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The causal interpretation of quantum theory conside¥<Dirac wave to be a spinning fluid that is
endowed with internal stresses. One studies it bgdoting angular variables that describe the motion of
proper rotation of the fluid elements.

1. The development of the hydrodynamical representatioth@ Dirac equation
leads one to interpret the Dirac wave as a spinningd (Maller-Weyssenhoff fluid) that
is endowed with internal stressds. [

It has been showr2], moreover, that a Mgller-Weyssenhoff fluid is nothimgt an
ordinary relativistic fluid whose “molecules” are endmvwith aclassical motion of
proper rotation. The spin density is then the macquscrepresentation of classical
rotations that are performed in domains whose dimensiensoasidered to be negligible
at the scale that one considers. The spin densihersjustified when one considers the
fluid to be continuous and the “molecules” to be infinitemyall.

The hydrodynamical interpretation of Dirac theory Almeady led to a description of
the Dirac fluid in tensorial forngj.

Our interpretation of spinning fluids necessitates uke of angular variables that
describe the behavior of each “molecule” of fluid.

In the proper system of a fluid element, with respeacwvhich that element exhibits
neither rotation nor translation, we write the Disgenor in the form:

g=+D¢€¢

g,Al2
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in whichD is the invariant density of the fluid, aAds such that:
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whereQ; andQ, are the invariants that are coupled with the spinod {féj. One then
shows p] that in an arbitrary coordinate system, one will have

(I q=.De"?L

o O O B

with
R= eia3(,l//2 éalelz éa3¢/2

which is a spatial rotation that described with the dith® Euler anglesp is the angle of
proper rotationgis the angle of nutation, anrdis the angle of precession.

L= ealyllz é72V2/2 é3y3/2

is a general Lorentz transformation, in whiglis the rotation of thé" spatial axis about
the time axis. The velocity along that axis is defibgdanhy =v; / c.
One sees that, 6, ¢, and they are the relativistic Euler angles.
2. We then get the Dirac tensorial magnitudes as furctidthe Euler angles:
The invariant: Qi1=0q asq=D cosA,
The pseudo-invariant: Q. =q as q=D sinA,
The current: Jju= q*a,, o}
namely:
j1= D sinh )4 coshys coshys,
j2=—D sinh)s coshys ,
ja= D coshys coshys coshys,
ja= D coshy coshys coshys .
The spin: Sy = q*U,, a.
namely:
s =D [ cosésinhy coshys sinh s — sin@(coshys sin ¢ + sinh 4 sinh s cos )],
S =D [~ cosédsinh )4 coshys sinh s + sin @coshys coshys coshy,
3 =D [~ cos@coshy coshys sinh ],
s, =D [ cosécoshy coshys sinh s — sin@(sinh 4 sin ¢ + coshy sinh js cosy)].

The electromagnetic momem,, is given by the Pauli-Kofink relation:



Jakobi and Lochak — Relativistic Cayley-Klein parameitethe Dirac equation 3

Q(——\ Q . .
M= 2580 -9 %) 538 -8 D).
The preceding formulas will take on a simpler sigaifice if one notes that:

coshy = __r and sinhy = V'—/C

in which coshy and sinhy are then the components of unit velocity vectors #nat
directed along the three spatial axes.

3. The Dirac Lagrangian is:
_ fic *
£==9 '[9, 9—moq as q.
One easily shows that the Dirac equations can beewnitith the aid of the Hamiltonian:
hC « .
(n H=dddd-mgaq  (k=1,23)
and theclassical Poisson brackets:
I ! i I

() [0q (1, 1), qg(r,t)]=55aﬁ5(r—r),

in which g, and qg are the components of the spimprand its conjugatey, Oup IS

Kronecker symbol, and(r —r') is the Dirac measure.

Since the Lagrangian is zero in the course of mptioe knows that the Hamiltonian
will take the value:

hC h{ 509 0q"
H=—Tpu=—— 0 =—— | "2 - q].
44 2iq [04] g Zi[q x ot QJ

Now introduce the expression (1) for the spinor. cGetion, which will be simplified
by the commutation rules for the Dirac matrices, thién give:

.0 0/ A
H= 145(—%}53 coshy, costy{—%} 345(__2j

+ (s, sinhy, cosly, - s sinly, %(—%} :
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We can then describe the Dirac fluid with the aidhef independent variableg; ¢,
A, )5 . The equations of motion will then be given by the Haman (II) and the
classicalPoisson brackets.

. 1 .
%14}750* ),
%,coshyl cosly, 53}:%5 r-r' ),
anm -
%,szcoshy2 sinty,— s siniyz}:%é r(-r"
_g,s‘l}:%é(r—r’).

4. In the non-relativistic approximation, the paraensy andA will tend to 0 andz
respectively, which will imply the annihilation dfeir conjugate momenta.

Moreover,j; will tend to p, which is the density of the Pauli fluid, coghcosh)s s;
will tend to s3, which is a component of the Pauli spin, and tlenHtonian will tend to
the Pauli Hamiltonian.

What will then remain is the latter Hamiltoniantmthe Poisson brackets:

This result is well-knownq].
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