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Summary

The contemporary search for a unified descriptionllaélamentary particles in the context of a nonlinear
spinor theory begins with three different Anséatzen:tftte nonlinear generalization of electrodynamics
by MIE, BORN, and INFELD, and an analogous extension of thesonics, second, the fusion theory of

DE BROGLIE, and third, the theory of composite partideEERMI-YANG, GOLDHABER, SAKATA,

et al. The treatment of various possibilities fa ttonlinear extension of the DIRAC equation gives a brief
glimpse of the further development of nonlinear theaorythe work of Heisenberg and his colleagues.

Moreover, we will go into the induced vacuum nonlineaoitythe meson and gravitational theories and
some simple solutions of the nonlinear field equations.

DIFFICULTIESIN FIELD THEORY
AND THE PROBLEM OF THE UNIFIED DESCRIPTION OF MATTER

It is well-known that regardless of the tremendousymss in the description of
atomic and free electrons and the electromagnetid, fiek prediction of positrons and
other particles, the discovery of isotopy and strangemeeperties, as well as the
satisfactory description of atomic nuclei, quantum eteytnamics and mesodynamics,
and above all, contemporary relativistic quantum fielebtly is by no means complete.
In fact, up to recent times, the deep-rooted difficultiegeh@ot been overcome that exist
relative to the divergence of field masses of chargadicles point particles, and
furthermore, a unified description is lacking of all knoyarticles, and finally, the
provisional theory of elementary particles stands ajpan the cosmological problems,
and is, e.g., not capable of explaining the asymmetry batwedter and anti-matter in
our part of the universe. The general opinion is thatabls of the contemporary theory
are not sufficient to resolve the aforementionefladities. Thus, the necessity arises of
going to a newer, more general theory that includesva gunstant in the form of a
characteristic length in order to arrive at a sattsfgcdescription of elementary particles.
Here, let me be permitted to sketch out a brief overnoé the various aspects of the
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problem of a unified theory of matter that might perhapves¢o show a broader
audience how deeply the ideas of unified, nonlinear s@ihtheory are rooted in modern
physics. The discussion of such questions seems e$pepplopriate to a collection
volume that is dedicated to MAX PLANCK, the great disar@r of a new fundamental
constant — the quantum of action.

Without pausing to go into a detailed analysis of theeafientioned difficulties in
guantum field theory, we remark that the hope that erdargdue course that one might
remove the divergences by the process of renormalizaisrproved to be unfounded.
LEHMANN and KALLEN have shown that the divergence e tGREEN functions of
interacting particles is not weaker than the GREENctions of free fields, which
possess ad-character on the light cone. Renormalization doet memove the
divergences, but only isolates them; the problem of aimatie lifting of the divergences
is obviously essentially more deeply-rooted than thesctd problems that is ordinarily
circumscribed by the concept of regularization. Divecggproblems relating to the field
theory of a point charge are already known from @as®lectrodynamics, where one
introduces the electron radius to remove them, wisiatohetheless not possible to do in
a relativistically invariant way. Formally free of ebfions, but still arbitrary relative to
the choice of LAGRANGE function, the electrodynana¢8ORN and INFELD, which
represents a nonlinear generalization of MAXWELL's tlyeds in a position to arrive at
the finitude of the field energy. The theory of BOBRN INFELD (1934), which builds
upon an idea of G. MIE, gave a strong push in the diredfointroducing nonlinear
generalizations into meson theory and the theory obsgdields, as well as the study of
various nonlinear phenomena.

In connection with that, and independently of the reamhay difficulties from
classical theory, the presence of a null-point enargy vacuum fluctuations in quantum
field theory, in turn, proves to be just as problemiaticegard to self-energy; in addition,
the charge also proves to be divergent.

There is an entire series of regularization procedtwesthe removal of these
divergences, such as the introduction of various arpitnatoff factors or the smearing of
the ofunction on the right-hand side of the commutatiofatrens. However, the
property of the right-hand side of the commutation i@t that they must be solutions
of the initial equations of field theory is then loSthe cutoff factors ultimately mean the
introduction of non-locality, which was first proposed by \@ATAGHIN, and which
find their expression in the non-local interaction #mel ultimate dimensions of particles.
Apparently, the idea of non-locality, which many papengehaeen devoted te despite
the fact that its introduction has led to no concreilts up to now still contains
something valid in regard to the elementary length and tifmmate dimensions of
particles.

A second possibility for removing the divergences existzannection with the
hypothesis of a discontinuous, in some way quantized, typ@cmanifold. This idea of
a nuclear spacetime structure was developed simultanebysiflEISENBERG and
myself, together with V. A. AMBARZUMYAN, in a seriesf papers. It rests upon the
notion that the four component axes are associatédopierators. This picture, which
also carries the presence of a smallest length in nftheeequirement of a “softening”
of the limit in the light-cone calculation, resp.)igimt possibly contain some truth. An
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analogous idea was already expressed much earlier by Arabidosophers in the
Middle Ages in a crude, qualitative way.

We now turn briefly from the sketching of the first plem — viz., the divergence
difficulties — to the second problem of the unified dgg@n of all matter. The fact that
all particles can be converted into each other imphas they are based upon a certain
unified sub-stratum that appears in some modificatiofifie isotopy properties, the
possibility of combining the elementary particles intseani-empirical schema (e.g.,
GELL-MANN, NISHIJIMA) and being capable of classifying gbas (), leptons €,
e, Vv, v, m, m), meson® andx, nucleonsfg, p, n, n), and hyperon¥ (A, Z, =),
likewise suggests that all particles must have somethiagrnnmon.

In connection with that, we mention the very inténgsclassifications of SACHS, E.
RAYSKI, and H. DALLAPORTE. The situation recalls thme before the development
of the periodic system by MENDELEYEV and the explamafar the chemical elements
on the basis of the quantum theory of atomic shefig, then the development of a
periodic system for the atomic nucleus, and its exgtlan on the basis of the shell
model. The proposal of the existence of a substratutriglmmmon to all elementary
particles led to two attempts to present a unified thedbslementary particles. On the
one hand, DE BROGLIE showed that DIRAC spinors, whiclteed describe particles of

. 1h .
spin 5o must therefore play a fundamental role, from whicle can construct all

other particles with spin 0, 1, etc., by “fusion.” Thewveafunctions of composite
particlesy can be expressed by products of spinor functians ¢,,

W=y Yy, .

Speaking intuitively, they can be regarded as “rotatingéas by addition or subtraction
of the angular momenta, as well as objects with a langgilar impulse, as well as ones
for which it vanishes, while one can obtain no rotationcbynposition from “non-
rotating” particles of spin 0, which can be described bysingpler, one-component,
KLEIN-GORDON equation. In this, we recognize, in modedorm, a further
development of the ideas of KELVIN and HELMHOLTZ, qpreviously by
DESCARTES, on the composition of matter from vortistauctures. A somewhat more
general treatment of fusion on the basis of group themy considered by H. A.
SOKOLIK [1]. An example of the theory of fusion is the DE BRIOE hypothesis of
the possibility of obtaining a photon by the union of tvemtninos. The neutrino theory
of light was developed further by JORDAN, KRONIG, and AK®LOV. The weakest
aspect of the original theory of fusion was that ioigaad the interaction energy between
two fields.

In the construction of a unified theory that requit@g-component or four-
component spinors, one must consider that, in addtwordinary spinors, as one
employs in, e.g., the theory of electrons (“spinofshe second kind,” according to E.
CARTAN), there also exist spinors of the first kinglc¢ording to CARTAN), whose
transformations differ by only inversions, and indeed omse ha

Y- yY=ta, ),
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while:

Y- yY=ta

resp., under a reflection in a hyperplane that is notontide unit vectoa,, .

If one does not permanently leave aside those extraoydigginors whose
corresponding DIRAC equation includes the tegmy in place of the mass then one
must also consider such quantities in the presentatitreajeneral theory. One can also
form mixed spinors in it, which behave like quantitiestled first (second, resp.) kind
under space (time, resp.) inversion, and converggly $uch mixed spinors correspond
precisely to the “anomalous” representation of théecgbn group that was treated by
GELFAND, ZEITLIN, and SOKOLNIK B].

In the construction of bilinear quantities in DE BROGISl spinor theory or the
unified one, one can employ various spinors, firsthefsecond kind, as well as mixed
guantities. This possibility leads us to bosons thatgxss extraordinary reflection
properties. Let it be remarked that reasoning thatafogous to that of fusion theory
can also be applied to isotopic spin space. Sinceahemalous” representation of the
reflection group does not leave the DIRAC equation invariargeneral, but requires the
introduction of eight-component spinors, one also conreghis way, to a possible
interpretation of isotopic spin space (cf., also theestigations of FESHBACH,
SCHREMP, and WATANABE). Similarly, the anomalousrgps do not seem to obey
the PAULI principle, either.

In connection with the theory of fusion, we furthesmark that according to
MIRIANASHVILI, the possibility exists of forming bilineacombinations of spinors that
are pure imaginary. That is connected with the factdhelh of the spinors that enter into
the product can belong to one of four classes, accordiitg transformation character
under inversions of the coordinates and time; in the wamsition formulas:

w=ps i,

the s can assume the valued, + i, etc.

The second direction in which a unified description fimentary particles was
sought led to the model of bosons that are compositelpartormed from two fermions.
FERMI and YANG were the first to propose thatraneson was composed of a nucleon
and an anti-nucleon, between which a force of high gitgmacted over an exceedingly
short distance. Later on, SAKATA and his colleagues KMAnd others) started with
nucleons and\-particles; M. MARKOV is also linked with this directiorin connection
with this, let us mention the papers of GOLDHABER, ihieth fermions and bosons are
based in isospin space; e.g-mesons and nucleons. A weak point in the original sheor
of composite bosons and other particles is the arinigss in the choice of interaction
energy. The analogy between fusion theory and the Inafdeomposite particles is
conspicuous (cf., also the WATANABE model).

A third group of difficult problems exists in connectiortimihe understanding of the
gravitational field, which must be treated as the curvatdirdhe space-time manifold,
according to EINSTEIN's theory of relativity. In iaccording to FRIEDMANN, the
geometric structure of the universe is such that all appeas suggest that there is a
tendency towards the expansion of the cosmos thapressed in the observed receding
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of spiral nebulae, even though different kinds of ke#og or contracting solutions are
also possible. This first yields the problem of conmgcthe gravitational field with the
other forms of matter, and secondly, various questiosse aoncerning the behavior of
matter in the hypothetical singular state of highest quresat the beginning of the
expansion of the universe. Up to now, only questions coimge the formation of
elements were investigated, in that regard. Howevemdgns of this theory, one must
be able to understand why there would be such a strongemedefor ordinary matter
over anti-matter in the part of the expanding univehseé is known to us. It is possible
that there exist other regions of the universe in whithparticles are present in greater
abundance than ordinary matter (cf.,, DIRAC) or pasicith opposite “helicity” or
“screw sense” (cf., LEE-YANG), and perhaps, in tureréhexists a connection between
expansion and contraction and the preponderance of pa(tciegparticles, resp.).

As far as the gravitational field is concerned, thedsts a fundamental problem in
proving that there is a free gravitational field, and tfegeegravitational waves. It is
know that such a field cannot be established experimentgllyo now, and there exists
disunity amongst the theoreticians regarding its existesmme authors among them,
INFELD - assert that gravitational waves that transport eneayynot exist; other
authors cleave to EINSTEIN's interpretation and leamatals the suggestion that there
are gravitational waves (DIRAC, PAPEPETROU, WHEELERal.). In any event, one
must remark that the feeble intensity of any possible gtamital radiation is to be
understood on the grounds that the gravitational waves doossess a dipole character,
but a quadrupole character. This rests upon the facthbajravitational potential is a
tensor of rank two, and not a vector, like the elecagmetic potential. From that, it will
be immediately clear that in the known formula @pavitational radiation, which was
derived in a complicated way, the square of the third timwatee of the quadrupole

. . =12 . .
moment of the mass dlstrlbut@ﬁ,}‘ appears, and not the square of second derivative of

the dipole moment, as in electrodynamics. In the etlatt gravitational waves exist,
they must, by our hypothesis, be capable of conversionardinary matter; e.g., into
photons, electron-positron pairs, and conversely be prdducéhe annihilation of them.
The probability of such transitions is very small, butré@ases rapidly with the additional
energy f]. The presence of such transitions, which must msamething for
cosmological problems, might lead to an even closktioeship between spacetime
structure and ordinary matter. It is known that onaiabtthe gravitons, which possess
spin 2 (cf., PAULI and FIERZ), by quantizing the weak gmanal field; their
exchange gives NEWTON'’s law of gravitation (M. BRONSNEI In addition, the
presence of gravitons must also be considered in the badéheat, where one ascribes a
temperatureT to a graviton gas and introduces its energy, which is priopaitto T?,
into the stability condition for systems of JEANpay

The examination of the gravitational field is also impot for the fact that we
undoubtedly have an exceptional example of a nonlinelt theory before us whose
nonlinearity is such that the gravitational field will generated by all forms of matter,
and among, them, the gravitational field itself. Thanlmear character of the field
equations for the gravitational field makes it possiblelédve the equations of motion
for the particles that generate the field from thogeadons (EINSTEIN, GROMMER,
INFELD, HOFFMANN, FOCK). Up to now, such equations mbtion have been
obtained in the classical NEWTONIAN approximation widrtain additional terms; the
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solution of the problem of deriving the quantized equationsatiom from the quantized
field equations remains reserved for future endeavors.

It is appropriate to recall that the success of EINSIT&Etheory of gravitation creates
the hope that it would be possible to bring about a unifery that encompasses
electrodynamics (WEYL, EDDINGTON, CARTAN, EINSTEIN,et al) and
mesodynamics (SCHRODINGER). Except for numerous emathical generalizations,
all attempts in this direction have led to no physiealits. Obviously, they were all of a
guantum character, which, as we will prove later, do sobant for a wide variety of
elementary particles. Much less successful was tleenpt to relate all matter to the
electromagnetic field, although MIE's idea of a nonlmegeneralization of
electrodynamics was exceptionally fruitful for physidset it be stressed that in MIE’s
nonlinear theory, in which no gauge invariance was prebantyhich proved to be very
useful for mesodynamics, as well as in the BORN-INPEheory, the possibility of a
unified description of fields and elementary particles theform of singular points
already exists.

We do not need to stress to what degree the idea &ighéeenth- and some of the
Nineteenth— Century of reducing all phenomena to classical mecharassphoved
inadequate. To begin with, the properties of the elecgmetic field — a form of matter
with vanishing rest mass — cannot be explained by them.imigassibility of being able
to reduce the explanation of physical processes to aetativistic, non-quantum theory
of mechanics is therefore obvious.

Il
ON NONLINEAR SPIN THEORY

If we now direct our attention anew to the problefracunified description of all
known forms of matter — i.e., elementary particles feglds — then, with hindsight of the
foregoing brief account of the situation, one must obWowsart with a nonlinear
generalization of the DIRAC equation for the spinoldfieThe spinorial character of the
fundamental field comes from DE BROGLIE’s argument #mel model of composite
particles, and the nonlinearity follows from the neitgss introducing the interaction of
this field with itself, since there is indeed only one farfrmatter in the unified theory.
This gives us a starting point in the form of an equatian was suggested by us in 1938
[5]:

yvg—xfwwmwww: 0 (= hd?), @)

in which | refers to the “smallest length,” while the remamisymbols have the usual
meaning; the simplest nonlinear generalization twmsists of a term of typg®, which

is obtained from the invariant = (@w)>. This and other forms for a nonlinear
generalization of the DIRAC equation are basechexrhodern unified spinor theory of
matter, whose development chiefly by HEISENBERG hisdco-workers produced the
most significant progress.
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We emphasize that the assumption of nonlinear terrafeatrodynamics, as well as
the field equations of gravitation and spinor theory, reprean example of “original”
nonlinearity (class A). Nonlinear terms were incorporatéal the basic equation for the
meson field in an analogous way. The simplest exansptbe generalized KLEIN-
GORDON equation:

Aw—g -mo § +Ag>=0.

However, the iteration of the nonlinear DIRAC equatieads to complicated
nonlinearities up to terms of typg inclusive. Before we turn to the discussion of the
consequences of the nonlinear spinor equation, we wieldol remark that according to
guantum theory nonlinearities are present in all equationa, well-known way, as a
result of the reciprocal conversion processes betviietds and particles. As a first
example of such an “induced” nonlinearity (class B), das the nonlinearity in the
equations of electrodynamics that comes from a procesgpe e + e. = 2y (cf.,
EULER, KOCKEL, HEISENBERG, WEISSKOPF, SCHWINGERY), also processes of
type 7 + 1 = 2y (cf., KURDGELAIDSE). In an analogous way, the viltpeocesses

of the creation of nucleon-anti-nucleon parst p = 2 lead to nonlinearities in

mesodynamics (cf., MALENKA, KURDGELAIDSE), which ard type at leastp®. For
the calculation of such nonlinearities, one can empltyer the SCHWINGER method
of GREEN functions or the method of HEISENBERG andcbisvorkers, which consists
of the comparison of a nonlinear LAGRANGE function general structure with the
results of the calculation of a concrete nonlineéecef e.g., the scattering of light by
light by means of electrons and positrons or the egatf of mesons by mesons by
means of nucleons. In connection with that, we rdterthe research of M.
MIRIANASHVILI, who, in generalizing the earlier reks of MALENKA and
KURDGELAIDSE, gave the general form of the nonlinear esiken, not for the weak
case, but for arbitrary interactions, but for slowfjrying scalar, pseudo-scalar, vectorial,
and pseudo-vectorial meson fields, in a way that is girtol the way that HEISENBERG
and SCHWINGER obtained the general form for the vacuM@RANGE function for
electrodynamics and scalar meson dynan@gs [

In particular, one gets the vacuum LAGRANGE densitythie case of a neutral,
constant, pseudo-scalar field that interacts withirosgield:

-1

Lyac = — %(277.)—2 (mz + gzaz)llze 1(m*+g%p )SD\N—3/2,—1[(m2+ g ? 350] .

In this, W_z;2 _1 is the WHITTAKER function, an@ is the function of the meson field;
moreoverg means the coupling constant, the mass of the nucleon, asds the cutoff
constant. For a weak field, this yields the prasioresult of MALENKA and
KURDGELAIDSE:

] m? 92 1 1 2 1 94 1 4
—_ 2 |- | 1|32 - I :
D 8 hc| m’s, i ym?s, ¥ }a (4m)? (hc)? n ym3s, 4
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(y=€°=1.78...,C = EULER const), in which the first term was unitedhatihe meson
mass by renormalization and the second one yields atiomadl nonlinear term in the
KLEIN-GORDON equation. Intuitively speaking, it comesrfr the virtual creation of a
pair of spinor particles (i.e., nucleons) by mesonsthadsubsequent annihilation of the
nucleons with the emission of the mesons. We rematkhhastructure of the coupling
constantg”/ #%? for the nonlinear term comes about quite simply whenspecifies the
distribution of the sources of the meson field accgdimthe THOMAS-FERMI model
in the ultra-relativistic domain.

In addition, we would like to remark that a constargua®-scalar field yields not
only the pseudo-scalar vacuum current, but also a nongemtar current that is
responsible for the coupling between the fields.

M. MIRIANASHVILI obtained the following normalized expssion for the vacuum
term in the LAGRANGE density that arises from the cowgpto a spinor field for the
case of neutral vectorial meson dynamics:

1 oo Re costysx 2
L=-F- @’A2-——| dss’exp(-m’) (gs)’l ————-1+—@s)F |,
,uA&I 8772 .[0 ot ){(g) Im coshgsx 3(9 )2 }
in which:
F:(]_ +Cg§) Fo, |:(1 +Cg§)|01
o = % #2:9_5 c:ijmdss‘lexp(—msz)
1+Cg§’ 1+Cgo’ 12777 Jo .

This expression generalizes the previous result of HEEEHRG and SCHWINGER for
electrodynamics.
We obtain a new closed expression for the vacuum LARBE density of a

constant, pseudo-vectorial meson field (wave funcﬂgmthat originates in the coupling
of a spinor field (i.e., nucleon), and which is usedulriot just a weak field:

-1

Lvac.=— %(277')_2 (m2 -29 25&12)1/26 2(I]WZ_Z(‘;ZA’E)SOW—s/2,—1[(m 2 29 2'5&12)50] .
We now consider the interaction of a DIRAC figftk) with another given DIRAC
field ¢/x) that corresponds to a LAGRANGE density of therfor
L==9Xx(X) Vs X(Q@(X) ys40(X),
for example. (The precise form of the LAGRANGE sign is inessential here.)
Assuming that/(x) is a given field ang(x) is found in the vacuum state, we then obtain

the following equation for the GREEN functi@of the field y(X):

(Wpv—g @ y+mG=1,
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and for the supplementary term in the LAGRANGE density:
Lo == 3270 " s expli{m® + 9 *(@yp) 3 ds,

or, for small values of{f )5 ¢) (in the usual units):

s _mgh 1 1 2
L. =~ 5.2 hc{ iy +1} [Z(X) ys (T2,

where 5, is the square of the minimal proper time, which isoidticed as a cutoff
parameter in other cases.
We obtain the desired nonlinear spinor equations frosr{zhi

(—iyﬂa%wmwj Wx) =0,
U
where

m* g° 1 1
A=Aac.=— = - +In +1].
o a4 hc{ m’s, ym?s, }

If we set,/s, ~ 10™ cm then we obtain the value tbcn? for A, which approximates

the FERMI constant. In the subsequent approximations,gete nonlinear terms of
higher order than/”. In this way, we get supplementary nonlinear termsHerspinor
equation as induced by the interaction with the nonlinedahy is required by the
vacuum, and not as original ones that are introducedhetequation on the basis of this
or that reasoning priori. Naturally, the induced and original nonlinearities muoest
combined by the renormalization process, and lead to rarpr{nciple) observable
nonlinearity constant:
A=A+ Avac.

In concluding this consideration of induced nonlinearities mention the case of the
gravitational field ff]. For the sake of simplicity, we take the case aa#lar (pseudo-
scalar, resp.) particles that interact with the gréemal field, and write the
LAGRANGE function in the form of an anti-commutator:

L = 2[9(x), Sp(3)],

in which one has:

2 _ af
Sp = g” ¢ . 1 0y-9g” 9¢ 4
ox,0x, J-g Ox* ox’



Ivanenko — Remarks on a unified, nonlinear theory of matte 10

The GREEN functionG(x, x') for a particle, which is defined as the vacuum
expectation value of the ordered produbt#x), #(x'))]o , whereT means the WICK
(chronological) operator, then satisfies the equation:

SG(X X) = —2— X -X).

Nl
One gets the vacuum valuelofrom this:
LO:% SG(X, )(’) |Xﬁx' .

Finally, from A. BRODSKI, one has a theorem foe ttacuum value of the action
function, which is connected with the GREEN funatio

Wiac. = —2 Spur InG + const.

This theorem is also true for spin fields when omdudes the summation over the spinor
indices. For the case in which there is no creatioreal pairs, one gets:

11
=1

2 (2rr)

“dr j expl-ikx]expi/-g 1T expikx Jdx )@k ),

where 7 is the proper time, or fitth coordinate. If onewn@oes to the weak-field
approximation then one obtains an expression tirat fncludes a term that is
proportional to the action function of the free \graional field with an infinite
coefficient. This divergence will be isolated lnormalizing the coordinates and the
gravitational charge — i.e., the mass:

1/2

1
m - m.

L B13I s? expls)ds

Here, k is the gravitational constant. The second tesa hhs an infinite coefficient and
includes the D’ALEMBERTIAN operator. Its renornmdtion would be possible only if
the usual EINSTEIN theory included higher derivasiv

If one employs the given expression for the vacwaine of the action function then
one can calculate the probability for the creabdra pair by the gravitational field and
other analogous effects. For the collision crasgisn of the conversion of two scalar
bosons into two gravitons, one ge'ts (

() It is quite instructive to compare this expressiorhwlite known formula for the annihilation cross-

. . . Cc
section of an electron-positron pair= nro2 v (v o).



Ivanenko — Remarks on a unified, nonlinear theory of matte 11

c( EY
o=20 5 5

in which one has the gravitational radius:

The further development terms in the vacuum value oL &@RANGE function or
the action function necessarily lead to nonlinear suppteany terms in the original
linear equations of the weak gravitational field, precisay in the case of the
electromagnetic, meson, or spinor equations. Wherstames with the linear equations
for the weak gravitational field, whose quantum has restsmzero and spin 2, one then
necessarily arrives at nonlinear generalizations in witiemonlinear terms are generally
induced by the vacuum, independently of the equations of ifp@adrnonlinearities that
are introduced by the general theory of relativity.

We now go somewhat more rigorously into some questionsominear spinor
theory, whose starting point, as we have shown, @aat®n (A). The next problem is
the presentation of all possible nonlinear supplemen&angs in the spinor equations or
corresponding invariants of the forgf that contain no derivatives. For this, we start
with the expression that describes the interacticariofrary fields. As a foundation, one
can intuitively take the known expression (@, Q.¢,)@,Q¢,) from the theory of

decay;gr is the FERMI coupling constant. If one assumes afiosp to be equal here
then one gets the desired five types of nonlinear inv&igmce one can chooSeto be

a scalar, a pseudo-scalar, a vector, a pseudo-vectan, amti-symmetric tensor of rank
two. In addition, one can also introduce invariants time obtains, intuitively speaking,
in such a way that one could identify all spinors wableother (nonlinear “contraction”)
in the four fermions in the interaction terms, whichrad conserve leptons or baryon
charges undef-decay. In this way, we obtain the following combinat@ nonlinear
invariants #]:

DLl TP  HY QD 2+ (FQD. (W QD] . + 9N wCQ V. (FQCH } .
(B)

In this, Q] is the quantity that is the transpose @f . As PH/ LERUSTE has

emphasized, there are some relations between tlweiganvariants of the non-quantized
theory that were presented by DE BROGLIE, PAULI,FENK, and TAKABAYASI:

Js—Jps==Jpv; Js+Jps=Jr,
where:
Js= (@), =@y,
etc.
We shall now briefly pause to examine the furtstaiges in the development of the
nonlinear spinor theory and chiefly address theatigh papers of HEISENBERG and
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his co-workers; in particular, the overview of 1957, the qanestion to the congress in
Padua-Venice in October 1957, and the contribution to the RIKANelebration in
Berlin and Leipzig in April 19589].

Once we have presented a fundamental generalizatitie &IIRAC spinor equation,
the next step consists of a cancelation of the n&ss in (A) and the proposing of the
thus-altered nonlinear equation:

v W g =0 d=hd?) ©

axﬂ

as the fundamental equation of matter whose quaitiz should lead to values for the
particle masses (HEISENBERG). In order to chooke possible nonlinear
supplementary term, one poses further requirem@ngs, isotopy invariance, etc., cf.
infra) in place of the original pure-scalar term in (Ajth the help of (B). The third step
consists of an introduction of the new HEISENBERG@&mfization rules with the help of
an indefinite metric in HILBERT space. The modifieommutation relations lead to
vanishing values of the anti-commutator on thethgime; that would be in agreement
with the solution of the general nonlinear equatiofhe introduction of an indefinite
metric into HILBERT space that was already propobgdDIRAC generally requires
additional analysis in order to exclude states witigative norms. In connection with
this, we direct our attention to an attempt by GBPdhd BLEULER to impose an
additional condition on the vector components InLBERT space Il that would
guarantee that these states would make no combmbid the expectation values of
observable quantities. On the other hand, whenSHEBERG used real states from
HILBERT space | fort = — o, he showed that the chosen commutation functions
guaranteed the presence of only physical realsstdse fort = + o . To that end, N. N.
BOGLIUBOV and his co-workers have decomposed etatle smplitude into a physical
and a non-physical paR, the latter of which is determined uniquely frohe physical
part with the help of the additional conditidf(— «) = — F(+ «). This boundary
condition has a non-local form. Thus, we arriveaaton-local theory whose elements
also appear in HEISENBERG's variant of the theaylre mean in the neighborhood of
the light-cone. A similar smearing of the lightreoleads, on the one hand, to the
interesting problem of describing the internal stuse of elementary particles, and on the
other, to the problem of the structure of spacetand in very small dimensions.

It is known that HEISENBERG and his co-workersamiied a finite value for the fine
structure constanta( = 1 /267) by approximate integration of the noedin spinor
equation (C) on the basis of the new, altered coranaun relations, as well as finite
values for the masses of the free fermions (icleons) k = 7.426f) and the masses of
four bosons that represent higher excited statdseofvorld spinor field:

K =0.33, 0.95, 1.74, 3.32.
In this connection, we would like to refer to soexact solutions of wave type of the

nonlinearly generalized KLEIN-GORDON and DIRAC etjaas that were obtained by
KURDGELAIDSE [10] with the help of elliptic functions. For examptée equation:
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gf+k0¢ +)l¢ =0

has the solution:
@ = ¢o cn(o+ C), o=Kkux,, Ky=(k, ki =i &,

=-KC+ =K+ A4,

In addition, we have derived radially-symmetric exact smhst for some nonlinear
equations. For example, the equation:

wedyeag=o. ymge, s=fX

has the solution:

1 [
VAT

wheres, is an arbitrary constark; is the modulus of the elliptic function, aKdk;) is an
elliptic integral of first order.

One can employ the last solution for the constractd characteristic, singular
functions in the neighborhood of the light-cone:

_ 1 sojz
A(S) = 1+ = )
(S) \/4AS§ { +( S }340

It is interesting that we arrive at exact solutiomsthe fundamental and very-closely
related nonlinear equation that are apparently analogaine tones that HEISENBERG
obtained by approximation methods.

On the other hand, we can use the exact solutions & type of the nonlinearly-
generalized KLEIN-GORDON equation to express the enrgynd impulse of the field
as a sum of quantities that are connected with theidchhl components.

We obtain:

H=1 {(%j —12(—} +koop® +— )I¢}(d) a kKt wKz (n=12,73),

1 :_1 A
In—>+K ==_2%
\/Zkf—l s (kl)} “ T2

X,

in which:

1 1 1
a= 24w K :I—{k5+5A¢s},
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=25 oy L[ Ek)
3{2 ¢ kl)kf(l K(kl)}'

(I =1 in the linear case (ki) is a second-order elliptic integral.
If we now set the energy of the field equal to thessk, of the bosons for vanishing

rest-mass, sky = 0, as well ak = 0, then it follows that:

2 _
02::, A=Kk2.
¢ K Ko

If one substitutes the spectral development ofweawe solutions:

gziancosgn, o= (2 +1)BN) o= k"x,, n=0,1,2, ..
1 _ 1 1
AVZ2%00" ™7 kKG9 cosha,”
_ K'(Kk)

A=A+ )m, o 2 K (k)

then one obtains, after some regrouping:

2
K, |1 n n
H:¢§(§j§§&j MP2, MP =i+ M

M = (x@@j ko ~ 0.36k,,

Ko= (2J2a,) =7.29k,.

If one employs such coarse so-to-speak, even “semi-classicat’ quantization
methods then one obtains a mass spectrum for teenmdrom them that, according to
KURDGELAIDSE, is similar to the spectrum that wagesn by HEISENBERG:

0.36, 1.08, 1.80, 2.52, 3.24, 3.96,

The last step in the construction of a unifiednlmear, spinor theory is connected
with the consideration of the isotopy propertiegafticles. In that, first and foremost,
the SALAM-TOUSHEK P] group:

y'=yen
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plays a role. According to the theory of E. NOETHERdoes not correspond to the
conservation of a vector, like the cyclic grogip= (¢ €, but a pseudo-vector, and thus a
new “charge” appears. In the final analysis, this eoraion law is apparently
connected with the conservation of baryon numbar. addition, one has the PAULI
transformation group:

Y=ay+bikys laf+|bf=1,
i yyYS=-by+aiwy"

In this, ¢/¢ is the wave function that is the charge-conjugate —ettely anti-particle
conjugate. As one easily sees, this group is an isomospimor representation of the
rotation group, and, as GURSEY]] first showed, can be compared to a rotation in
isotopy space.

This now raises the problem of choosing from the prelyegisen nonlinear
invariants (B) the ones that not only satisfy the cmadiof LORENTZ invariance, but
which are also invariant under the PAULI and SALAM-TOUSH&roups. Here, one
can add the condition of invariance under spatial reflestmmd particle-anti-particle
conjugation, as well as the condition of the vanishinghef ionlinear supplementary
term for the two-component neutrino. As a choicenghriant, we, with A. BRODSKI,
introduce the eight-component spinor:

o=,
2%

Under LORENTZ transformations, it transforms witle thnatricesy;,, x E, , and under
PAULI transformations, with the matricé&s x i g . In this, theg are the usual PAULI
matrices, andE, and E, are unit matrices. We introduce seven anti-commutating
matriced ; (r =1, 2, ..., 7):

M1 = Y * Ba w=0,1273), Fa=T =i xn.

In order to be able to compare the PAULI transformatiith the rotations in isotopic
space, we write down the eight-component spinor infoem in which, from
FEYNMANN, exhibits each particle as a two-componentisgmor [12]:

A+iy )+ QA-iys &,

=}

€
"
N

_|¥
¥,
[A-iy )] -[A+iyyl®| |,
The matriced iva = T, =1 )5 x g then refer to a transformation in isotopic space,revhe

the isotopic two-component spinor is composed of a protamantron (anti-proton-
neutron, resp.). It is interesting to establish thatadity condition is true, namely:
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WYe=Ccy =y,

We then prove that is it desirable to examine nonlirganor theories from the
standpoint of FEYNMANN'’s two-component theory of feoms. If one starts from the
FEYNMANN variant of the theory ofF-decay and identifies all spinors with each other
then one gets only the square of the vector and theesgfidhe pseudo-vector for the
possible nonlinear invariants. If we return to the gensaaé of the choice of nonlinear
invariants that are the various restrictions of the-momponent, second quantized theory
then when we limit ourselves to just the invariancdenrthe LORENTZ group, PAULI
group, and SALAM-TOUSHEK group, we obtain just one nonlineaariant in the form
of the square of the pseudo-vectd}. [ However, if one adds the condition here of the
vanishing of the nonlinear supplementary term for the tarmponent neutrino and the
invariance under operations of spatial reflection andgehaonjugation (which one can
indeed link with reflection in isotopic spin space) then obtains a sum of squares of
vectors, pseudo-vectors, scalars, and pseudo-scalars.

HEISENBERG and PAULI have derived the isomultiplestislbution by considering
the isotopy properties of particles. In it, for exaepphe hyperons were constructed with
the help of a representation of the fogn, in close analogy with the model of composite
particles in the theory of fusion. In the nonlinearecd®wever, we have made a certain
advance, in that the interaction of free “world-spgiowith themselves enters into the
theory.

We further mention the interesting research on thelimear theory of elementary
particles by DE BROGLIE, who regarded particles as noatiseructures whose motion
obeyed the usual linear equations, as well as the pape¥8dGER, BOHM, and
TAKABAYASI, which sought to develop a purely classicalatelistic, hydrodynamical
spinor theory of matter. However, in my opiniorg strong invariance demands in this
variety of theory must, in the final analysis, necaskad to the fundamental nonlinear
spinor equation that was examined above.

In summary, one can say that the nonlinear spineorthof matter has already
arrived at many interesting results up to now, and todayapgarently represent the
single unified description of all elementary particle®n the other hand, the nonlinear
spinor theory is still very far from its terminus.hd values obtained by it for the masses
and charges are still far from exhibiting a quantitatiggeament with the experiments.
We shall not go further here into the objections thate recently raised by PAULI,
TOUSHEK, and FIERZ, but mention only that the theorytlod description of the
gravitational field is one of the most important problemspossibility for the treatment
of gravitation might be the introduction of covariantidatives of the spinors in place of
the usual ones into the kinematical term of the nonlisparor equation, which is, in
turn, similar to what we did with FOCK in our earlier pepf.3] on the DIRAC theory.
On the other hand, it would be desirable to regard thetgrevas particles of spin 2 in
the fundamental nonlinear equations, precisely like the pmticles.

However, even after successfully solving the difficgitivitation problem, some
important cosmological questions would still remain. ®at as it may, we are
eyewitnesses to the start of a new period of dewedop in physics, in which the
structure and the interaction of elementary partiolgd be investigated by the
introduction of a new universal constant of the type ofoalinear self-interaction
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constantd = 7 cl?, or a minimal length. On the other hand, the excaptip fruitful
period of physics that began with the discovery of thentyua of action by MAX
PLANCK and lasted for almost a half-century is, to s@xint, concluding.
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