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On the absolute dynamics of rheonomic systems
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Introduction. — In the paper “Sur les systémes non holonom®s! ¢onstructed an
invariant theory of non-holonomic systems, and | stiwhat my theory would also
apply torheonomicsystems (and non-holonomic systems, in general)dftoak time to
be a new parameter. In the French edition of my pdpedicated only the resulting
equations in their explicit form, because the invarieggometric) significance was
obvious from what preceded, while in the Czech editiorisd arote the equations of
motion in their condensed form:

i

(1) L =, | =Omi+ Q.

O O
in which thel,, | .., denote the components of the absolute change in theitguaint

motion, whileQx, Qm+1 are those of the given force, a@,, are those of the reaction.

In a recent paper)( A. Wundheiler recalled the study of rheonomic systems. He
envisioned the configuration space of such systems to béoamadble (“rheonomic”)

Riemannian space, and defined tfilatation tensorwW!, and theabsolute centrifugal
force S in such a way that he arrived at the equations of motio

2) %‘f+w;k\}<:qi+s‘,

in whichv' signifies thelongitudinal velocity, Q ', the given force, and, the absolute
differential in a deformable space. In 2d.of his paperWundheiler remarked that my
equations (in regard to their clarity) were no bettanttihe older explicit equations. That
remark was obviously concerned with the explicit fafrmy equations, while the form
(1) is simpler thawWundheiler’s (2).

In what follows, | would like to show that my integpation of the dynamical
equations admits an extension to the most generalataggace-time parameters. One

() Z. Horéak, Bull. Int. Acad. Tchéqué4 (1928), 1-18; this is only an abbreviated edition of a Bzec
paper that was published simultaneously in: Rozpravy. [Ceské akademig7, no. 15 (1928), 1-29.
() A. Wundheiler, “Rheonome Geometrie. Absolute Mechanik,” Prace Wiat.40 (1932), 97-142.
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then arrives aequationg31), which are invariant under absolutely arbitrary space-time
transformations and it should be emphasized that, despite their uplimgenerality,
those equations demand that one must apply only ordinargaRinian geometry. In the
particular case of scleronomic systems, equations (3fliceeto the form (34), which
lends itself to the study eélative motion as | will show by an example at the end of the
present paper.

Permit me to take this occasion to draw attentioovioeéb the various results of my
earlier papers, which have remained unknown for seveeaksy and were then
rediscovered by some other authors.

It was already in my Thesig)( which was published in 1924, that | interpreted the
configuration space of a non-holonomic system asraholonomic manifold8 7) and
also deduced the components of #doeelerationin such a manifold [formula (29)], as
well as the most general non-holonomic parameterseoner. In the same place (pp.
26), | remarked that it was not difficult to generalitee fundamental notions of
infinitesimal geometry to the case of a non-holonomanifold. | stressed the fact that
the non-holonomic systems do not differ essentiallymfrthe holonomic ones and
deduced formula (40), which translates into a generalizaif Newton’s lawto non-
holonomic systems that is equivalent to equation (#hermpresent paper. In my thesis, |
also pointed out that the rheonomic systems can ub®rdinate to the study of
scleronomic systems when one takes time to be a neampger, but | indicated the
corresponding equations only in another pafethat was published in 1925 [formula
(2)].

| dedicated a later papet) (o the non-holonomic geometry that | outlined in my
thesis, in which | gave a precise definition ofyj@neral non-holonomic manifoldnd
established théormulas for the most general linear connectiorthat manifold. In that
way, | laid the foundations of theon-holonomic absolute differential calculushich
was envisioned to be a theory of the invariants of the grofumon-holonomic
transformations

The (purely-mathematical) results of that work hasered to assist me in the work
that cited to begin with'), in which | returned to the detailed study of non-holwit,
rheonomic systems. | also gave a general form fomiltan’s principle and the
canonical equations. In the same paper, | introduceddten ofcovariant variations
which also played an important role in one of my noteéb@dComptes rendus [Acad. Sc.
Paris188(1929), 614-616]. Now, that variation was defined agaifVioydheiler in a
note to the Rend. Lincdi2 (1930), and it also appears in his paper that was cited above
) (pp. 128, 136).

() Z.Horék, The principle of conservation of energy and the equations of Phipsibs Fac. Sc. Univ.
Charles (Pragu&s (1924), in Czech, with a French summary.

() Z. Horék, “Establishing physical laws by means of energetingipies,” Casopis. mat. a fysi5
(1925), 42-60; in Czech, with a French summary.

(°) Z. Horék, “Sur une généralisation de la notion de variété,.Fiedic. Sc. Univ. Masaryk, Brn&6
(1927), 1-20. That paper, which | presented in October 1926, is emtypihndependent of the notes by
Vranceanu that were published in November and December of 1926 in @c&. Sc. Paris and Rend.
Lincei.
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Notations. — In what follows, | shall consistently suppress thesation sign, and |
will appeal to four types of indices:

A, v take the values: 1,2, .n,
LK Lmr oo 1,2,..m
a,bcd oo 0,1, ..m
K momon 1,2,...n—-m.
| shall letd, , d;, Ok , 0, denote the derivatives%, 9 ikz B,f% iaz
ox"  dt 0q ox"  dq

B/ 9 and the differency —Ax by 2A[«] .

2 oxt’

1. Generalized Newton law= | shall begin by rapidly recalling the general law that
gave in my papers that were published in 15p4rfd 19287):

M The change in the quantity of motion of a systemqisal to the resultant
force.

If one considers onlgcleronomicsystems (whether holonomic or not) then the precise
significance of the law (I) is the following: The capdration space of such a system is,

in general, a non-holonomic Riemannian manif¥Jl (n is the number of holonomic

parameters’, which are subject to — mnon-integral constraints); the quantity of motion
IS a covariant vector whose components are:

_ 0T
pk—a—qk,

in whichT is the semiis viva
T=1a, X' ¢ :%bﬂﬂq” ',

in which by is the fundamental tensor of the manifald'; the qk are the independent

parameters (which are non-holonomic, in general), @lthierentials are coupled with
the holonomic parameters by the relations:

3) dx' = B’ dd;

the resultant force is a vector whose covariant coepisnare equal thagrange's
generalized forceQx . Finally, one intends the term “change” to mean thsokte
change, which corresponds to the Riemannian absolutergayaifferentiald, which is
non-holonomic, in general. Therefore, (I) is expeelssy the covariant relation:
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op _
dt

(4)
in whicht signifiesNewton’'s absolute time. From the preceding, one will have:
=a, § =W,

in which v = ¢“denote the contravariant components of whicity vector. One can

therefore also write:

ov,
4, cont. —1=q,
( ) - Q

and replace (I) with the lawrhe acceleration of a system is equal to the resultant force.
In order to obtain the explicit form of equations @)will suffice to substitute the

expression for the absolute differential. If one Mtslenote a covariant vector on the
manifold then one will haveHorak (*%), Schouten(®)]:

(5) o =dg - O w dd,

in which:

(6) O, =1ib'(d, b +0, B -0, R)+ E;a[k Iﬁ‘ +b'(h, B 0 E{‘]+ By B9, @)
(B =b’ay, BY).

Therefore, the absolute acceleration translateghetéormula:

ov, _ dv
(7) d_\:_d_\: _abchr 2*%35“(3&1&

which | deduced in 1924)([pp. 29, formula (29)] in the form:

v oo (-2

When one takes the relation (7) into account, one afélrithe equations of motion that
were given by the author in 1923 and 1928%) from (4, cont.):

®) d (GT

() J. A. Schouten “Uber nichtholonome Ubertragungen in eihgt” Math. Zeit.30 (1929), 149-172.
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Those equations (in a slightly more specialized forng@rewdeduced before bly.
Boltzmann (Wiss. Abh., IlI, pp. 692).

2. Extension to rheonomic systems— Consider a holonomic system im
independent holonomic parametafsthat moves under the action of generalized forces
X, whose kinetic energy is a homogeneous quadratic funotithe derivativesx’ :

9) T=1a, X%,

in which the coefficientsi, do not depend upon time. If one prescribesrthe m
rheonomic and non-holonomic constraints:

(10) P dx' +dF dt=0 K=1,2 ..n-n

on the aforementioned system, in which thg¢, @ are functions ok, andt, then it will

be possible to express tix' by means of then differentials of the non-holonomic
parametersy :

(11) dx'= B dd + B' dt.
Hence, theld satisfy the conditions:
®FB dd +(®} B +) dt=0,
and | suppose that tHg' , B/ are chosen in such a manner that:
(12) B’ =0, O B +d=0;
i.e., thedq' are independent.
In order to make it possible to apply the law (I) it¢elrheonomic systems, | shall
introduce a new parametgt, with the supplementary condition:
(13) o =t.

That condition can be regarded as a new constraidt,aana result, replaced with a
constraint force whose components e Q,. Having done that, all of the parameters

o’ o, ...,q" are independent, and one will have:

dx' = B/ def’,
(14)
T=13b, o ¢, pa=b, &, bw=BB'ag,.
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One can then treat the system as a non-holonormietogomic system withm + 1
degrees of freedom that moves in the non-holonomic coafigur space/™* under the
action of the given force and the reacti@). From that standpoint, the law (4) can be
applied to it, which will give:

op, _

(15) ot at Q,,

in which Q, denotes the projection of the given force onto theespAc':
(16) Q.= B! X,.

Equations (15), which amn + 1 in number, represent a relation between the cowaria
vectors of the spac®¥™, and with the aid of (13), they determine the motiorthef
system completely, because, due to the particular @drthe constraint (13), the force
Q. will reduce to the single compone® (Q, = 0), in such a way that (15) will imply
them + 1 independent equations:

OB _

17 —
(7 dt dt

o+ Q.

which, along with (13), suffice to calculate tire+ 1 parameterg® and the reaction,

as functions of time. In order to determine the gmgbtion of the system, it will suffice

to consider then spatial equations:
op
17, cont. — =Q,
( ) it |
in which one setg® =t.
It is easy to get the explicit form of (17):

d(oT
dt(aqj 0T+ 2 6[|&]¢ 2 a B =Q,

(18)
d N oT K '
dt(l%q +b)0)_atT+26)-(/| a[t % d( —Q0+Q0-

Those equations appear in my earlier pap&rg), whereas their implicit form (17) is
found in only the Czech edition of the second paper.

3. Configuration space-time.— Time plays two different roles in our arguments:
First of all, it is the independent variable in our dfetial equations, and secondly, it
represents the “temporal parameter” of the system by afathe notationg’. That

suggests that we can call then & 1)-dimensional Riemannian manifold™* the
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configuration space-timeas well as put equations (15) into another form. Upon
multiplying them byg® and summing, we will get:

w%%:@¢+q¢:q¢+q+q

On the other hand (since the absolute differentidh@ffundamental tensor is zero), that
will become:

q'op,= ¢ (h, of) = b, f o= 1d(b,, ¢ of) =dT;
hence, one infers that:
dT .
(19) —E=Q¢+Q+Q

If one then defines the vector with thret 1 component®) , %—Qk ¢ to be thespace-

time force which is denoted by, , then one will arrive at the space-time extensibn o
the law (I):
op, _ =
20 —a= ,
(20) praialie
in which:

— __dT_ .k
Qk_Qk1 QO—E qu

The vector Q, recalls Minkowski’s quadri-force, which is defined in an analogous

manner in the theory of relativity. Equations (20) are@misly covariant with respect to
non-holonomic transformations of the type:

(21) dg= B dq + B di, dt=dt,

which leave timd invariant. That is the group &fnematicaltransformations that was
considered byVundheiler, and as a result, equations (20) are absolute in the sanse
asWundheiler’s equations (2), which are meanwhile quite complex.

However, the method that | just presented admits a deradian that presents
equations of motion that are covariant under more gespagle-time transformations. In
order to show that, represent the rheonomic systatmnwths envisioned in n@. If one

replaces the constraints (10) with a constraint favith componentsX), then, as one
knows, the equations of motion can be written in thenf@}:
ol

(22) AR

() That will also come about by specializing equatig)ddr a holonomic system.
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in whichl, = 0T/0%'. In order to distinguish the two roles of time, whichees as a
temporal parameter, on the one hand, and an indeperaigaible, on the other, denote
time by in the former case. The constraints will themstate into the relations:

OX dx' + DK d¥ =0,

and if one takes those equations into account thendifferentialsdx’, dxX’ can be
expressed linearly in terms of the+ 1 differentialsdef :

(23) dx' = B def, dx¥’ = B def,

which implies that:
(@} B +®; B) dg'=0,

and we shall choose tHg& , B? in such a fashion that one has:
(24) ®X B! +®X B’=0.

Now, since the virtual work done by the forgg , which realizes the constraints (10), is
zero, its components will have the form:

Xi= N @5,

in which theAg denotelLagrange’s indeterminate coefficients. If one substitutiesse
values into equations (22) and multiplies them&jy then one will have:

B;%: B/ X, +A, & B.

The left-hand side of that equation is the progectof the vectord, / dt onto
configuration space-time, which is equal to theteea), / dt, in which one intendgp,
to mean the absolute differential that correspotadshe non-holonomic Riemannian

connection that is induced in the configurationcepme V™. If one denotes the
projection B X, of the forceX, onto V™ by Q. , as before, then the equations of
motion will become:

op,

dt
by virtue of (24), and if one sets:

=Qa _/\KCDOK B;)’

(25) No= APy
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then it will follow that:

(20) a;;:a =Qa*+/AB;.

The second term on the right-hand side of that equatitre projection of the constraint
force onto the space™*. In order to calculate the unknown coefficiéat, multiply

equations (26) by® and sum:

a 5 a a .
q d_pt_ Qa q /\0 Bg qa
| previously showed that:
a 5pa = d_T
dt  dt’

and therefore, when one considers (23):

(27) % =Q, +AN,X.

Now, due to the notation that was adopt€ds t, in such a way that the second relation
(23) can be written:

(28) dt= B? def,

and in addition,x’= 1, which will make it possible to infer the value/affrom equation
(27). However, | would first like to modify the notatorslightly. From (28), the
differential of absolute time is expressed in an irar@rimanner by the scalar product of

the real displacement of the system by the covaviaator B?, which we shall call the
time vectorand henceforth denote hyin such a way that we will have:

(29) dt=t, dd*.
Consequently, we also suppress the index 0 in the sylhoEquation (27) then gives:

A_dT_

(30) —E-QW
and (26) will become:

o
(31) dFt’a = Qut AL,

The expression (30) proves thAtis an invariant, and equations (31) are, in turn,
covariant undearbitrary transformations of the space-time paramet@rsWith one of
the supplementary relations (29) or (30), they will indseffice to determine thin + 1
parameters and the invariakhtas functions of timé
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In summary, we have then obtaineguations of motion that are independent of the
framing of configuration space-timeThey are valid for any scleronomic or rheonomic
system that is, at the same time, holonomic or[Astfar as free systems are concerned,
see numbeb.] It remains for us to point out that equations (31) aao be written in the
form of equations (20):

op, _
dt R

if one introduces the space-time force that is definetth®gomponents:
= dT ia
(32) Q=%+QE—QQJQ

Of course, in the general case, the analogy betweethargliadri-force is no longer as
pronounced.

4. Scleronomic systems- Those systems are characterized by the disappeartince
all coefficients®;, which will ultimately be denoted by} , so in regard to (25), one
can infer the necessary condition:

(33) A =0,

which is fulfilled independently of the choice of giviemce Q. (). That condition is also
sufficient, since it is supposed to be satisfied for amgrgforce. Indeed, if the linear
expression (25) must be annulled for all forces — iog.ah infinite number of values of

Ak — then all of the®{ will necessarily disappear. Therefore, in the cafea

scleronomic system (holonomic or not), the equatidnsation (31) will reduce to the
Newtonian law:
op,

(34) T =Qa,

which is extended to the most general space-time pagesrigis time.
By virtue of (30), the relation (33) will translate irttee vis vivatheorem:

dT _ .a

35 —=
(35) = Q.

which still remains valid for arbitrary space-time parter® but only for scleronomic
systems. For thdheonomicsystems, that theorem will take the more generat:for

() In general, the value f will depend upon the given force.
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in which the space-time force takes the place of thengigrce. One can assure oneself,
moreover, that those two forces coincide in the aalse& scleronomic system by
comparing equations (32) and (35).

5. Free system. Relative motion- In the preceding number, we supposed, without
saying so expressly, that all of tidg were annulled, but that the coefficierts were
not equal to zero simultaneously. Now, if there areamstraints at all — so the system is
completelyfree— then the two numbersandm will be equal, all of the coefficient®¥

®f will be annulled, and theB!, B? will be arbitrary. Under those conditions,

equations (23) express only a non-holonomic transformatidchen + 1 parameters’,
x°. However, the most important consequence of thecpéati supposition that was
made above concerns the fundamental tensor. Nathelkinetic energy is a positive-

definite form of the derivativeg’ , and as a result, the rank of the form:

T:%bab qa qb

will be equal ton, while there aren + 1 parametergf. Hence, the rank of the
fundamental tensdbo,, is smaller by one than the number of dimensions ofespiene.
That situation excludes the direct application of ongirdiemannian geometry, which
supposes, as one knows, that the determinbat||is non-zero. Nonetheless, it is still
possible to generalize the absolute calculus itselffisrgarticular case, as well, as was
shown recently b§. Bortolotti (°).

Without going into the details, | would like to presening of its results that will be
useful. Since the rank of the tensmgs is n, there will exist a systemv® of solutions to
then + 1 equations:

(36) bab a)a =0
that are defined up to an arbitrary factor. Tb&are the contravariant components of a
zero vectorwhose covariant components all disappear. In genénal, covariant

components, of a vector are defined uniquely, but the contravariantpoments, which
are determined by the equation:

(37) Ebp=&,

are written:

() E. Bortolotti, “Sulle forme differenziali quadratiche specializzaRend. Linceil12 (1930), 541-
547; “Calcolo assoluto rispetto a una forma differenzgigdratica specializzata,” Rend. Lin&&i(1931),
19-25.
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O
=48+ W

O
in which é* denotes an arbitrary solution of (37Bortolotti defined theChristoffel
symbols of the second kind in an analogous manner b kigon:

ab
38) { }

c
which makes it possible to define the absolute differebtiadhe same expression as in

the case of ordinary Riemannian space. For example, dovariant vectop, , one will
then have:

b
b, = h } = 1(3a boa + 9 bag — 9 bay),

b
doa:dpa—{ac }pcdqb,

or also, due to (38):

5pa = dpa_ ab «b -C
dt dt d

in such a way that thequations of motio(B4) are determined unequivocallylhe latter
formulas are valid only if the parametefsare holonomic. Now, in the case of a free
system, that supposition is always admissible, becauske & system is necessarily
holonomic. Anyway, one can further generalize theeaf@ntioned formulas to non-
holonomic parameters by means of non-holonomic toamsition.

One sees that our equations even apply to free syshamadmit the introduction of
space-time parameters in this particular case. Oné¢huglarrive at the study oélative
motions which translates into equations of the form (34) inddpetly of the motion of
the coordinate system.

In order to give an example, consider a unit point-maasrtioves in a fixed plane
under the action of a force whose components in a fixetdmgular coordinate system
Oxy are X, Y. Look for the equations of motion relative to a regtdar coordinate
systemO¢r that turns aroun®. The solution is given by equations (34), in which one
sets:

q=¢ o=, =7 (=t); n=2,m+1=3.

Now, one has:
x=¢écosa—nsina,

y=£¢&sina + ncosa,

a is a function off whose derivativela / dr we shall denote bw. By differentiation, it
will become:

dx=cosadé-sinadn — wy dr,
(39)

dy=sinadé+ cosadn + wx dr.
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so one can infer the coefficienB that enter into (14). Thas vivais:

2T = E2 402 =2wn &1+ 20ENT +1r° 12,
in which:
I’2:X2+y2:g(2+/72, F=1,

and equations (34) will become:

o .
%=5—wn—2wn'—af5=qg,

(40) %wm&zwé—cfﬂ:@ |
%:w(fﬁ &) +r’ww+ 201 =Q,.

The first two equations determine the relative motiathile the Qs , Q, are the
components of the given force in the moving system. €¥@&s that the relative and
comoving accelerations, when combined with the compleamgntone (which
corresponds to the composite centrifugal force), wiWegihe absolute change of the
guantity of motion. The fictitious forces are not spéime vectors, but along with the
relative acceleration, they form the space-time vedpa / dt . Hence, the notion of
absolute acceleration in the sense of Riemannian gepomircides with that of absolute
acceleration, in the mechanical sense, in this caseorder to also understand the
significance of the latter equation (40), repl&xzedy its expression:

Q=B X+B' Y=wkXY-Vy]
which gives:

5/‘7—/75+%(r2w)=xv—yx

That amounts to saying that the moment of the giverefanth respect to the rotational
axis is equal to the sum of the moment of the reladineeleration and twice the areal
acceleration. One deduces that relation from (39) bpdakto account the equations of
motion X =X, §¥ =Y.

It is not perhaps pointless to stress the fact thigtthe application of the absolute
calculus that makes it possible to summarize the thggmtions (40) in a space-time
relation (34) that translates a general law thatdependent of the choice of coordinate
system.
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