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4.
On thetheory of the calculus of variations
and differential equations.

(By Prof.C. G. J. Jacobin Konigsberg in Pr.)

(Excerpt from a paper on the same topic that was peztent29 November 1836 to Herrn ProfedSioke
Secretary of the mathematical class of the Acaddr®gience in Berlin.)

Translated by D. H. Delphenich

It is my intent to fill a large and essential gaghe calculus of variations. Namely,
in the problems of the greatest and smallest that dependtaalculus of variations,
one can give no general rule by which one could recognizether a solution was
actually a greatest, or a smallest, or neither. dddene recognizes that a criterion for
that would depend upon whether certain systems of ditiafesguations have integrals
that remain finite over the entire interval over whtbe integral that is supposed to be a
maximum or minimum is extended. However, one canndtthese integral themselves,
and can in no way discuss the situation of whetherkmows if they do or do not remain
finite inside the given limits. However, | have remarkieat this integrals will always be
given when one has integrated the differential equatafnthe problem — i.e., the
differential equations that must be fulfilled in order the first variation to vanish. If
one has obtained expressions for the desired functionstéyrating these differential
equations that contain a number of arbitrary constdma their partial differential
guotients with respect to those arbitrary constants wikk ghe integrals for the new
differential equations that one must integrate in ordeddtermine the criterion for
greatest and smallest.

In order to consider the simplest case, let thergimeegral bej f (x, y,%jax; y

of

will be determined by the differential equatie?——d@%l = 0, in which we have
y X

substitutedy’ for ? The expression foy that is given by integrating these equations
X

will include two arbitrary constants that | woulld to calla andb. If w= dy, w' =0w/
ox then the second variation will be:
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and in order for this to be a maximum or minimum, it wiobi necessary f@¢f / dy'? to
always have the same sign. However, in order totlgeetcomplete criterion for the
maximum or minimum, one must still know the complexeression for a function that
is required to satisfy the differential equation:

o%f (9%f av) [ a*f Y

_ | —+— = +Vv |

ay>| ay* ox oyoy
one can see this ibagrange’stheory of functions oDirksen’s calculus of variations.
(Ohm'’s calculus of variations is not precise in that theory.pow find the complete

expression fow as follows: Letu = a +,[>’— n which ? % mean the partial
a

differential quotients oy with respect to the arbltrary constaatd that enter intg, and
a, B are new arbitrary constants, so:

_ (0 ,10% au
v=- += —
dyoy u 0y?ax

will be the desired expression farwhich will contain an arbitrary constait a.
The case in which higher-order differentials enter uritlerintegral sign is more

difficult. Let jf(x, y, ¥, Y)0x be the expression that must take on a maximum or a

2
- ? = % soy will be the integral of the
X

minimum, in which, once moreg/

differential equation:

o o
I o v Y =,
oy ox ox

which contains four arbitrary constamtsas, az, as . If, once moredy =w, oy =w, o"
=w' then the second variation will become:
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In order for this to be a maximum or m|n|mU|cc;)(2|),/T2 must always have the same sign.

However, in order to get the complete criteriong omust integrate the following system
of differential equations, as one can see ft@agrange’stheory of functions:
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The three functions, v, andv; are determined from these three first-order differéntia
equations, which present a truly daunting sight, and whoslete expression must
contain three arbitrary functions. | have found tigeineral integrals, as follows:

Let:

dy  dy ay ay _ oy, 5 9y 6y
u=a—+a—+a,—+a,—, Up =
da 0a ‘da 0a ' '8 '81 03 '82 da, '83 oa’

or letu, u; be linear expressions in the partial differential quusieofy with respect to
the arbitrary constants that it contains. The ewginistantsr, ;1, a», as, G, B, [, B are
not taken to be entirely arbitrary, but a certain @ must exist between the six
quantitiesaf — a1, al — a5, afs — asf5, a5 — s, a5 — anf5s, anf5 — apAthat are
composed from them, although | would not like to go i@t in detail here. Thus, the
general expressions foyvi, v, that | have found will be the following ones:

o, o
azf _62f E ax ulaxz

Vo, =-— ,
© 7 oyoy ay? 0y, 0u
U
0X [6)4
du 9°u, du, 9°u
v == OF O ox 0xt  ox 0¥
ayayr ayrz auz Ul% ’
6x

u62”2—ul62 j[au u, du, j

oy, 9*f  0%f ox X Jlax axX dx 0X
ax oydy oy> du,  du '
( X ulaxj

Since one identical equation exists between the six dgesntis, — a1, etc., in
addition to which, one condition is given betweemthand only their ratios enter into
the expressions for, vy, Vo, they represent the effect of three arbitrary canistavhich
was desired.
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The general theory, in which one includes differentiig up to any order under the
integral sign, will be derived with no difficulty from remarkable property of a special
class of linear differential equations. Thes&-Brder linear differential equations have
the form:

2 3 " n n)
0=pys JBY DAY OTAY AV
ox X ax ax

in which y(m) = o7y andA, A, etc., are given functions af If y is any integral of the

S

equationY = 0, and one sets=ty then the expression:

OfAY 0*TAY O[AY "AY" ) _
y( ox ¥ X ¥ X et oxX j—yU,

. . o"u . . . . .
in which u™ = Fk will become integrable; i.e., one can give its integvithout
X

knowing t, and that integral will again have the formYfexcept thah is 1 smaller;
namely, one will have:

" 2 " n-1 (n)
Jyuax:Bf+ OBY (Bt +"'+ML”__1J’
0X 0 ox

in whicht vk and the function8 can generally be given in terms wfand the
X

functionsA and their differentials. The proof of this theoreragamts no difficulty. |
have found the general expressions for the functirier the application that we have

posed, it will suffice to just prove thz{t yUodx has the given form, without it being

necessary to know the functioBghemselves.
The metaphysics of the results that were found, ifightnappeal to a French
expression, rests upon roughly the following considerati@desis known, one can give

the first variation the forrerdyax, in whichV = 0 is the equation to be integrated.

The second variation thus takes the fofrﬂv oyox. If the second variation is to not

change sign then it must not be capable of vanishindheoequationdV = 0, which is
linear in dy, can have no integraly that fulfills the conditions thaty is subject to
according to the nature of the problem. One sees f@that the equatiodv = 0 plays

a key role in this investigation, and in fact, one soongeizes its connection with the
differential equations that must be integrated forctiiterion of max. or min. In addition,
one sees immediately that a valuedgithat fulfills the differential equatiodVv = 0 will

be that partial differential quotient of with respect to which one of the arbitrary
constants is taken that inclug@s an integral of the equatid= 0. One will then obtain
the general expression for the integdglof the differential equatio@dVv = 0 when one
defines a linear expression with all of those partiiedintial quotients. However, the
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equationdv = 0, whose integrals one knows in that way, can, ascan see, be brought
into the form of the equatiovi= 0 above when one writey for y in it, and by means of
the given properties of that kind, arrives at equatibas transform the second variation

j oV dyodx into another expression by continued partial integratlmat contains a

complete square under the integral sign that is justtrdresformation of the second
variation that one has thus hoped to achieve. If, etlge, integral above

j f(x,y,Y,Y)0x is given, and one preserves the given meaning afd u; for this
case, therV will take on the form:

5= 5+ ORI L OTASY
ox ox

and one will havedv = 0 for dy = u. If one setsdy = u d'y then, from the general
theorem above, one will get:

jé\/dyax:juévé’yax
= (Bﬂy+wj5y—j(85 y+wj5 \0 .
0x 0x

If one now sets the last integral equaljt(vlé’yax then the equatiolv; = 0 will be

fulfilled when one set®’'y=u; /u, soo’y’= M One then continues to use the
u

same method when one séty’'= w "y, with which, by the same theorem:
u

[vioyox= j\/l(uul;—zulujé”yax =Caym'y’- [ C(@"y)*ox,

and in the last transformation, the arbitrary w@maenters under the integral sign only as

" 2
a square. One easily sees, moreover,Bhatu® Ay, C = (wj B1, and thusC =

u
" 2
(Mj A

u
z . . 9°f L
Furthermore A; = W so C will always have the same sign %31—2 which is

always positive for a minimum, but must always legative for the maximum. As is
known, one must now examine whetf&y’cannot become infinite between the limits of
the integration, where one will be put into thasifion when one knows the functions
u;, which one will know as soon gsor the complete integral of the equatdr= O is
given.
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If the analysis that was suggested in the foregoing exjuather deep speculations
into integral calculus then the criterion that isided from them of whether a solution
gives a maximum or a minimum at all becomes very @mpwould like to consider the
case in whicly, along with its differentials up to th&", are present under the integral
sign, and the boundary valuesyof/’, ..., Y™ are given, along with the boundary itself.
If one substitutes these boundary values in theinegral equations, with theirn2
arbitrary constants, then the arbitrary constants determined. However, because the
solution of equations is necessary for that, therebeil as a rule, several ways of doing
that determination, such that one will get several cuthat obey the same boundary
conditions and the same differential equation. If bas chosen one of them then one
will consider the one boundary point to be fixed, and gmfibto the following point
along the curve. If one takes one of these followingtpdo be the other boundary point
then, from what was said above, it will be possibledioe to lay other curves through it
and the first one, for whicy, ..., Y™™ will have the same values at these two limits, and
which will satisfy the given differential equation. Wpas long as one arrives at a point
when one proceeds along the curve for which one of ther otirves coincides with it
(or, as one can also say, comes infinitely closé)tat iwill be the limit up to which, or
beyond which, one cannot extend the integration if aneoifind a maximum or

minimum. However, when one does not extend the iategp to these limits, a
2

: - . : 0°f
maximum or a minimum will always be found if one asesrthatW always has the
y

same sign between the limits.

In order to make this clear with an example, | wolké tio consider the principle of
least action for the elliptical motion of a planet.

As Lagrangebelieved, the integral that is considered in the priaagb least action
can never be a maximum. However, it will also inway always be a minimum, but
certain restrictions on its limits would be necesgarythat, which would be given by the
general rule above, failing which, the integral would ibeee a maximum or a minimum.
The planet (Fig. 1) begins to move franwherea lies between the perihelion and the
aphelion. Let the other endpoint bgif 2A is the major axis thehis the Sun. As is
known, one will then get the other focal point of thigpsé as the intersection of two
circles that are described by the centeendb and the radii 2 — af, 2A —bf. The two
intersection points of the circles give two differenlusions of the problem that can
coincide in just one only when the circles contact; ihenab goes through the other
focal point. If one then draws the chord of the edlipa’from a through the other focal
point of the ellipsd’then as a result of the given rule, the other lpaint b must lie
betweena anda; if the ellipse is to actually make the integral tlgatonsidered in the
principle of least action become smallestb falls upona; then the second variation of
the integral can indeed not become negative, but 0, satlhthvariation of the integral
can be of the third order, and this positive, as welleagtive. If the starting poiatlies
between the aphelion and the perihelion then the readtpointa’ will be determined by
the chord of the ellipse that one draws frathrough the Suh Thus, ifa anda’ (Fig. 2)
are the limit points then one will obtain infinitelpany solutions of the problem by
rotating the ellipse aroundfa’. Thus, if the second limit point in the latter cédiss
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abovea’then it will give acourbe & double courbureetween the two given limits, for
which j vas will be smaller for the ellipse.

I would like to take this opportunity to say a few words aliba variation of the
double integral, whose theory is capable of taking on gred¢gance than it already has
from the work ofGaussand Poisson In order to give a presentation of the kind that
would seem appropriate to me in order to express the wariafithe double integral, |

would like to assume the simplest case, in which anmsidersdﬂ f(XYy,2 p 0o\,

wherep =0dz/0x, g =0z / dy.
Letw be the variation of, so one will have:

5H6x[@yf—”'6x®y(gfz Lo gw, of %}

dp dx dqad

The method that is applied to simple integrals =tef dividing the expression under
the integral sign into two parts, one of which igltiplied by w, while the other of which

is the element of an integral. The former musséeequal to zero under the integral if
the variation is to vanish; the latter can be iraéed, and one can let its integral vanish. |
then divide the expression under the double sitgm anpart that is multiplied by and
another one that is the element of a double intetlpat is, ifu = awthen | set:

af af W afE?_ augal/ auE?_

az ap o0x 0qady ox 0y dy 0Xx
- ow ow . .
If one compares the terms that are multlplled/\/oya—, v then one will obtain:
X oy

o _,,0a0v_daQv of _ v of v

’ - a—
0z ox 0y dy 0Xx ap ay 0q ox
from which it will follow that:

x a) o
Az p)__\oa)

0z 0X ay

which will give the known partial differential eqiian when it is set equal to zero that is
derived here in a completely symmetric way. Thecfionv must fulfill the equation

ﬂﬂ+ﬂd’l = 0. If one seté& = 0 then one will have:
op 0x dqg dy

5jj oxay f = jj axay[@@"—ﬂ‘&@’j :j ovau,

0x 90y 0y 0X
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which must vanish when it is taken at the given limifghenz is given at the limitsw
will vanish at the limits, and thus=w, as well, and therefore one will ha%dvauz 0.

If the limiting values oz are completely arbitrary thenmust vanish at the limits, or\f
= 0 means the limit curve then the arbitrary functitimast enter into the integral of

equationA = 0 will be determined such thgﬂ+ﬂﬁl =0, etc.
op 0x dq dy

Let us get back to the maximum and minimum. It is uofeate that so much
confusion arises in the use of those words. One Saysn expression be a maximum
or a minimum” when one would like to say merely tisitvariation vanishes, regardless
of whether a maximum or minimum is present. One:sdgtsa quantity be a maximum”
when one would like to say only that it is not a minimuThat is whaPoissonsaid in
his mechanics: For closed surfaces, the shortest éitveeln two given points can be a
maximum, regardless of whether one understands thme#ém that one can make a long
path even longer by bends that can be infinitely smalimittedly, the shortest path
gives a relative minimum when the condition thapased by my general rule above is
fulfilled, namely, that there do not exist two other peialong the curve between the two
endpoints, between which, one can draw a second in§intklse shorter curve.
However, in other cases, the length is not a maximum, either a maximum or a
minimum. | have proved that the shortest line reisllg shortest line between any two
points of a surface that has two opposite curvaturescht @int.

The investigations that were suggested above on the arnitkmiothe greatest and
smallest in the isoperimetric problem fill an essdrgap in one of the most beautiful
parts of mathematics; in addition, they are noteworthyhe integral calculus that is
applied in them. However, the following investigatiovisuld be more far-reaching in all
of science, so | shall allow myself to give a bheft of them.

Hamilton has shown that the problems of mechanics in which theofavis vivais
true can lead back to the integration of a first-orderigadifferential equation. He
actually required the integration of two such partiafledéntial equations; however, one
easily shows that it suffices to know any completegral of one of them. One also
extends his results easily to the case in which theeféunctions — i.e., the function
whose partial differential quotients give the force Aatams time explicitly. The law of
vis vivais not true for that case, but the principle of leaton still is. It seems as if less
can be accomplished by this conversion to a partial difte&al equation, since from
Pfaff's method in the treatises of his Academy (and up to now,kmows nothing else
about the integration of first-order partial differehtequations in more than three
variables), the integration of the one partial diffélsdrequation to which the dynamical
problem comes down is much more difficult than thegragon of the system of the
originally-given, ordinary differential equations of nasti In fact, if, as one can do with
no difficulty, one extend$lamilton’s investigation to all first-order partial differential
equations then it will be, conversely, a meaningful discpin the theory of first-order
partial differential equations that they can always beverted to the integration of a
single system of ordinary differential equations, wtfktaff's method did not succeed in
doing, up to now. That can be important for the integnatif the differential equations
of mechanics themselves only when one confirms thadytstem of ordinary differential
equations to which the first-order partial differential ¢epres come down is capable of a



Jacobi — On the theory of the calculus of variationsdifferential equations. 9

special treatment that distinguishes them from othiéerdntial equations. Whether or
not Hamilton sought to make many applications of heawv methodsas he called them,
nothing has been said of them since then, and thenmedoessential use of his remarkable
theorems has been made, either. However, inlfagrangealready remarked about the
first-order partial differential equationstinreevariables that he restricted himself to, and
whose integration belongs to his most beautiful and catletbdiscoveries, that when one
knows one integral of the system of three first-order ordinaiffedential equations in
four variables into which the problem has been convediethat one must integrate are
two first-order differential equations, each of which iswo tvariables. However, in
general, one would have to integrateegonderder differential equation in two variables
that one can thus always reduce to first order fot #peecial system of ordinary
differential equations. If the first-order partial @iféntial equation in three variables
does not contain the unknown function itself, but atdytwo differential quotients, then
one will have only two first-order differential equatiom three variables to integrate,
and if one know®ne integral of them then, frohagrange’smethod, one must perform
only two quadratures, while, in general, there would stilbhe first-order differential
equation to integrate. The latter case occurs in nmicdiaviz., the first-order partial
differential equations to which the dynamical problem redumever contain the
unknown function itself. Thus, one can already deduceesoew, most remarkable,
theorems fronLagrange’sprocess for three variables. Namely, it followsnirg in a
completely general way that when any problem of mechkafic which the law ofis
vivais true depends upon a second-order differential equatiminpne knovoneintegral
from that law, such that the problem comes down to mbegration of a first-order
ordinary differential equation in two variables then @wae always integrate the latter;
i.e., one can find its multiplier by a general, wellidedl rule. One such mechanics
problem is — e.g. — the motion of a body in a plane halrawn between two fixed
centers. Euler found a second integral for it, in addition to this vivg with ease;
however, the first-order differential equation to whichaneved was so complicated that
his great dauntlessness was shown by the fact that hesaddrthe integration of it, and
his success in that endeavor belongs to his most ceddbmasterpieces. However, this
integration was achieved by means of the aforementigeedral rule with no further
artifices. Maybe half a year ago, | lectured to thesPacademy on formulas that relate
to the case of the free motion of a point in a plaviech generally reduce the problem to
guadratures when one knows another integral besidessthiva These formulas can be
immediately extended to the motion of a point on a gsueface.

However, in order for an application of these comstions to more complicated
systems to be possible, it is necessary to extagdange’smethod for the integration of
first-order partial differential equation in three vates to any number of variables.
Pfaff, who saw that as being connected with insurmountabledest felt that on that
basis, one should abandon that method entirely. Hesidered the problem to be a
special case of a much more general one whose fortaaktigon belongs to the most
important ways by which integral calculus has been badc However, the problem of
the integration of first-order partial differentialwegions admits some simplifications in
comparison to the general problem tR&ff considered that escaped him, and which he
could not find using his methods. | have succeeded in remowrgjfticulties that stand
in the path of the generalization bagrange’smethod, and have thus founded a new
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theory of first-order partial differential equations my number of variables that offers
the most essential advantage for their integrationfiadd immediate application to the
problems of mechanics. The following comments mighicaifiere.

First-order partial differential equations and the ismpetric problem, in which, the
differential quotients of the unknown functions appeaader the integral sign only up to
the first order, depend upon the same analysis, such teay such isoperimetric
problem can also be regarded as the integration of tofler partial differential
equation. Among these isoperimetric problems, one canaaldress ones in which the
expression that must be a maximum or minimumr, more generally, whose variation
should vanish— are given, not as an integral from the outset, but Hyrs&order
differential equation. Conversely, one can also approlae integration of a first-order
partial differential equation as such an isoperimetrobl@m. As a result of the principle
of least action, the motion of a system of mutualtyaating bodies can be considered to
be an isoperimetric problem of the stated kind, which @asulbject to parallel forces, in
addition to forces that are directed from fixed or mgwtenters, provided that the bodies
of the system do not react to the last center, amdnibtion will be assumed to be
otherwise known. Thus, such a mechanical problem caayalbe posed as the
integration of a first-order partial differential equati as well. That integration will
depend upon that of a system of ordinary differential eguahat agrees with the known
differential equations of mechanics, but certain sifiggliions will be possible, as they
are for a first-order partial differential equation. Mgy, one can arrange that every
integral that one finds represents the effectwaf integrations by a special form of the
procedure and a special choice of the quantities thaintoeluces as variables. In order
to make this clearer, | would like to say that a syspéuhifferential equations has order
when one can convert it into af-order ordinary differential equation in two variables
by eliminating the remaining variables. For first-ordettiphdifferential equations that
do not include the unknown function itself, but only its @drtiifferential quotients, as
well as for the isoperimetric problems of the stated kin which the expression whose
first variation should vanish is given as an integrat] #verefore, also for the stated
mechanical problems, the course of operations to beauseand the advantage that one
gains by it, can now be given as follows: Let the systé¢ ordinary differential equations
upon which the problem depends be of order ®ne knows an integral of it, so the
problem can be converted into a system of differential texpnsaof ordern — 2 by a
certain choice of quantities that one introduces aabas. If one further knows another
integral of that system then it can be converted angystem of orderr2— 4 by a new
choice of variables, and so on, until one no longeramysdifferential equations left to
integrate. All of the operations in addition to thee®rihat are performed are merely
quadratures. For the sake of clarity, | remark thatl lacaéquatiord = a anintegral of a
system of ordinary differential equations whens an arbitrary constant that does not
enter intoU, andU is an expressions such that the differential expreskiowill become
zero identically when one uses it.

As an example of the general method, | take a mediapioblem that |1 have
already had the honor of presenting to the Academypireaious paper. Namely, there
are cases in the motion of heavenly bodies — such.@s,tlee Moon or a comet that
passes close to Jupiter — in which one is so far fraptielmotion that one can establish
no process of approximation for the integration of tieemntial equations of motion
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that would have any scientific value. It is therefofegeat importance to find other
motions that are capable of a simple treatment andbetter approach the case of nature.
For this, one can attempt to choose the motion o&sshass point that is attracted to two
bodies that rotate uniformly and with the same anguddocity around their common
center of mass. For the Moon, one can still assioméhe approximation problem that
the three bodies move in a plane. One will then hax@ second-order differential
equations that, since the forces include time expljcélyd therefore either the law of
areas or the law o¥is viva will be true, will represent the effect of a fourtider
differential equation in two variables. Even when bb#hlaw of areas and the lawo$
viva are not true, | have still shown that a certain comlaineof them can also find its
place here. However, this integral that | found did metely convert the problem into
one of order three, but the application of the genmaethod to that case showed that, by
a suitable choice of variables, one could convert thblgnoto second-order differential
equation in two variables, for which the same method wdlulchinate the fact that one
would again need to know only a single integral. It was the means of that method
that | found that the integration of the fourth-orderadiintial equation was converted by
one integral into that of finding a single integral odexond-order differential equation
when one requires that all of the remaining integratatimsild be just quadratures.

The entire course of suggested operations depends upondfealmtthat one can
find in each case; the choice of variables likewise depepde them, and also requires
integrations of differential equations in its own rightit always in such a way that the
system of differential equations can be converted amother one whose order is two
lower byoneintegral that has been found. Moreover, the diffeaépfjuations that allow
one to determine the choice of variables will be etmsyintegrate in many cases.
Provided that one does not overlook the simple integhals one can find, one can be
certain of converting the problem in the stated waypifaompletely to quadratures, then
as far as its nature will make that possible. MoreoWdhe differential equations to
which one comes cannot be integrated then one will recogmieworthy properties of
them that can be employed to advantage. Thus, one khatvi the problem that was
cited, when one also cannot integrate the second-orderedgifial equations to which it is
converted, its two integrals can be found from each dithenere quadratures.

You see, most revered professor, that the resultswtége quoted in the foregoing
brief outline establish a new and important chapter inydoal mechanics whose
advantage can be deduced from the special form of thereiffel equations of
mechanics for their integration. We owe this formLegrange but up to now, in his
hands and those of the analysts that followed himnlig served to render the analytical
transformations faster and clearer, and to extend miogvk general mechanical laws,
where that was possible. However, this form now takesmuch more important
meaning when one shows the precisely the differentjiaatgons of that particular form
are capable of a special treatment that reduces theuttifs in their integration
substantially.

29 November 1836.




