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 In the paper “Sur la dynamique absolue des systèmes rhéonomes (1),” I gave the 
absolute dynamical equations that would be valid for the space-time parameters.  In this 
communication, I would like to deduce their explicit form without taking into account the 
absolute differential calculus. 
 The motion of a system with n parameters xλ (λ, µ = 1, …, n) with a kinetic energy T 
that is subject to the action of generalized forces Xλ and non-holonomic, rheonomic 
constraints (2): 

K K
tdx dtλ

λΦ + Φ  = 0  (K = 1, …, n – m)   (1) 

 
is determined by means of the equations: 
 

d T

dt xλ
∂
∂ɺ

− ∂λ T = Xλ + K
K λΛ Φ .     (2) 

 
Introduce the m + 1 space-time parameters qa (which are generally holonomic) by setting: 
 

dxλ = a
aB dqλ ,  dt = t a

aB dq    (a, b = 0, 1, …, m),  (3) 

 
with the reservation that the qa are independent, in such a way that: 
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λΦ + Φ  = 0.     (4) 

By reason of (3), one will obtain: 
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 (1) Prace Mat.-Fiz., Warszawa, 41 (1933), 25-37.  

 (2) I shall appeal to the notations ∂λ = ∂ / ∂xλ, ∂t = ∂ / ∂t, ∂a = ∂ / ∂qa = t

a a t
B Bλ

λ∂ + ∂ , and I shall 

suppress all summation signs. 
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Hence, upon multiplying (2) by aB λ  and taking the sum, we will have, by virtue of (4): 
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Therefore, upon multiplying (2) by aB λ  and taking the sum, we will have, by virtue of 

(4): 
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One infers from (1) and (2) that: 

dT

dt
= K

K tX xλ
λ − Λ Φɺ , 

 
in such a way that when one writes: 
 

 aT′∂ = ∂a T + t
a

dT
B

dt
= t

a a

dT
B T B

dt
λ

λ∂ + , 

 
 aQ′  = t

a a tB X B Xλ
λ +  (Xt = − X xλ
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one will get the absolute equations in the form: 
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which is completely analogous to the form of the usual equations of motion. 
 If one chooses the qa to also be holonomic for a holonomic system then (5) will 
become: 
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and for a scleronomic system ( )/dT dt X xλ
λ= ɺ , our equations will reduce to those of 

Lagrange: 
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