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 The causal interpretation of quantum theory considers the Dirac wave to be a spinning fluid that is 
endowed with internal stresses.  One studies it by introducing angular variables that describe the motion of 
proper rotation of the fluid elements. 
 
 
 1. The development of the hydrodynamical representation of the Dirac equation 
leads one to interpret the Dirac wave as a spinning fluid (Møller-Weyssenhoff fluid) that 
is endowed with internal stresses [1]. 
 It has been shown [2], moreover, that a Møller-Weyssenhoff fluid is nothing but an 
ordinary relativistic fluid whose “molecules” are endowed with a classical motion of 
proper rotation.  The spin density is then the macroscopic representation of classical 
rotations that are performed in domains whose dimensions are considered to be negligible 
at the scale that one considers.  The spin density is then justified when one considers the 
fluid to be continuous and the “molecules” to be infinitely small. 
 The hydrodynamical interpretation of Dirac theory has already led to a description of 
the Dirac fluid in tensorial form [3]. 
 Our interpretation of spinning fluids necessitates the use of angular variables that 
describe the behavior of each “molecule” of fluid. 
 In the proper system of a fluid element, with respect to which that element exhibits 
neither rotation nor translation, we write the Dirac spinor in the form: 
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in which D is the invariant density of the fluid, and A is such that: 
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where Ω1 and Ω2 are the invariants that are coupled with the spinor field [4].  One then 
shows [5] that in an arbitrary coordinate system, one will have: 
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with 
  R = 3 31/ 2 /2/2i iie e eσ ψ σ ϕσ θ , 
 
which is a spatial rotation that described with the aid of the Euler angles: ϕ is the angle of 
proper rotation, θ is the angle of nutation, and ψ is the angle of precession. 
 

L = 3 31 1 2 2 / 2/2 /2e e eα γα γ α γ  
 

is a general Lorentz transformation, in which γi is the rotation of the i th spatial axis about 
the time axis.  The velocity along that axis is defined by tanh γi = vi / c. 
 One sees that ϕ, θ, ψ, and the γi are the relativistic Euler angles. 
 
 
 2. We then get the Dirac tensorial magnitudes as functions of the Euler angles: 
 
 The invariant:  Ω1 = q*α4 q = D cos A, 
 
 The pseudo-invariant: Ω2 = q*α5 q = D sin A, 
  
 The current:  jµ = q*αµ q, 
 
namely: 
 j1 =    D sinh γ1 cosh γ2 cosh γ3 , 
 j2 = − D sinh γ2 cosh γ3 , 
 j3 =    D cosh γ2 cosh γ2 cosh γ3 , 
 j4 =    D cosh γ1 cosh γ2 cosh γ3 . 
 
 The spin: sµ = q*σµ q, 
 
namely: 
 
 s1 = D [   cos θ sinh γ1 cosh γ2 sinh γ3 – sin θ (cosh γ1 sin ψ + sinh γ1 sinh γ2 cos ψ)], 
 s2 = D [− cos θ sinh γ1 cosh γ2 sinh γ3 + sin θ cosh γ1 cosh γ2 cosh ψ], 
 s3 = D [− cos θ cosh γ1 cosh γ2 sinh γ3], 
 s4 = D [   cos θ cosh γ1 cosh γ2 sinh γ3 – sin θ (sinh γ1 sin ψ + cosh γ1 sinh γ2 cos ψ)]. 
 
The electromagnetic moment mµν is given by the Pauli-Kofink relation: 
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 The preceding formulas will take on a simpler significance if one notes that: 
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in which cosh γi and sinh γi are then the components of unit velocity vectors that are 
directed along the three spatial axes. 
 
 
 3. The Dirac Lagrangian is: 
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One easily shows that the Dirac equations can be written with the aid of the Hamiltonian: 
 

(II)     H = 
2

c

i

ℏ
q*αk [∂k] q – m0 q

*α4 q (k = 1, 2, 3) 

 
and the classical Poisson brackets: 
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in which qα and qβ

∗  are the components of the spinor q and its conjugate q*, δαβ is 

Kronecker symbol, and δ (r − r′′′′) is the Dirac measure. 
 Since the Lagrangian is zero in the course of motion, one knows that the Hamiltonian 
will take the value: 
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 Now introduce the expression (I) for the spinor.  Calculation, which will be simplified 
by the commutation rules for the Dirac matrices, will then give: 
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 We can then describe the Dirac fluid with the aid of the independent variables: ϕ, ψ, 
A¸ γ3 .  The equations of motion will then be given by the Hamiltonian (II) and the 
classical Poisson brackets. 
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 4. In the non-relativistic approximation, the parameters γi and A will tend to 0 and π, 
respectively, which will imply the annihilation of their conjugate momenta. 
 Moreover, j3 will tend to ρ, which is the density of the Pauli fluid, cosh γ1 cosh γ2 s3 
will tend to s3, which is a component of the Pauli spin, and the Hamiltonian will tend to 
the Pauli Hamiltonian. 
 What will then remain is the latter Hamiltonian, with the Poisson brackets: 
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This result is well-known [6]. 
 
[1] L. DE BROGLIE, La Théorie des Particules de spin 1/2, Paris, 1952. 
 BOHM and VIGIER, Phys. Rev. 96 (1954), pp. 208. 
 TAKABAYASI , Nuovo Cimento 3 (1956), pp. 233. 
 HALBWACHS, LOCHAK, and VIGIER, Comptes rendus 241 (1955), pp. 692 and 

744. 
 BOHM, LOCHAK, and VIGIER, (to appear in Phys. Rev.). 
[2] BOHM, LOCHAK, and VIGIER, loc. cit. 
 BOHM, LOCHAK, and VIGIER, Séminaire Louis de Broglie, exposé no. 15, 1956. 
[3] TAKABAYASI , loc. cit. 
[4] Our σ and α matrices are the ones that were used by Louis de Broglie (loc. cit.). 
[5] BOHM, LOCHAK, and VIGIER, loc. cit. [1]. 
[6] BOHM, TIOMNO, and SCHILLER, Nuovo Cimento (10) supp. 1 (1955), pp. 48. 
 
 

___________ 
 


