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Summary 
 

The contemporary search for a unified description of all elementary particles in the context of a nonlinear 
spinor theory begins with three different Ansätzen: First, the nonlinear generalization of electrodynamics 
by MIE, BORN, and INFELD, and an analogous extension of mesodynamics, second, the fusion theory of 
DE BROGLIE, and third, the theory of composite particles of FERMI-YANG, GOLDHABER, SAKATA, 
et al.  The treatment of various possibilities for the nonlinear extension of the DIRAC equation gives a brief 
glimpse of the further development of nonlinear theory in the work of Heisenberg and his colleagues.  
Moreover, we will go into the induced vacuum nonlinearity of the meson and gravitational theories and 
some simple solutions of the nonlinear field equations. 
 
 

I 
 

DIFFICULTIES IN FIELD THEORY 
AND THE PROBLEM OF THE UNIFIED DESCRIPTION OF MATTER 

 
 
 It is well-known that regardless of the tremendous progress in the description of 
atomic and free electrons and the electromagnetic field, the prediction of positrons and 
other particles, the discovery of isotopy and strangeness properties, as well as the 
satisfactory description of atomic nuclei, quantum electrodynamics and mesodynamics, 
and above all, contemporary relativistic quantum field theory is by no means complete.  
In fact, up to recent times, the deep-rooted difficulties have not been overcome that exist 
relative to the divergence of field masses of charged particles point particles, and 
furthermore, a unified description is lacking of all known particles, and finally, the 
provisional theory of elementary particles stands apart from the cosmological problems, 
and is, e.g., not capable of explaining the asymmetry between matter and anti-matter in 
our part of the universe.  The general opinion is that the tools of the contemporary theory 
are not sufficient to resolve the aforementioned difficulties.  Thus, the necessity arises of 
going to a newer, more general theory that includes a new constant in the form of a 
characteristic length in order to arrive at a satisfactory description of elementary particles.  
Here, let me be permitted to sketch out a brief overview of the various aspects of the 



Ivanenko – Remarks on a unified, nonlinear theory of matter.                        2 

problem of a unified theory of matter that might perhaps serve to show a broader 
audience how deeply the ideas of unified, nonlinear spinorial theory are rooted in modern 
physics.  The discussion of such questions seems especially appropriate to a collection 
volume that is dedicated to MAX PLANCK, the great discoverer of a new fundamental 
constant – the quantum of action. 
 Without pausing to go into a detailed analysis of the aforementioned difficulties in 
quantum field theory, we remark that the hope that emerged in due course that one might 
remove the divergences by the process of renormalization has proved to be unfounded.  
LEHMANN and KÄLLEN have shown that the divergence in the GREEN functions of 
interacting particles is not weaker than the GREEN functions of free fields, which 
possess a δ-character on the light cone.  Renormalization does not remove the 
divergences, but only isolates them; the problem of an ultimate lifting of the divergences 
is obviously essentially more deeply-rooted than the class of problems that is ordinarily 
circumscribed by the concept of regularization.  Divergence problems relating to the field 
theory of a point charge are already known from classical electrodynamics, where one 
introduces the electron radius to remove them, which is nonetheless not possible to do in 
a relativistically invariant way.  Formally free of objections, but still arbitrary relative to 
the choice of LAGRANGE function, the electrodynamics of BORN and INFELD, which 
represents a nonlinear generalization of MAXWELL’s theory, is in a position to arrive at 
the finitude of the field energy.  The theory of BORN and INFELD (1934), which builds 
upon an idea of G. MIE, gave a strong push in the direction of introducing nonlinear 
generalizations into meson theory and the theory of spinor fields, as well as the study of 
various nonlinear phenomena. 
 In connection with that, and independently of the removal of difficulties from 
classical theory, the presence of a null-point energy and vacuum fluctuations in quantum 
field theory, in turn, proves to be just as problematic in regard to self-energy; in addition, 
the charge also proves to be divergent. 
 There is an entire series of regularization procedures for the removal of these 
divergences, such as the introduction of various arbitrary cutoff factors or the smearing of 
the δ-function on the right-hand side of the commutation relations.  However, the 
property of the right-hand side of the commutation relations that they must be solutions 
of the initial equations of field theory is then lost.  The cutoff factors ultimately mean the 
introduction of non-locality, which was first proposed by G. WATAGHIN, and which 
find their expression in the non-local interaction and the ultimate dimensions of particles.  
Apparently, the idea of non-locality, which many papers have been devoted to − despite 
the fact that its introduction has led to no concrete results up to now − still contains 
something valid in regard to the elementary length and the ultimate dimensions of 
particles. 
 A second possibility for removing the divergences exists in connection with the 
hypothesis of a discontinuous, in some way quantized, spacetime manifold.  This idea of 
a nuclear spacetime structure was developed simultaneously by HEISENBERG and 
myself, together with V. A. AMBARZUMYAN, in a series of papers.  It rests upon the 
notion that the four component axes are associated with operators.  This picture, which 
also carries the presence of a smallest length in nature (the requirement of a “softening” 
of the limit in the light-cone calculation, resp.), might possibly contain some truth.  An 
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analogous idea was already expressed much earlier by Arabian philosophers in the 
Middle Ages in a crude, qualitative way. 
 We now turn briefly from the sketching of the first problem – viz., the divergence 
difficulties – to the second problem of the unified description of all matter.  The fact that 
all particles can be converted into each other implies that they are based upon a certain 
unified sub-stratum that appears in some modifications.  The isotopy properties, the 
possibility of combining the elementary particles into a semi-empirical schema (e.g., 
GELL-MANN, NISHIJIMA) and being capable of classifying photons (γ), leptons (e− , 
e+ , ν, ν , m+, m−), mesons p and κ, nucleons (p, p , n, n ), and hyperons Y (Λ, Σ, Ξ), 
likewise suggests that all particles must have something in common. 
 In connection with that, we mention the very interesting classifications of SACHS, E. 
RAYSKI, and H. DALLAPORTE.  The situation recalls the time before the development 
of the periodic system by MENDELEYEV and the explanation for the chemical elements 
on the basis of the quantum theory of atomic shells, and then the development of a 
periodic system for the atomic nucleus, and its explanation on the basis of the shell 
model.  The proposal of the existence of a substratum that is common to all elementary 
particles led to two attempts to present a unified theory of elementary particles.  On the 
one hand, DE BROGLIE showed that DIRAC spinors, which indeed describe particles of 

spin 
1

2 2

h

π
, must therefore play a fundamental role, from which one can construct all 

other particles with spin 0, 1, etc., by “fusion.”  The wave functions of composite 
particles ψ can be expressed by products of spinor functions ψ1/2 , 1/ 2ψ ∗ : 

 
ψ = ψ1/2  ⋅⋅⋅⋅ 1/ 2ψ ∗  . 

 
Speaking intuitively, they can be regarded as “rotating” objects by addition or subtraction 
of the angular momenta, as well as objects with a large angular impulse, as well as ones 
for which it vanishes, while one can obtain no rotation by composition from “non-
rotating” particles of spin 0, which can be described by the simpler, one-component, 
KLEIN-GORDON equation.  In this, we recognize, in modern form, a further 
development of the ideas of KELVIN and HELMHOLTZ, or previously by 
DESCARTES, on the composition of matter from vorticial structures.  A somewhat more 
general treatment of fusion on the basis of group theory was considered by H. A. 
SOKOLIK [1].  An example of the theory of fusion is the DE BROGLIE hypothesis of 
the possibility of obtaining a photon by the union of two neutrinos.  The neutrino theory 
of light was developed further by JORDAN, KRONIG, and A. SOKOLOV.  The weakest 
aspect of the original theory of fusion was that it ignored the interaction energy between 
two fields. 
 In the construction of a unified theory that requires two-component or four-
component spinors, one must consider that, in addition to ordinary spinors, as one 
employs in, e.g., the theory of electrons (“spinors of the second kind,” according to E. 
CARTAN), there also exist spinors of the first kind (according to CARTAN), whose 
transformations differ by only inversions, and indeed one has: 
 
 ψ → ψ′ = ± aµ γ5 γµ ψ, 
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while: 
 ψ → ψ′ = ± aµ γµ ψ, 
 
resp., under a reflection in a hyperplane that is normal to the unit vector aµ  . 
 If one does not permanently leave aside those extraordinary spinors whose 
corresponding DIRAC equation includes the term γ5 m0 in place of the mass then one 
must also consider such quantities in the presentation of the general theory.  One can also 
form mixed spinors in it, which behave like quantities of the first (second, resp.) kind 
under space (time, resp.) inversion, and conversely [2].  Such mixed spinors correspond 
precisely to the “anomalous” representation of the reflection group that was treated by 
GELFAND, ZEITLIN, and SOKOLNIK [3]. 
 In the construction of bilinear quantities in DE BROGLIE’s spinor theory or the 
unified one, one can employ various spinors, first, of the second kind, as well as mixed 
quantities.  This possibility leads us to bosons that possess extraordinary reflection 
properties.  Let it be remarked that reasoning that is analogous to that of fusion theory 
can also be applied to isotopic spin space.  Since the “anomalous” representation of the 
reflection group does not leave the DIRAC equation invariant, in general, but requires the 
introduction of eight-component spinors, one also comes, in this way, to a possible 
interpretation of isotopic spin space (cf., also the investigations of FESHBACH, 
SCHREMP, and WATANABE).  Similarly, the anomalous spinors do not seem to obey 
the PAULI principle, either. 
 In connection with the theory of fusion, we further remark that according to 
MIRIANASHVILI, the possibility exists of forming bilinear combinations of spinors that 
are pure imaginary.  That is connected with the fact that each of the spinors that enter into 
the product can belong to one of four classes, according to its transformation character 
under inversions of the coordinates and time; in the transformation formulas: 
 

ψ′ = ρs γ4 ψ, 
 

the ρs can assume the values ± 1, ± i, etc. 
 The second direction in which a unified description of elementary particles was 
sought led to the model of bosons that are composite particles formed from two fermions.  
FERMI and YANG were the first to propose that a π-meson was composed of a nucleon 
and an anti-nucleon, between which a force of high intensity acted over an exceedingly 
short distance.  Later on, SAKATA and his colleagues (MAKI and others) started with 
nucleons and Λ-particles; M. MARKOV is also linked with this direction.  In connection 
with this, let us mention the papers of GOLDHABER, in which fermions and bosons are 
based in isospin space; e.g., κ-mesons and nucleons.  A weak point in the original theory 
of composite bosons and other particles is the arbitrariness in the choice of interaction 
energy.  The analogy between fusion theory and the model of composite particles is 
conspicuous (cf., also the WATANABE model). 
 A third group of difficult problems exists in connection with the understanding of the 
gravitational field, which must be treated as the curvature of the space-time manifold, 
according to EINSTEIN’s theory of relativity.  In it, according to FRIEDMANN, the 
geometric structure of the universe is such that all appearances suggest that there is a 
tendency towards the expansion of the cosmos that is expressed in the observed receding 
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of spiral nebulae, even though different kinds of oscillating or contracting solutions are 
also possible.  This first yields the problem of connecting the gravitational field with the 
other forms of matter, and secondly, various questions arise concerning the behavior of 
matter in the hypothetical singular state of highest pressure at the beginning of the 
expansion of the universe.  Up to now, only questions concerning the formation of 
elements were investigated, in that regard.  However, by means of this theory, one must 
be able to understand why there would be such a strong preference for ordinary matter 
over anti-matter in the part of the expanding universe that is known to us.  It is possible 
that there exist other regions of the universe in which anti-particles are present in greater 
abundance than ordinary matter (cf., DIRAC) or particles with opposite “helicity” or 
“screw sense” (cf., LEE-YANG), and perhaps, in turn, there exists a connection between 
expansion and contraction and the preponderance of particles (anti-particles, resp.). 
 As far as the gravitational field is concerned, there exists a fundamental problem in 
proving that there is a free gravitational field, and therefore gravitational waves.  It is 
know that such a field cannot be established experimentally, up to now, and there exists 
disunity amongst the theoreticians regarding its existence.  Some authors − among them, 
INFELD − assert that gravitational waves that transport energy cannot exist; other 
authors cleave to EINSTEIN’s interpretation and lean towards the suggestion that there 
are gravitational waves (DIRAC, PAPEPETROU, WHEELER, et al.).  In any event, one 
must remark that the feeble intensity of any possible gravitational radiation is to be 
understood on the grounds that the gravitational waves do not possess a dipole character, 
but a quadrupole character.  This rests upon the fact that the gravitational potential is a 
tensor of rank two, and not a vector, like the electromagnetic potential.  From that, it will 
be immediately clear that in the known formula for gravitational radiation, which was 
derived in a complicated way, the square of the third time derivative of the quadrupole 

moment of the mass distribution 
2

Q  appears, and not the square of second derivative of 

the dipole moment, as in electrodynamics.  In the event that gravitational waves exist, 
they must, by our hypothesis, be capable of conversion into ordinary matter; e.g., into 
photons, electron-positron pairs, and conversely be produced by the annihilation of them.  
The probability of such transitions is very small, but increases rapidly with the additional 
energy [4].  The presence of such transitions, which must mean something for 
cosmological problems, might lead to an even closer relationship between spacetime 
structure and ordinary matter.  It is known that one obtains the gravitons, which possess 
spin 2 (cf., PAULI and FIERZ), by quantizing the weak gravitational field; their 
exchange gives NEWTON’s law of gravitation (M. BRONSTEIN).  In addition, the 
presence of gravitons must also be considered in the balance of heat, where one ascribes a 
temperature T to a graviton gas and introduces its energy, which is proportional to T4, 
into the stability condition for systems of JEANS type. 
 The examination of the gravitational field is also important for the fact that we 
undoubtedly have an exceptional example of a nonlinear field theory before us whose 
nonlinearity is such that the gravitational field will be generated by all forms of matter, 
and among, them, the gravitational field itself.  The nonlinear character of the field 
equations for the gravitational field makes it possible to derive the equations of motion 
for the particles that generate the field from those equations (EINSTEIN, GROMMER, 
INFELD, HOFFMANN, FOCK).  Up to now, such equations of motion have been 
obtained in the classical NEWTONIAN approximation with certain additional terms; the 
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solution of the problem of deriving the quantized equations of motion from the quantized 
field equations remains reserved for future endeavors. 
 It is appropriate to recall that the success of EINSTEIN’s theory of gravitation creates 
the hope that it would be possible to bring about a unified theory that encompasses 
electrodynamics (WEYL, EDDINGTON, CARTAN, EINSTEIN, et al.) and 
mesodynamics (SCHRÖDINGER).  Except for numerous mathematical generalizations, 
all attempts in this direction have led to no physical results.  Obviously, they were all of a 
quantum character, which, as we will prove later, do not account for a wide variety of 
elementary particles.  Much less successful was the attempt to relate all matter to the 
electromagnetic field, although MIE’s idea of a nonlinear generalization of 
electrodynamics was exceptionally fruitful for physics.  Let it be stressed that in MIE’s 
nonlinear theory, in which no gauge invariance was present, but which proved to be very 
useful for mesodynamics, as well as in the BORN-INFELD theory, the possibility of a 
unified description of fields and elementary particles – in the form of singular points − 
already exists. 
 We do not need to stress to what degree the idea of the Eighteenth − and some of the 
Nineteenth − Century of reducing all phenomena to classical mechanics has proved 
inadequate.  To begin with, the properties of the electromagnetic field – a form of matter 
with vanishing rest mass – cannot be explained by them.  The impossibility of being able 
to reduce the explanation of physical processes to a non-relativistic, non-quantum theory 
of mechanics is therefore obvious. 
 
 

II 
 

ON NONLINEAR SPIN THEORY 
 

 If we now direct our attention anew to the problem of a unified description of all 
known forms of matter – i.e., elementary particles and fields – then, with hindsight of the 
foregoing brief account of the situation, one must obviously start with a nonlinear 
generalization of the DIRAC equation for the spinor field.  The spinorial character of the 
fundamental field comes from DE BROGLIE’s argument and the model of composite 
particles, and the nonlinearity follows from the necessity of introducing the interaction of 
this field with itself, since there is indeed only one form of matter in the unified theory.  
This gives us a starting point in the form of an equation that was suggested by us in 1938 
[5]: 

0 ( )m
xν

ν

ψγ ψ λψ ψψ∂ + +
∂

= 0   (λ = hcl2),  (A) 

 
in which l refers to the “smallest length,” while the remaining symbols have the usual 
meaning; the simplest nonlinear generalization then consists of a term of type ψ3, which 
is obtained from the invariant I1 = 2( )ψψ .  This and other forms for a nonlinear 
generalization of the DIRAC equation are based in the modern unified spinor theory of 
matter, whose development chiefly by HEISENBERG and his co-workers produced the 
most significant progress. 
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 We emphasize that the assumption of nonlinear terms in electrodynamics, as well as 
the field equations of gravitation and spinor theory, represent an example of “original” 
nonlinearity (class A).  Nonlinear terms were incorporated into the basic equation for the 
meson field in an analogous way.  The simplest example is the generalized KLEIN-
GORDON equation: 

∆ψ − 
2c

ϕɺɺ
 − m0 ϕ + λϕ3 = 0. 

 
 However, the iteration of the nonlinear DIRAC equation leads to complicated 
nonlinearities up to terms of type ψ5 inclusive.  Before we turn to the discussion of the 
consequences of the nonlinear spinor equation, we would like to remark that according to 
quantum theory nonlinearities are present in all equations, in a well-known way, as a 
result of the reciprocal conversion processes between fields and particles.  As a first 
example of such an “induced” nonlinearity (class B), one has the nonlinearity in the 
equations of electrodynamics that comes from a process of type e− + e+ ⇌  2γ (cf., 
EULER, KOCKEL, HEISENBERG, WEISSKOPF, SCHWINGER), or also processes of 
type π− + π+ ⇌  2γ  (cf., KURDGELAIDSE).  In an analogous way, the virtual processes 
of the creation of nucleon-anti-nucleon pairs p + p  ⇌  2π lead to nonlinearities in 

mesodynamics (cf., MALENKA, KURDGELAIDSE), which are of type at least ϕ3.  For 
the calculation of such nonlinearities, one can employ either the SCHWINGER method 
of GREEN functions or the method of HEISENBERG and his co-workers, which consists 
of the comparison of a nonlinear LAGRANGE function of general structure with the 
results of the calculation of a concrete nonlinear effect; e.g., the scattering of light by 
light by means of electrons and positrons or the scattering of mesons by mesons by 
means of nucleons.  In connection with that, we refer to the research of M. 
MIRIANASHVILI, who, in generalizing the earlier results of MALENKA and 
KURDGELAIDSE, gave the general form of the nonlinear extension, not for the weak 
case, but for arbitrary interactions, but for slowly-varying scalar, pseudo-scalar, vectorial, 
and pseudo-vectorial meson fields, in a way that is similar to the way that HEISENBERG 
and SCHWINGER obtained the general form for the vacuum LAGRANGE function for 
electrodynamics and scalar meson dynamics [6]. 
 In particular, one gets the vacuum LAGRANGE density in the case of a neutral, 
constant, pseudo-scalar field that interacts with a spinor field: 
 

Lvac. = − 
2 2 21

02
( )2 2 2 2 1/2 2 2 21

3/2, 1 02 (2 ) ( ) [( ) ]m g sm g e W m g sϕπ ϕ ϕ− +−
− −+ + . 

 
In this, W−3/2, −1 is the WHITTAKER function, and ϕ is the function of the meson field; 
moreover, g means the coupling constant, m, the mass of the nucleon, and s0 is the cutoff 
constant.  For a weak field, this yields the previous result of MALENKA and 
KURDGELAIDSE: 
 

vac.L′  = − 
2 2 4

2 4
2 2 2 2 2 2

0 0 0

1 1 1 1
ln 1 ln

8 (4 ) ( )

m g g

c m s m s c m s
ϕ ϕ

π γ π γ
   
− + + −   
   ℏ ℏ

, 
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(γ = eC = 1.78…, C = EULER const), in which the first term was united with the meson 
mass by renormalization and the second one yields an additional nonlinear term in the 
KLEIN-GORDON equation.  Intuitively speaking, it comes from the virtual creation of a 
pair of spinor particles (i.e., nucleons) by mesons and the subsequent annihilation of the 
nucleons with the emission of the mesons.  We remark that the structure of the coupling 
constant 4 3 2/g cℏ  for the nonlinear term comes about quite simply when one specifies the 
distribution of the sources of the meson field according to the THOMAS-FERMI model 
in the ultra-relativistic domain. 
 In addition, we would like to remark that a constant pseudo-scalar field yields not 
only the pseudo-scalar vacuum current, but also a non-zero scalar current that is 
responsible for the coupling between the fields. 
 M. MIRIANASHVILI obtained the following normalized expression for the vacuum 
term in the LAGRANGE density that arises from the coupling to a spinor field for the 
case of neutral vectorial meson dynamics: 
 

L = − F − 2 2 3 2 2 3
2 0

1 Recosh 2
exp( ) ( ) 1 ( )

8 Imcosh 3

gsx
A ds s m s gs I gs F

gsxµµ
π

∞ −  
− − − + 

 
∫ , 

in which: 
F = (1 + C 2

0g ) F0 ,  I = (1 + C 2
0g ) I0 , 

 

g2 = 
2
0

2
01

g

Cg+
,  µ2 = 

2
0

2
01

g

Cg+
,  C = 1 2

2 0

1
exp( )

12
ds s ms

π
∞ − −∫ . 

 
This expression generalizes the previous result of HEISENBERG and SCHWINGER for 
electrodynamics. 
 We obtain a new closed expression for the vacuum LAGRANGE density of a 
constant, pseudo-vectorial meson field (wave function Aµ ) that originates in the coupling 

of a spinor field (i.e., nucleon), and which is useful for not just a weak field: 
 

Lvac. = − 
2 2 21

02( 2 )2 2 2 2 1/2 2 2 21
3/ 2, 1 02 (2 ) ( 2 ) [( 2 ) ]m g A sm g A e W m g A sµ

µ µπ − −−
− −− − . 

 
 
 We now consider the interaction of a DIRAC field χ(x) with another given DIRAC 
field ψ(x) that corresponds to a LAGRANGE density of the form: 
 

L = − 5 5( ) ( ) ( ) ( )g x x x xχ γ χ ψ γ ψ , 

 
for example.  (The precise form of the LAGRANGE density is inessential here.)  
Assuming that ψ(x) is a given field and χ(x) is found in the vacuum state, we then obtain 
the following equation for the GREEN function G of the field χ(x): 
 

(γν pν – g γ5ψ γ5 ψ + m) G = 1, 
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and for the supplementary term in the LAGRANGE density: 
 

vac.
sL ′  = − 2 3 2 2 21

52 0
(2 ) exp[ { ( ) } ]s i m g s dsπ ψγ ψ

∞− − − +∫ , 

 
or, for small values of (ψ γ5 ψ) (in the usual units): 
 

vac.
sL ′  = − 

2 2
2

52 2 2
0 0

1 1
ln 1 [ ( ) ( )]

8

m g
x x

c m s m s
ψ γ ψ

π γ
 
− + + 
 ℏ

, 

 
where s0 is the square of the minimal proper time, which is introduced as a cutoff 
parameter in other cases. 
 We obtain the desired nonlinear spinor equations from this [7]: 
 

i m
xµ

µ

γ λψψ
 ∂− + +  ∂ 

ψ(x) = 0, 

where 

λ = λvac. = − 
2 2

2 2 2
0 0

1 1
ln 1

4

m g

c m s m sπ γ
 
− + + 
 ℏ

. 

 

If we set 0s  ~ 10−14 cm then we obtain the value 10−48 cm3 for λ, which approximates 

the FERMI constant.  In the subsequent approximations, one gets nonlinear terms of 
higher order than ψ3.  In this way, we get supplementary nonlinear terms for the spinor 
equation as induced by the interaction with the nonlinearity that is required by the 
vacuum, and not as original ones that are introduced into the equation on the basis of this 
or that reasoning a priori.  Naturally, the induced and original nonlinearities must be 
combined by the renormalization process, and lead to an (in principle) observable 
nonlinearity constant: 

λ = λ0 + λvac. 
 
 In concluding this consideration of induced nonlinearities, we mention the case of the 
gravitational field [4].  For the sake of simplicity, we take the case of scalar (pseudo-
scalar, resp.) particles that interact with the gravitational field, and write the 
LAGRANGE function in the form of an anti-commutator: 
 

L = 1
4 [ϕ(x), Sϕ(x)], 

in which one has: 

Sϕ = 
2 1 g g

g
x x x xg

αβ
αβ

α β
α β

ϕ ϕ∂ −∂ ∂+
∂ ∂ ∂ ∂−

 − m2 ϕ. 
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 The GREEN function G(x, x′) for a particle, which is defined as the vacuum 
expectation value of the ordered product [T(ϕ(x), ϕ(x′))]0 , where T means the WICK 
(chronological) operator, then satisfies the equation: 
 

S G(x, x′) = 
1

g−
δ(x − x′). 

 
One gets the vacuum value of L from this: 
 

L0 = 1
2  S G(x, x′) | x → x′ . 

 
 Finally, from A. BRODSKI, one has a theorem for the vacuum value of the action 
function, which is connected with the GREEN function: 
 

Wvac. = − 1
2 Spur ln G + const. 

 
This theorem is also true for spin fields when one includes the summation over the spinor 
indices.  For the case in which there is no creation of real pairs, one gets: 
 

W0 = 1
2 0

1 1
exp[ ]exp[ ] exp[ ]( )( )

2 (2 )
d ikx i g S ikx dx dkτ τ τ

π
∞ − − −∫ ∫ , 

 
where τ is the proper time, or fifth coordinate.  If one now goes to the weak-field 
approximation then one obtains an expression that first includes a term that is 
proportional to the action function of the free gravitational field with an infinite 
coefficient.  This divergence will be isolated by renormalizing the coordinates and the 
gravitational charge – i.e., the mass: 
 

m → 

1/ 2

3
2

0

1
1

1 exp( )
2

m
s s ds

c c

κ
π

∞ −

 
 
 
 + ⋅ − 
 ∫ℏ

 m. 

 
Here, κ is the gravitational constant.  The second term also has an infinite coefficient and 
includes the D’ALEMBERTIAN operator.  Its renormalization would be possible only if 
the usual EINSTEIN theory included higher derivatives. 
 If one employs the given expression for the vacuum value of the action function then 
one can calculate the probability for the creation of a pair by the gravitational field and 
other analogous effects.  For the collision cross-section of the conversion of two scalar 
bosons into two gravitons, one gets (1): 

                                                
 (1) It is quite instructive to compare this expression with the known formula for the annihilation cross-

section of an electron-positron pair: σ = 2

0

c

v
rπ  (v ≪  c). 



Ivanenko – Remarks on a unified, nonlinear theory of matter.                        11 

σ = 24p 
2

2
2g

c E
r

v mc
 
 
 

, 

 
in which one has the gravitational radius: 

rg = 
2

m

c

κ
. 

 
 The further development terms in the vacuum value of the LAGRANGE function or 
the action function necessarily lead to nonlinear supplementary terms in the original 
linear equations of the weak gravitational field, precisely as in the case of the 
electromagnetic, meson, or spinor equations.  When one starts with the linear equations 
for the weak gravitational field, whose quantum has rest mass zero and spin 2, one then 
necessarily arrives at nonlinear generalizations in which the nonlinear terms are generally 
induced by the vacuum, independently of the equations of the original nonlinearities that 
are introduced by the general theory of relativity. 
 We now go somewhat more rigorously into some questions in nonlinear spinor 
theory, whose starting point, as we have shown, was equation (A).  The next problem is 
the presentation of all possible nonlinear supplementary terms in the spinor equations or 
corresponding invariants of the form ψ4 that contain no derivatives.  For this, we start 
with the expression that describes the interaction of arbitrary fields.  As a foundation, one 
can intuitively take the known expression ( )( )F N i P i eg νψ ψ ψ ψΩ Ω  from the theory of β-

decay; gF is the FERMI coupling constant.  If one assumes all spinors to be equal here 
then one gets the desired five types of nonlinear invariants, since one can choose Ωi to be 
a scalar, a pseudo-scalar, a vector, a pseudo-vector, or an anti-symmetric tensor of rank 
two.  In addition, one can also introduce invariants that one obtains, intuitively speaking, 
in such a way that one could identify all spinors with each other (nonlinear “contraction”) 
in the four fermions in the interaction terms, which do not conserve leptons or baryon 
charges under β-decay.  In this way, we obtain the following combination of nonlinear 
invariants [4]: 
 

2 2{ [( ) ( ) [( ), ( )] [( ), ( )] }T T T
m m m m m m m m m

m

g g g C Cψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ+ +′ ′′Ω + Ω + Ω Ω + Ω Ω∑ . 

(B) 
 
In this, T

mΩ  is the quantity that is the transpose of Ωm .  As PH/ LERUSTE has 
emphasized, there are some relations between the various invariants of the non-quantized 
theory that were presented by DE BROGLIE, PAULI, KOFFINK, and TAKABAYASI: 
 

JS – JPS = JV = JPV ; JS + JPS = JT , 
where: 

JS = 2( )ψψ ; JV = 2( )µψ γ ψ , 

etc. 
 We shall now briefly pause to examine the further stages in the development of the 
nonlinear spinor theory and chiefly address the thorough papers of HEISENBERG and 
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his co-workers; in particular, the overview of 1957, the presentation to the congress in 
Padua-Venice in October 1957, and the contribution to the PLANCK celebration in 
Berlin and Leipzig in April 1958 [9]. 
 Once we have presented a fundamental generalization of the DIRAC spinor equation, 
the next step consists of a cancelation of the mass term in (A) and the proposing of the 
thus-altered nonlinear equation: 
 

( )
xµ

µ

ψγ λ ψψ ψ∂ +
∂

 = 0  (λ = ℏ cl2)   (C) 

 
as the fundamental equation of matter whose quantization should lead to values for the 
particle masses (HEISENBERG).  In order to choose the possible nonlinear 
supplementary term, one poses further requirements (e.g., isotopy invariance, etc., cf. 
infra) in place of the original pure-scalar term in (A), with the help of (B).  The third step 
consists of an introduction of the new HEISENBERG quantization rules with the help of 
an indefinite metric in HILBERT space.  The modified commutation relations lead to 
vanishing values of the anti-commutator on the light-cone; that would be in agreement 
with the solution of the general nonlinear equation.  The introduction of an indefinite 
metric into HILBERT space that was already proposed by DIRAC generally requires 
additional analysis in order to exclude states with negative norms.  In connection with 
this, we direct our attention to an attempt by GUPTA and BLEULER to impose an 
additional condition on the vector components in HILBERT space II that would 
guarantee that these states would make no contribution to the expectation values of 
observable quantities.  On the other hand, when HEISENBERG used real states from 
HILBERT space I for t = − ∞, he showed that the chosen commutation functions 
guaranteed the presence of only physical real states also for t = + ∞ .  To that end, N. N. 
BOGLIUBOV and his co-workers have decomposed each state amplitude into a physical 
and a non-physical part F, the latter of which is determined uniquely from the physical 
part with the help of the additional condition F(− ∞) = − F(+ ∞).  This boundary 
condition has a non-local form.  Thus, we arrive at a non-local theory whose elements 
also appear in HEISENBERG’s variant of the theory as the mean in the neighborhood of 
the light-cone.  A similar smearing of the light-cone leads, on the one hand, to the 
interesting problem of describing the internal structure of elementary particles, and on the 
other, to the problem of the structure of space and time in very small dimensions. 
 It is known that HEISENBERG and his co-workers obtained a finite value for the fine 
structure constant (α = 1 /267) by approximate integration of the nonlinear spinor 
equation (C) on the basis of the new, altered commutation relations, as well as finite 
values for the masses of the free fermions (i.e., nucleons) (κ = 7.426/l) and the masses of 
four bosons that represent higher excited states of the world spinor field: 
 

κl = 0.33, 0.95, 1.74, 3.32. 
 

 In this connection, we would like to refer to some exact solutions of wave type of the 
nonlinearly generalized KLEIN-GORDON and DIRAC equations that were obtained by 
KURDGELAIDSE [10] with the help of elliptic functions.  For example, the equation: 
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− 
2

2
02

k
xµ

ϕ ϕ∂ +
∂

 + λϕ3 = 0 

has the solution: 
ϕ = ϕ0 cn(σ + c), σ = kµ xµ , kµ = (kn , k4 = i ω), 

 
− 2kµ  = − k2 + ω2 = 2 2

0 0k λϕ+ . 

 
In addition, we have derived radially-symmetric exact solutions for some nonlinear 
equations.  For example, the equation: 
 

ψ″ + 
3

s
ψ′ + λψ3 = 0,  ψ = ψ(s), s = 2xµ  

has the solution: 
 

ψ = 
2
1

122 2
1 00 1

21 1
cn ln ( )

2 1 2 1

k s
K k

k ss kλ

 
 +

−  − 

, 2
1k  = 

2
0

2 2
0 0

1

2 k

λϕ
λϕ+

, 

 
where s0 is an arbitrary constant, k1 is the modulus of the elliptic function, and K(k1) is an 
elliptic integral of first order. 
 One can employ the last solution for the construction of characteristic, singular 
functions in the neighborhood of the light-cone: 
 

∆(s) = 
2

0

2
0 0

1
1

4
s

s

ssλ →

   +  
   

. 

 
 It is interesting that we arrive at exact solutions for the fundamental and very-closely 
related nonlinear equation that are apparently analogous to the ones that HEISENBERG 
obtained by approximation methods. 
 On the other hand, we can use the exact solutions of wave type of the nonlinearly-
generalized KLEIN-GORDON equation to express the energy H and impulse of the field 
as a sum of quantities that are connected with the individual components. 
 We obtain: 
 

H = 
2 2

2 2 4
02

1 1 1

2 2n n

k
x c x

ϕ ϕ ϕ λϕ
    ∂ ∂ − + +    ∂ ∂     
∫ (dx) = a 

2 2
0k K

ω
+

 (n = 1, 2, 3), 

 
in which: 

 a = 2
0

1

2
lϕ ω , 2

0K  = 2 2
0 0

1 1

2
k

l
λϕ + 

 
, 

 



Ivanenko – Remarks on a unified, nonlinear theory of matter.                        14 

 l = 2 1
1 2

1 1

( )2 1
2 (1 ) 1

3 ( )

E k
k

k K k

   − − −  
   

. 

 
(l = 1 in the linear case.)  E(k1) is a second-order elliptic integral. 
 If we now set the energy of the field equal to the mass 0k  of the bosons for vanishing 

rest-mass, so k0 = 0, as well as k = 0, then it follows that: 
 

2
0ϕ  = 

0

2

k
, λ = 3

0k . 

 
If one substitutes the spectral development of our wave solutions: 
 

 
0

ϕ
ϕ

 = 
0

cosn n
n

a σ
∞

=
∑ , σn = (2n + 1) β(λ) σ = ( )nkµ xµ , n = 0, 1, 2, … 

 

 β(λ) = 
1

1

2 ( )K k

π
, an = π 

1 1

1 1

( ) cosh nk K k ρ
⋅ , 

 

  ρn = (2n + 1) ρ0 , ρ0 = 1

1

( )

2 ( )

K k

K k

π ′
 

 
then one obtains, after some regrouping: 
 

 H = 
2

2 ( )20
0 0

00 0

1

2
nn

n

K a
M

k a
ϕ

∞

=

   
   
   

∑ , ( )
0

nM = (2n + 1) (0)
0M  , 

 

 (0)
0M  = 

4

0

( )
3

4
k

β λ 
 
 

 ~ 0.36 0k , 

 

 K0 = 2
0(2 2 )a  = 7.29 0k . 

 
 If one employs such coarse − so-to-speak, even “semi-classical” − quantization 
methods then one obtains a mass spectrum for the mesons from them that, according to 
KURDGELAIDSE, is similar to the spectrum that was given by HEISENBERG: 
 

0.36, 1.08, 1.80, 2.52, 3.24, 3.96, … 
 

 The last step in the construction of a unified, nonlinear, spinor theory is connected 
with the consideration of the isotopy properties of particles.  In that, first and foremost, 
the SALAM-TOUSHEK [2] group: 

ψ′ = ψ 5ie αγ  
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plays a role.  According to the theory of E. NOETHER, it does not correspond to the 
conservation of a vector, like the cyclic group ψ′ = ψ ie α , but a pseudo-vector, and thus a 
new “charge” appears.  In the final analysis, this conservation law is apparently 
connected with the conservation of baryon number.  In addition, one has the PAULI 
transformation group: 
 

ψ′ = a ψ + b i γ5 ψ c,  | a |2 + | b |2 = 1, 
 

i γ5 ψ c = − b*ψ + a* i γ5 ψ c. 
 

In this, ψ c is the wave function that is the charge-conjugate – or better, anti-particle 
conjugate.  As one easily sees, this group is an isomorphic spinor representation of the 
rotation group, and, as GÜRSEY [11] first showed, can be compared to a rotation in 
isotopy space. 
 This now raises the problem of choosing from the previously-given nonlinear 
invariants (B) the ones that not only satisfy the condition of LORENTZ invariance, but 
which are also invariant under the PAULI and SALAM-TOUSHEK groups.  Here, one 
can add the condition of invariance under spatial reflections and particle-anti-particle 
conjugation, as well as the condition of the vanishing of the nonlinear supplementary 
term for the two-component neutrino.  As a choice of invariant, we, with A. BRODSKI, 
introduce the eight-component spinor: 

Ψ = 
5

ci

ψ
γ ψ

 
 
 

. 

 
Under LORENTZ transformations, it transforms with the matrices γµ × E2 , and under 
PAULI transformations, with the matrices E2 × i ρi .  In this, the ρi are the usual PAULI 
matrices, and E2 and E4 are unit matrices.  We introduce seven anti-commutating 
matrices Γr (r = 1, 2, …, 7): 
 

Γµ+1 = γµ × E2   (µ = 0, 1, 2, 3), Γi+4 = iτ  = i γ5 × ρi . 

 
In order to be able to compare the PAULI transformations with the rotations in isotopic 
space, we write down the eight-component spinor in a form in which, from 
FEYNMANN, exhibits each particle as a two-component semi-spinor [12]: 
 

Ψ = 

5 5

5 5

(1 ) (1 )

1

2

[(1 ) ] [(1 ) ]c c

i i

i i

γ ψ γ ψ

γ ψ γ ψ

+ + −

− − +

 = 

p

n

c
n

c
p

ψ
ψ
ψ
ψ

. 

 
The matrices Γi+4 = iτ  = i γ5 × ρi then refer to a transformation in isotopic space, where 

the isotopic two-component spinor is composed of a proton-anti-neutron (anti-proton-
neutron, resp.).  It is interesting to establish that a reality condition is true, namely: 
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Ψc = C Ψ* = Ψ. 
 

We then prove that is it desirable to examine nonlinear spinor theories from the 
standpoint of FEYNMANN’s two-component theory of fermions.  If one starts from the 
FEYNMANN variant of the theory of β-decay and identifies all spinors with each other 
then one gets only the square of the vector and the square of the pseudo-vector for the 
possible nonlinear invariants.  If we return to the general case of the choice of nonlinear 
invariants that are the various restrictions of the four-component, second quantized theory 
then when we limit ourselves to just the invariance under the LORENTZ group, PAULI 
group, and SALAM-TOUSHEK group, we obtain just one nonlinear invariant in the form 
of the square of the pseudo-vector [7].  However, if one adds the condition here of the 
vanishing of the nonlinear supplementary term for the two-component neutrino and the 
invariance under operations of spatial reflection and charge conjugation (which one can 
indeed link with reflection in isotopic spin space) then one obtains a sum of squares of 
vectors, pseudo-vectors, scalars, and pseudo-scalars. 
 HEISENBERG and PAULI have derived the isomultiplet distribution by considering 
the isotopy properties of particles.  In it, for example, the hyperons were constructed with 
the help of a representation of the form ψ 3, in close analogy with the model of composite 
particles in the theory of fusion.  In the nonlinear case, however, we have made a certain 
advance, in that the interaction of free “world-spinors” with themselves enters into the 
theory. 
 We further mention the interesting research on the nonlinear theory of elementary 
particles by DE BROGLIE, who regarded particles as nonlinear structures whose motion 
obeyed the usual linear equations, as well as the papers of VIGIER, BOHM, and 
TAKABAYASI, which sought to develop a purely classical relativistic, hydrodynamical 
spinor theory of matter.  However, in my opinion, the strong invariance demands in this 
variety of theory must, in the final analysis, necessarily lead to the fundamental nonlinear 
spinor equation that was examined above. 
 In summary, one can say that the nonlinear spinor theory of matter has already 
arrived at many interesting results up to now, and today can apparently represent the 
single unified description of all elementary particles.  On the other hand, the nonlinear 
spinor theory is still very far from its terminus.  The values obtained by it for the masses 
and charges are still far from exhibiting a quantitative agreement with the experiments.  
We shall not go further here into the objections that were recently raised by PAULI, 
TOUSHEK, and FIERZ, but mention only that the theory of the description of the 
gravitational field is one of the most important problems.  A possibility for the treatment 
of gravitation might be the introduction of covariant derivatives of the spinors in place of 
the usual ones into the kinematical term of the nonlinear spinor equation, which is, in 
turn, similar to what we did with FOCK in our earlier papers [13] on the DIRAC theory.  
On the other hand, it would be desirable to regard the gravitons as particles of spin 2 in 
the fundamental nonlinear equations, precisely like the other particles. 
 However, even after successfully solving the difficult gravitation problem, some 
important cosmological questions would still remain.  Be that as it may, we are 
eyewitnesses to the start of a new period of development in physics, in which the 
structure and the interaction of elementary particles will be investigated by the 
introduction of a new universal constant of the type of a nonlinear self-interaction 
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constant λ = ℏ cl2, or a minimal length.  On the other hand, the exceptionally fruitful 
period of physics that began with the discovery of the quantum of action by MAX 
PLANCK and lasted for almost a half-century is, to some extent, concluding. 
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