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8 1. As is well-known, the relative simplicity of thechrédinger wave equation
consists in the fact that it represents a quantum-mémdiageneralization of the
relativistic relation between the direction cosioes

(1) W +1=0.

This is a purely geometric formula, in which the velesit; pay the role of cosines.

The problem of the introduction of operators — i.e., ttpantum-mechanical
interpretation of the; — as:
ui:ipi :i[hi+c¢|j
m m{ i 0x

(in which all quantities are to be regarded as operatorah autonomous problem of
geometry that is distinct from the problem of geomatian that will be of interest to us
here. If the translation of the into operators is known, once and for all, then we can
interpret the relation (1) and all of geometry as opergeometry. Thus, the usual
geometry (we pass over the interesting question of fieees, in which one can writé

= 0, instead of (1)) already suffices for the geomation of the Schrédinger equation.

(The N-body problem will be solved, in which one introduces afigoiration space for
all N particles.)

We know that Dirac arrived at the exhibition of ateys of equations that generalized
the Schrddinger equation, namely:

Sy= U+ 1yw=0,

in a natural way that yielded a complete accounting of gpgmomena. These equations
read:

(2) Dy=(u+1)y=0.

Here, the:

¥ =y
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are four-rowed matrices; there are also four:

Y=UYn 2 3, a.

(We can certainly also understamgdto be a matrix with 16 components in which,
however, only the diagonal elements are non-zero¢ prbblem of the geometrization
of the Dirac equation then arises. It hardly seemiet an idle mathematical problem,
since, if we specify the fundamental quadratic form:

(ds” = gy dX' dxs; 1 =- g %%_X;; uw+1=0)

then the solution of thE-body problem is given completely by that. Namely, onsstm
only recall that the Hamiltonian function of the intém@c is quadratic in the momenta,
such that we can write the fundamental quadratic fdrthe configuration space for it.
The solution is fictitious as long as we disregard gentalativistic interaction terms.
The inclusion of these relativistic terms is, howeaenew independent problem that has
also not been solved up to now in classical quantum amch As a starting point, we
choose the quantitiggand look for their geometric meaning. G. BrejitHas shown that

if we would like to regard th®-equation as the quantum-mechanical analogue of the
linear classical equation for momenta then theaee the quantum-mechanical analogous
of the classical velocities. In this way, Breit vedhe quantum current that hgg/ as

its density as simplyy.y@). We also write the tensor:

Tik = pU; Uk
as

LYy + Y np @)

The typical terne’/r uu, for the interaction energy becones yy/ .

We would now like to tregk as the direction cosines of the new quantum-mechHhanica
matrix. From the formula:

1 =- Qi Ui Uk,
we get:
/ + /
(3) (U M) symmetric= w = Ok,
becausey is symmetric and meangy; .
In general, one has:
(4) WKk = (MW)sym. + (M}'ﬁ)antisym.: Ok + ai ,

wheregix is a matrix that is equivalent to the usgal, anday is the anti-symmetric part
of the product/ . As a generalization of the known representation:

() G. Breit, Proc. Nat. Acad. Sdi4 (1928), 553.
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gk = h’h?
(where theh” are unit vectors), we let the quantities:

Y = Oik

represent the basic tensor of matrix mechanics.
One further has:
d =y ds=ydx,

and this suggests the restriction to linear forms.

We thus make a two-step conversion of the usual eneFirst, we introduce thg”
- i.e., the matrix components in place of the quantitiels;; our metric then becomes
asymmetric. Let it be remarked that in his recent whikstein has preferred to
characterize the usual metric, not By , but by h“. Matrix geometry perhaps

corresponds to four “star-like” organized worlds. The asginmmetric was also, as is
known, tested for the construction of relativisticotledynamics.

With this Ansatz, we immediately write down the setonder equation (not the
first-order one of Dirac) as the operator translatibtne fundamental geometric relation:

©)) W wuiuc+ yw=0.
Now, “1” + symmetric part off i times the symmetric part af ux gives simply:
1+0ikUUw=S;
i.e., the diagonal terms of the operator of the usclaldglinger equation. However, the
product of the anti-symmetric parts of:

h e
Y i andu; U ((uiuk)ant. o Fkij

adds precisely nine spin terms; i.e., the magnketr& moment times the
electromagnetic field. With a suitable normalieatiwe thus write (5) as:

(5a) G+uF)y=0

With that, one also acquires the meaning ofghas the quantum-mechanical analogues
of the magneto-electric moments The anti-symmetric part of the metric is thea th
moment, while in the usual asymmetric metric (rfog tnatrix metric), according to
Einstein’s investigations, it was the electromagnfild dh Fi itself. The extension of
the results to thé&\-body problem obviously comes about by the introidacof more

general matrice#yi”ﬂ‘. We consider alN particles, ifa, S run, not from 1 to 4, but from
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1 to n, wheren is the number of degrees of freedom. The Dirac nastrere then
extensions of the Pauli spin matrices in precisely $kisse. The Pauli equations are
special cases of the general equationsrfgf = 1, 2 and the Dirac equations, for, S =

1, ..., 4. We would like to remark that this method, whichmset® be a generalization of
the Pauli-Dirac work, has a certain parallel to thgeaech of Darwin, Frenkel)( and
others. Namely, one can seek to ystensors instead af~components (as Dirac and
Pauli did). Anti-symmetric tensoigy . of rankN are necessary for tidbody problem.
Raising the rank of/ corresponds, in some way, to extending the ranks of thatrices.
We would not like to go further into the question of dupiivalence of the two methods
here (which should clearly be answered in the affiveat

8 2. It is not unnatural to pose the following question: YMa our matrices and
equations yield in the limih - o ? The response to this question has an immediate
relationship with the problem of quantum electrodynamitseems that the reasonable
generalization of the theory of an infinite numberdefjrees of freedom would lead to
precisely this objective. However, we must use the gseatare, since the limited
mechanical methods were constructed especially for singalats of the general field.
With all of that, one cannot deny that that quantum eddghamics is a generalization of
the theory of a finite number of degrees of freedomh $bat the generalization that we
spoke of seems suitable. Jordan and Pauli, and therMasdave already presented
equations that could serve as functional extensionseddthrdodinger equation. Ignoring
the particular criticism that the results of therafoentioned papers are doubtful, we
remark that their equations do not yield the spin effedtse examination of the Dirac
equations is then to be simply converted into functiocesipee., Hilbert space), which is
already one degree more correct — so to speak — thaafdhementioned ones (even
though the methods in this notice have less in commadnm tivé cited papers). For the
sake of intuitiveness, we first take the elementangtéin geometry with:

gik - Zhahka

(summed oven). This case can be regarded as degenerate, sincelad gédometries in
the family collapse to a single one. The electronhw#g spin, then arises when the
fundamental tensor is asymmetric. If the number afmnents varies continuously then
we must introduce an integration ovemstead of a summation. We write:

(6) Ok = .[ hi(a) h(a) da .
In ordinary planar space:

N . 1 i=Kk,

Ok =k = 0%k,

I.e., the fundamental tensor defines an identity tenddhe Euclidian character of space
remains preserved under the passage to the limit théxavee

() J. Frenkel, Zeit. f. Phyd7 (1928), 819.
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(6a) [ h(a) h(a) da = &,

which is nothing but the orthogonality condition for fin@ctionsh; . Formula (6) then
ascribes a curvature to the function space. The dawelot in orthogonal functions is
parallel to the decomposition of vectors into orthogas@hponents. In our matrix
space, where 16 linearly-independent matrices exist (e.gac,DNeumann), we
decompose into 16 “matrix unit vectors,” which corresponith¢ol6 “dimensions.” One
can also exhibit an analogy between the contractimmefpair of indices and operations
on orthogonal functions. The generalization of the-degenerate case — i.e., matrix
geometry — is much more difficult, since here all iegi¢ k also run to infinity. We thus
have a Hilbert space with infinitely many coordinatdee (corresponding mathematical
tools are poorly constructed; from a purely mathematitaidpoint, the treatment of
continuously infinite, rather than countable infinite sses especially risky); an
asymmetric metric would yield the desired equation by applyiasgundamental form —
regarded as an operator — to a quanfity

As a result of the quantum-mechanical interpretati@can also use the amplitudes
@(ri) for the orthogonal functions (in whichappears as the number of points), which are
the so-called quantized wave amplitudes; we must theryalwate products of, and

¢, (adjoint quantities), and not simp ¢«. The same Hermitization also seems to be

required in the fundamental metric forathus, in formulas (4) and (6) and we get a
link to Jordan’s ideas in his construction of quantum electatycs. Namely, we let the

anti-symmetric part of the product Beg, (not forgetting the intended integration, such
that everything is written only symbolically); that is:

¢ & — b ¢i=du,

the anti-symmetric part of the fundamental tensothaf function space. Along with
every fundamental tensor, we shall also define a substitoperator. On the whole,
then the anti-symmetrier is defined by conditions that are likewise peculiar he t
symmetric part (as an identity tensor and a substitwpmrator). Oumik is nothing but
the Dirac functiond,' , because the latter is indeed determined by the saméicosd It

is known that:
Javir o =] avie) & = ) =10 = ().

| am happy to express my deepest thanks to Profedkélrfor his critique of this
program.
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