On the absolute dynamics of rheonomic systems

By

Z. Horák

Translated by D. H. Delphenich

Introduction. - In the paper "Sur les systèmes non holonomes" $\left(^{1}\right)$, I constructed an invariant theory of non-holonomic systems, and I showed that my theory would also apply to rheonomic systems (and non-holonomic systems, in general) if one took time to be a new parameter. In the French edition of my paper, I indicated only the resulting equations in their explicit form, because the invariant (geometric) significance was obvious from what preceded, while in the Czech edition, I also wrote the equations of motion in their condensed form:

$$
\begin{equation*}
\stackrel{*}{I}_{k}=Q_{k}, \quad \stackrel{*}{I}_{m+1}=Q_{m+1}+Q_{m+1}^{\prime} \tag{1}
\end{equation*}
$$

in which the $\stackrel{*}{I}_{k}, \stackrel{*}{I}_{m+1}$ denote the components of the absolute change in the quantity of motion, while Q_{k}, Q_{m+1} are those of the given force, and Q_{m+1}^{\prime} are those of the reaction.

In a recent paper $\left({ }^{2}\right)$, A. Wundheiler recalled the study of rheonomic systems. He envisioned the configuration space of such systems to be a deformable ("rheonomic") Riemannian space, and defined the dilatation tensor $W_{\cdot k}^{i}$ and the absolute centrifugal force S^{i} in such a way that he arrived at the equations of motion:

$$
\begin{equation*}
\frac{\delta v^{i}}{d t}+W_{\cdot k}^{i} v^{k}=Q^{i}+S^{i} \tag{2}
\end{equation*}
$$

in which v^{i} signifies the longitudinal velocity, Q^{i}, the given force, and δ, the absolute differential in a deformable space. In no. 21 of his paper, Wundheiler remarked that my equations (in regard to their clarity) were no better than the older explicit equations. That remark was obviously concerned with the explicit form of my equations, while the form (1) is simpler than Wundheiler's (2).

In what follows, I would like to show that my interpretation of the dynamical equations admits an extension to the most general case of space-time parameters. One

[^0]then arrives at equations (31), which are invariant under absolutely arbitrary space-time transformations, and it should be emphasized that, despite their unlimited generality, those equations demand that one must apply only ordinary Riemannian geometry. In the particular case of scleronomic systems, equations (31) reduce to the form (34), which lends itself to the study of relative motion, as I will show by an example at the end of the present paper.

Permit me to take this occasion to draw attention below to the various results of my earlier papers, which have remained unknown for several years and were then rediscovered by some other authors.

It was already in my Thesis $\left({ }^{3}\right)$, which was published in 1924, that I interpreted the configuration space of a non-holonomic system as a non-holonomic manifold (§ 7) and also deduced the components of the acceleration in such a manifold [formula (29)], as well as the most general non-holonomic parameters, moreover. In the same place (pp. 26), I remarked that it was not difficult to generalize the fundamental notions of infinitesimal geometry to the case of a non-holonomic manifold. I stressed the fact that the non-holonomic systems do not differ essentially from the holonomic ones and deduced formula (40), which translates into a generalization of Newton's law to nonholonomic systems that is equivalent to equation (4) in the present paper. In my thesis, I also pointed out that the rheonomic systems can be subordinate to the study of scleronomic systems when one takes time to be a new parameter, but I indicated the corresponding equations only in another paper $\left({ }^{4}\right)$ that was published in 1925 [formula (2)].

I dedicated a later paper $\left({ }^{5}\right)$ to the non-holonomic geometry that I outlined in my thesis, in which I gave a precise definition of a general non-holonomic manifold and established the formulas for the most general linear connection in that manifold. In that way, I laid the foundations of the non-holonomic absolute differential calculus, which was envisioned to be a theory of the invariants of the group of non-holonomic transformations.

The (purely-mathematical) results of that work have served to assist me in the work that cited to begin with $\left({ }^{1}\right)$, in which I returned to the detailed study of non-holonomic, rheonomic systems. I also gave a general form for Hamilton's principle and the canonical equations. In the same paper, I introduced the notion of covariant variations, which also played an important role in one of my notes to the Comptes rendus [Acad. Sc. Paris 188 (1929), 614-616]. Now, that variation was defined again by Wundheiler in a note to the Rend. Lincei 12 (1930), and it also appears in his paper that was cited above $\left(^{2}\right)($ pp. 128, 136).

[^1]Notations. - In what follows, I shall consistently suppress the summation sign, and I will appeal to four types of indices:

λ, μ, v	take the values:	$1,2, \ldots, n ;$
$i, k, l, m ; r$	$\prime \prime \prime \prime \prime$	$1,2, \ldots, m ;$
a, b, c, d	$\prime \prime \prime \prime$	$0,1, \ldots, m ;$
K	$\prime \prime \prime \prime$	$1,2, \ldots, n-m$.

I shall let $\partial_{\lambda}, \partial_{t}, \partial_{k}, \partial_{a}$ denote the derivatives $\frac{\partial}{\partial x^{\lambda}}, \frac{\partial}{\partial t}, \frac{\partial}{\partial q^{k}}=B_{k}^{\lambda} \frac{\partial}{\partial x^{\lambda}}, \frac{\partial}{\partial q^{a}}=$ $B_{a}^{\lambda} \frac{\partial}{\partial x^{\lambda}}$, and the difference $A_{k l}-A_{l k}$ by $2 A\left[{ }_{k l}\right]$.

1. Generalized Newton law. - I shall begin by rapidly recalling the general law that I gave in my papers that were published in $1924\left(^{3}\right)$ and $1928\left({ }^{1}\right)$:
(I) The change in the quantity of motion of a system is equal to the resultant force.

If one considers only scleronomic systems (whether holonomic or not) then the precise significance of the law (I) is the following: The configuration space of such a system is, in general, a non-holonomic Riemannian manifold V_{n}^{m} (n is the number of holonomic parameters x^{λ}, which are subject to $n-m$ non-integral constraints); the quantity of motion is a covariant vector whose components are:

$$
p_{k}=\frac{\partial T}{\partial \dot{q}^{k}},
$$

in which T is the semi-vis viva:

$$
T=\frac{1}{2} a_{\lambda \mu} \dot{x}^{\lambda} \dot{x}^{\mu}=\frac{1}{2} b_{\lambda \mu} \dot{q}^{\lambda} \dot{q}^{\mu}
$$

in which $b_{k l}$ is the fundamental tensor of the manifold V_{n}^{m}; the q^{k} are the independent parameters (which are non-holonomic, in general), whose differentials are coupled with the holonomic parameters by the relations:

$$
\begin{equation*}
d x^{\lambda}=B_{l}^{\lambda} d q^{l} ; \tag{3}
\end{equation*}
$$

the resultant force is a vector whose covariant components are equal to Lagrange's generalized forces: Q_{k}. Finally, one intends the term "change" to mean the absolute change, which corresponds to the Riemannian absolute (covariant) differential δ, which is non-holonomic, in general. Therefore, (I) is expressed by the covariant relation:

$$
\begin{equation*}
\frac{\delta p_{k}}{d t}=Q_{k} \tag{4}
\end{equation*}
$$

in which t signifies Newton's absolute time. From the preceding, one will have:

$$
p_{k}=a_{k l} \dot{q}^{l}=v_{k},
$$

in which $v_{k}=\dot{q}^{k}$ denote the contravariant components of the velocity vector. One can therefore also write:

$$
\begin{equation*}
\frac{\delta v_{l}}{d t}=Q_{l} \tag{4,cont.}
\end{equation*}
$$

and replace (I) with the law: The acceleration of a system is equal to the resultant force.
In order to obtain the explicit form of equations (4), it will suffice to substitute the expression for the absolute differential. If one lets w_{l} denote a covariant vector on the manifold then one will have $\left[\operatorname{Horák}\left({ }^{5,1}\right)\right.$, Schouten $\left({ }^{6}\right)$]:

$$
\begin{equation*}
\delta w_{l}=d q_{l}-\Theta_{l k}^{l} w_{l} d q^{k} \tag{5}
\end{equation*}
$$

in which:

$$
\begin{equation*}
\Theta_{l k}^{l}=\frac{1}{2} b^{i j}\left(\partial_{k} b_{l j}+\partial_{l} b_{j k}-\partial_{j} b_{k l}\right)+B_{\lambda}^{l} \partial_{[k} B_{l]}^{\lambda}+b^{i j}\left(b_{m l} B_{\lambda}^{m} \partial_{[j} B_{k]}^{\lambda}+b_{m k} B_{\lambda}^{m} \partial_{[j} B_{l]}^{\lambda}\right) \tag{6}
\end{equation*}
$$

$$
\left(B_{\lambda}^{i}=b^{i j} a_{\lambda \nu} B_{j}^{v}\right) .
$$

Therefore, the absolute acceleration translates into the formula:

$$
\begin{equation*}
\frac{\delta v_{l}}{d t}=\frac{d v_{l}}{d t}-\frac{1}{2} \partial_{l} b_{l k} \dot{q}^{l} \dot{q}^{k}-2 b_{j l} B_{\lambda}^{j} \partial_{[k} B_{l]}^{\lambda} \dot{q}^{l} \dot{q}^{k}, \tag{7}
\end{equation*}
$$

which I deduced in $1924\left(^{3}\right)$ [pp. 29, formula (29)] in the form:

$$
a_{l}=b_{k l} \ddot{q}^{k}+\left[\begin{array}{c}
i k \\
l
\end{array}\right] \dot{q}^{l} \dot{q}^{k}+a_{\lambda \mu} \dot{x}^{\mu}\left(\frac{\partial B_{k}^{\lambda}}{\partial q^{l}}-\frac{\partial B_{l}^{\lambda}}{\partial q^{k}}\right) \dot{q}^{k} .
$$

When one takes the relation (7) into account, one will infer the equations of motion that were given by the author in $1924\left(^{3}\right)$ and $1928\left(^{1}\right)$ from (4, cont.):

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}^{l}}\right)-\partial_{l} T+2 \frac{\partial T}{\partial \dot{x}^{\lambda}} \partial_{[l} B_{k]}^{\lambda} \dot{q}^{k}=Q_{l} . \tag{8}
\end{equation*}
$$

[^2]Those equations (in a slightly more specialized form) were deduced before by \mathbf{L}. Boltzmann (Wiss. Abh., III, pp. 692).
2. Extension to rheonomic systems. - Consider a holonomic system in n independent holonomic parameters x^{λ} that moves under the action of generalized forces X_{λ} whose kinetic energy is a homogeneous quadratic function of the derivatives \dot{x}^{λ} :

$$
\begin{equation*}
T=\frac{1}{2} a_{\lambda \mu} \dot{x}^{\lambda} \dot{x}^{\mu}, \tag{9}
\end{equation*}
$$

in which the coefficients $a_{\lambda \mu}$ do not depend upon time. If one prescribes the $n-m$ rheonomic and non-holonomic constraints:

$$
\begin{equation*}
\Phi_{\lambda}^{K} d x^{\lambda}+\Phi_{t}^{K} d t=0 \quad(K=1,2, \ldots, n-m) \tag{10}
\end{equation*}
$$

on the aforementioned system, in which the $\Phi_{\lambda}^{K}, \Phi_{t}^{K}$ are functions of x_{λ} and t, then it will be possible to express the $d x^{\lambda}$ by means of the m differentials of the non-holonomic parameters q^{λ} :

$$
\begin{equation*}
d x^{\lambda}=B_{l}^{\lambda} d q^{l}+B_{t}^{\lambda} d t \tag{11}
\end{equation*}
$$

Hence, the $d q^{l}$ satisfy the conditions:

$$
\Phi_{\lambda}^{K} B_{l}^{\lambda} d q^{l}+\left(\Phi_{\lambda}^{K} B_{t}^{\lambda}+\Phi_{t}^{K}\right) d t=0
$$

and I suppose that the $B_{l}^{\lambda}, B_{t}^{\lambda}$ are chosen in such a manner that:

$$
\begin{equation*}
\Phi_{\lambda}^{K} B_{l}^{\lambda}=0, \quad \Phi_{\lambda}^{K} B_{t}^{\lambda}+\Phi_{t}^{K}=0 ; \tag{12}
\end{equation*}
$$

i.e., the $d q^{l}$ are independent.

In order to make it possible to apply the law (I) itself to rheonomic systems, I shall introduce a new parameter q^{0}, with the supplementary condition:

$$
\begin{equation*}
q^{0}=t \tag{13}
\end{equation*}
$$

That condition can be regarded as a new constraint, and as a result, replaced with a constraint force whose components are $Q_{l}^{\prime}, Q_{0}^{\prime}$. Having done that, all of the parameters $q^{0}, q^{1}, \ldots, q^{m}$ are independent, and one will have:

$$
d x^{\lambda}=B_{a}^{\lambda} d q^{a}
$$

$$
\begin{equation*}
T=\frac{1}{2} b_{a b} \dot{q}^{a} \dot{q}^{b}, \quad p_{a}=b_{a b} \dot{q}^{b}, \quad b_{a b}=B_{a}^{\lambda} B_{b}^{\mu} a_{\lambda \mu} . \tag{14}
\end{equation*}
$$

One can then treat the system as a non-holonomic, scleronomic system with $m+1$ degrees of freedom that moves in the non-holonomic configuration space V_{n}^{m+1} under the action of the given force and the reaction Q_{a}^{\prime}. From that standpoint, the law (4) can be applied to it, which will give:

$$
\begin{equation*}
\frac{\delta p_{a}}{d t}=Q_{a}+Q_{a}^{\prime} \tag{15}
\end{equation*}
$$

in which Q_{a} denotes the projection of the given force onto the space V_{n}^{m+1} :

$$
\begin{equation*}
Q_{a}=B_{a}^{\lambda} X_{\lambda} . \tag{16}
\end{equation*}
$$

Equations (15), which are $m+1$ in number, represent a relation between the covariant vectors of the space V_{n}^{m+1}, and with the aid of (13), they determine the motion of the system completely, because, due to the particular form of the constraint (13), the force Q_{a}^{\prime} will reduce to the single component $Q_{0}^{\prime}\left(Q_{k}^{\prime}=0\right)$, in such a way that (15) will imply the $m+1$ independent equations:

$$
\begin{equation*}
\frac{\delta p_{l}}{d t}=Q_{l}, \quad \frac{\delta p_{0}}{d t}=Q_{0}+Q_{0}^{\prime} \tag{17}
\end{equation*}
$$

which, along with (13), suffice to calculate the $m+1$ parameters q^{a} and the reaction Q_{0}^{\prime} as functions of time. In order to determine the single motion of the system, it will suffice to consider the m spatial equations:
(17, cont.)

$$
\frac{\delta p_{l}}{d t}=Q_{l}
$$

in which one sets $q^{0}=t$.
It is easy to get the explicit form of (17):

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}^{l}}\right)-\partial_{l} T+2 \frac{\partial T}{\partial \dot{x}^{\grave{\lambda}}} \partial_{[l} B_{k]}^{\lambda} \dot{q}^{k}+2 \frac{\partial T}{\partial \dot{x}^{\lambda}} \partial_{[l} B_{t]}^{\lambda}=Q_{l} \\
& \frac{d}{d t}\left(b_{l 0} \dot{q}^{l}+b_{00}\right)-\partial_{t} T+2 \frac{\partial T}{\partial \dot{x}^{\lambda}} \partial_{[t} B_{k]}^{\lambda} \dot{q}^{k}=Q_{0}+Q_{0}^{\prime}
\end{aligned}
$$

Those equations appear in my earlier papers $\left({ }^{4}\right),\left({ }^{1}\right)$, whereas their implicit form (17) is found in only the Czech edition of the second paper.
3. Configuration space-time. - Time plays two different roles in our arguments: First of all, it is the independent variable in our differential equations, and secondly, it represents the "temporal parameter" of the system by way of the notation q^{0}. That suggests that we can call the $(m+1)$-dimensional Riemannian manifold V_{n}^{m+1} the
configuration space-time, as well as put equations (15) into another form. Upon multiplying them by \dot{q}^{a} and summing, we will get:

$$
\dot{q}^{a} \frac{\delta p_{a}}{d t}=Q_{a} \dot{q}^{a}+Q_{a}^{\prime} \dot{q}^{a}=Q_{k} \dot{q}^{k}+Q_{0}+Q_{0}^{\prime}
$$

On the other hand (since the absolute differential of the fundamental tensor is zero), that will become:

$$
\dot{q}^{q} \delta p_{a}=\dot{q}^{a} \delta\left(b_{a b} \dot{q}^{b}\right)=b_{a b} \dot{q}^{a} \delta \dot{q}^{b}=\frac{1}{2} \delta\left(b_{a b} \dot{q}^{a} \dot{q}^{b}\right)=d T ;
$$

hence, one infers that:

$$
\begin{equation*}
\frac{d T}{d t}=Q_{k} \dot{q}^{k}+Q_{0}+Q_{0}^{\prime} \tag{19}
\end{equation*}
$$

If one then defines the vector with the $m+1$ components $Q_{l}, \frac{d T}{d t}-Q_{k} \dot{q}^{k}$ to be the spacetime force, which is denoted by \bar{Q}_{a}, then one will arrive at the space-time extension of the law (I):

$$
\begin{equation*}
\frac{\delta p_{a}}{d t}=\bar{Q}_{a}, \tag{20}
\end{equation*}
$$

in which:

$$
\bar{Q}_{k}=Q_{k}, \quad \bar{Q}_{0}=\frac{d T}{d t}-Q_{k} \dot{q}^{k} .
$$

The vector \bar{Q}_{a} recalls Minkowski's quadri-force, which is defined in an analogous manner in the theory of relativity. Equations (20) are obviously covariant with respect to non-holonomic transformations of the type:

$$
\begin{equation*}
d q^{k}=B_{r}^{k} d q^{r}+B_{t}^{k} d t, \quad d t=d t, \tag{21}
\end{equation*}
$$

which leave time t invariant. That is the group of kinematical transformations that was considered by Wundheiler, and as a result, equations (20) are absolute in the same sense as Wundheiler's equations (2), which are meanwhile quite complex.

However, the method that I just presented admits a generalization that presents equations of motion that are covariant under more general space-time transformations. In order to show that, represent the rheonomic system that was envisioned in no. 2. If one replaces the constraints (10) with a constraint force with components X_{λ}^{\prime} then, as one knows, the equations of motion can be written in the form $\left({ }^{7}\right)$:

$$
\begin{equation*}
\frac{\delta I}{d t}=X_{\lambda}+X_{\lambda}^{\prime} \tag{22}
\end{equation*}
$$

[^3]in which $I_{\lambda}=\partial T / \partial \dot{x}^{\lambda}$. In order to distinguish the two roles of time, which enters as a temporal parameter, on the one hand, and an independent variable, on the other, denote time by x^{0} in the former case. The constraints will then translate into the relations:
$$
\Phi_{\lambda}^{K} d x^{\lambda}+\Phi_{0}^{K} d x^{0}=0
$$
and if one takes those equations into account then the differentials $d x^{\lambda}, d x^{0}$ can be expressed linearly in terms of the $m+1$ differentials $d q^{a}$:
\[

$$
\begin{equation*}
d x^{\lambda}=B_{a}^{\lambda} d q^{a}, \quad d x^{0}=B_{a}^{0} d q^{a} \tag{23}
\end{equation*}
$$

\]

which implies that:

$$
\left(\Phi_{\lambda}^{K} B_{a}^{\lambda}+\Phi_{0}^{K} B_{a}^{0}\right) d q^{a}=0,
$$

and we shall choose the $B_{a}^{\lambda}, B_{a}^{0}$ in such a fashion that one has:

$$
\begin{equation*}
\Phi_{\lambda}^{K} B_{a}^{\lambda}+\Phi_{0}^{K} B_{a}^{0}=0 \tag{24}
\end{equation*}
$$

Now, since the virtual work done by the force X_{λ}^{\prime}, which realizes the constraints (10), is zero, its components will have the form:

$$
X_{\lambda}^{\prime}=\Lambda_{K} \Phi_{\lambda}^{K},
$$

in which the Λ_{K} denote Lagrange's indeterminate coefficients. If one substitutes those values into equations (22) and multiplies them by B_{λ}^{K} then one will have:

$$
B_{a}^{\lambda} \frac{\delta I_{\lambda}}{d t}=B_{a}^{\lambda} X_{\lambda}+\Lambda_{K} \Phi_{\lambda}^{K} B_{a}^{\lambda}
$$

The left-hand side of that equation is the projection of the vector $\delta I_{\lambda} / d t$ onto configuration space-time, which is equal to the vector $\delta p_{a} / d t$, in which one intends δp_{a} to mean the absolute differential that corresponds to the non-holonomic Riemannian connection that is induced in the configuration space-time V_{n}^{m+1}. If one denotes the projection $B_{a}^{\lambda} X_{\lambda}$ of the force X_{λ} onto V_{n}^{m+1} by Q_{a}, as before, then the equations of motion will become:

$$
\frac{\delta p_{a}}{d t}=Q_{a}-\Lambda_{K} \Phi_{0}^{K} B_{a}^{0}
$$

by virtue of (24), and if one sets:

$$
\begin{equation*}
\Lambda_{0}=\Lambda_{K} \Phi_{0}^{K} \tag{25}
\end{equation*}
$$

then it will follow that:

$$
\begin{equation*}
\frac{\delta p_{a}}{d t}=Q_{a}+\Lambda_{0} B_{a}^{0} \tag{26}
\end{equation*}
$$

The second term on the right-hand side of that equation is the projection of the constraint force onto the space V_{n}^{m+1}. In order to calculate the unknown coefficient Λ_{0}, multiply equations (26) by \dot{q}^{a} and sum:

$$
\dot{q}^{a} \frac{\delta p_{a}}{d t}=Q_{a} \dot{q}^{a}+\Lambda_{0} B_{a}^{0} \dot{q}^{a} .
$$

I previously showed that:

$$
\dot{q}^{a} \frac{\delta p_{a}}{d t}=\frac{d T}{d t}
$$

and therefore, when one considers (23):

$$
\begin{equation*}
\frac{d T}{d t}=Q_{a} \dot{q}^{a}+\Lambda_{0} \dot{x}^{0} \tag{27}
\end{equation*}
$$

Now, due to the notation that was adopted, $x^{0}=t$, in such a way that the second relation (23) can be written:

$$
\begin{equation*}
d t=B_{a}^{0} d q^{a}, \tag{28}
\end{equation*}
$$

and in addition, $\dot{x}^{0}=1$, which will make it possible to infer the value of Λ_{0} from equation (27). However, I would first like to modify the notations slightly. From (28), the differential of absolute time is expressed in an invariant manner by the scalar product of the real displacement of the system by the covariant vector B_{a}^{0}, which we shall call the time vector and henceforth denote by t_{a} in such a way that we will have:

$$
\begin{equation*}
d t=t_{a} d q^{a} \tag{29}
\end{equation*}
$$

Consequently, we also suppress the index 0 in the symbol Λ_{0}. Equation (27) then gives:

$$
\begin{equation*}
\Lambda=\frac{d T}{d t}-Q_{a} \dot{q}^{a} \tag{30}
\end{equation*}
$$

and (26) will become:

$$
\begin{equation*}
\frac{\delta p_{a}}{d t}=Q_{a}+\Lambda t_{a} \tag{31}
\end{equation*}
$$

The expression (30) proves that Λ is an invariant, and equations (31) are, in turn, covariant under arbitrary transformations of the space-time parameters q^{a}. With one of the supplementary relations (29) or (30), they will indeed suffice to determine the $m+1$ parameters and the invariant Λ as functions of time t.

In summary, we have then obtained equations of motion that are independent of the framing of configuration space-time. They are valid for any scleronomic or rheonomic system that is, at the same time, holonomic or not. [As far as free systems are concerned, see number 5.] It remains for us to point out that equations (31) can also be written in the form of equations (20):

$$
\frac{\delta p_{a}}{d t}=\bar{Q}_{a}
$$

if one introduces the space-time force that is defined by the components:

$$
\begin{equation*}
\bar{Q}_{a}=Q_{a}+\left(\frac{d T}{d t}-Q_{a} \dot{q}^{a}\right) t_{a} . \tag{32}
\end{equation*}
$$

Of course, in the general case, the analogy between and the quadri-force is no longer as pronounced.
4. Scleronomic systems. - Those systems are characterized by the disappearance of all coefficients Φ_{t}^{K}, which will ultimately be denoted by Φ_{0}^{K}, so in regard to (25), one can infer the necessary condition:

$$
\begin{equation*}
\Lambda=0 \tag{33}
\end{equation*}
$$

which is fulfilled independently of the choice of given force $Q_{a}\left({ }^{8}\right)$. That condition is also sufficient, since it is supposed to be satisfied for any given force. Indeed, if the linear expression (25) must be annulled for all forces - i.e., for an infinite number of values of Λ_{K} - then all of the Φ_{0}^{K} will necessarily disappear. Therefore, in the case of a scleronomic system (holonomic or not), the equations of motion (31) will reduce to the Newtonian law:

$$
\begin{equation*}
\frac{\delta p_{a}}{d t}=Q_{a} \tag{34}
\end{equation*}
$$

which is extended to the most general space-time parameters this time.
By virtue of (30), the relation (33) will translate into the vis viva theorem:

$$
\begin{equation*}
\frac{d T}{d t}=Q_{a} \dot{q}^{a} \tag{35}
\end{equation*}
$$

which still remains valid for arbitrary space-time parameters, but only for scleronomic systems. For the rheonomic systems, that theorem will take the more general form:

[^4]$$
\frac{d T}{d t}=\bar{Q}_{a} \dot{q}^{a},
$$
in which the space-time force takes the place of the given force. One can assure oneself, moreover, that those two forces coincide in the case of a scleronomic system by comparing equations (32) and (35).
5. Free system. Relative motion. - In the preceding number, we supposed, without saying so expressly, that all of the Φ_{t}^{K} were annulled, but that the coefficients Φ_{λ}^{K} were not equal to zero simultaneously. Now, if there are no constraints at all - so the system is completely free - then the two numbers n and m will be equal, all of the coefficients Φ_{λ}^{K}, Φ_{t}^{K} will be annulled, and the $B_{a}^{\lambda}, B_{a}^{0}$ will be arbitrary. Under those conditions, equations (23) express only a non-holonomic transformation of the $n+1$ parameters x^{λ}, x^{0}. However, the most important consequence of the particular supposition that was made above concerns the fundamental tensor. Namely, the kinetic energy is a positivedefinite form of the derivatives \dot{x}^{λ}, and as a result, the rank of the form:
$$
T=\frac{1}{2} b_{a b} \dot{q}^{a} \dot{q}^{b}
$$
will be equal to n, while there are $n+1$ parameters q^{a}. Hence, the rank of the fundamental tensor $b_{a b}$ is smaller by one than the number of dimensions of space-time. That situation excludes the direct application of ordinary Riemannian geometry, which supposes, as one knows, that the determinant $\left|b_{a b}\right|$ is non-zero. Nonetheless, it is still possible to generalize the absolute calculus itself for this particular case, as well, as was shown recently by E. Bortolotti $\left({ }^{9}\right)$.

Without going into the details, I would like to present some of its results that will be useful. Since the rank of the tensor $b_{a b}$ is n, there will exist a system ω^{a} of solutions to the $n+1$ equations:

$$
\begin{equation*}
b_{a b} \omega^{a}=0 \tag{36}
\end{equation*}
$$

that are defined up to an arbitrary factor. The ω^{a} are the contravariant components of a zero vector whose covariant components all disappear. In general, the covariant components x_{b} of a vector are defined uniquely, but the contravariant components, which are determined by the equation:

$$
\begin{equation*}
\xi^{a} b_{a b}=\xi_{b}, \tag{37}
\end{equation*}
$$

are written:

[^5]$$
\xi^{a}=\xi^{*}+\omega^{a}
$$
in which $\stackrel{*}{\xi^{a}}$ denotes an arbitrary solution of (37). Bortolotti defined the Christoffel symbols of the second kind in an analogous manner by the relation:
\[

\left\{$$
\begin{array}{c}
a b \tag{38}\\
c
\end{array}
$$\right\} b_{c d}=\left[$$
\begin{array}{c}
a b \\
d
\end{array}
$$\right]=\frac{1}{2}\left(\partial_{a} b_{b d}+\partial_{b} b_{a d}-\partial_{d} b_{a b}\right)
\]

which makes it possible to define the absolute differential by the same expression as in the case of ordinary Riemannian space. For example, for a covariant vector p_{a}, one will then have:

$$
\delta p_{a}=d p_{a}-\left\{\begin{array}{c}
a b \\
c
\end{array}\right\} p_{c} d q^{b}
$$

or also, due to (38):

$$
\frac{\delta p_{a}}{d t}=\frac{d p_{a}}{d t}-\left[\begin{array}{c}
a b \\
d
\end{array}\right] \dot{q}^{b} \dot{q}^{c}
$$

in such a way that the equations of motion (34) are determined unequivocally. The latter formulas are valid only if the parameters q^{a} are holonomic. Now, in the case of a free system, that supposition is always admissible, because such a system is necessarily holonomic. Anyway, one can further generalize the aforementioned formulas to nonholonomic parameters by means of non-holonomic transformation.

One sees that our equations even apply to free systems that admit the introduction of space-time parameters in this particular case. One will thus arrive at the study of relative motions, which translates into equations of the form (34) independently of the motion of the coordinate system.

In order to give an example, consider a unit point-mass that moves in a fixed plane under the action of a force whose components in a fixed rectangular coordinate system $O x y$ are X, Y. Look for the equations of motion relative to a rectangular coordinate system $O \xi \eta$ that turns around O. The solution is given by equations (34), in which one sets:

$$
q^{1}=\xi, \quad q^{2}=\eta, \quad q^{0}=\tau(=t) ; \quad n=2, m+1=3
$$

Now, one has:

$$
\begin{aligned}
& x=\xi \cos \alpha-\eta \sin \alpha \\
& y=\xi \sin \alpha+\eta \cos \alpha
\end{aligned}
$$

α is a function of τ whose derivative $d \alpha / d \tau$ we shall denote by ω. By differentiation, it will become:

$$
\begin{align*}
& d x=\cos \alpha d \xi-\sin \alpha d \eta-\omega y d \tau \tag{39}\\
& d y=\sin \alpha d \xi+\cos \alpha d \eta+\omega x d \tau
\end{align*}
$$

so one can infer the coefficients B_{a}^{λ} that enter into (14). The vis viva is:

$$
2 T=\dot{\xi}^{2}+\dot{\eta}^{2}-2 \omega \eta \dot{\xi} \dot{\tau}+2 \omega \xi \dot{\eta} \dot{\tau}+r^{2} \omega^{2} \dot{\tau}^{2},
$$

in which:

$$
r^{2}=x^{2}+y^{2}=\xi^{2}+\eta^{2}, \quad \dot{\tau}=1,
$$

and equations (34) will become:

$$
\left\{\begin{align*}
\frac{\delta p_{\xi}}{d t} & =\ddot{\xi}-\dot{\omega} \eta-2 \omega \dot{\eta}-\omega^{2} \xi=Q_{\xi} \tag{40}\\
\frac{\delta p_{\eta}}{d t} & =\ddot{\eta}+\dot{\omega} \xi+2 \omega \dot{\xi}-\omega^{2} \eta=Q_{\eta}, \\
\frac{\delta p_{\tau}}{d t} & =\omega(\xi \ddot{\eta}-\eta \ddot{\xi})+r^{2} \omega \omega+2 \omega^{2} r \dot{r}=Q_{\tau} .
\end{align*}\right.
$$

The first two equations determine the relative motion, while the Q_{ξ}, Q_{η} are the components of the given force in the moving system. One sees that the relative and comoving accelerations, when combined with the complementary one (which corresponds to the composite centrifugal force), will give the absolute change of the quantity of motion. The fictitious forces are not space-time vectors, but along with the relative acceleration, they form the space-time vector $\delta p_{a} / d t$. Hence, the notion of absolute acceleration in the sense of Riemannian geometry coincides with that of absolute acceleration, in the mechanical sense, in this case. In order to also understand the significance of the latter equation (40), replace Q_{τ} by its expression:

$$
Q_{\tau}=B_{\tau}^{x} X+B_{\tau}^{y} Y=\omega(x Y-y Z),
$$

which gives:

$$
\xi \ddot{\eta}-\eta \ddot{\xi}+\frac{d}{d t}\left(r^{2} \omega\right)=x Y-y X
$$

That amounts to saying that the moment of the given force with respect to the rotational axis is equal to the sum of the moment of the relative acceleration and twice the areal acceleration. One deduces that relation from (39) by taking into account the equations of motion $\ddot{x}=X, \ddot{y}=Y$.

It is not perhaps pointless to stress the fact that it is the application of the absolute calculus that makes it possible to summarize the three equations (40) in a space-time relation (34) that translates a general law that is independent of the choice of coordinate system.

[^0]: (${ }^{1}$) Z. Horák, Bull. Int. Acad. Tchéque, 24 (1928), 1-18; this is only an abbreviated edition of a Czech paper that was published simultaneously in: Rozpravy II. tř. České akademie 37, no. 15 (1928), 1-29.
 $\left(^{2}\right)$ A. Wundheiler, "Rheonome Geometrie. Absolute Mechanik," Prace Mat. Fiz. 40 (1932), 97-142.

[^1]: $\left({ }^{3}\right)$ Z. Horák, The principle of conservation of energy and the equations of Physics, Publ. Fac. Sc. Univ. Charles (Prague) 25 (1924), in Czech, with a French summary.
 $\left({ }^{4}\right)$ Z. Horák, "Establishing physical laws by means of energetic principles," Časopis. mat. a fys. $\mathbf{4 5}$ (1925), 42-60; in Czech, with a French summary.
 $\left({ }^{5}\right)$ Z. Horák, "Sur une généralisation de la notion de variété," Publ. Fac. Sc. Univ. Masaryk, Brno 86 (1927), 1-20. That paper, which I presented in October 1926, is completely independent of the notes by Vranceanu that were published in November and December of 1926 in C. R. Acad. Sc. Paris and Rend. Lincei.

[^2]: $\left({ }^{6}\right)$ J. A. Schouten, "Über nichtholonome Übertragungen in einer L_{n}," Math. Zeit. 30 (1929), 149-172.

[^3]: $\left(^{7}\right)$ That will also come about by specializing equations (4) for a holonomic system.

[^4]: $\left({ }^{8}\right)$ In general, the value of Λ will depend upon the given force.

[^5]: $\left({ }^{9}\right)$ E. Bortolotti, "Sulle forme differenziali quadratiche specializzate," Rend. Lincei 12 (1930), 541547; "Calcolo assoluto rispetto a una forma differenziale quadratica specializzata," Rend. Lincei 13 (1931), 19-25.

