodetic lines, it will then suffice to direct anattention to just the valug= 77/ 2.
The variational problem is then simplified as follows:

2 2 2
Jj U Ar) peging| 92| _roafdt dp=0,
r-aldp dp r dp

and the three first-order differential equations thateafiom it read:

2 2 2
(41) LN +r?sin? dg) _r-ajdt =A,
r-aldp dp r {dp
(42) 2 99 =B,
dp
(43) r-ad =C.
r dp

The Lagrangian differential equation for

2 2 2
(44) iiﬂ+ a zﬂ —Zr% +£E =0
dp\ r—=a dp) (r-a)*\ dp dp r\ dp
must necessarily be concatenated with the preegqusations, and indeed, when the left-
hand sides of (41), (42), (43), (44) are denotedlby[2], [3], [4], resp., we will have
identically:
(45) d _,dg 2], , degd _ dr
dp dp dp dp dp dp

[4].

If we takeC = 1, which will result from multiplying the parameep by a constant and
then eliminatingp andt from (41), (42), (43), then we will arrive at thifferential
equation forpo= 1 /r as a function op that Einstein and Schwarzschild found, namely:

do) _1+A A
(46) [%j LA prap

This equation represents the trajectory of the mpasgs in polar coordinates; the Kepler
motion follows from it in the first approximatioorf a = 0 whenB = \/Eb, A=-1+
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a a, and the second approximation then leads to the madisrirdiscovery of the era:
the calculation of the precession of the perihelibMercury.

From the axiom above, the world-line for the motionaofhass point should be a
time-line; thus, it will always follows from the defim@n of a time-line thaA < 0.

We now ask, in particular, whether the circle — res,const. — can be the trajectory
of a motion. The identity (45) shows that sideédp = 0O in this case, equation (14) will
be in no way a consequence of (41), (42), (43); the sk tequations will then be
insufficient for the determination of the motion. Mover, (42), (43), (44) are equations
that must necessarily be fulfilled. It follows frq@¥) that:

2 2
(47) S A A )
dp reidp
or for the velocity in the orbit:
2
(48) \F:(r%j =2
dt 2r

On the other hand, sinée< 0, (41) will give the inequality:

(49) r{%j —ﬂ(ﬂj <0,
dp r \dp

or, with the use of (47):

(50) >3
Due to (48), the inequality):

(51) V< —

for the velocity of the mass point that moves inrele will follow from this.
The inequality (50) admits the following interpretatiorfrom (48), the angular
velocity of the orbiting mass point for=rg is:

dg_ | a

dt 3

If we would like to introduce the polar coordinates obmmbnate system that is rotating
about the origin in place of & then we will necessarily have to replace:

(Y The specification by Schwarzschildg. cit, that the velocity of the mass point on the orbiust
approach the Iimin/ﬁ as the orbital radius is reduced corresponds to the inigqual @ and, from the
above, that cannot be true.
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. a
with + | —t.
¢ b+ | 7

Under the space-time transformation in question, theiene

r-a

—_drt+ridg? -t
r

r-a
will go to:

Ldr2+r2d¢2 Z—gr 2d¢dt+[13r2—ﬂjdt2.
r-a M 2, r

Forr =rq, one gets:

fo_gr2 +r7dg’+. 2arod¢dt+[¥—1j dt’

lhh—a 0

from this, and since the inequality (21) will be fulfilldgbre, sincero > 3a / 2, the
transformation of the mass point to rest igprper space-time transformation in the
neighborhood of the path of the orbiting mass point.

On the other hand, the upper limit b‘f\/_B for the velocity of an orbiting mass point
that was found above in (51) also has a simple integiwat Namely, from the axiom
for the motion of light, it will be represented by adlrgeodetic line. If we sefA =0 in
(41) then that will yield the equation:

r? % 2—_r_a ﬂ 2:O
dp r \dp

for the orbiting light motion, in place of the inequal{@®). Together with (47), it will
then follow from this that the radius of the light ipahould be:

3
r__l
2

and the upper limit of the velocity of the orbiting lighiat appears in (51) should have
the value:

In general, sincé = 0, we will obtain the following differential equatidor the light
path from (46):

(52) [d_f’jz: 1 _ Giap
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for B = # a, it will possess the circle= 3a / 2 as its Poincaré “cycle,” which will

correspond to the situation in Whigzh—% appears on the right as a double factor. In

fact, in that case, the differential equation (E2yresponding statements will be true for
the general equation (46)] will possess infinitetgny integral curves that approach any
circle in spirals, which is what Poincaré’s geng¢nhalory of cycles would demand.

If we consider a light ray that comes in from mtly, and we taker to be small in
comparison to the shortest distance from the lightto the center of gravitation then the
light ray will approach the form of a hyperbola ké focus at that center. That will yield
the deflection that a light ray experiences by aviational center; namely, it will be
equal to 2r/ B.

A counterpart to motion in a circle is motion aloa line that goes through the center
of gravitation. We obtain the differential equatitor this motion when we sgt = 0 in
(44) and then eliminate from (43) and (44); the differential equation foas a function
of t will then read:

(53) d’r  3a (drj2+a(r—a)_

2 _ v 3 =0,
dt® 2r(r—-a)\ dt 2r

with the integral that follows from (41):

) _(r-a) (r-aY
(54) LA LCA Y \LCA

dt r r
From (53), the acceleration proves to be negativgositive; i.e., the gravitation will be
attractive or repulsive according to whether theodlie value of the velocity satisfies:

| 1r-a
dt \/5 r
or
1r-a
>_— 7
\/5 r
resp.

Due to (54), for light, one will have:

dr
dt

r-a.

r

light that is directed rectilinearly to the centall always be repelled, in agreement with
the last inequality; its velocity will increase fno0 atr =ato 1 atr = oo,
If a, like dr/dtis small then (53) will go to the Newtonian eqaati



approximately.
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dr _ a1

de? 2r2

(Received on 29-12-1923)

33



