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I. 

 

 We begin by proving a lemma from integral calculus that is important because of its 

applications to the integration of systems of ordinary differential equations, and mainly the ones 

whose integration will allow one to determine the motion of a system of material points. 

 

Lemma. 

 

 Let X, X1, X2, …, Xn be arbitrary functions of the variables x, x1, …, xn, and let M and u be two 

other functions of those same variables that verify the following partial differential equations: 
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u =  , 

 

where  is an arbitrary constant, and deduce the value of xn from that equation, which one then 

substitutes in the functions X, X1, …, Xn−1 and in the quantity: 
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The function M1 of the variables x, x1, …, xn−1 verifies an equation that is similar to the one that 

defines the function M, viz., the equation: 
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 Proof: 

 

 The equation to be proved, namely: 
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can be put into the form: 
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The quantities X, X1, …, Xn−1, and M1 are regarded as functions of the independent variables x, x1, 

…, xn−1, but in their original form they also contain the variable xn, which is given as a function of 

the other ones by the equation u = . When one regards it in that form, the previous equation can 

be written in this way: 
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The values of the partial derivatives: 
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are obtained from the equation u =  by means of the formula: 
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One will then have: 
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In addition, one will have: 
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is differentiated with respect to xn and divided by 
n

u

x




, that will give: 

− 11

1 1

1 n

n n n n

n

XXX u u u

u x x x x x x

x

−

−

    
+ + +        



 

 

= 
1 1

1 1

ln ln ln ln
n n n n n

n n

n n n

u u u u

X x x x x
X X X X

x x x x x
−

−

   
   

    
+ + + + +

    
 . 

 

Hence, according to formula (3), one will have: 
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If one substitutes formulas (2) and (4) in formula (1) then one will get: 
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or, when: 
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one will obtain the formula: 
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and when that is multiplied by M, it will change into: 
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Therefore, the equation to be proved comes back to the same equation by which the quantity M 

was defined. That proves the lemma that was stated. When: 
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the equation u =  can also be defined to be an integral of the system of ordinary differential 

equations: 

dx : dx1 : … : dxn = X : X1 : … : Xn , 

 

which is a definition that I shall adopt in what follows. 

 

II. 

 

 In the same way that one deduces the function M1 from M, one can deduce a new function M2 

from M1, a new function M3 from M2, etc., and when the preceding lemma is applied to all of those 

functions, that will produce partial differential equations that they must satisfy, and the number of 

independent variables will continually decrease by unity. 

 Assume that the equation u =  is an integral of the system of ordinary differential equations: 

 

dx : dx1 : … : dxn = X : X1 : … : Xn , 

and that one has: 
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and in addition, that: 
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The function M1 satisfied the equation: 
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in which the variable xn has been eliminated from the quantities: 

 

X, X1, …, Xn−1 

 

by means of the equation u =  . Let u1 = 1 be an integral of the differential equations: 

 

dx : dx1 : … : dxn−1 = X : X1 : … : Xn−1 , 

 

in which 1 is a new arbitrary constant. Set: 
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From the same theorem, one will have: 
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in which X : X1 : … : Xn−2 , M2 are functions of x, x1, …, xn−2 , and one eliminates xn−1 by means of 

the second integral u1 = 1 .  If 2 is a third arbitrary constant then let u2 = 2 be an integral of the 

differential equations: 

dx : dx1 : … : dxn−2 = X : X1 : … : Xn−2 , 

and set: 
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If one eliminates xn−2 from the functions X : X1 : … : Xn−2 , and M3 then one will have: 
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If one continues in that way then one will successively find the integrals: 

 

(5)    u =  ,  u1 = 1 , …, un−2 = n−2 , 

 

in which , 1, …, n−2 are the arbitrary constants, and in which ui = i is the equation in the 

variables x, x1, x2, …, xn−i that served to eliminate xn−i . In addition, set: 
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and eliminate all of the variables x2, x3, …, xn from the functions X, X1, and Mn−1 . A repeated 

application of the lemma that was proved will give: 
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Now when one has eliminated the variables x2, x3, …, xn by means of the integrals (5), which are 

of the integrals of the problem except one, all that will remain to be integrated is the first-order 

differential equation for the two variables x and x1 : 

 

(8)       X1 dx – X dx1 = 0 , 

 

and the formula (7) will prove that the quantity Mn−1 is the multiplier of that differential equation. 

That multiplier, which makes the left-hand side of (8) a complete differential, will reduce the 

integration of the equation to just a quadrature. That gives the following theorem, and due to its 

importance and fecundity, I have deemed it appropriate to give a special name: 

 

 Suppose that one has the differential equations: 

 

dx : dx1 : … : dxn = X : X1 : … : Xn , 

 

and let M be an arbitrary quantity that satisfies the equation: 
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Furthermore, suppose that one has found all of the successive integrals of the system of differential 

equations except for one: 

 

u = ,   u1 = 1 , …, un−2 = n−2 , 

 

in which , 1, … are arbitrary constants. One employs each integral to eliminate one variable, 

so ui = i will be the equation in the variables x, x1, …, xn−i that serves to eliminate xn−i . The 

multiplier of the last differential equation: 

 

X1 dx – X dx1 = 0 
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in which the quantities X, X1,  are expressed in terms of the variables x and x1 by means of the 

integrals that were found. 

 

 That proves the principle of the last multiplier, namely, that when one knows the quantity M, 

the last integration can always be carried out with only a quadrature. 

 

 When one has: 
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one can make M = 1. It then follows that: 

 

 If one is given a system of differential equations: 

 

dx : dx1 : … : dxn = X : X1 : … : Xn , 

in which: 
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and one has found all of the complete integrals except for one then the last differential equation 

can always be integrated by just a quadrature. 

 

 The stated principle is developed extensively in Crelle’s Journal. Here, it will suffice to give 

an application to the problems of mechanics. 
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III. 

 

PRINCIPLE OF THE LAST MULTIPLIER IN MECHANICAL PROBLEMS. 

 

 Consider the dynamical formulas that relate to the motion of k material points. The 3k 

rectangular points of those k points are: 

 

x,  x1 , x2 , …, x3k−1 , 

and let: 

 

(10)   
dx

dt
 = x3k , 1dx

dt
 = x3k+1 , …, 3 1kdx

dt

−  = xn , 

 

in addition, in which n = 6k – 1. Suppose that the forces are applied to the material points along 

directions that are parallel to the coordinate axes and are functions of only the coordinates x, x1 , 

…, x3k−1 , without depending upon time or velocity, and that the system of points is entirely free. 

The motion of the points will be given by the integration of a system of ordinary differential 

equations of the form: 
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 = Xn , 

 

in which X3k , X3k+1 , …, Xn are functions of the quantities x, x1 , …, x3k−1 . For greater conformity 

with the formula of the preceding articles, set: 

 

x3k = X , x3k+1 = X1 , …, xn = X3k−1 . 

 

Formulas (10) and (11) can be combined into the system of first-order differential equations: 

 

(12)     dx : dx1 : … : dxn = X : X1 : … : Xn . 

 

When that is integrated and one has expressed X = x3k in terms of x by means of the integrals that 

were found, one will finally have the time: 

(13)      t = 
dx

X
 + const. 

 

Therefore, as one sees, in mechanical problems, the last integration, which gives the expression 

for time in terms of one coordinate, can be obtained by just a quadrature. However, I say that the 

last two integrations can always be obtained by the path of just quadratures because, in addition to 

equation (13), which contains only one quadrature, the last integration of the system (12) can also 

be reduced to a quadrature by means of the principle of the last multiplier. Indeed, if the quantities 
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X3k , X3k+1 , …, Xn are functions of only x, x1, …, x3k−1 then one will see that no function X contains 

the variable x and that consequently for each value of i, one has: 
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One then has the case of M = 1. Meanwhile, if one has found all of the integrals of equations (12) 

except for one then the multiplier of the last differential equation will be provided by the principle 

that was stated in the previous section when one substitutes M = 1. 

 The same principle will give the last two integrations, even in the case of systems of material 

points that are not free. In order to make that obvious, take the dynamical formulas in a convenient 

form, as below. 

 Let 3k – m be the number of constraint equations for the system of k material points. Express 

all of their 3k coordinates x, x1, …, x3k−1 in terms of m independent quantities: 

 

q1 , q2 , …, qm . 

Therefore, set: 

iq

t




 = iq , 

 

while T will express one-half the vis viva of the system of material points in terms of the quantities: 

 

q1 , q2 , …, qm , 1q , 2q , …, mq  . 

 

Suppose that one has the equations: 
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which are linear in the 1q , 2q , …, mq , and when one solves them, one will obtain the values of 

1,q  2q , …, mq , as expressed in terms of the p1 , p2 , …, pm . When one substitutes those values in 

T, T will become a function of the 2m quantities: 

 

q1 , q2 , …, qm , p1 , p2 , …, pm , 

 

which are the ones that will serve to establish the differential equations of dynamics. In order to 

obtain them, suppose that xi is one coordinate of a point whose mass is mi and that the point is 

acted upon by the force X3k+i , whose direction is parallel to the xi coordinate axis. When one 
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substitutes the values of the coordinates x, x1, …, x3k−1, when expressed in terms of p1 , p2 , …, pm, 

one will get: 

 

m X3k dx + m1 X3k+1 dx1 + … + m3k−1 Xn dx3k−1 = Q1 dq1 + Q2 dq2 + … + Qm dqm . 

 

The quantities X3k , X3k+1, …, are functions of only x, x1, …, and the quantities Q1, Q2, … are 

functions of only q1 , q2 , …, qm . Once one has found those functions, the differential equations 

for the variables q1 , q2 , …, qm ,  p1 , p2 , …, pm will be the following ones: 
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The proof of those general formulas can be obtained from the proof that Hamilton gave in the case 

where: 

m X3k dx + m1 X3k+1 dx1 + … + m3k−1 Xn dx3k−1 

 

is a complete differential (see the two papers by that author that were included in the Philosophical 

Transactions in 1834 and 1835). Separate the element dt and put the differential equation into the 

form of a proportion: 
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One must first integrate equations (15) and then the time t will be found as a function of one of the 

quantities q1 , q2 , … by means of just one quadrature. Now look for the quantity M that 

corresponds to the system of equations (15). When one assumes the differential equations: 

 

dx : dx1 : … : dxn = X : X1 : … : Xn , 

 

one can differentiate each of the quantities X, X1, etc., with respect to the variable whose 

differential it is proportional to. If the sum of all of the n partial differentials thus-obtained vanishes 

then the last integration will reduce to a quadrature. Hence, when one has posed the differential 

equations (15), one will have to differentiate the quantities: 

 



Jacobi – The principle of the last multiplier and in its use in mechanics. 11 
 

1

T

p




, 

2

T

p




, …, 

m

T

p




 

with respect to the variables: 

q1 , q2 , …, qm , 

and the quantities: 

− 1

1

T
Q

q


+


, − 2

2

T
Q

q


+


, …, − m

m

T
Q

q


+


 

 

with respect to the variables: 

p1 , p2 , …, pm . 

 

Now the sum of all those 2m partial differentials will vanish because when one combines them 

pair-wise, one will have: 
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for any value of the index i. Therefore, since the proposed differential equations (15) correspond 

to a system of material points that is not free, one can set M = 1, and therefore their last integration 

will reduce to a quadrature. 

 When the expressions for the forces contain time t explicitly, one cannot obtain time by just 

one quadrature, as in the previous case. However, even in that case, the new principle will imply 

that the integration of the last first-order differential equation for t and one coordinate will depend 

upon just a quadrature. 

 The same principle also applies to the motion of a comet in a resisting medium, and to any 

other special cases in which the applied forces are forces of resistance. 

 

 Rome, 16 March 1844. 
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