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Geometric study of the curvature of pseudo-surfaces
By the Abbot §SALY

Translated by D. H. Delphenich

Preliminaries.

1. — In our paper ofine congruences’), it resulted that a pseudo-surface is nothing
but a geometric locus of a new kind that is produced by fwtems of variable curves
that intersect only up to second-order infinitesimals.

As a matter of fact, such a locus cannot be repredebt a finite equation in three
variables, such & vy, z, but it can be represented, at least implicitly, byifeer@ntial
equation of the form:

dz=¢ (x,y) dx+ ¢(x,y) dy,

when combined with the non-integrability condition:

oy , 99
ox oy’

From that viewpoint, any surface can be considered to fwerticular case, or better
yet, as the common limit of a double series of inflgidose pseudo-surfaces.
One concludes from this that, for example, no matteatwexpression one adopts for

the curvature of a surface at each of its points, am& be able to deduce that expression
2

from the one that pertains to any neighboring pseudo-sutfacsimply setting—aaaz =
Xoy

2
0’z or i,,: i according to the notation that was adopted. Sincknew a priori
oyox o P

that the latter expression does not depend upombithe Gauss parametdtsF, G, one
can assert that the former, for its own part, milt depend upon them, either, which is at
the least an absolute necessity.

In support of that deduction, we recall that thnginal form for the equations of the
remarkable lines on a surface, when taken in génsrabtained without appealing to
those parameters, and the necessity of introdubiegn will be felt only for a variety of
applications.
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2. — In the same paper, it also resulted that one cagima two auxiliary osculating
surfaces, andF, at any pointM of a pseudo-surface, one of which corresponds to the

, . (1 1 . -
arithmetic mean—(—+—"j of the curvatures that correlate with the coordinmtes|

2\p Py

n U

PP,

The first of those surfaces is closed linked with thaggpal planes of the pseudo-
surfaces that are tangent to it, while the second sratached to their focal planes.
Now, one knows that the principal planes are alwagk vehile the focal planes can be
imaginary. That is what motivates us to employ pesfeally the surfac&, everywhere
in all of what follows.

. . . 1
while the other corresponds to their geometric m7aa: :

Extension of the principal formulas proposed to measurethe curvature of surface
to pseudo-surfaces.

3. — First, recall the equation of the indicatrix of thefaceF, , which is also the
equation of the corresponding pseudo-surface [119¢")], namely:

2 2
1) x—+(i+ijxv+Y_" = 1.

N Iy

That conic will have the type of an ellipse, hyperbalg,parabola according to

whether the quantity:
2
it 0= -3 1. 1)
rlr2 4 pl :02
IS positive, negative, or zero, resp.
One deduces that the equation of the principail igtl and R; is:

o 2
ERNNE R ETENE YRR
R h L \A P R nra 4o P,

When referred to the axes of its figure, the inttigavill then take the reduced form:

3) —+—=1,

() This abbreviation refers to nt9 of our first paper.
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and one will note that with that choice of coordinathe expression for the first vertical
curvature of the arbitrary lin®can be written:

@ i":coszeusirfel.
r

R R

4. — Presently, we have described a sphere with its cantdre originM and a
variable radius,/ R". Therefore, consider the two second-order curves ildheontal
planeTi: M T, :

X2+ 2XYcos@+Y?=R”

in which one recognizes a section of the sphere by theontal plane, along with the
indicatrix (1).
The pair of common secants that intersect at tiggndnave the equation:

(£-Lheez —S“(_l—lﬂ v g-v =
R ¢ R 2\ p P, R ¢

AX%2+ B XY+CY?2=0,

or rather:
and if one sets:

Jsirf 6=AC - B
then it will become:

ool ol [ w w )

the coefficients); andJ; are nothing but the invariants:

SERENE
rl r2

4

3, = Pr P
sin? @ ’
1 1(1 1}2
) i S
3= n'r, 4\ py Py |
sin’ @

Having said that, it is easy to see théen they are generalizedi.e., when they are
applied to pseudo-surfaces — the main formulashaet been presented at various times



Issaly — Geometric study of the curvature of pseudo-sesfac 4

as a measure of the curvature of a surface are nothing butetgim functions of the
rootsl/R’, 1/R, of the equatio® = 0, and as a result, they will be rational functiohs

the invariants); andJ, . Indeed, upon considering the formulas for the transition of
coordinates, one will have:

K= —— =2 (Gauss),
R
1 1
TR TR TR
1 1 : .
k =—+==0 (Sophie Germain),

1 2 1
k,u4 = 12+ r + 2
R° SRR R

=J?-4J, (Bourget and Housel).

5. — We shall summarize the convenience of thoseesaftom the standpoint of
measuring the curvature of pseudo-surfaces:

1. ky — That ratio can generally be taken to be actéptas long afR’

-1

RR
and R, have the same or opposite signs; however, itéioginion of a great number of
people that, without fail, it will cease to be stem one of the radii becomes infinite,
which will happen whef, is a developable surface.

1 1
TRTURY
normal curvature 1v” with the square 1V- of the vertical deviation relative to a pencil

of normals MN] to the surfacd~,, or if one prefers, replaces the indicatrix (3)thg
deviator:

2. Ky — When one adopts this expression, one implicéplaces the

X% Y?
of that surface. Now, that will render any meahslistinguishing the concavity d¥,

around the pointM from its convexity impossible, which is, one caay swithout
contradiction, an essential choice when one isimgalith curvature.
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3. k, = i+é — The third formula breaks down whep is aminimal surface,

R’

and when one recalls the invariants above, oneaddn when the pseudo-surfaces that
they replace are minimal.

“ 2(RR
the surfacd, to be its spherical — or mean — curvature, butwitlethen meet up with
some inconveniences in regardkg.

4. k, = 1( L +—1j. — This is equivalent to taking the measure ofdinevature of

1 2 1
k,u4 = "2 + 1 + 2"

R° 3RR R
worthy of our attention: We shall not hesitate &xe it as the starting point for our

present study by adopting it to pseudo-surfaceswdy¥er, we must nonetheless explain
its origin.

5. — Only this last formula seems to be particularly

6. — Suppose that one traces out lengths 1 £ r”along the normaMN that starts
from the pointM that are equal to the curvatures of the variousnabsections to the
surfaceF, . Fold (abattong each of those lengths along the intersection hef t
horizontal pland; M T, with the normal plane that contains the lengtheiiTextremities
will determine an arc of the curve whose form \ailleady suffice to make the variation
of the curvature of the successive normal sectio@sningful, and in that way, that of the
surfacefF, around the chosen point.

Upon agreeing to replad with ¢ from now on (due to the ambiguity that inevitably
comes to pass), the equation of the curve in tefm$and ¢ whose construction we just
indicated would become:

(5)

1 _ co§¢/+ sirfy
" R R

It is a fourth-order curve. Its transform by reoipal vector radii:

©) pre cosznz// N siﬁ'z/l
R R

has order six. Let us pause for a moment on #Huat f
One sees that it presents three varieties acaptdirwhetherR’ and R, have the
same sign, opposite sign, or one of the tR),(for example) is infinite, respectively.

We call it the(planar) indicatrix of curvaturein order to distinguish it from the
indicatrix, properly speaking.
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Figure 1. Figure 2. Figure 3.

Upon denoting its area I8y, , in a general manner, one will have:

T,,:coszz//+ sify
R R
e = cosy sty
R’ R
T,,:cosz
R
a3 2 3
== + + ,
& 8[&"2 R R ng}
a3 2 3
8 R =l |
) e
3
Axg—gﬁ-

We propose to measure the curvature of a pseudlacsuat each of its points, up to
first approximation, by the area of the reciprocatve (6), following the method that
Bourget and Housel introduced.

7. — We nowpose the following question:

Is it not possible to replace either the contauthe area of the reciprocal curve (6)
[i.e., the indicatrices (7), whose artificial cansttion provides only an approximate
solution to the problem] with a convex surface tmaasures the curvature of the surface
F, atM with full exactitude, first geometrically by itdelnd then numerically by its area,
and in turn, the curvatures of all infinitely-clogseudo-surfaces?

One can do that in effect. However, we immedyassisert that, from the theoretical
viewpoint, those surfaces must give us astequate geometric expression for the
curvature, since in practice the numerical calooadf their areas will present serious
difficulties to the point that one will, so to spreaegret that one has abandoned the planar
indicatrices. We will say immediately that suclgret is pointless, since one will see
from the following paragraph that it is always pbks and even simple with the aid of a
slight transformation (which is a truwgiterion with respect to the first method) to make
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the convex indicatrices take on an area that is rigbrcegual to that of the planar
indicatrices that they correspond to.

Since the stated surfaces come down to a generaltigbeenjoys the indicated
property, and some others that are no less remarkabldyelieve that we must make
know that type itself, as well as those properties.

.
General theoremsrelating to hemicyclides.
8. — We sayhemicyclidal surfaceor simply hemicyclide to mean a surface that is

generated by a semicircle under the following conditions:
Let AB be an algebraic or transcendental plane curve.

Figure 4.

Let AB be an arc of the algebraic or transcendental planeecand letAOB be the
sector that corresponds to a given @@leDraw each of the radius vectors from the plane
that is drawn through the pole that end at the varioug$of the arc in order to form the
diameterOD of a semicircle that is situated in the plane ofrdmlius considered and the
normal:

Theorem |I. — The area of the given sector is equal to exactly that of the tnanstl
surface that one obtains by replacing each of the sectoral (fusiforempemets of the
hemicyclide that was constructed with the spherical sector (fusleaujs its projection
onto the sphere of equal diameter.

Indeed, lef (r, ¢) = 0 be the equation of the given plane curve, whearnexf to the
point O as its pole and any polar axis.

To be more precise, take the branch of that curveishdéfined by the following
determination of :
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r=f(y).

Upon lettingr denote an arbitrary radius vectomand lettingd denote the angle that
it makes withON, one will have:

p=rcosd

for the equation of the generating semicircle, in witlcraries only from O toz/ 2, and
as a result, the equation of the hemicyclide that spmeds to the branch considered will
be:
p=1(y) cosé.
Set:
u=psiné.

The area of the portion of the transformed surfacedbaesponds to the angOM = ¢
will be:

w ri2 udu
8 AU = 2 d H
( ) J.O w.[o COS$
and since:

sin 28 = @,

r
that will become:

A ri2udu
Ay = 2.[0 dw.[o A2 '
u
1_7
However:
udu _ r? 4u’® _
[ D2
4u? 4 r
1_7
hence:

W
As=3[ ridy=A,,
which proves the property.

9. — As for the exact are@a of the hemicyclide, if one letg represent the angle that
the XY-plane makes with the tangent plane that is drdnough any of its pointsi then
one will have:

A= 2j:’dwj;’2%: 2" dy [ 6 o + rsin® By,

which is a formula in whicln anddr must be replaced with their values as functiong of
before any calculations are done. One sees frantltt the first of the integrations that
must be performed (namely, the one o#ewill already depend upon elliptic functions,
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which justifies what we said in n@.about the inherent complications in the calculation
of a similar area.

10. — Up to now, it has been essential to observe thhkiimode of transformation
adopted alters the finite expression for the areaesurface then the same thing will not
be true for the expression for the volume, since the ef the solid elements that one
neglects is infinitely small with respect to the votuitself.

11. Theorem |1

The portion of the volume of the right cylinder that circumscribeswdyelide that
is found between the latter surface and its projection onto the horizoata is exactly
one-fourth of the corresponding tab (onglet) if one limits the cylindiés tontact curve.
It will be one-half of that when one stops the cylinder only atdheid that is formed by
the horizontal tangents of the hemicyclide.

Indeed the volume of the angfeof the hemicyclide will be expressed by:
W ml2 . W
(9) V=1[ dy[ “ricos’d sifde = [ ridy.

On the other hand, that of the circumscribed cylintat is bounded by the contact
curve is:

(10) U= ["dy[ " zudy,

with the condition:
w=z(r-2.

Solving that forz substituting the smallest root in the expression Uprand
integrating will give:

W
U= ridy =3v.

Finally, upon doubling the result, since the contact cureaisietral line, one will have
the total volume of the cylinder that is external te thb and bounded by the conoid that
forms its upper base; i.e;V .

Q. E.D.

Those two theorems constitute an advanced geraiahz of the theorems of
Archimedes that relate to the ratio that exists betvtbe sphere and its circumscribed
cylinder.
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12. Theorem | 11:

The transform by reciprocal radius vectors of any hemicyclide isrmid that is
parallel to the one that is formed by its horizontal tangents.

One proves that effortlessly by remembering that thergevof a circumference that
passes through the pole of inversion is a line.

Applying the preceding theoremsto the convex indicatrix of the curvature
of a pseudo-surface.

13. — The three varieties (7) of the planar indicatrixted curvature correspond, in
polar and rectangular coordinates, to the three hendegli

,Oz(cos?"z,z/+ Sinz,chose,
R R
_(cody sin?z//j
(12) p-( — ———— |cosb,
R R

cosy
p=———Cost,
R

x2+Y2+22:(R;XZ+ZqY)Z,

R RO+ Y)

' 2 2 2_(R;X2_F¥Y)Z

17 X“+Y /= .

- O TRROGHW
X2z

R(X+Y7)

X2+Y?+ 722 =

Those are three closed surfaces. In the first theediameters of the normal sections
vary between a maximum of R/ and a minimum of 1 R} . In the second one, the

vertical planes that go from the origin along tla@gents to the corresponding plane
indicatrix are tangent to it and divide it into fopair-wise symmetric parts that are
situated on one side and the other of the horitqutéme. Finally, the third surface is
derived from the second one insofar as the tangkmes that were just spoken of
coincide.

With the aid of formula (8), one can verify thatce those surfaces are transformed —
or better yetsphericized- they will indeed be equivalent to the plane ¢atliices (7).
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14. Volumes of the indicatrices. — Since the volumes of the convex indicatrices (11)
are each the geometric locus of all orthogonal comptenof the curvatures of the
various normal sections that are made around the pbionh the surfacé, , that will
itself represent (we shall not say “measure”) the d¢uresof the surface at that point.

Let us go through those volumes in turn; their expoessare integrable:

1. The volume of the first of the indicatrices (1dhen calculated by means of
formula (9), will be expressed by:

_ n( 5 2 5 j[ 1 1}
Vi=— - + —+— .
0(R* RR R R R

2. As far as the second one is concerned, sincatibgral that expresses it changes

sign along the directions with tagyh = * /% which are those of the tangents at the
origin, one must then use the doubled integral:
7/ /2
%J'O rg’dzﬂ—%jw1 rédy.
Upon setting:
m.
wl = Z +¢’1 )

_ 1 [3[5_ 2D7+3]5j 1
144 R* RR B )/RR'

_ 1( 5 2 5}[ 1 1}
Q=—| =t — || |
48(R* RR B JL R R

for more symmetry, one will find that the total uole is:

VZ2=2P+2Q,,
and the partial volumes are:

V=P Q[’fw;j,

n2 _ m_
\Y -P+Q(4 z//lj.

The first one is situated above the horizontal @land the second is below it.
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Those various results simplify singularly wh&h = R;, which is the case (once the

— sign has been specified) for timenimal pseudo-surfaces.
One will then have:
1

V12:V112:P: ’2,
9R

which is a value that one can verify directly, narer, by calculating the corresponding
integral:

1 4
FI'{ZJO cos 2 dy .

3. The third volume is inferred from either of tfiest two by settingR, = . One
finds:

15. — One can equivalently replace the volumes oh#maicyclides with those of the
correspondingndicator cylinders(no. 11), since they are one-fourth the former, because
the cylinder stops at the contact curve. Thathatwgives one the right to appeal to them
to representhe curvature at the poiM.

It should be pointed out that the bases of thgaders are homothetic to the plane
indicatrix of Bourget and Housel, and that they egeial to one-fourth of it, moreover.
In order to avoid constructing them in an artificiaay, one must then take those bases
into consideration.

16. Various properties. — We must observe that all of what follows will be
applicable to only the case in which the indicatrixhe surfacé, is elliptic.

I. If one subtracts the areé®, of the sphere whose radi%{%+éj is one-half

the spherical curvature at the poit from the areaA, = A, of the first of the

transformed convex indicatrices then one will fildt the excess of the first of those
surfaces relative to the second one is:

:Aﬂ»:z(Rs—F{'f
A 2R+R)’

&

On the other hand, a comparison of the correspgndolumes (whether or not the
first one transformed) will also give:



Issaly — Geometric study of the curvature of pseudo-sesfac 13

£/:V1_V0':§ R;_F{’ i
v, 2\R+R)’

g

One can then deduce this simple relation:

e_1
g 3
Il. Consider the infinitesimal curve:
\/ R'?sin’y + R*cosy

It is the projection onto thX¥Y-plane of the line oéxial striction(l, no. 28) of the
generators of the penciMN] of the (true) normals to the surfa€g . Now, if one
calculates the ratio of its area to that of thenitésimal circle of radiusls which is the
director of the pencil, then one will find that:

Q 2(R+R '

lll. — Likewise, if one looks for the volume fouriétween the curvel) and conoidal
surface that is composed of the curves of shodis&incdK then since one can compare
that volume to the volume of a cylinder of revadutithat has the circle of radids for

its bases and an altitude that is equa%% +1(R'+ R), one will see that their ratio

is also itself equal te.

17. — We hasten to add that the calculations in tleegating integration will become
much less simple if, instead of considering thecgexf normals MN] of F, , we take the
corresponding pencil of pseudo-normals. The radie enters into equation)Y would
not be independent then of the alternating curestdr/P; and 1 /P, of the coordinate
lines that are presently tangent to the axes ofrthieatrix, because if one generally has

%+%: 0 in that case for any pencil of circum-axial ygd@-normals oMN then one
1 2

will have 1 /P; = 0 and 1 P, = 0 only for the single pencil of true normalghe surface

Fu.
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V.

Applying the various complementary geometric loci relating to the curvature
of an auxiliary surfaceF, .

18. — Instead of foldingrébattre) the inverses 11" or r”of the radii of curvature of
the normal sections of the surfa€gonto the horizontal surface, as we did in Giowe
shall fold those radii onto themselves; we will thenehthe three curves:

1 _cosy N sify
r" Rir Fg !
(12) 1 _cosy _ sn?z//’
r" R](’ %’
1 _cosy
" R

One then concludes that for the corresponding tyailes (i.e., from Meusnier’s
theorem, for the locus of the centers of curvatfir@l normal or oblique sections that are
made around the poiM on the surfac€,), one has:

_ RR
'O_R;’coszz/w F{’sirfwcosg’
_ RR
(13) P R;’coszw—F{’sirfwcosg’
-_R
p coszwcose’
X2+Y2+ZZ:R1"R<:(X2+Y2) z
RX+RY
(13) x?+y2s 2= RR(X+Y) 2
R'X*-RY
X2+Y?+ ZZ:R:(X2+Y2) z
X? '

The first of those surfaces is closed. The last have infinite sheets: For one of

them, they are in the asymptotic directions garr + % while for the other, they are

in the directionys = 77/ 2.

Those surfaces are attached to some others thdtoanothetic to them, and which
can qualify asurfaces of curvaturesince they are the loci aircles of curvature for all



Issaly — Geometric study of the curvature of pseudo-sesfac 15

normal sections that are made around the pdintSince one obtains them by doubling
the radius vectors of the preceding ones, it will seffo address the latter.

19:

1. Applying the first two general theorems in 8§ Il will gwe:

A= N(F{ RJZ}/ 'R (area of an ellipsg

V/= SBR+2R R+3B)\ R B
in the first case.
When R'= R (i.e., when the poinM is an umbilic for each of the points of the

surfaceF,), one will recover the known expression for theaaor volume of the sphere
of radiusR’ .

2. As for the transformed area and volume of tbeosd surface, since they will
become infinite fory = ¢4 , it will be reasonable to calculate them only dosector or a
tab below that limit. One will then find that ttransformed area of the sector is:

RR(R+ BSIY 0 o (g | _RCOW+ Rsiy
8A, = R cosy - R sirfy HR-RIVER k{Fgcm;'{/— ngiwj'

"

The case ofR'= R;, which is corresponds to minimal pseudo-surfadss,

particularly interesting.
One first confirms that the limit of the last tenmA), is zero. That will then imply:

A, = Hletan 2.

That shows that in the present case, the total@frthe surface that we consider is the
same at the poirll as that othe band in the horizontal plane that is found lestwtwo
parallels that are equidistant to the origin by tipgantity R" .

Passing to the volume of the tab that corresptmgs< ¢4 and setting:

=[R(5R-3R)cosy+ R (G5B~ 3R)sify %chs(zgt g);i;;lﬂ)z’
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R 2 R, cosy + R siny
Q=(CBR"-2R R+3R"){ R R ER;'COSQZ/—F{'Sirl//j’

to abbreviate, one will have the relation:

192V, =P’+Q",
WhenR' = R}, that will give:

VZ' = E{M.{. Ltan(l_7+wj:| )
48| cosz 4

3. Finally, the third surface also takes on an infinfEaaand volume fogh = 77/ 2;
however, for a tab and a sector of angle less tha?y one will have:

, _ Ritany 1
A, 6 (2+co§z/lj’

, _ R°tany 4 3
V! = 8+ + .
s 180 cody  cosy

20. Conoidal transformations. — From Theorem Il (nol10), any transform by
reciprocal radius vectors of a hemicyclide will be aadrwith horizontal generators.
Let us look for the equations of those conoids, firsttifie geometric locus that we are
dealing with, and then for the convex indicatrices ofature.

/o DVC/'/A

M A

| —

>

H
Figure 5.
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1. LetMD =r" , Mo=1/r"= 1" LetC’denote the center of curvature of the
oblique section (Fig. 5) that is made in the surfagby the planeCMH. Since one has
M C’[M y = 1, the transform by reciprocal radius vectorsheffirst of the surface (13
is the conoid:

2 = R X*+R Y
RR(X+¥)’

which is composed of the horizontal tangents to the dirshe convex indicatrices (91
since the modulus of the transformation is unity.

When that modulus becomes equal ROR,, the equation of the transform will
become:
_RX'+RY
14 Z :
(14) NEIRV:

That is the conoid adixial striction (I, no. 29) of the pencil MN] of normals to the

surfacefF,, .
In the last case, the intersection of the two seddmelongs to the sphere:

X?+Y?+Z?=R'R,
and its projection onto the horizontal plane willtbe curve:
r’=(R-R)(Rsin'y - Bcody .
2. Return to the convex indicatrix of curvature (11) or')(11Since one has,

similarly, M C M y= 1, the transform of the first of the surfaces )by reciprocal radii
will be the conoid:

5= RR(X+Y)
R X +RY

which is the locus of horizontal tangents to thet fo§ the surfaces (1B since the
constant is equal to unity.

When that constant becomes equa@é@, one will have the conoid:
XZ +Y2
Z = " 2 !
RIX*+RY

which differs only by the change @finto 1 /Z of the conoid (14).
Here, the intersection of the surface will takacplon the sphere:
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X2+y2ez2z L
R'R

and its projection onto the horizontal plane willthbe curve:

rzz(i—ij R'sin’y - R cody
R R )(Rsin’y+ Beosy §

Some considerations of the same type will be apble to thaleviatorthat we spoke
of in no.5, but they are useless for everything that isagtleoncerned with the curvature
of surfaces or pseudo-surfaces at each of thautgoi




