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The foundations of physics 
 

By 
 

David Hilbert in Göttingen 
 

Translated by D. H. Delphenich 
 

________ 
 
 

 What follows is essentially a correction of the two older papers (1) that I published on 
the “foundations of physics” and the remarks regarding them that F. Klein published in 
his notice (2) “Zu Hilbert’s erster Note über die Grundlagen der Physik,” with only minor 
editorial revisions and alterations that should make things more understandable. 
 The unifying mechanistic ideal in physics that was created by the great researchers of 
the previous generation and was established during the reign of classical electrodynamics 
must ultimately be abandoned today.  The introduction and development of the concept 
of a field gradually exhibited a new possibility for our perception of the physical world.  
Mie was the first to point to a path, along which, this newly-emerged “unifying field-
theoretic ideal,” as I would like to call it, can be made accessible to a general 
mathematical treatment.  While the older mechanistic conception immediately took 
matter itself to be its starting point, and determined it by means of a finite number of 
discrete parameters, the new field-theoretic ideal of the physical continuum – viz., the so-
called space-time manifold – served as its foundation.  If the form of the laws of the 
universe were previously differential equations with one independent variable then now 
they would necessarily be expressed in terms of partial differential equations. 
 As I showed in my first notice, the profound problem statement and mental picture of 
Einstein’s general theory of relativity now finds its simplest and most natural expression 
along the path that was embarked upon by Mie, and, at the same time, a systematic 
extension and rounding-off in a formal context. 
 Some meaningful treatises on this state of affairs have appeared since the publication 
of my first notice.  I shall mention only the deep and brilliant investigations of Weyl and 
the publications of Einstein, which are rich in even newer Ansätzen and ideas.  However, 
Weyl later altered his path of research in such a way that he likewise arrived at the 
equations that I had proposed, while Einstein, on the other hand, ultimately returned 
directly to the equations of my theory in his later publications, although he repeatedly 
started from difference and mutually distinct Ansätzen. 
 I certainly believe that the theory that I shall develop here contains a residual nucleus 
and creates a framework, inside of which there is sufficient room for the future 
                                                
 (1) Göttinger Nachr.:  First notice, submitted on 20 Nov. 1915, second notice, submitted on 23 Dec. 
1916. 
 (2)  Göttinger Nachr.:  Submitted in 25 Jan. 1918. 
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construction of physics in the spirit of a unifying field-theoretic ideal.  In each case, it is 
also of epistemological interest to see how the small number of simple assumption that I 
posed in axioms I, II, III, IV will suffice for the construction of the entire theory. 
 Admittedly, whether or not the purely field-theoretic unifying ideal (some extensions 
and modifications of which might possibly be necessary) is definitive enough to make it 
possible to address the existence of negative and positive electrons, in particular, as well 
as the consistent formulation of the laws that govern the atomic interior, will have to be a 
problem for the future. 
 

_________ 
 
 

Part I. 
 

 Let xs (s = 1, 2, 3, 4) be any coordinates that essentially specify a world-point 
uniquely; viz., the so-called world-parameters (i.e., the most general space-time 
coordinates).  Let the quantities that characterize the phenomena at xs be: 
 
 1. The gravitational potentials gµν (µ, ν = 1, 2, 3, 4), which were first introduced by 
Einstein, and have a symmetric tensor character under an arbitrary transformation of the 
world-parameters xs ; they define the coefficients of the invariant differential form: 
 

,

g dx dxµ ν
µν

µ ν
∑ . 

 
 2. The four electrodynamical potentials qs , which have a vector character in the 
same sense, and which define the invariant linear form: 
 

s s
s

q dx∑ . 

 
 Physical phenomena are not arbitrary, since one must verify the following axioms, 
moreover: 
 
 Axiom I (Mie’s axiom of the world-function (3)).  The law of physical phenomena is 
determined by a world-function H that contains the following arguments: 
 

(1)     gµν , gµνl = 
l

g

x
µν∂

∂
, gµνlk = 

l k

g

x x
µν∂

∂ ∂
, 

 

(2)     qs , qsl = s

l

q

x

∂
∂

, (s, l = 1, 2, 3, 4), 

                                                
 (3) Mie’s world-function does not refer to this argument precisely; in particular, Born returned to the use 
of argument (2).   However, the introduction and employment of such a world-function into Hamilton’s 
principle is precisely characteristic of Mie’s electrodynamics. 
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and indeed the variation of the integral: 
 

H g dω∫  

 
(g = − | gµν |, dω = dx1 d2 dx3 dx4) 

 
must vanish for each of the 14 potentials gµν , qs . 
 
 The arguments: 

(3)     gµν, lgµν  = 
l

g

x

µν∂
∂

, lkgµν  = 
l k

g

x x

µν∂
∂ ∂

 

 
can obviously appear in place of the arguments (1), in which gµν means the sub-
determinant of the determinant (− g) that relates to its element gµν, divided by (− g). 
 The ten Lagrangian differential equations: 
 

(4)  
2

,k k lk k k l kl

g H g H g H

g x g x x gµν µν µν

∂ ∂ ∂∂ ∂− +
∂ ∂ ∂ ∂ ∂ ∂∑ ∑ = 0  (µ, ν = 1, 2, 3, 4) 

 
for the ten gravitational potentials then follow from Axiom I, and then the four 
Lagrangian differential equations: 
 

(5)    
kk k hk

g H g H

q x q

∂ ∂∂−
∂ ∂ ∂∑ = 0   (h = 1, 2, 3, 4). 

 
 Let it be remarked, once and for all, about the differential quotients with respect to 
gµν, lgµν , lkgµν  that appear in (4) and subsequent formulas that due to the symmetry in µ, 

ν, on the one hand, and in k, l, on the other, the differential quotients with respect to gµν, 

lgµν  are understood to mean that one applies a factor of 1 (1/2, resp.) to them according 

to whether µ = ν or µ ≠ ν, resp., and furthermore multiplies the differential quotients with 
respect lkgµν  by 1 (1/2, 1/4, resp.) according to whether µ = ν and k = l (µ = ν and k ≠ l, 

resp.) or µ ≠ ν and k = l (µ ≠ ν and k ≠ l, resp.). 
 For the sake of brevity, we shall denote the left-hand sides of equations (4), (5) by: 
 

[ ]gH µν , [ ] hgH , 

resp. 
 Equations (4) can be called the basic equations of gravitation and equations (5), the 
basic equations of electrodynamics. 
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 Axiom II (Axiom of general invariance (4)).  The world-function H is an invariant 
under an arbitrary transformation of the world-parameters xs . 
 
 Axiom II is the simplest mathematical expression of the demand that the coordinates 
should have no physical meaning in and of themselves, but represent only a numbering of 
the world-points, such that the concatenation of the potentials gµν, qs is completely 
independent of the type of numbering. 
 In what follows, we shall employ the easily-proved fact that if pj (j = 1, 2, 3, 4) means 
an arbitrary contravariant vector then the expression: 

pµν = ( )s s s
s s s

s

g p g p g pµν µ ν ν µ− −∑    
j

j
s

s

p
p

x

 ∂= ∂ 
 

 
represents a symmetric, contravariant tensor, and the expression (5): 
 

pl = ( )s s
ls s l

s

q p q p+∑ . 

 
 Moreover, we state two mathematical theorems, which read as follows: 
 
 Theorem 1.  If J is an invariant that depends upon gµν, lgµν , lkgµν  then one will 
always have: 
 

, , , ,
i lk s sk

l k s ki lk s sk

J J J J J
g g g q q

g g g q q
µν µν µν

µν µν µν
µ ν

   ∂ ∂ ∂ ∂ ∂∆ + ∆ + ∆ + ∆ + ∆   ∂ ∂ ∂ ∂ ∂   
∑ ∑  = 0 

 
identically in all arguments and for every arbitrary contravariant vector ps. 
 In this, one has: 
 ∆gµν = ( )m m

m m
m

g p g pµ ν ν µ+∑ , 

 

 lgµν∆  = − m
m l

m l

g
g p

x

µν
µν ∂∆+

∂∑ , 

 

 lkgµν∆  = −
2

( )m m m
m lk lm k km l

m l k

g
g p g p g p

x x

µν
µν µν µν ∂ ∆+ + +

∂ ∂∑ , 

 

                                                
 (4) Mie had already posed the demand of orthogonal invariance.  Einstein’s fundamental concept of 
general invariance finds its simplest expression in Axiom II that is posed above, even if Hamilton’s 
principle played only a supporting role for Einstein, and his functions H were in no way invariants, nor did 
they include the electric potentials. 
 (5) pl should not be confused with the covariant vector s

ls

s

g p∑  that is associated with ps. 
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 ∆qs = − m
m s

m

q p∑ , 

 

 ∆qsk = − m s
sm k

m s

q
q p

x

∂∆+
∂∑ . 

 
 Theorem 1 can also be expressed as follows: 
 
 If J is an invariant, and ps is an arbitrary vector, as before, then one will have the 
identity: 

(6)      s

s s

J
p

x

∂
∂∑  = P(J), 

in which one sets: 
P = Pg + Pq , 

 

 Pg = 
, , ,

l lk
l k l lk

p p p
g g g

µν µν µν
µν µν µν

µ ν

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
∑ , 

 

 Pq = 
,

l lk
l k l lk

p p
q q

 ∂ ∂+ ∂ ∂ 
∑ , 

 
and one has the abbreviations: 
 

kpµν  = 
k

p

x

µν∂
∂

,  klpµν  = 
2

k l

p

x x

µν∂
∂ ∂

, plk = l

k

p

x

∂
∂

. 

 
 The proof of (6) is simple to obtain.  This identity is obviously correct when ps is a 
constant vector, and its invariance in general will follow from that. 
 
 Theorem 2.  If J is an invariant that depends upon gµν, lgµν , lkgµν , qs, qsk as in 

Theorem 1, and the variational equations of g J  with respect to gµν (with respect to qµ, 

resp.) are denoted by [ ]g J µν  ([ ]gJ µ , resp.) , and if one further sets: 

 

  is = ( )
,

s sgJ g gJ qµν
µµν µµ ν

   +   ∑ , 

 

  l
si  = − 2 l

s
s l

gJ g gJ qµ

µµ

   +   ∑  

 
to abbreviate then the identities: 
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(7)      is = 
l
s

l l

i

x

∂
∂∑   (s = 1, 2, 3, 4) 

will be true. 
 Theorem 2 contains a general mathematical theorem (6) as its essential core that was 
my guiding principle for the construction of the theory, and which is expressed as 
follows: 
 
 If F is a function of n quantities (that are functions of x1, x2, x3, x4) and their 
derivatives, and if the integral: 

F dω∫  

 
is invariant under arbitrary transformations of the four world-parameters x1, x2, x3, x4 then 
four of the equations in the system of n Lagrangian differential equations that belong to 
the variational problem: 

δ F dω∫ = 0 

 
will always be a consequence of the remaining n – 4, in the sense that four linearly-
independent relations between the n Lagrangian derivatives of F with respect to each of 
the n quantities and their total differential quotients with respect to x1, x2, x3, x4 will 
always be fulfilled identically. 
 In order to prove Theorem 2, we consider a finite piece of the four-dimensional 
universe.  Furthermore, let ps be a vector that vanishes, along with its derivatives, on the 
three-dimensional outer surface of that region.  According to the definition of P, one will 
have: 

( )P g J  = 
,

( )
g

gP J J p
g

µν
µν

µ ν

∂
+

∂∑  = ( ) s s
s

s s

g
gP J J p g p

x

 ∂
+ +  ∂ 
∑ , 

 

( )P g J  = 
,

s s s
s

ss s

gJ
g p J p g p

x xµ ν

 ∂∂ + +  ∂ ∂ 
∑ ∑  = 

s

s s

g Jp

x

∂
∂∑ . 

 
If we integrate this equation over the world-region in question then due to the form of the 
divergence on the right-hand side and the assumption on ps that will give: 
 

( )P gJ dω∫  = 0. 

 

                                                
 (6) Emmy Noether gave the general proof of this theorem (“Invariante Variationsprobleme,” Göttinger 
Nachr., 1918, Heft 2).  Indeed, in my first notice, the identities that were given in Theorem 2 were stated 
only for the case in which the invariant depended upon gµν and its derivatives; however, the method of 
proof that was set down there and reproduced in this article is just as true for our general invariant J, as 
well.  The identities were first derived in their general form by F. Klein, on the basis of the method of 
infinitesimal transformations (“Zu Hilbert’s erster Note über die Grundlagen der Physik,” Gött. Nachr., 
1917, Heft 3). 



Hilbert – The foundations of physics. 7 

Due to the way that the Lagrangian derivative is defined, one also has: 
 

,

g J p g J p dην
µµν µµ ν µ

ω
 

   +    
 
∑ ∑∫  = 0. 

 
The integrand can be written in the form: 
 

,

( )s l s
s s l

k l

i p i p+∑  

 
here.  From the formula that then arises: 
 

,

( )s l s
s s l

k l

i p i p dω+∑∫  = 0, 

we obtain: 
l

ss
s

s l l

i
i p d

x
ω

 ∂− ∂ 
∑ ∑∫  = 0, 

 
and with it, the statement of Theorem 2, as well. 
 
 Some further axioms are required in order to determine the world-function H.  Should 
the basic equations (4), (5) of gravitation and electrodynamics contain only second 
derivatives of the gµν then H would have to be composed additively of a linear function 
with constant coefficients of the invariant: 
 

K = 
,

g Kµν
µν

µ ν
∑ , 

 
in which Kµν means the Riemann curvature tensor: 
 

Kµν = 
,x xκ κ λν κ

µ κ µ ν µ κ λ ν µ ν λ κ
κ κ λ κ λ κ

            ∂ ∂− + −            ∂ ∂            
∑ ∑ , 

 
and an invariant L that depends upon only gµν, lgµν , qs, qsk .  We make the following 

special assumptions: 
 
 Axiom III (Axiom of gravitation and electricity).  The world-function H has the 
form: 

H = K + L, 
 
in which K is the invariant that arises from the Riemann tensor – i.e., the curvature – and 
L depends upon only gµν, qs, qsk . 
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 Thus, the gravitational equations will assume the form: 
 

(8)    g K
µν

 
  = − 

g L

gµν

∂
∂

  (µ, ν = 1, 2, 3, 4), 

 
and the electrodynamical equations will assume the form: 
 

(9)    
1

k k hk

g L

x qg

∂∂
∂ ∂∑  = 

k

L

q

∂
∂

  (h = 1, 2, 3, 4). 

 

 In order to determine the expression for g K
µν

 
  , one next specializes the 

coordinate system in such a way that all of the sgµν  vanish for the world-point in 

question.  In that way, one will find that: 
 

g K
µν

 
   = ( )1

2g K g Kµν µν− . 

 
 If we introduce the notation Tµν for the tensor: 
 

− 1 g L

gg µν

∂
∂

 

 
then the gravitational equations will read: 
 

Kµν – 1
2 gµν L = Tµν . 

 
On the other hand, we apply Theorem 1 to the invariant 1 and thus obtain: 
 

(10)  
, , ,

( )m m
m m m s

m s m s

L L
g p g p q p

g q
µν ν ν µ

µν
µ ν

∂ ∂+ −
∂ ∂∑ ∑  

      −
, ,

( )m m m
sm l mk s m sk

s k m sk

L
q p q p q p

q

∂ + +
∂∑  = 0. 

 
Setting the coefficients of m

skp  equal to zero in the left-hand side of this will yield the 

equation: 

m
sk ks

L L
q

q q

 ∂ ∂+ ∂ ∂ 
= 0, 

or 

(11)     
sk ks

L L

q q

∂ ∂+
∂ ∂

 = 0; 
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i.e., the derivatives of the electrodynamical potentials qs appear only in the combinations: 
 

Mks = qsk – qks . 
 
 With that, we recognize that by our assumptions, the invariant L will depend upon 
merely the components of the skew-symmetric invariant tensor: 
 

M = (Mks) = Rot (qs), 
 
in addition to the potentials gµν, qs ; i.e., the so-called electromagnetic six-vector.  It 
follows further from this that: 

sk

L

q

∂
∂

 = 
ks

L

M

∂
∂

 = Hks 

 
is a skew-symmetric, contravariant tensor, as well as the fact that: 
 

k

L

q

∂
∂

= rk 

is a contravariant vector. 
 If one applies the notations that we introduced then the electrodynamical equations 
will assume the form: 

(12)     
1 kh

k k

g H

xg

∂
∂∑ = rh  (h = 1, 2, 3, 4). 

 
One recognizes a generalization of one of the systems of Maxwell equations in these 
equations; one obtains the other one from the equations: 
 

Mks = qsk − qks 
by differentiation and addition: 
 

(13)    ks st tk

t k s

M M M

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0  (t, k, s = 1, 2, 3, 4). 

 
We then see that the form of these “generalized Maxwell equations” (12), (13) is already 
determined, in essence, by the requirement of general invariance, and thus, upon the basis 
of Axiom II.  If we set the coefficients of mpν  equal to zero on the left-hand side of the 

identity (10) then, with the use of (11), we will get: 
 

(14)  2 m
s

sm ms

L L L
g q M

g q M
µ

ν νµν
µ

∂ ∂ ∂− −
∂ ∂ ∂∑ ∑  = 0  (µ = 1, 2, 3, 4), 

so 

2 mL
g

g
µ

µν
µ

∂
∂∑ = ms m

s
s

H M r qν ν+∑ , 
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or 

− 2 mgL
g

gg
µ

µν
µ

∂
∂∑ = m ms m

s
s

L H M r qν ν νδ − −∑ , 

 
 m

νδ  = 0  (m ≠ ν), 

 m
νδ  = 1. 

 
With that, one gets the representation of Tµν : 
 
 Tµν = m

mg Tµ ν
µ
∑ , 

 mTν  = 1
2

m ms m
s

s

L H M r qν ν νδ − − 
 

∑ . 

 
The expression on the right agrees with Mie’s electromagnetic energy tensor, and we then 
find that Mie’s energy tensor is nothing but the generally-invariant tensor that arises by 
differentiating the invariant L with respect to the gravitational potentials gµν , which is a 
situation that I first proved in the necessarily narrow connection between Einstein’s 
general theory of relativity and Mie’s electrodynamics, and which then convinced me that 
the theory that is developed here is correct. 
 Applying Theorem 2 to the invariant K will yield: 
  

(15a)   
,

2 m
s

s
m m

g K g g K g
x

µν µ

µν µµ ν µ

 ∂   +     ∂  
∑ ∑ ∑  = 0. 

 
Applying it to L will yield: 
 

(15b)   ( ) ( )
,

2 m
s s

m m

g T g g T
x

µν
µν

µ ν

∂− + −
∂∑ ∑  

+ ( )s sg L q g L q
xµµ µµ µ µ

∂   −   ∂∑ ∑  = 0 (s = 1, 2, 3, 4). 

 
As a consequence of the electrodynamical equations, we obtain from this that: 
 

(16)    
,

2
m

s
s

m m

g T
g T g

x
µν

µν
µ ν

∂
+

∂∑ ∑  = 0. 

 
These equations (16) can also be obtained as a consequence of the gravitational equations 
on the basis of (15a).  They have the meaning of the basic mechanical equations.  In the 
case of special relativity, for which the gµν are constants, they will go to the equations: 
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m
s

m

T

x

∂
∂∑  = 0, 

 
which express the conservation of energy and impulse. 
 It follows from equations (16), on the basis of the identities (15b), that: 
 

    ( )s sg L q g L q
xµµ µµ µ µ

∂   −   ∂∑ ∑  = 0, 

or 

(17)   ( )s sM g L q g L
xµ µ µµ µ µ

 ∂    +    ∂  
∑ ∑ = 0 ; 

 
i.e., four mutually-independent linear relations between the basic electrodynamical 
equations (5) and their first derivatives will follow from the gravitational equations (4).  
That is the precise mathematical expression of the connection between gravitation and 
electrodynamics that governs the entire theory. 
 Since L should not, by our assumption, depend upon the derivatives of gµν, it must be 
a function of four certain invariants that correspond to Mie’s special orthogonal 
invariants, and the two simplest of them are: 
 

Q = 
, , ,

mk nl
mn kl

k l m n

M M g g∑  

and 
q = 

,

kl
k l

k l

q q g∑ . 

 
The simplest and (in regard to the structure of K) closest Ansatz for L is, at the same time, 
the one that corresponds to Mie’s electrodynamics, namely: 
 

L = α Q + f (q)    (α = const.). 
 

According to this Ansatz, one obtains the following relations between the quantities that 
appear in the generalized Maxwell equations: 
 
 Hks = 4a Mks, 
 rk  = 2f′ (q) qk, 
in which one sets: 
 Mk = 

,

k sg g Mµ ν
µν

µ ν
∑ , 

 qk  = kl
l

l

g q∑ . 

For the entirely special case of: 
f(q) = β q (β = const.), 
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it follows that the “current vector” rk will be proportional to the contravariant vector qk. 
 
 

Part II. 
 

 The connection between the theory and experiment shall be discussed more closely.  
Another axiom is required for this. 
 
 Axiom IV (Space-time axiom).  The quadratic form: 
 
(18)    G (X1, X2, X3, X4) = g X Xµν µ ν

µν
∑  

 
shall be such that in its representation as a sum of four squares of linear forms in Xs , 
three of the squares will always appear with positive signs, and one of them will always 
have a negative sign. 
 
 The quadratic form (18) yields the metric of a pseudo-geometry for our four-
dimensional world of xs .  The determinant g of the gµν proves to be negative. 
 If a curve: 

xs = xs(p)    (s = 1, 2, 3, 4) 
 
is given in this geometry, where xs(p) mean any real functions of the parameter p, then it 
can be divided into pieces, along each of which the expression: 
 

31 2 4, , ,
dxdx dx dx

G
dp dp dp dp

 
 
 

 

 
does not change its sign.  A piece of the curve for which one has: 
 

sdx
G

dp

 
 
 

 > 0 

is called a segment, and the integral: 
 

λ = sdx
G dp

dp

 
 
 

∫ , 

 
when taken along this piece of the curve, is then called the length of the segment.  A piece 
of the curve or which: 

sdx
G

dp

 
 
 

 < 0 

is called a time line, and the integral: 
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τ = sdx
G dp

dp

 
−  

 
∫ , 

 
when taken along that piece of the curve, will be called the proper time of the time line.  
Finally, a piece of the curve along which one has: 
 

sdx
G

dp

 
 
 

 = 0 

will be called a null line. 
 In order to make this concept of our pseudo-geometry intuitive, we imagine that we 
have an ideal measuring instrument – viz., the light-clock – by means of which we can 
determine the proper time along any time line. 
 We next show that one can succeed in calculating the values of gµν as functions of xs 
with the help of this instrument, as long as one only introduces a certain space-time 
coordinate system xs .  In fact, we choose any ten time-lines that all arrive at the point xs 
in question from various directions, such that whenever that end point takes on the 
parameter value p, it will yield the equation: 
 

2( )sd

dp

λ 
 
 

= G 
( )k
sdx

dp

 
 
 

   (h = 1, 2, …, 10) 

 
for each of the ten time lines at the end point; in this, the left-hand side will be known as 
soon as we have determined the proper time τ (h) by means of the clock.  If we now set: 
 

D(u) = 

2 2 2(1) (1) (1) (1) (1)
1 1 1 4

2 2(10) (10) (10) (10) (10)
1 1 1 4

2 2
1 1 2 4

dx dx dx dx d

dp dp dp dp dp

dx dx dx dx d

dp dp dp dp dp

X X X X u

λ

λ

     
     

    

     
     

    

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯

, 

 
to abbreviate, then we will obviously have: 
 

(19)      G (Xs) = − 
(0)D
D

u

∂
∂

, 

 
so we can, at the same time, pose the condition: 
 

D

u

∂
∂

 ≠ 0 
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as necessary for the directions of the ten chosen time lines at the point xs(p). 
 If G is calculated from (19) then the application of the process to any 11th time line 
that ends at xs(p) will yield: 

2(11)d

dp

λ 
 
 

= G 
(11)dx

dp

 
 
 

, 

 
and this equation would then be a test of the validity of the instrument, as well as an 
experimental confirmation of the fact that the assumptions of the theory apply to the real 
world. 
 The axiomatic construction of our pseudo-geometry can be performed with no 
difficulty: First, one poses an axiom, upon whose basis it will then follow that length 
(proper time, resp.) must be an integral whose integrand is merely a function of xs and its 
first derivatives with respect to the parameter; perhaps the well-known envelope theorem 
for geodetic lines might serve as such an axiom.  Second, one needs an axiom that would 
make the theorems of pseudo-Euclidian geometry (i.e., the old principle of relativity at 
infinity) true.  Here, the axiom that was posed by E. Blaschke (7) would be especially 
suitable, which says that the condition of orthogonality should be reciprocal for any two 
directions, whether they are segments or time lines. 
 Let us now briefly summarize the main facts that the Monge-Hamilton theory of 
differential equations teaches us about our pseudo-geometry. 
 Each world-point xs belongs to a second-order cone that has its vertex at xs and is 
determined by the equation: 
 

G(X1 – x1, X2 – x2, X3 – x3, X4 – x4) = 0 
 
in the running point coordinates Xs ; it is called the null cone that is associated with the 
point xs .  The totality of all null cones defines a four-dimensional field of cones that is 
associated with, on the one hand, the “Monge” differential equation: 
 

31 2 4, , ,
dxdx dx dx

G
dp dp dp dp

 
 
 

 = 0, 

 
and, on the other hand, the “Hamilton” partial differential equation: 
 

(20)    
1 2 3 4

, , ,
f f f f

H
x x x x

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

 = 0, 

 
where H means the reciprocal quadratic form to G: 
 

H(U1, U2, U3, U4) = g U Uµν
µ ν

µν
∑ . 

 
                                                
 (7) “Räumliche Variationsprobleme mit symmetrischer Transversalitätsbedingung,” Leipziger Berichte, 
Math.-phys. Kl. 68 (1916), pp. 50. 
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 The characteristics of Monge’s, and likewise those of Hamilton’s, partial differential 
equation (20) are the null geodetic lines.  The totality of all null geodetic lines that 
emanate from a certain world-point as (s = 1, 2, 3, 4) generate a three-dimensional point 
manifold that might be called the time-sheath that belongs to the world-point as .  The 
time-sheath possesses a node at as whose tangent cone is precisely the null cone that 
belongs to as .  If we bring the equation of the time-sheath into the form: 
 

x4 = ϕ (x1, x2, x3) 
then 

f = x4 − ϕ (x1, x2, x3) 
 
will be an integral of Hamilton’s differential equation (20).  The totality of all time-lines 
that emanate from the point as will lie completely inside of that four-dimensional subset 
of the universe that has the time-sheath at as as its boundary. 
 With these preparations, we turn to the problem of causality in the new physics. 
 
 Up to now, we have regarded all coordinate systems xs that emerge from any one of 
them by way of an arbitrary transformation as equivalent.  This arbitrariness must be 
restricted if we would like to ensure that if two world-points that lie along the same time-
line can be related to each other as cause and effect then it would not then be possible to 
transform such world-points into simultaneous ones.  If we distinguish x4 as the proper 
time coordinate then we will propose the following definition: 
 A proper space-time coordinate system is one for which the following four 
inequalities are fulfilled: 

(21)  g11 > 0,  11 12

21 22

g g

g g
 > 0,  

11 12 13

21 22 23

31 32 33

g g g

g g g

g g g

 > 0, g44 < 0, 

 
along with g < 0.  A transformation that takes such a space-time coordinate system into 
another proper space-time coordinate system will be call a proper space-time coordinate 
transformation. 
 The four inequalities express the idea that the null cone that is associated with any 
world-point as lies completely outside of the linear space: 
 

x4 = a4 . 
By comparison, the line: 

x1 = a1 , x2 = a2 , x3 = a3 
 

is contained inside of it; the latter line will always be a time line then. 
 Let any time-line xs = x(p) be given, moreover; since: 
 

dx
G

dp

 
 
 

 < 0, 

 
it will then follow that one will always have: 
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4dx

dp
 ≠ 0 

 
in a proper space-time coordinate system, and as a result, the proper time coordinate x4 
must always increase (decrease, resp.) along a time-line.  Since a time-line remains a 
time-line under any coordinate transformation, two world-points along a time-line can 
never take on the same value of the time coordinate x4 by a proper space-time coordinate 
transformation; i.e., it is impossible to transform them so that they will be simultaneous. 
 On the other hand, if the points of a curve can actually be transformed into 
simultaneous ones then the transformation of that curve must obey: 
 

x4 = const., i.e., 4dx

dp
= 0, 

so 

sdx
G

dp

 
 
 

 = 
dx dx

g
dp dp

µ ν
µν

µν
∑    (µ, ν = 1, 2, 3), 

 
and the right-hand side is positive here, due to the first three of our inequalities; the curve 
thus-characterized will then be a segment. 
 We then see that the concepts of cause and effect that lie at the basis of the principle 
of causality will also not lead to any sort of internal contradictions in the new physics, as 
long we always append the inequalities (21) to our basic equations; i.e., we restrict 
ourselves to the use of proper space-time coordinates. 
 In place of it, let us refer to a special space-time coordinate system that will prove to 
be useful later on, and which I would like to call a Gaussian coordinate system, since it is 
a generalization of the geodetic polar coordinate systems that Gauss introduced into the 
theory of surfaces.  Let any three-dimensional space be given in our four-dimensional 
universe that is such that every curve that runs through that space is a segment – viz., a 
segment space, as I would like to call it; let x1, x2, x3 be the coordinates of any point in 
that space.  At any point x1, x2, x3 of it, we now construct the geodetic line that is 
orthogonal to it, which will be a time-line and will be associated with x4 as the proper 
time along it.  We assign the coordinates x1, x2, x3, x4 to the point of the four-dimensional 
universe thus-obtained.  As is easy to see, one will have: 
 

(22)     G(Xs) = 
1,2,3

2
4g X X Xµν µ ν

µν
−∑  

 
in these coordinates; i.e., the Gaussian coordinate system is characterized analytically by 
the equations: 
(23)   g14 = 0,  g24 = 0,  g34 = 0,  g44 = 1. 
 
Due to the assumed behavior of the three-dimensional space x4 = 0, the quadratic form in 
the variables X1, X2, X3 that appears in the right-hand side of (22) is necessarily positive-
definite; i.e., the first three of the inequalities (21) are fulfilled, and since that would also 
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be true for the fourth one, the Gaussian coordinate system always proves to be a proper 
space-time coordinate system. 
 We now return to the study of the causality principle in physics.  We see that its main 
content is the fact (which has been true of every physical theory up till now) that the 
values of physical quantities and their temporal derivatives in the future can be 
determined uniquely when one knows those quantities in the present: The laws of physics 
up to now have indeed, without exception, found their expression in a system of 
differential equation which are such that the number of functions that appear in them 
essentially agrees with the number of independent differential equations, and thus the 
known Cauchy theorem on the existence of integrals of differential equations will then 
immediately serve as the basis for the proof of that fact. 
 Now, our basic equations of physics (4) and (5) are, by no means, of the type that was 
just characterized; moreover, as I have shown, four of them are a consequence of the 
remaining ones.  We can regard the electrodynamical equations (5) as consequences of 
the ten gravitational equations (4), and we will thus have only ten essentially mutually-
independent equations (4) for the 14 potentials gµν , qs . 
 As long as we maintain the demand of general invariance for the basic equations of 
physics, the aforementioned situation is also essential and necessary.  Namely, if there are 
other invariant equations for the 14 potentials that are independent of (4) then the 
introduction of a Gaussian coordinate system by means of (23) would yield a system of 
equations for the ten physical quantities: 
 

gµν  (µ, ν = 1, 2, 3), qs (s = 1, 2, 3, 4) 
 
 
that would be, in turn, mutually-independent, and since there are more than ten of them, 
they would define an over-determined system. 
 Under such circumstances then, it is in no way possible to conclude the values of 
physical quantities in the future uniquely from the knowledge of them in the present and 
the past.  In order to show this intuitively with an example, let our basic equations (4) and 
(5) be integrated in the special case that corresponds to the presence of a single electron 
that is constantly at rest, such that the 14 potentials: 
 
 gµν = gµν (x1, x2, x3), 
 qs = qs (x1, x2, x3) 
 
prove to be well-defined functions of x1, x2, x3 that are all independent of the time x4, and 
in such a way that the first three components r1, r2, r3 of the four-density might vanish, 
moreover.  We thus apply the following coordinate transformation to the potentials: 
 

 2
4

1 1 4

1/
1 1 4

, for 0,

, for 0,x

x x x

x x e x′−

′ ′= ≤


′ ′= + >
 

 
 x2 = 2x′ , 

 x3 = 3x′ , 
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 x4 = 4x′ . 

 
For 4x′  ≤ 0, the transformed potentials gµν′ , sq′  are the same functions of 1x′ , 2x′ , 3x′  as 

the gµν , qs in the original variables x1, x2, x3 , while for 4x′  > 0, the gµν′ , sq′  will also 

depend upon the time coordinate 4x′  in an essential way; i.e., the potentials gµν′ , sq′  

represent an electron that is at rest up to time 4x′  = 0, but then it is set in motion. 

 Therefore, I believe that only a more detailed understanding of the idea that is at the 
basis of the principle of general relativity (8) will serve to maintain the causality principle 
in the new physics, as well.  Corresponding to the essence of the new principle of 
relativity, we must, in fact, require the invariance of not only the general laws of physics, 
but also endow every individual statement in physics with an invariant character, if it is to 
have any physical sense, which is harmony with the fact that any physical fact must 
ultimately be capable of being established by light-clocks – i.e., by instruments of an 
invariant character.  Just as in the theory of curves and surfaces, a statement for which 
the parameter representation of the curve or surface has been chosen will have no 
geometric meaning for the curve or surface itself when the statement does not remain 
invariant under an arbitrary transformation of the parameter or cannot be brought into an 
invariant form, in physics, we must also say that a statement that does not remain 
invariant under any arbitrary transformation of the coordinate system is physically 
meaningless.  For example, in the case that is considered above of the electron at rest, the 
statement that it is at rest at time x4 = 1 has no physical meaning, since that statement is 
not invariant. 
 Now, as far as the causality principle is concerned, the physical quantities and their 
temporal derivatives might be known for the present in any given coordinate system.  A 
statement would then have physical meaning only when it is invariant under all of the 
transformations for which present values that are assumed to be known remain 
unchanged.  I claim that statements of this kind are all determined uniquely for the future; 
i.e., the causality principle is true in this form: 
 
 All statements about the 14 physical potentials gµν , qs in the future will follow 
necessarily and uniquely from knowing them in the present as long as they are physically 
meaningful. 
 
 In order to prove this assertion, we employ a Gaussian space-time coordinate system.  
The introduction of (23) into the basic equations (4) will produce a system of just as 
many partial differential equations for the ten potentials: 
 
(24)   gµν (µ, ν = 1, 2, 3), qs (s = 1, 2, 3, 4); 
 
if we integrate it on the basis of the given initial values for x4 = 0 then we will find the 
values of (24) for x4 > 0 in a single-valued way.  Since the Gaussian coordinate system is 

                                                
 (8) In his original, now-abandoned, theory (Sitzungsberichte der Akad. zu Berlin, 1914, pp. 1067), A. 
Einstein especially postulated four non-invariant equations for the gµν in order to salvage the causality 
principle in its older form. 
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itself established uniquely, all of the statements about the potentials (24) that refer to that 
coordinate system will have an invariant character. 
 The forms in which physically meaningful – i.e., invariant – statements can be 
expressed mathematically are quite manifold. 
 
 First.  This can come about by means of an invariant coordinate system.  The well-
known Riemannian coordinate system is just a useful for that purpose as the previously-
employed Gaussian one, and for that matter, any coordinate system in which the 
transformed electricity and unit density appear to be in a state of rest.  If as in the 
conclusion to Part I, f(q) denotes the function of the invariant: 
 

q = kl
k l

kl

q q g∑  

 
that appears in Hamilton’s principle then: 
 

rs = 2f′ (q) ⋅⋅⋅⋅ qs = 2 f′ (q) sl
l

l

g q∑  

 
is the four-density of electricity.  It represents a contravariant vector, and is therefore can 
be transformed to (0, 0, 0, 1) in a region of the universe in which f′ (q) ≠ 0 and the four-
potential is nowhere-vanishing.  After that transformation, the four components of the 
four-potential qs will be expressible in terms of the gµν from the four equations: 
 

sl
l

l

g q∑  = 0 (s = 1, 2, 3), 4l
l

l

g q∑  = 
1

2 ( )f q′
, 

 
and any relation between the gµν in this coordinate system is then an invariant statement. 
 There can be special coordinate systems for particular solutions of the basic 
equations; e.g., in the case that is treated below of a centrally-symmetric gravitational 
field, r, ϑ, ϕ, t define a coordinate system that is invariant up to rotations. 
 
 Second.  The statement that a coordinate system can be found in which the 14 
potentials gµν , qs will have certain well-defined values in the future or fulfill certain well-
defined relations is always an invariant, and therefore, physically meaningful, statement.  
The mathematically-invariant expressions for such a statement will be obtained 
eliminating the coordinates from each relation.  The case above of the electron at rest will 
serve as an example: The essential and physically-meaningful content of the causality 
principle is expressed here in the statement that for a suitable choice of space-time 
coordinate system, an electron that is at rest for time x4 ≤ 0 will also be continually at 
rest, in all of its parts, for the future x4 > 0. 
 
 Third.  A statement will also be invariant, and will therefore always have physical 
meaning, when it is valid for any arbitrary coordinate system, since otherwise the 
expressions that appear would need to possess a formally-invariant character. 
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 According to my way of explaining things, physics is a four-dimensional pseudo-
geometry whose metric gµν is coupled to the electromagnetic quantities – i.e., to matter – 
by the basic equations (4) and (5).  With that knowledge, an old geometric question will 
now become ripe for solution, namely, the question of whether, and in what sense, 
Euclidian geometry – about which, we only know from mathematics that it is a logically 
consistent structure – also possesses any validity in reality. 
 The old physics, with its concept of absolute time, subsumed the theorems of 
Euclidian geometry and put them at the foundations of any particular physical theory 
from the outset.  Even Gauss proceeded in an only slightly different way: He 
hypothetically constructed a non-Euclidian physics in which he dropped only the parallel 
axiom from the theorems of Euclidian geometry, while preserving absolute time.  The 
measurement of the angle of a triangle with large dimensions then showed him the 
invalidity of this non-Euclidian physics. 
 The new physics of Einstein’s general principle of relativity assumes a completely 
different position with respect to geometry.  It is based upon either Euclidian or some 
other well-defined geometry from the outset in order to deduce the actual physical laws 
from it, since otherwise the new theory of physics would yield the geometrical and 
physical laws, at a single blow, from one and the same Hamilton principle, namely, the 
basic equations (4) and (5), which teach us how the metric gµν – and at the same time, the 
mathematical expression for the physical phenomenon of gravitation – is concatenated 
with the values qs of the electrodynamical potentials. 
 Euclidian geometry is a doctrine that is remote and foreign to modern physics: Since 
the theory of relativity rejects Euclidian geometry as a general assumption for physics, it 
teaches us moreover that geometry and physics have an equivalent character and rest 
upon a common foundation as one science. 
 The aforementioned geometric question comes down to the examination of whether, 
and under which assumptions, the four-dimensional Euclidian pseudo-geometry: 
 

(25)   11 22 33 441, 1, 1, 1,

0, ( )

g g g g

gµν µ ν
= = = = −
= ≠

 

 
is a solution of the gravitational equations (the only regular solution of it, resp.) 
 The gravitational equations (8) read: 
 

g L
g K

gµνµν

∂
  +  ∂

 = 0, 

in which: 

g K
µν

 
  = 1

2( )g K K gµν µν− . 

 
By substituting the values (25), one will get: 
 

(26)     g K
µν

 
  = 0 
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and for: 
qs = 0     (s = 1, 2, 3, 4) 

one will have: 

g L

gµν

∂
∂

= 0; 

 
i.e., the pseudo-Euclidian geometry will be possible when all of the electricity is at a 
distance.  The question of whether this is also necessary in this case – i.e., of whether 
(under what additional conditions, resp.) the values (25) and the values of gµν that emerge 
from a coordinate transformation are the only regular solutions of equations (26) – is a 
mathematical problem that will not be discussed here in general. 
 In the case of pseudo-Euclidian geometry, we have: 
 

gµν  = γµν , 
in which: 

γ11 = 1,  γ22 = 1,  γ33 = 1,  γ44 = 1, 
γµν = 0  (µ ≠ ν). 

 
For any metric that is close to this pseudo-Euclidian geometry, one will have the Ansatz: 
 
(27)     gµν  = γµν  + ε hµν + …, 
 
in which ε is a quantity that converges to zero and hµν are functions of x.  I shall make the 
following two assumptions about the metric (27): 
 
 I. The hµν might be independent of the variables x4 . 
 II. The hµν might exhibit a certain regular behavior at infinity. 
 
 Now, should the metric fulfill the differential equations (26) for all ε, it would follow 
that the hµν must necessarily fulfill certain linear, homogeneous, second-order partial 
differential equations.  If one, like Einstein (9), sets: 
 
(28)    hµν = kµν  − 1

2 ss
s

kµνδ ∑    (kµν = kνµ), 

 δµν = 0  (µ ≠ ν), 
 δνν = 1 
and assumes the four relations: 

(29)     s

s s

k

x
µ∂

∂∑  = 0    (µ = 1, 2, 3, 4) 

 
then these differential equations will read as follows: 
 

                                                
 (9) “Näherungsweise Integration der Feldgleichungen der Gravitation,” Berichte d. Akad. zu Berlin 
(1916), pp. 688.  
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(30)     kµν□ = 0, 

in which we have set: 

□  = 
2 2 2 2

2 2 2 2
1 2 3 4x x x x

∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂

, 

to abbreviate. 
 Due to the Ansatz (28), the relations (29) are restricting assumptions for the functions 
hµν .  I would like to show that if one performs a suitable infinitesimal transformation of 
the variables x1, x2, x3, x4 then these restricting assumptions will be fulfilled by the 
corresponding functions hµν′  after the transformation.  To that end, one determines four 

functions ϕ1, ϕ 2, ϕ 3, ϕ 4 of the variables that satisfy the differential equations: 
 

(31)    µϕ□  = 
1

2

h
h

x x
µν

νν
ν νµ ν

∂∂ −
∂ ∂∑ ∑ , 

 
resp.  By means of the infinitesimal transformation: 
 

xs = sx′  + ε ϕs , 

gµν will go to: 

gµν′ = gµν + ε g g
x x

α α
αν αµ

α αµ ν

ϕ ϕε∂ ∂+
∂ ∂∑ ∑ + … 

 or, due to (27), into: 
gµν′ = γµν + ε + hµν′  …, 

in which one has set: 

hµν′  = hµν + 
x x

µν

µ ν

ϕϕ ∂∂ +
∂ ∂

. 

If we now choose: 
kµν = 1

2 ss
s

h hµν µνδ′ ′− ∑  

 
then, due to (31), these functions will fulfill the Einstein conditions (29), and we will get: 
 

hµν′  = kµν − 1
2 ss

s

kµνδ ∑    (kµν = kνµ). 

 
Due to assumption I, the differential equations (30), which must be true as a result of 
what we did above in order to find the kµν , will go to: 
 

2 2 2

2 2 2
1 2 3

k k k

x x x
µν µν µν∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0, 
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and, since the assumption II – when interpreted in a corresponding way – will allow one 
to conclude that the kµν approach constants at infinity, it will then follow that they must 
constant everywhere; i.e.: 
 
 By varying the metric of the pseudo-Euclidian geometry, under assumptions I and II, 
it is not possible to arrive at a regular metric that is not likewise pseudo-Euclidian and 
that will, at the same time, correspond to a universe that is free of electricity. 
 
 The integration of the partial differential equations (26) is achieved in yet another 
case that was first treated by Einstein (10) and Schwarzschild (11).  In what follows, I will 
point out a path for this case that makes no assumptions at all about the gravitational 
potentials gµν at infinity, and will also be advantageous for my later investigations, as 
well.  The assumptions on the gµν are the following ones: 
 
 1. The metric is referred to a Gaussian coordinate system, except that g44 is left 
arbitrary; i.e., one has: 

g14 = 0,  g24 = 0,  g34 = 0. 
 
 2. The gµν are independent of the time coordinate x4 . 
 
 3. Gravitation gµν is centrally-symmetric with respect to the coordinate origin. 
 
 According to Schwarzschild, when one sets: 
 
 x1 = r cos ϑ, 
 x2 = r sin ϑ cos ϕ, 
 x3 = r sin ϑ sin ϕ, 
 x4 = t, 
 
the metric that corresponds to the most general of these assumptions will be represented 
by the following expression in polar coordinates: 
 
(32)   F(r) dr2 + G(r) (dϑ 2 + sin2ϑ dϕ 2) – H(r) dt2, 
 
in which F(r), G(r), H(r) are arbitrary functions of r.  If we set: 
 

r* = ( )G r  

 
then we will be justified in interpreting r*, ϑ, ϕ as spatial polar coordinates in the same 
way.  If we introduce r* in place of r into (32) and then once more drop the * sign then 
the following expression will arise: 
 
(33)   M(r) dr2 + r2 dϑ 2 + r2 sin2ϑ dϕ 2 – W(r) dt2, 
                                                
 (10) “Perihelbewegung des Merkur,” Sitzungsber. d. Akad. zu Berlin (1915), pp. 831.  
 (11) “Über das Gravitationsfeld eines Massenpunktes,” Sitzungsber. d. Akad. zu Berlin (1916), pp. 189. 
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where M(r), W(r) mean two essentially arbitrary functions of r.  The question is now 
whether, and how, they are to be determined in the most general way in order that the 
differential equations (26) would happen to be satisfied. 
 To that end, the given expressions Kµν , K, which were known in Part I, must be 
calculated.  The first step in this process is to exhibit the differential equations of the 
geodetic lines by varying the integral: 
 

2 2 2 2

2 2 2sin
dr d d dt

M r r W dp
dp dp dp dp

ϑ ϕ        
+ + −        

         
∫ . 

 
We get the following equations for its Lagrangian equations: 
 

 0 = 
2 2 2 22

2
2

1 1
sin

2 2

d r M dr r d r d W dt

dp M dp M dp M dp W dp

ϑ ϕϑ′ ′       
+ − − +       

       
 , 

 

 0 = 
22

2

2
sin cos

d dr d d

dp r dp dp dp

ϑ ϑ ϕϑ ϑ  
+ −  

 
, 

 

 0 = 
2

2

2
2cot

d dr d d d

dp r dp dp dp dp

ϕ ϕ ϑ ϕϑ+ + , 

 

 0 = 
2

2

d t W dr dt

dp W dp dp

′
+ . 

 
Here, in and in the calculation that follows, the prime symbol ′ will refer to the derivative 
with respect to r.  By comparing these with the general differential equations for geodetic 
lines: 

2

2
s

dxd x dx

sdp dp dp
µ ν

µν

µ ν 
+  

 
∑  = 0, 

 

we can assign the following values to the bracket symbols 
s

µ ν 
 
 

, in which we have not 

given the ones that vanish: 
 

 
11

1

 
 
 

 = 
1

2

M

M

′
, 

2 2

1

 
 
 

 = − r

M
, 

3 3

1

 
 
 

 = − r

M
sin2 ϑ, 

 

 
4 4

1

 
 
 

 = 
1

2

W

M

′
, 

1 2

2

 
 
 

 = 
1

r
, 

3 3

2

 
 
 

 = − sinϑ cos ϑ, 
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13

3

 
 
 

 = 
1

r
, 

2 3

3

 
 
 

 = cot ϑ, 
1 4

4

 
 
 

 = 
1

2

W

W

′
. 

We then construct: 

 K11 = 
11 1 2 13 1 4 11

1 2 3 4 1r r

          ∂ ∂+ + + −          ∂ ∂          
 

  + 
11 11 1 2 21 13 31 1 4 41

1 1 2 2 3 3 4 4

           
+ + +           

           
 

  − 
11 11 1 2 13 1 4

1 1 2 3 4

          
+ + +          

          
 

 

 = 
2

2

1 1 1

2 4 4

W W M M W

W W rM M W

′′ ′ ′ ′ ′
− − − , 

 

 K22 = 
2 3 2 2

3 1rϑ
   ∂ ∂−   ∂ ∂   

 

  + 
21 2 2 2 2 1 2 2 3 3 2

2 1 1 2 3 3

        
+ +        

        
 

  − 
2 2 11 1 2 13 1 4

1 1 2 3 4

          
+ + +          

          
 

 

  = − 1 − 
1 1 1

2 2

r M rW

M M M W

′ ′
+ + , 

 

 K23 = −
3 3 3 3

1 2r ϑ
   ∂ ∂−   ∂ ∂   

 

  + 
31 3 3 3 2 3 3 3 3 13 3 3 2 3

3 1 3 2 1 3 2 3

           
+ + +           

           
 

  − 
3 3 11 1 2 13 1 4 3 3 2 3

1 1 2 3 4 2 3

             
+ + + −             

             
 

 

  = sin2 ϑ 
2

1 1 1
1

2 2

r M rW

M M M W

′ ′ 
− − + + 
 

, 

 

 K44 = −
4 4 41 4 4 4 4 41

1 4 1 1 4r

       ∂ + +       ∂        
 

  − 
4 4 11 1 2 13 1 4

1 1 2 3 4

          
+ + +          

          
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  = 
2

2 2

1 1 1

2 4 4

W M W W W

M M M W r M

′′ ′ ′ ′ ′
+ + − , 

 
 K = ss

ss
s

g K∑  

  = 
2

2 2 2 2 2

1 1 2 2
2 2

2 2

W W M M W W

M W M W r M M W r r M r M W

′′ ′ ′ ′ ′ ′
− − − − + + . 

Since: 

g  = MW  r2 sin ϑ, 

one will have: 

K g = 
2

3/2
2 2 2

r M Wr W W
MW

M MMW

 ′  ′′ − − +   
   

sin ϑ, 

and if we set: 

M = 
r

r m−
, W = w2 r m

r

−
, 

 
in which m and w are unknown functions of r, then we will finally get: 
 

K g = 
2

2
r W

wm
MW

 ′ ′ ′−   
   

 sin ϑ, 

 
such that the variation of the four-fold integral: 
 

K g dr d d dtϑ ϕ∫∫∫ ∫  

 
will be equivalent to the variation of the simple integral: 
 

     wm dr′∫ , 

 
and will lead to the Lagrangian equations: 
 

(34)     
0,

0.

m

w

′ =
′ =

 

 
One easily convinces oneself that these equations, in fact, demand the vanishing of all 
Kµν .  They then represent essentially the most general solution of equations (26) under 
the assumptions 1, 2, 3 that were made.  If we take m = α to be the integral of (34), where 
α is a constant and w = 1, which obviously implies no essential restriction, then (33) will 
imply the desired metric in the form that was first found by Schwarzschild: 
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(35)  G (dr, dϑ, dϕ, dt) = 
r

r α−
 dr2 + r2 dϑ 2 + r2 sin2ϑ dϕ 2 – 

r

r

α−
dt2. 

 
The singularity of this metric at r = 0 then appears only when one takes α = 0; i.e., with 
assumptions 1, 2, 3, the metric of pseudo-Euclidian geometry is the only regular metric 
that corresponds to a universe that is free of electricity. 
 For α ≠ 0, r = 0, and for positive α, also r = α, prove to be places at which the metric 
is not regular.  Therefore, I shall call a metric or gravitational field gµν regular at a 
location when it is possible to introduce a coordinate system by an invertible, single-
valued transformation such that in that system, the corresponding functions gµν′  are 

regular at that location; i.e., they are continuous and differentiable arbitrarily often at that 
location and have a non-zero determinant g′. 
 Regardless of whether in my way of looking at things only regular solutions of the 
basic physical equations immediately represent reality, it is precisely the solutions with 
non-regular locations that are an important mathematical means of approximating 
characteristic regular solutions, and in that sense, from the procedures of Einstein and 
Schwarzschild, the metric (35) that is not regular for r = 0 and r = α can be regarded as 
an expression of the gravitation of a mass that is distributed centrally-symmetrically in 
the neighborhood of the origin (12).  In the same sense, the mass can be regarded as the 
limiting case of a certain distribution of electricity around a point, so I shall foresee that 
one might derive the equations of motion at that point from my basic physical equations.  
The question of the differential equations for the motion of light is dealt with similarly. 
 According to Einstein, the following two axioms might serve as a substitute for the 
derivation of the basic equations: 
 
 The motion of a mass point in a gravitational field is represented by a geodetic line 
that is a time-line. 
 
 The motion of light in a gravitational field is represented by a null geodetic line (13). 
 
 Since the world-line that represents the motion of a mass point must be a time-line, as 
we can easily see, it will always be possible to bring the mass point to rest by a proper 
space-time transformation; i.e., there are proper space-time coordinate systems, relative 
to which the mass point is constantly at rest. 
 The differential equations of the geodetic line for the central gravitational field (35) 
originate in the variational problem: 
 

2 2 2 2

2 2 2sin
r dr d d r dt

r r
r dp dp dp r dp

ϑ ϕ αδ
α

        −+ + −        −         
∫  dp = 0, 

 

                                                
 (12) Transforming the location r = α to the origin, as Schwarzschild did, is not recommended, in my 
opinion; furthermore, the Schwarzschild transformation is not the simplest one for that purpose. 
 (13) Laue has shown how one can derive this theorem from the electrodynamical equations by passing to 
the limit of zero wavelength for the special case of L = αQ. 
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so after a well-known process they will read: 
 

(36)  
2 2 2 2

2 2 2sin
r dr d d r dt

r r
r dp dp dp r dp

ϑ ϕ α
α
       −+ + −       −        

= A, 

 

(37)    
2

2 2 sin cos
d d d

r r
dp dp dp

ϑ ϕϑ ϑ   
−   

   
= 0, 

 

(38)     r2 sin2 ϑ 
d

dp

ϕ
 = B, 

 

(39)     
r dt

r dp

α−
 = C, 

 
in which A, B, C mean integration constants. 
 I shall next prove that the path curves in the rϑϕ-space always lie in a plane that goes 
through the center of gravitation. 
 To that end, we eliminate the parameter p from the differential equations (37) and 
(38), in order to obtain a differential equation for ϑ as a function of ϕ.  It is identically: 
 

(40) 2d d
r

dp dp

ϑ 
 
 

 = 2d d d
r

dp dp dp

ϑ ϕ 
⋅ 

 
 = 

22 2
2 2

2 2
2

dr d d d d d
r r r

d d d dp d dp

ϑ ϑ ϕ ϑ ϕ
ϕ ϕ ϕ ϕ

  
+ +  

  
. 

 
On the other hand, differentiating (38) with respect to p will produce: 
 

2 2
2 2 2 2

2
2 sin 2 sin cos sin

dr d d d
r r r

d d dp dp

ϑ ϕ ϕϑ ϑ ϑ
ϕ ϕ

  + +  
  

 = 0, 

 
and if we deduce the value of d2ϕ / dp2 from this and insert it into the right-hand side of 
(40) then that will give: 
 

2d d
r

dp dp

ϑ 
 
 

 = 
2 22

2
2

2cot
d d d

r
d dp dp

ϑ ϑ ϕϑ
ϕ

    
−    

     
. 

 
Equation (37) then assumes the form: 
 

22

2
2cot

d d

d dp

ϑ ϑϑ
ϕ

 
−  

 
= sin ϑ cos ϑ, 

 
which is a differential equation whose general integral reads: 
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sin ϑ cos (ϕ + a) + b cos ϑ = 0, 
 
in which a, b mean integration constants. 
 The desired verification is then performed with that, and for the further discussion of 
the geodetic lines, it will then suffice to direct one’s attention to just the value ϑ = π / 2.  
The variational problem is then simplified as follows: 
 

2 2 2

2 2sin
r dr d r dt

r
r dp dp r dp

ϕ αδ
α

      −+ −      −       
∫  dp = 0, 

 
and the three first-order differential equations that arise from it read: 
 

(41) 
2 2 2

2 2sin
r dr d r dt

r
r dp dp r dp

ϕ α
α
     −+ −     −      

 = A, 

 

(42) r2 
d

dp

ϕ
 = B, 

 

(43) 
r dt

r dp

α−
 = C. 

 
The Lagrangian differential equation for r: 
 

(44)  
2 2 2

2 2

2
2

( )

d r dr dr d dt
r

dp r dp r dp dp r dp

α ϕ α
α α

       
+ − +       − −       

= 0 

 
must necessarily be concatenated with the previous equations, and indeed, when the left-
hand sides of (41), (42), (43), (44) are denoted by [1], [2], [3], [4], resp., we will have 
identically: 

(45)    
[1] [2] [3]

2 2
d d d dt d

dp dp dp dp dp

ϕ− +  = 
dr

dp
[4]. 

 
 If we take C = 1, which will result from multiplying the parameter p by a constant and 
then eliminating p and t from (41), (42), (43), then we will arrive at the differential 
equation for ρ = 1 / r as a function of ϕ that Einstein and Schwarzschild found, namely: 
 

(46)    
2

d

d

ρ
ϕ

 
 
 

 = 
2 2

1 A A

B B

α ρ+ −  − ρ2 + α ρ3. 

 
This equation represents the trajectory of the mass point in polar coordinates; the Kepler 
motion follows from it in the first approximation for α = 0 when B = α b, A = − 1 + 
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α a, and the second approximation then leads to the most brilliant discovery of the era: 
the calculation of the precession of the perihelion of Mercury. 
 From the axiom above, the world-line for the motion of a mass point should be a 
time-line; thus, it will always follows from the definition of a time-line that A < 0. 
 We now ask, in particular, whether the circle – i.e., r = const. – can be the trajectory 
of a motion.  The identity (45) shows that since dr/ dp = 0 in this case, equation (14) will 
be in no way a consequence of (41), (42), (43); the last three equations will then be 
insufficient for the determination of the motion.  Moreover, (42), (43), (44) are equations 
that must necessarily be fulfilled.  It follows from (44) that: 
 

(47)    − 2r 
2 2

2

d dt

dp r dp

ϕ α   
+   

   
 = 0, 

or for the velocity v in the orbit: 
 

(48)    v2 = 
2

d
r

dt

ϕ 
 
 

 = 
2r

α
. 

 
On the other hand, since A < 0, (41) will give the inequality: 
 

(49)    
2 2

2 d r dt
r

dp r dp

ϕ α   −−   
   

 < 0, 

or, with the use of (47): 

(50)     r > 
3

2

α
. 

Due to (48), the inequality (14): 

(51)     v < 
1

3
 

 
for the velocity of the mass point that moves in a circle will follow from this. 
 The inequality (50) admits the following interpretation.  From (48), the angular 
velocity of the orbiting mass point for r = r0 is: 
 

d

dt

ϕ
= 

3
02r

α
. 

 
If we would like to introduce the polar coordinates of coordinate system that is rotating 
about the origin in place of r, ϑ then we will necessarily have to replace: 
 

                                                
 (14) The specification by Schwarzschild, loc. cit., that the velocity of the mass point on the orbit should 
approach the limit 21/  as the orbital radius is reduced corresponds to the inequality r ≥ α and, from the 
above, that cannot be true. 
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ϕ with ϕ + 
3

02r

α
t . 

 
Under the space-time transformation in question, the metric: 
 

2 2 2 2r r
dr r d dt

r r

αϕ
α

−+ −
−

 

will go to: 

2 2 2 2 2 2
3 3

0 0

2

2

r r
dr r d r d dt r dt

r r r r

α α αϕ ϕ
α

 −+ + − −  
. 

 
 For r = r0, one gets: 
 

2 2 2 20
0 0

0 0

3
2 1

2

r
dr r d r d dt dt

r r

αϕ α ϕ
α

 
+ + + − −  

 

 
from this, and since the inequality (21) will be fulfilled here, since r0 > 3α / 2, the 
transformation of the mass point to rest is a proper space-time transformation in the 
neighborhood of the path of the orbiting mass point. 

 On the other hand, the upper limit of 1/ 3  for the velocity of an orbiting mass point 

that was found above in (51) also has a simple interpretation.  Namely, from the axiom 
for the motion of light, it will be represented by a null geodetic line.  If we set A = 0 in 
(41) then that will yield the equation: 

2 2

2 d r dt
r

dp r dp

ϕ α   −−   
   

= 0 

 
for the orbiting light motion, in place of the inequality (49).  Together with (47), it will 
then follow from this that the radius of the light path should be: 
 

r = 
3

2

α
, 

 
and the upper limit of the velocity of the orbiting light that appears in (51) should have 
the value: 

v = 
1

3
. 

 
 In general, since A = 0, we will obtain the following differential equation for the light 
path from (46): 

(52)    
2

d

d

ρ
ϕ

 
 
 

= 
2

1

B
− ρ2 + α ρ3; 
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for B = 
3 3

2
α, it will possess the circle r = 3α / 2 as its Poincaré “cycle,” which will 

correspond to the situation in which ρ − 2

3α
 appears on the right as a double factor.  In 

fact, in that case, the differential equation (52) [corresponding statements will be true for 
the general equation (46)] will possess infinitely many integral curves that approach any 
circle in spirals, which is what Poincaré’s general theory of cycles would demand. 
 If we consider a light ray that comes in from infinity, and we take α to be small in 
comparison to the shortest distance from the light ray to the center of gravitation then the 
light ray will approach the form of a hyperbola with a focus at that center.  That will yield 
the deflection that a light ray experiences by a gravitational center; namely, it will be 
equal to 2α / B. 
 A counterpart to motion in a circle is motion along a line that goes through the center 
of gravitation.  We obtain the differential equation for this motion when we set ϕ = 0 in 
(44) and then eliminate p from (43) and (44); the differential equation for r as a function 
of t will then read: 

(53)    
22

2 3

3 ( )

2 ( ) 2

d r dr r

dt r r dt r

α α α
α

− − + −  
 = 0, 

 
with the integral that follows from (41): 
 

(54)    
2

dr

dt
 
 
 

 = 
2 3

r r
A

r r

α α− −   +   
   

. 

 
From (53), the acceleration proves to be negative or positive; i.e., the gravitation will be 
attractive or repulsive according to whether the absolute value of the velocity satisfies: 
 

dr

dt
 < 

1

3

r

r

α−
 

or 

> 
1

3

r

r

α−
, 

resp. 
 Due to (54), for light, one will have: 
 

dr

dt
 = 

r

r

α−
; 

 
light that is directed rectilinearly to the center will always be repelled, in agreement with 
the last inequality; its velocity will increase from 0 at r = a to 1 at r = ∞. 
 If α, like dr / dt is small then (53) will go to the Newtonian equation: 
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2

2

d r

dt
 = − 

2

1

2 r

α
, 

approximately. 
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