On the absolute equations of motion

Z. HORÁK, Prague

Translated by D. H. Delphenich

In the paper "Sur la dynamique absolue des systèmes rhéonomes $\left({ }^{1}\right)$," I gave the absolute dynamical equations that would be valid for the space-time parameters. In this communication, I would like to deduce their explicit form without taking into account the absolute differential calculus.

The motion of a system with n parameters $x^{\lambda}(\lambda, \mu=1, \ldots, n)$ with a kinetic energy T that is subject to the action of generalized forces X_{λ} and non-holonomic, rheonomic constraints $\left({ }^{2}\right)$:

$$
\begin{equation*}
\Phi_{\lambda}^{K} d x^{\lambda}+\Phi_{t}^{K} d t=0 \quad(K=1, \ldots, n-m) \tag{1}
\end{equation*}
$$

is determined by means of the equations:

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial \dot{x}^{\lambda}}-\partial_{\lambda} T=X_{\lambda}+\Lambda_{K} \Phi_{\lambda}^{K} \tag{2}
\end{equation*}
$$

Introduce the $m+1$ space-time parameters q^{a} (which are generally holonomic) by setting:

$$
\begin{equation*}
d x^{\lambda}=B_{a}^{\lambda} d q^{a}, \quad d t=B_{a}^{t} d q^{a} \quad(a, b=0,1, \ldots, m) \tag{3}
\end{equation*}
$$

with the reservation that the q^{a} are independent, in such a way that:

$$
\begin{equation*}
\Phi_{\lambda}^{K} B_{a}^{\lambda}+\Phi_{t}^{K} B_{a}^{t}=0 \tag{4}
\end{equation*}
$$

By reason of (3), one will obtain:

$$
\begin{gathered}
\frac{\partial T}{\partial \dot{q}^{a}}=\frac{\partial T}{\partial \dot{x}^{\lambda}} \frac{\partial \dot{x}^{\lambda}}{\partial \dot{q}^{a}}=B_{a}^{\lambda} \frac{\partial T}{\partial \dot{x}^{\lambda}}, \\
\partial_{a} T=B_{a}^{\lambda} \partial_{\lambda} T+\frac{\partial T}{\partial \dot{x}^{\mu}} \partial_{a} \dot{x}^{\mu}=B_{a}^{\lambda} \partial_{\lambda} T+\frac{\partial T}{\partial \dot{x}^{\mu}} \partial_{a} B_{b}^{\mu} \dot{q}^{b} .
\end{gathered}
$$

[^0]Hence, upon multiplying (2) by B_{a}^{λ} and taking the sum, we will have, by virtue of (4):

$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{a}}-\partial_{a} T+\frac{\partial T}{\partial \dot{x}^{\mu}}\left(\partial_{a} B_{b}^{\mu}-\partial_{b} B_{a}^{\mu}\right) \dot{q}^{b}=B_{b}^{\lambda} \partial_{\lambda} T+\frac{\partial T}{\partial \dot{x}^{\mu}} \partial_{a} B_{b}^{\mu} \dot{q}^{b} .
$$

Therefore, upon multiplying (2) by $B_{a}{ }^{\lambda}$ and taking the sum, we will have, by virtue of (4):

$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{a}}-\partial_{a} T+\frac{\partial T}{\partial \dot{x}^{\mu}}\left(\partial_{a} B_{b}^{\mu}-\partial_{b} B_{a}^{\mu}\right) \dot{q}^{b}=B_{b}^{\lambda} X_{\lambda}-\Lambda_{K} \Phi_{t}^{K} B_{a}^{t} .
$$

One infers from (1) and (2) that:

$$
\frac{d T}{d t}=X_{\lambda} \dot{x}^{\lambda}-\Lambda_{K} \Phi_{t}^{K},
$$

in such a way that when one writes:

$$
\begin{aligned}
& \partial_{a}^{\prime} T=\partial_{a} T+B_{a}^{t} \frac{d T}{d t}=B_{a}^{\lambda} \partial_{\lambda} T+B_{a}^{t} \frac{d T}{d t}, \\
& Q_{a}^{\prime}=B_{a}^{\lambda} X_{\lambda}+B_{a}^{t} X_{t} \quad\left(X_{t}=-X_{\lambda} \dot{x}^{\lambda}\right),
\end{aligned}
$$

one will get the absolute equations in the form:

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{a}}-\partial_{a}^{\prime} T+\frac{\partial T}{\partial \dot{x}^{\mu}}\left(\partial_{a} B_{b}^{\mu}-\partial_{b} B_{a}^{\mu}\right) \dot{q}^{b}=Q_{a}^{\prime}, \tag{5}
\end{equation*}
$$

which is completely analogous to the form of the usual equations of motion.
If one chooses the q^{a} to also be holonomic for a holonomic system then (5) will become:

$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{a}}-\partial_{a}^{\prime} T=Q_{a}^{\prime}
$$

and for a scleronomic system $\left(d T / d t=X_{\lambda} \dot{x}^{\lambda}\right)$, our equations will reduce to those of Lagrange:

$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{a}}-\partial_{a} T=Q_{a} \quad\left(Q_{a}=B_{a}^{\lambda} X_{\lambda}\right)
$$

[^0]: ${ }^{(1)}$) Prace Mat.-Fiz., Warszawa, 41 (1933), 25-37.
 $\left(^{2}\right)$ I shall appeal to the notations $\partial_{\lambda}=\partial / \partial x^{\lambda}, \partial_{t}=\partial / \partial t, \partial_{a}=\partial / \partial q^{a}=B_{a}^{\lambda} \partial_{\lambda}+B_{a}{ }^{\lambda} \partial_{t}$, and I shall suppress all summation signs.

