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 § 1.  As is well-known, the relative simplicity of the Schrödinger wave equation 
consists in the fact that it represents a quantum-mechanical generalization of the 
relativistic relation between the direction cosines ui : 
 
(1)      2

iu  + 1 = 0. 

 
 This is a purely geometric formula, in which the velocities ui pay the role of cosines.  
The problem of the introduction of operators – i.e., the quantum-mechanical 
interpretation of the ui – as: 
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(in which all quantities are to be regarded as operators) is an autonomous problem of 
geometry that is distinct from the problem of geometrization that will be of interest to us 
here.  If the translation of the ui into operators is known, once and for all, then we can 
interpret the relation (1) and all of geometry as operator geometry.  Thus, the usual 
geometry (we pass over the interesting question of five-spaces, in which one can write 2

iu  

= 0, instead of (1)) already suffices for the geometrization of the Schrödinger equation.  
(The N-body problem will be solved, in which one introduces a configuration space for 
all N particles.) 
 We know that Dirac arrived at the exhibition of a system of equations that generalized 
the Schrödinger equation, namely: 

Sψ = (u2 + 1)ψ = 0, 
 
in a natural way that yielded a complete accounting of spin phenomena.  These equations 
read: 
(2)      Dψ = (γi ui + 1) ψ = 0. 
 
 Here, the: 

γi = i
αβγ  
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are four-rowed matrices; there are also four: 
 

ψ = ψ1, 2, 3, 4 . 
 
(We can certainly also understand ψ to be a matrix with 16 components in which, 
however, only the diagonal elements are non-zero.)  The problem of the geometrization 
of the Dirac equation then arises.  It hardly seems to be an idle mathematical problem, 
since, if we specify the fundamental quadratic form: 
 

(ds2 = gik dxi dxk; 1 = − gik i kdx dx

ds ds
; u2 + 1 = 0) 

 
then the solution of the N-body problem is given completely by that.  Namely, one must 
only recall that the Hamiltonian function of the interaction is quadratic in the momenta, 
such that we can write the fundamental quadratic form of the configuration space for it.  
The solution is fictitious as long as we disregard certain relativistic interaction terms.  
The inclusion of these relativistic terms is, however, a new independent problem that has 
also not been solved up to now in classical quantum mechanics.  As a starting point, we 
choose the quantities γi and look for their geometric meaning.  G. Breit (*) has shown that 
if we would like to regard the D-equation as the quantum-mechanical analogue of the 
linear classical equation for momenta then these γi are the quantum-mechanical analogous 
of the classical velocities.  In this way, Breit wrote the quantum current that has ψψ  as 

its density as simply ( )iγ ψψ .  We also write the tensor: 

 
Tik = ρ ui uk 

as 
1
2 (ψ γi pk ψ* + ψ*γk pi ψ). 

 
The typical term e2/r i iu u′  for the interaction energy becomes e2/r i iγ γ ′ . 
 We would now like to treat γi as the direction cosines of the new quantum-mechanical 
matrix.  From the formula: 

1 = − gik ui uk , 
we get: 

(3)     (γiγk)symmetric = 
2

i k k iγ γ γ γ+
 = gik , 

 
because gik is symmetric and means 2i iu γ . 

 In general, one has: 
(4)     γiγk = (γiγk)sym. + (γiγk)antisym. = gik + aik , 
 
where gik is a matrix that is equivalent to the usual gik , and aik is the anti-symmetric part 
of the product γiγk .  As a generalization of the known representation: 

                                                
 (*) G. Breit, Proc. Nat. Acad. Sci. 14 (1928), 553.  
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gik = i kh hα β  

 
(where the ih α  are unit vectors), we let the quantities: 

 
γiγk = gik  

 
represent the basic tensor of matrix mechanics. 
 One further has: 

ds2 = γi γk ; ds = γi dxi , 
 

and this suggests the restriction to linear forms. 
 We thus make a two-step conversion of the usual metric.  First, we introduce the i

αβγ  

− i.e., the matrix components − in place of the quantities hi; our metric then becomes 
asymmetric.  Let it be remarked that in his recent work Einstein has preferred to 
characterize the usual metric, not by gik , but by ih α .  Matrix geometry perhaps 

corresponds to four “star-like” organized worlds.  The asymmetric metric was also, as is 
known, tested for the construction of relativistic electrodynamics. 
 With this Ansatz, we immediately write down the second-order equation (not the 
first-order one of Dirac) as the operator translation of the fundamental geometric relation: 
 
(5)     (γi γk ui uk + 1)ψ = 0. 
 
 Now, “1” + symmetric part of γi γk times the symmetric part of ui uk gives simply: 
 

1 + gik ui uk = S ; 
 
i.e., the diagonal terms of the operator of the usual Schrödinger equation.  However, the 
product of the anti-symmetric parts of: 
 

γi γk and ui uk   ant. 2 2( )i k ki

h e
u u F

i m c
 = 
 

 

 
adds precisely nine spin terms; i.e., the magneto-electric moment times the 
electromagnetic field.  With a suitable normalization, we thus write (5) as: 
 
(5a)     (S + µ F)ψ = 0 
 
With that, one also acquires the meaning of the aik as the quantum-mechanical analogues 
of the magneto-electric moments µ.  The anti-symmetric part of the metric is then the 
moment, while in the usual asymmetric metric (not the matrix metric), according to 
Einstein’s investigations, it was the electromagnetic field dh Fik itself.  The extension of 
the results to the N-body problem obviously comes about by the introduction of more 

general matrices i
αβγ .  We consider all N particles, if α, β run, not from 1 to 4, but from 
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1 to n, where n is the number of degrees of freedom.  The Dirac matrices are then 
extensions of the Pauli spin matrices in precisely this sense.  The Pauli equations are 
special cases of the general equations for α, β = 1, 2 and the Dirac equations, for i, α, β = 
1, …, 4.  We would like to remark that this method, which seems to be a generalization of 
the Pauli-Dirac work, has a certain parallel to the research of Darwin, Frenkel (*), and 
others.  Namely, one can seek to use ψ-tensors instead of ψ-components (as Dirac and 
Pauli did).  Anti-symmetric tensors ψik… of rank N are necessary for the N-body problem.  
Raising the rank of ψ corresponds, in some way, to extending the ranks of the γi matrices.  
We would not like to go further into the question of the equivalence of the two methods 
here (which should clearly be answered in the affirmative). 
 
 
 § 2.  It is not unnatural to pose the following question: What do our matrices and 
equations yield in the limit n → ∞ ?  The response to this question has an immediate 
relationship with the problem of quantum electrodynamics.  It seems that the reasonable 
generalization of the theory of an infinite number of degrees of freedom would lead to 
precisely this objective.  However, we must use the greatest care, since the limited 
mechanical methods were constructed especially for singular points of the general field.  
With all of that, one cannot deny that that quantum electrodynamics is a generalization of 
the theory of a finite number of degrees of freedom, such that the generalization that we 
spoke of seems suitable.  Jordan and Pauli, and then also Mie, have already presented 
equations that could serve as functional extensions of the Schrödinger equation.  Ignoring 
the particular criticism that the results of the aforementioned papers are doubtful, we 
remark that their equations do not yield the spin effects.  The examination of the Dirac 
equations is then to be simply converted into function space (i.e., Hilbert space), which is 
already one degree more correct – so to speak – than the aforementioned ones (even 
though the methods in this notice have less in common with the cited papers).  For the 
sake of intuitiveness, we first take the elementary Einstein geometry with: 
 

gik = i kh hα α∑  

 
(summed over α).  This case can be regarded as degenerate, since all of the geometries in 
the family collapse to a single one.  The electron, with its spin, then arises when the 
fundamental tensor is asymmetric.  If the number of components varies continuously then 
we must introduce an integration over α instead of a summation.  We write: 
 

(6)      gik = ∫ hi(α) hk(α) dα . 
 In ordinary planar space: 

gik = δik = 
1 ,

0 ,

i k

i k

=
 ≠

 

 
i.e., the fundamental tensor defines an identity tensor.  If the Euclidian character of space 
remains preserved under the passage to the limit then we have: 
                                                
 (*) J. Frenkel, Zeit. f. Phys. 47 (1928), 819.  
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(6a)     ∫ hi(α) hk(α) dα  = δik , 
 
which is nothing but the orthogonality condition for the functions hi .  Formula (6) then 
ascribes a curvature to the function space.  The development in orthogonal functions is 
parallel to the decomposition of vectors into orthogonal components.  In our matrix 
space, where 16 linearly-independent matrices exist (e.g., Dirac, Neumann), we 
decompose into 16 “matrix unit vectors,” which correspond to the 16 “dimensions.”  One 
can also exhibit an analogy between the contraction of one pair of indices and operations 
on orthogonal functions.  The generalization of the non-degenerate case – i.e., matrix 
geometry – is much more difficult, since here all indices i, k also run to infinity.  We thus 
have a Hilbert space with infinitely many coordinates (the corresponding mathematical 
tools are poorly constructed; from a purely mathematical standpoint, the treatment of 
continuously infinite, rather than countable infinite sets is especially risky); an 
asymmetric metric would yield the desired equation by applying the fundamental form – 
regarded as an operator – to a quantity ψ. 
 As a result of the quantum-mechanical interpretation, we can also use the amplitudes 
ϕ(ri) for the orthogonal functions (in which, i appears as the number of points), which are 
the so-called quantized wave amplitudes; we must then always write products of ϕi and 

kϕ +  (adjoint quantities), and not simply ϕi ϕk .  The same Hermitization also seems to be 

required in the fundamental metric form − thus, in formulas (4) and (6) − and we get a 
link to Jordan’s ideas in his construction of quantum electodynamics.  Namely, we let the 
anti-symmetric part of the product be ϕi kϕ +  (not forgetting the intended integration, such 

that everything is written only symbolically); that is: 
 

ϕi kϕ + − kϕ + ϕi = dik , 

 
the anti-symmetric part of the fundamental tensor of this function space.  Along with 
every fundamental tensor, we shall also define a substitution operator.  On the whole, 
then the anti-symmetric αik is defined by conditions that are likewise peculiar to the 
symmetric part (as an identity tensor and a substitution operator).  Our αik is nothing but 
the Dirac function i

kδ , because the latter is indeed determined by the same conditions.  It 

is known that: 

∫ dv fi(r) 
i

kδ  = ∫ dv f(ri) δ(ri − rk) = f(rk) = fk(r). 
 

 I am happy to express my deepest thanks to Prof. J. Frenkel for his critique of this 
program. 
 
 December 1928 


