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Preliminaries. 
 
 1. – In our paper on line congruences (1), it resulted that a pseudo-surface is nothing 
but a geometric locus of a new kind that is produced by two systems of variable curves 
that intersect only up to second-order infinitesimals. 
 As a matter of fact, such a locus cannot be represented by a finite equation in three 
variables, such a x, y, z, but it can be represented, at least implicitly, by a differential 
equation of the form: 

dz = ϕ (x, y) dx + ψ (x, y) dy, 
 
when combined with the non-integrability condition: 
 

x

ψ∂
∂

≠ 
y

ϕ∂
∂

. 

 
 From that viewpoint, any surface can be considered to be a particular case, or better 
yet, as the common limit of a double series of infinitely-close pseudo-surfaces. 
 One concludes from this that, for example, no matter what expression one adopts for 
the curvature of a surface at each of its points, one must be able to deduce that expression 

from the one that pertains to any neighboring pseudo-surface by simply setting 
2z

x y

∂
∂ ∂

= 

2z

y x

∂
∂ ∂

 or 
1

1

ρ′′
= 

2

1

ρ′′
, according to the notation that was adopted.  Since we know a priori 

that the latter expression does not depend upon any of the Gauss parameters E, F, G, one 
can assert that the former, for its own part, will not depend upon them, either, which is at 
the least an absolute necessity. 
 In support of that deduction, we recall that the original form for the equations of the 
remarkable lines on a surface, when taken in general, is obtained without appealing to 
those parameters, and the necessity of introducing them will be felt only for a variety of 
applications. 
 

                                                
 (1) Bulletin de la Société mathématique de France, t. XVI.  
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 2. – In the same paper, it also resulted that one can imagine two auxiliary osculating 
surfaces Fµ and Fν at any point M of a pseudo-surface, one of which corresponds to the 

arithmetic mean 
1 2

1 1 1

2 ρ ρ
 

+ ′′ ′′ 
 of the curvatures that correlate with the coordinate lines, 

while the other corresponds to their geometric mean 
1 2

1

ρ ρ′′ ′′
. 

 The first of those surfaces is closed linked with the principal planes of the pseudo-
surfaces that are tangent to it, while the second one is attached to their focal planes.  
Now, one knows that the principal planes are always real, while the focal planes can be 
imaginary.  That is what motivates us to employ preferentially the surface Fµ everywhere 
in all of what follows. 
 
 

I. 
 

Extension of the principal formulas proposed to measure the curvature of surface  
to pseudo-surfaces. 

 
 3. – First, recall the equation of the indicatrix of the surface Fµ , which is also the 
equation of the corresponding pseudo-surface [I, no. 19 (1)], namely: 
 

(1)     
2 2

1 1 2 2

1 1X Y
X Y

r rρ ρ
 

+ + + ′′ ′′ ′′ ′′ 
 = 1. 

 
 That conic will have the type of an ellipse, hyperbola, or parabola according to 
whether the quantity: 

kµ sin2 θ = 
2

1 2 1 2

1 1 1 1

4r r ρ ρ
 

− + ′ ′′ ′′ ′′ 
 

is positive, negative, or zero, resp. 
 One deduces that the equation of the principal radii 1R′′  and 2R′′  is: 

 

(2)   
22

2
1 2 1 2 1 21 1 2

sin 1 1 1 1 1 1 1 1 1
cos

4R r r R r r

θ θ
ρ ρ ρ ρ

     
 − + − + + − +    ′′ ′ ′′ ′′ ′′ ′′ ′ ′′ ′′ ′′       

 = 0. 

 
When referred to the axes of its figure, the indicatrix will then take the reduced form: 
 

(3)      
2 2

1 2

X Y

R R
+

′′ ′′
= 1, 

 

                                                
 (1) This abbreviation refers to no. 19 of our first paper.  



Issaly – Geometric study of the curvature of pseudo-surfaces. 3 

and one will note that with that choice of coordinates, the expression for the first vertical 
curvature of the arbitrary line S can be written: 
 

(4)     
1

r ′′
 = 

2 2
1 1

1 2

cos sin

R R

θ θ+
′′ ′′

. 

 
 
 4. – Presently, we have described a sphere with its center at the origin M and a 

variable radius R′′ .  Therefore, consider the two second-order curves in the horizontal 

plane T1 M T2 : 
X 2 + 2XY cos θ + Y 2 = R″, 

 
2 2

1 1 2 2

1 1X Y
X Y

r rρ ρ
 

+ + + ′′ ′′ ′′ ′′ 
 = 1, 

 
in which one recognizes a section of the sphere by the horizontal plane, along with the 
indicatrix (1). 
 The pair of common secants that intersect at the origin have the equation: 
 

2 2

1 1 2 2

1 1 cos 1 1 1 1 1
2

2
X X Y Y

R r R R r

θ
ρ ρ

      
− + − + + −      ′′ ′′ ′′ ′′ ′′ ′′ ′′      

 = 0, 

or rather: 
A X 2 + 2B XY + C Y 2 = 0, 

and if one sets: 
δ sin2 θ = AC – B2 

then it will become: 

δ = 
2

1 2

1 1
J J

R R
   − +   ′′ ′′   

 = 
1 2

1 1 1 1

R R R R

  
− −  ′′ ′′ ′′ ′′  

; 

 
the coefficients J1 and J2 are nothing but the invariants: 
 

 J1 = 1 2 1 2
2

1 1 1 1
cos

sin

r r
θ

ρ ρ
θ

 
+ − + ′′ ′′ ′′ ′′  , 

 

 J2 = 

2

1 2 1 2
2

1 1 1 1
4

sin

r r ρ ρ
θ

 
− + ′′ ′′ ′′ ′′  . 

 
 Having said that, it is easy to see that when they are generalized – i.e., when they are 
applied to pseudo-surfaces – the main formulas that have been presented at various times 
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as a measure of the curvature of a surface are nothing but symmetric functions of the 
roots 11/ R′′ , 21/ R′′  of the equation δ  = 0, and as a result, they will be rational functions of 

the invariants J1 and J2 .  Indeed, upon considering the formulas for the transformation of 
coordinates, one will have: 
 

 kµ = 
1 2

1

R R′′ ′′
 = J2    (Gauss), 

 

 
1

kµ  = 
2 2

1 2

1 1

R R
+

′′ ′′
 = J1 − 2 J2 , 

 

 
2

kµ  = 
1 2

1 1

R R
+

′′ ′′
 = J1    (Sophie Germain), 

 

 
3

kµ = 
1 2

1 1 1

2 R R

 
+ ′′ ′′ 

 = 1
12 J , 

 

 
4

kµ  = 
2 2

1 1 2 2

1 2 1

3R R R R
+ +

′′ ′′ ′′ ′′
 = 2 4

1 23J J−  (Bourget and Housel). 

 
 
 5. – We shall summarize the convenience of those values from the standpoint of 
measuring the curvature of pseudo-surfaces: 
 

 1. kµ = 
1 2

1

R R′′ ′′
. – That ratio can generally be taken to be acceptable, as long as 1R′′  

and  2R′′  have the same or opposite signs; however, it is the opinion of a great number of 

people that, without fail, it will cease to be so when one of the radii becomes infinite, 
which will happen when Fµ is a developable surface. 
 

 2. kµ = 
2 2

1 2

1 1

R R
+

′′ ′′
. – When one adopts this expression, one implicitly replaces the 

normal curvature 1 / r″ with the square 1 / V2 of the vertical deviation relative to a pencil 
of normals [MN] to the surface Fµ , or if one prefers, replaces the indicatrix (3) by the 
deviator: 

2 2

2 2
1 2

X Y

R R
+

′′ ′′
 = 1 

 
of that surface.  Now, that will render any means of distinguishing the concavity of Fµ 
around the point M from its convexity impossible, which is, one can say without 
contradiction, an essential choice when one is dealing with curvature. 
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 3. 
2

kµ  = 
1 2

1 1

R R
+

′′ ′′
. – The third formula breaks down when Fµ is a minimal surface, 

and when one recalls the invariants above, one can add, when the pseudo-surfaces that 
they replace are minimal. 
 

 4. 
3

kµ = 
1 2

1 1 1

2 R R

 
+ ′′ ′′ 

. – This is equivalent to taking the measure of the curvature of 

the surface Fµ to be its spherical – or mean – curvature, but one will then meet up with 
some inconveniences in regard to 

2
kµ . 

 

 5. 
4

kµ  = 
2 2

1 1 2 2

1 2 1

3R R R R
+ +

′′ ′′ ′′ ′′
. – Only this last formula seems to be particularly 

worthy of our attention: We shall not hesitate to take it as the starting point for our 
present study by adopting it to pseudo-surfaces.  However, we must nonetheless explain 
its origin. 
 
 
 6. – Suppose that one traces out lengths 1 / r″  = τ″ along the normal MN that starts 
from the point M that are equal to the curvatures of the various normal sections to the 
surface Fµ .  Fold (rabattons) each of those lengths along the intersection of the 
horizontal plane T1 M T2 with the normal plane that contains the length.  Their extremities 
will determine an arc of the curve whose form will already suffice to make the variation 
of the curvature of the successive normal sections meaningful, and in that way, that of the 
surface Fµ around the chosen point. 
 Upon agreeing to replace θ1 with ψ from now on (due to the ambiguity that inevitably 
comes to pass), the equation of the curve in terms of r″ and ψ whose construction we just 
indicated would become: 

(5)     
1

r ′′
 = 

2 2

1 2

cos sin

R R

ψ ψ+
′′ ′′

. 

 
It is a fourth-order curve.  Its transform by reciprocal vector radii: 
 

(6)     τ″ = 
2 2

1 2

cos sin

R R

ψ ψ+
′′ ′′

 

 
has order six.  Let us pause for a moment on that fact. 
 One sees that it presents three varieties according to whether 1R′′  and 2R′′  have the 

same sign, opposite sign, or one of the two (2R′′ , for example) is infinite, respectively. 

 We call it the (planar) indicatrix of curvature, in order to distinguish it from the 
indicatrix, properly speaking. 
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Figure 1.  Figure 2.  Figure 3. 

 
 Upon denoting its area by Aη , in a general manner, one will have: 
 

(7)    

2 2

1 2

2 2

1 2

2

1

cos sin
,

cos sin
,

cos
,

R R

R R

R

ψ ψτ

ψ ψτ

ψτ

 ′′ = + ′′ ′′
 ′′ = − ′′ ′′


′′ =
′′

 

 

(8)    

1

2

3

2 2
1 1 2 2

2 2
1 1 2 2

2
1

3 2 3
,

8

3 2 3
,

8

3
.

8

A
R R R R

A
R R R R

A
R

η

η

η

π

π

π

  
= + +  ′′ ′′ ′′ ′′ 

   = − +  ′′ ′′ ′′ ′′ 


=
′′

 

 
 We propose to measure the curvature of a pseudo-surface at each of its points, up to 
first approximation, by the area of the reciprocal curve (6), following the method that 
Bourget and Housel introduced. 
 
 
 7. – We now pose the following question: 
 Is it not possible to replace either the contour or the area of the reciprocal curve (6) 
[i.e., the indicatrices (7), whose artificial construction provides only an approximate 
solution to the problem] with a convex surface that measures the curvature of the surface 
Fµ at M with full exactitude, first geometrically by itself and then numerically by its area, 
and in turn, the curvatures of all infinitely-close pseudo-surfaces? 
 One can do that in effect.  However, we immediately assert that, from the theoretical 
viewpoint, those surfaces must give us an adequate geometric expression for the 
curvature, since in practice the numerical calculation of their areas will present serious 
difficulties to the point that one will, so to speak, regret that one has abandoned the planar 
indicatrices.  We will say immediately that such regret is pointless, since one will see 
from the following paragraph that it is always possible, and even simple with the aid of a 
slight transformation (which is a true criterion with respect to the first method) to make 
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the convex indicatrices take on an area that is rigorously equal to that of the planar 
indicatrices that they correspond to. 
  Since the stated surfaces come down to a general type that enjoys the indicated 
property, and some others that are no less remarkable, we believe that we must make 
know that type itself, as well as those properties. 
 
 

II. 
 

General theorems relating to hemicyclides. 
 
 8. – We say hemicyclidal surface, or simply hemicyclide, to mean a surface that is 
generated by a semicircle under the following conditions: 
 Let AB be an algebraic or transcendental plane curve.   

 

B 
M 

A 

p 
g 

O 
m′ 

I 
m 

i 

k 
r 

θ 

N 
D 

 
Figure 4. 

 
 Let AB be an arc of the algebraic or transcendental plane curve, and let AOB be the 
sector that corresponds to a given pole O.  Draw each of the radius vectors from the plane 
that is drawn through the pole that end at the various points of the arc in order to form the 
diameter OD of a semicircle that is situated in the plane of the radius considered and the 
normal: 
 
 Theorem I. – The area of the given sector is equal to exactly that of the transformed 
surface that one obtains by replacing each of the sectoral (fusiforme) elements of the 
hemicyclide that was constructed with the spherical sector (fuseau) that is its projection 
onto the sphere of equal diameter. 
 
 Indeed, let F (r, ψ) = 0 be the equation of the given plane curve, when referred to the 
point O as its pole and any polar axis. 
 To be more precise, take the branch of that curve that is defined by the following 
determination of r : 
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r = f (ψ) . 
 
 Upon letting r denote an arbitrary radius vector Om and letting θ denote the angle that 
it makes with ON, one will have: 

ρ = r cos θ 
 
for the equation of the generating semicircle, in which θ varies only from 0 to π / 2, and 
as a result, the equation of the hemicyclide that corresponds to the branch considered will 
be: 

ρ = f (ψ) cos θ . 
 Set: 

u = ρ sin θ. 
 
The area of the portion of the transformed surface that corresponds to the angle AOM = ψ 
will be: 

(8)     Aυ = 
/ 2

0 0
2

cos 2

r u du
d

ψ
ψ

θ∫ ∫ , 

and since: 

sin 2θ = 
2u

r
, 

that will become: 

Aυ = 
/ 2

20 0

2

2
4

1

r u du
d

u

r

ψ
ψ

−
∫ ∫ . 

However: 

2

2

4
1

u du

u

r
−

∫ = −
2 2

2

4
1

4

r u

r
−  + c ; 

hence: 

Aυ = 21
2 0

r d
ψ

ψ∫ = Aη , 

which proves the property. 
 
 
 9. – As for the exact area A of the hemicyclide, if one lets ψ represent the angle that 
the XY-plane makes with the tangent plane that is drawn through any of its points m then 
one will have: 

A = 
/ 2

0 0
2

cos

r u du
d

ψ
ψ

γ∫ ∫ = 
/ 2 2 2 2 2

0 0
2 sin 2d d dr r d

ψ π
ψ θ θ ψ+∫ ∫ , 

 
which is a formula in which r and dr must be replaced with their values as functions of ψ 
before any calculations are done.  One sees from this that the first of the integrations that 
must be performed (namely, the one over θ) will already depend upon elliptic functions, 
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which justifies what we said in no. 7 about the inherent complications in the calculation 
of a similar area. 
 
 
 10. – Up to now, it has been essential to observe that if the mode of transformation 
adopted alters the finite expression for the area of the surface then the same thing will not 
be true for the expression for the volume, since the sum of the solid elements that one 
neglects is infinitely small with respect to the volume itself. 
 
 
 11. Theorem II: 
 
 The portion of the volume of the right cylinder that circumscribes a hemicyclide that 
is found between the latter surface and its projection onto the horizontal plane is exactly 
one-fourth of the corresponding tab (onglet) if one limits the cylinder to its contact curve.  
It will be one-half of that when one stops the cylinder only at the conoid that is formed by 
the horizontal tangents of the hemicyclide. 
 
 Indeed the volume of the angle ψ of the hemicyclide will be expressed by: 
 

(9)    V = 
/ 2 3 31

3 0 0
cos sind r d

ψ π
ψ θ θ θ∫ ∫  = 31

12 0
r d

ψ
ψ∫ . 

 
 On the other hand, that of the circumscribed cylinder that is bounded by the contact 
curve is: 

(10)    U = 
/ 2

0 0

r
d zu du

ψ
ψ∫ ∫ , 

with the condition: 
u2 = z (r – z) . 

 
 Solving that for z, substituting the smallest root in the expression for U, and 
integrating will give: 

U = 21
48 0

r d
ψ

ψ∫  = 1
4V . 

 
Finally, upon doubling the result, since the contact curve is diametral line, one will have 
the total volume of the cylinder that is external to the tab and bounded by the conoid that 
forms its upper base; i.e., 1

2V . 

  Q. E. D. 
 
 Those two theorems constitute an advanced generalization of the theorems of 
Archimedes that relate to the ratio that exists between the sphere and its circumscribed 
cylinder. 
 
 
 



Issaly – Geometric study of the curvature of pseudo-surfaces. 10 

 12. Theorem III: 
 
 The transform by reciprocal radius vectors of any hemicyclide is a conoid that is 
parallel to the one that is formed by its horizontal tangents. 
 
 One proves that effortlessly by remembering that the inverse of a circumference that 
passes through the pole of inversion is a line. 
 
 

III. 
 

Applying the preceding theorems to the convex indicatrix of the curvature  
of a pseudo-surface. 

 
 13. – The three varieties (7) of the planar indicatrix of the curvature correspond, in 
polar and rectangular coordinates, to the three hemicyclides: 
 

(11)    

2 2

1 2

2 2

1 2

2

1

cos sin
cos ,

cos sin
cos ,

cos
cos ,

R R

R R

R

ψ ψρ θ

ψ ψρ θ

ψρ θ

  
= +  ′′ ′′ 

   = −  ′′ ′′ 

 =

′′

 

 

(11′)   

2
2 2 2 2 1

2 2
1 2

2
2 2 2 2 1

2 2
1 2

2
2 2 2

2 2
1

( )
,

( )

( )
,

( )

.
( )

R X R Y Z
X Y Z

R R X Y

R X R Y Z
X Y Z

R R X Y

X Z
X Y Z

R X Y

 ′′ ′′++ + = ′′ ′′ +
 ′′ ′′− + + = ′′ ′′ +

 + + =

′′ +

 

 
 Those are three closed surfaces.  In the first one, the diameters of the normal sections 
vary between a maximum of 1 /1R′′  and a minimum of 1 / 2R′′ .  In the second one, the 

vertical planes that go from the origin along the tangents to the corresponding plane 
indicatrix are tangent to it and divide it into four pair-wise symmetric parts that are 
situated on one side and the other of the horizontal plane.  Finally, the third surface is 
derived from the second one insofar as the tangent planes that were just spoken of 
coincide. 
 With the aid of formula (8), one can verify that once those surfaces are transformed – 
or better yet, sphericized – they will indeed be equivalent to the plane indicatrices (7). 
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 14. Volumes of the indicatrices. – Since the volumes of the convex indicatrices (11) 
are each the geometric locus of all orthogonal components of the curvatures of the 
various normal sections that are made around the point M on the surface Fµ , that will 
itself represent (we shall not say “measure”) the curvature of the surface at that point. 
 Let us go through those volumes in turn; their expressions are integrable: 
 
 1. The volume of the first of the indicatrices (11), when calculated by means of 
formula (9), will be expressed by: 
 

V1 = 
2 2

1 1 2 2 1 2

5 2 5 1 1

90 R R R R R R

π    
− + +   ′′ ′′ ′′ ′′ ′′ ′′   

. 

 
 2. As far as the second one is concerned, since the integral that expresses it changes 

sign along the directions with tan ψ1 = 2

1

R

R

′′
±

′′
, which are those of the tangents at the 

origin, one must then use the doubled integral: 
 

1

1

/ 23 31 1
3 30

r d r d
ψ π

ψ
ψ ψ−∫ ∫ . 

Upon setting: 

 ψ1 = 14

π ψ ′+ , 

 

  P = 
2 2

1 1 2 2 1 2

1 3 5 2 7 3 5 1

144 R R R R R R

 ⋅ ⋅ ⋅− + ′′ ′′ ′′ ′′ ′′ ′′ 
, 

 

 Q = 
2 2

1 1 2 2 1 2

1 5 2 5 1 1

48 R R R R R R

   
+ + −   ′′ ′′ ′′ ′′ ′′ ′′   

, 

 
for more symmetry, one will find that the total volume is: 
 

V 2 = 2P + 1 22Q ψ ′ , 

and the partial volumes are: 

V′ 2 = P + 14
Q

π ψ ′+ 
 

, 

 

V″ 2 = P + 14
Q

π ψ ′− 
 

. 

 
The first one is situated above the horizontal plane and the second is below it. 
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 Those various results simplify singularly when 1R′′  = 2R′′ , which is the case (once the 

– sign has been specified) for the minimal pseudo-surfaces. 
 One will then have: 

V′ 2 = V″ 2 = P = 
2

1

1

9R′
, 

 
which is a value that one can verify directly, moreover, by calculating the corresponding 
integral: 

/ 4 3
2 0

1

1
cos 2

3
d

R

π
ψ ψ

′ ∫ . 

 
 3. The third volume is inferred from either of the first two by setting 2R′′  = ∞.  One 

finds: 

V3 = 
3
1

5

96 R

π
. 

 
 
 15. – One can equivalently replace the volumes of the hemicyclides with those of the 
corresponding indicator cylinders (no. 11), since they are one-fourth the former, because 
the cylinder stops at the contact curve.  That is what gives one the right to appeal to them 
to represent the curvature at the point M. 
 It should be pointed out that the bases of those cylinders are homothetic to the plane 
indicatrix of Bourget and Housel, and that they are equal to one-fourth of it, moreover.  
In order to avoid constructing them in an artificial way, one must then take those bases 
into consideration. 
 
 
 16. Various properties. – We must observe that all of what follows will be 
applicable to only the case in which the indicatrix of the surface Fµ is elliptic. 
 

 I. If one subtracts the area Aσ of the sphere whose radius 
1 2

1 1 1

4 R R

 
+ ′′ ′′ 

 is one-half 

the spherical curvature at the point M from the area 
1

Aυ = 
1

Aη of the first of the 

transformed convex indicatrices then one will find that the excess of the first of those 
surfaces relative to the second one is: 
 

ε = 1
A A

A
υ σ

σ

−
= 

2

2 1

1 2

1

2

R R

R R

 ′′ ′′−
 ′′ ′′+ 

. 

 
 On the other hand, a comparison of the corresponding volumes (whether or not the 
first one transformed) will also give: 
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ε′ = 1V V

V
σ

σ

−
= 

2

2 1

1 2

3

2

R R

R R

 ′′ ′′−
 ′′ ′′+ 

. 

 
 One can then deduce this simple relation: 
 

ε
ε ′

= 
1

3
. 

 
 II. Consider the infinitesimal curve: 
 

(λ)     dλ = 2 1

2 2 2 2
1 2

( )sin cos

sin cos

R R
ds

R R

ψ ψ
ψ ψ

′′ ′′−
′′ ′′+

. 

 
 It is the projection onto the XY-plane of the line of axial striction (I, no. 28) of the 
generators of the pencil [MN] of the (true) normals to the surface Fµ .  Now, if one 
calculates the ratio of its area to that of the infinitesimal circle of radius ds, which is the 
director of the pencil, then one will find that: 
 

λΩ
Ω

= 
2

2 1

1 2

1

2

R R

R R

 ′′ ′′−
 ′′ ′′+ 

 = ε . 

 
 III. – Likewise, if one looks for the volume found between the curve (λ) and conoidal 
surface that is composed of the curves of shortest distance IK then since one can compare 
that volume to the volume of a cylinder of revolution that has the circle of radius ds for 

its bases and an altitude that is equal to 1 2 1
1 24

1 2

( )
R R

R R
R R

′′ ′′ ′′ ′′+ +
′′ ′′+

, one will see that their ratio 

is also itself equal to ε. 
 
 
 17. – We hasten to add that the calculations in the preceding integration will become 
much less simple if, instead of considering the pencil of normals [MN] of Fµ , we take the 
corresponding pencil of pseudo-normals.  The radical that enters into equation (λ) would 
not be independent then of the alternating curvatures 1 / P1 and 1 / P2 of the coordinate 
lines that are presently tangent to the axes of the indicatrix, because if one generally has 

1 2

1 1

P P
+ = 0 in that case for any pencil of circum-axial pseudo-normals of MN then one 

will have 1 / P1 = 0 and 1 / P2 = 0 only for the single pencil of true normals to the surface 
Fµ . 
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IV. 
 

Applying the various complementary geometric loci relating to the curvature  
of an auxiliary surface Fµ . 

 
 18. – Instead of folding (rabattre) the inverses 1 / r″ or τ″ of the radii of curvature of 
the normal sections of the surface Fµ onto the horizontal surface, as we did in no. 6, we 
shall fold those radii onto themselves; we will then have the three curves: 
 

(12)    

2 2

1 2

2 2

1 2

2

1

1 cos sin
,

1 cos sin
,

1 cos
.

r R R

r R R

r R

ψ ψ

ψ ψ

ψ


= + ′′ ′′ ′′

 = − ′′ ′′ ′′

 =

′′ ′′

 

 
 One then concludes that for the corresponding hemicyclides (i.e., from Meusnier’s 
theorem, for the locus of the centers of curvature of all normal or oblique sections that are 
made around the point M on the surface Fµ),  one has: 
 

(13)    

1 2
2 2

2 1

1 2
2 2

2 1

1
2

cos ,
cos sin

cos ,
cos sin

cos ,
cos

R R

R R

R R

R R

R

ρ θ
ψ ψ

ρ θ
ψ ψ

ρ θ
ψ

′′ ′′
= ′′ ′′+

 ′′ ′′
= ′′ ′′−

 ′′
=



 

 

(13′)   

2 2
2 2 2 1 2

2 2
1 1

2 2
2 2 2 1 2

2 2
1 1

2 2
2 2 2 1

2

( )
,

( )
,

( )
.

R R X Y Z
X Y Z

R X R Y

R R X Y Z
X Y Z

R X R Y

R X Y Z
X Y Z

X

′′ ′′ ++ + = ′′ ′′+
 ′′ ′′ + + + = ′′ ′′−
 ′′ +
 + + =


 

 
 The first of those surfaces is closed.  The last two have infinite sheets: For one of 

them, they are in the asymptotic directions tan ψ1 = 2

1

R

R

′′
±

′′
, while for the other, they are 

in the direction ψ1 = π / 2. 
 Those surfaces are attached to some others that are homothetic to them, and which 
can qualify as surfaces of curvature, since they are the loci of circles of curvature for all 
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normal sections that are made around the point M.  Since one obtains them by doubling 
the radius vectors of the preceding ones, it will suffice to address the latter. 
 
 
 19: 
 
 1. Applying the first two general theorems in § II will give us: 
 

 
1

Aυ′ = 1 2
1 22

R R
R Rπ

′′ ′′+  ′′ ′′ 
 

  (area of an ellipse), 

 

 1V′= 1 1 2 2 1 2(3 2 3 )
48

R R R R R R
π ′′ ′′ ′′ ′′ ′′ ′′+ + , 

in the first case. 
 When 1R′′ = 2R′′  (i.e., when the point M is an umbilic for each of the points of the 

surface Fµ), one will recover the known expression for the area or volume of the sphere 
of radius 1R′′ . 
 
 2. As for the transformed area and volume of the second surface, since they will 
become infinite for ψ = ψ1 , it will be reasonable to calculate them only for a sector or a 
tab below that limit.  One will then find that the transformed area of the sector is: 
 

2
8Aυ′ = 

2
1 2 1 2 2 1

1 2 1 22 2
2 1 2 1

( )sin cos sin
( )

cos sin cos sin

R R R R R R
R R R R L

R R R R

ψ ψ ψ
ψ ψ ψ ψ

 ′′ ′′ ′′ ′′ ′′ ′′+ +′′ ′′ ′′ ′′+ −  ′′ ′′ ′′ ′′− − 
. 

 
 The case of 1R′′ = 2R′′ , which is corresponds to minimal pseudo-surfaces, is 

particularly interesting. 
 One first confirms that the limit of the last term in 

2
Aυ′  is zero.  That will then imply: 

 

2
Aυ′ = 

2
1

4

R′′
tan 2ψ . 

 
 That shows that in the present case, the total area of the surface that we consider is the 
same at the point M as that of the band in the horizontal plane that is found between two 
parallels that are equidistant to the origin by the quantity 1R′′ . 
 Passing to the volume of the tab that corresponds to ψ < ψ1 and setting: 
 

 P′ = 
2

2 2 1 2 1 2
2 1 2 1 2 1 2 2 2

2 1

( )sin
[ (5 3 )cos (5 3 )sin ]

( cos sin )

R R R R
R R R R R R

R R

ψψ ψ
ψ ψ

′′ ′′ ′′ ′′+′′ ′′ ′′ ′′ ′′ ′′− + −
′′ ′′−

, 
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 Q′ = 2 2 2 1
1 1 2 2 1 2

2 1

cos sin
(3 2 3 )

cos sin

R R
R R R R R R L

R R

ψ ψ
ψ ψ

 ′′ ′′+′′ ′′ ′′ ′′ ′′ ′′− +  ′′ ′′− 
, 

 
to abbreviate, one will have the relation: 
 

192 V2 = P′ + Q′. 
 When 1R′′ = 2R′′ , that will give: 

 

2V′  = 
3

1 tan 2
tan

48 cos2 4

R
L

ψ π ψ
ψ

′′   + +  
  

. 

 
 3. Finally, the third surface also takes on an infinite area and volume for ψ1 = π / 2; 
however, for a tab and a sector of angle less than π / 2, one will have: 
 

 
2

Aυ′  = 1
2

tan 1
2

6 cos

R ψ
ψ

′′  + 
 

, 

 

 3V′  = 
3

1
2 4

tan 4 3
8

180 cos cos

R ψ
ψ ψ

′′  + + 
 

. 

 
 
 20. Conoidal transformations. – From Theorem III (no. 10), any transform by 
reciprocal radius vectors of a hemicyclide will be a conoid with horizontal generators.  
Let us look for the equations of those conoids, first for the geometric locus that we are 
dealing with, and then for the convex indicatrices of curvature. 
 

 

H 

M A 

N 

D 

λ 
L C 

C′ δ 
γ 

γ′ 

 
Figure 5. 

 



Issaly – Geometric study of the curvature of pseudo-surfaces. 17 

 1. Let MD = r″, Mδ = 1 / r″ = τ″.  Let C′ denote the center of curvature of the 
oblique section (Fig. 5) that is made in the surface Fµ by the plane CMH.  Since one has 
M C′ ⋅⋅⋅⋅ M γ  = 1, the transform by reciprocal radius vectors of the first of the surface (13′) 
is the conoid: 

  Z  =
2 2

2 1
2 2

1 2 ( )

R X R Y

R R X Y

′′ ′′+
′′ ′′ +

, 

 
which is composed of the horizontal tangents to the first of the convex indicatrices (11′), 
since the modulus of the transformation is unity. 
 When that modulus becomes equal to 1 2R R′′ ′′ , the equation of the transform will 

become: 

(14)    Z  =
2 2

2 1
2 2

R X R Y

X Y

′′ ′′+
+

. 

 
 That is the conoid of axial striction (I, no. 29) of the pencil [MN] of normals to the 
surface Fµ . 
 In the last case, the intersection of the two surfaces belongs to the sphere: 
 

X 2 + Y 2 + Z 2 = 1 2R R′′ ′′ , 
 
and its projection onto the horizontal plane will be the curve: 
 

r 2 = 4 4
2 1 1 2( )( sin cos )R R R Rψ ψ′′ ′′ ′′ ′′− − . 

 
 2. Return to the convex indicatrix of curvature (11) or (11′).  Since one has, 
similarly, M C ⋅⋅⋅⋅ M γ = 1, the transform of the first of the surfaces (11′) by reciprocal radii 
will be the conoid: 

Z = 
2 2

1 2
2 2

2 1

( )R R X Y

R X R Y

′′ ′′ +
′′ ′′+

, 

 
which is the locus of horizontal tangents to the first of the surfaces (13′), since the 
constant is equal to unity. 
 

 When that constant becomes equal to 
1 2

1

R R′′ ′′
, one will have the conoid: 

 

Z = 
2 2

2 2
2 1

X Y

R X R Y

+
′′ ′′+

, 

 
which differs only by the change of Z into 1 / Z of the conoid (14). 
 Here, the intersection of the surface will take place on the sphere: 
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X 2 + Y 2 + Z 2 = 
1 2

1

R R′′ ′′
, 

 
and its projection onto the horizontal plane will be the curve: 
 

r 2 = 
4 4

1 2
2 2 2

1 2 1 2

sin cos1 1

( sin cos )

R R

R R R R

ψ ψ
ψ ψ

  ′′ ′′−− ′′ ′′ ′′ ′′+ 
. 

 
 Some considerations of the same type will be applicable to the deviator that we spoke 
of in no. 5, but they are useless for everything that is at least concerned with the curvature 
of surfaces or pseudo-surfaces at each of their points. 
 

____________ 
 


