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Upon seeking the surface of given area that contamslaitgest volume by the
method of variations, one will find, as one knows, thatmean curvature of the desired
surface must be constant. If one expresses thattmond terms of partial derivatives
then one will have the equation:

(A) (1 +q2) r—2pgs+ (1 +p2) t + E(l +p2 + q2)1/2 - 0.
a

Other than that general equation, the calculus of t@m& provides boundary
conditions that serve to determine the arbitrary funstithat are found in the solution.
Unfortunately, one cannot further integrate equatidn (hich will prevent one from
obtaining the general solution of the question that wasdgos

Meanwhile, there is one case in which one knows é¢kaltr that one must obtain in
advance. When one seeks thased surface that contains the maximum volume of all of
them, some simple considerations will show that dtesired surface is a sphere.
However, one cannot further prove that result with ¢aéulus of variations, which
seems to be a very large gap in that method.

“One knows [said Delaunay (Journal de I'Ecole Polytegh®j tome

XVIIl, page 110)], that among the closed surfaces of a ges¢ant, the

sphere is the one that contains the largest volumehausolution cannot
be inferred from the equations that calculus of variapgoovides...It is

easy to see that the variation of the integral daxscantain boundary
terms. The conditions of the absolute maximum then eedacjust

equation A). Hence, in order to prove that the desired surfaaesghere,

it will be necessary to show that the sphere isattlg closed surface that
is included in that equation, and that is something that aannot do,

either.”
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| have considered that question precisely as Delaunagdptsand having
succeeded in solving it for a very large class of surfdgegpose to show here
that among all of the surfaces whose volume can bessgd by the integral:

2

j r2dr sin6d@dg ,
0

O 1
o3

the sphere is the only one whose mean curvature is constant. In order to do that, |
will first give some theorems that are very remar&abhoreover. In all of what
follows, | shall adopt these notations:

Let P be the perpendicular to the tangent plane that isdbasé¢he origin,
which one supposes to be taken in the interior of adlssrface. Leticwbe the
element of the spherical surface that describes thasrdédat is parallel to that
perpendicular and whose length is unity, in such a waty th

dw=sinfdd&dg,
where g, ¢ are the polar angles that determine the position opénpendicular.

Let Sbe the total area of the surface, anddfebe the element of that area. let
represent the integral:

j Pdw,

when one supposes that this integral extends over the satiace. Finally, let
R, R’ be the radii of principal curvature at the point in gfi®@. We have the
following theorems:

THEOREM 1I:

For an arbitrary closed surface:

1 1
B A=\l =+= |dw,
® ] [R R,j
if one supposes that the integral extends over the entire surface.

Here, it will suffice for me to state the theore@ne will find the proof in my
Calculus of Variations, pages 351 and 353.

THEOREM I1:

For an arbitrary closed surface:

_ 1 1
© B—HP(E+Ede,
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when one supposes, as in the preceding theorem, that the integral extends over the entire
surface.

Indeed, lek, y, z be the rectangular coordinates of a point on the syréad set:

E= p(pX+qy x’1+p2+q2,
\ 1+ p>+q°

O_Q(px'*'qy 2) y/1+p2+q2,
\/1+p +q°

while preserving the usual notation of partial derivativefpon differentiating, we will
then have:

[ (1+g?)r - pgs -qz
6_5 Pxray=2 ((1+qp2)+q£22}+8«/1p+ypzi -\ 1rpira,
L q

0n _ | (L+0?)t-pgs qx-py Y
— X+ +S -1+ p +qg°.
oy~ PXTAV=2 | @+ p*+q?)*"* 1+ p*+q° i

When we add those equations, we will find that:

9, on @+q*)r-pas+ @+ p°t _, oL
=(px+ -2\ 1+p +q°.
ax dy =(px+qy-2 1+ p 4002 p-+q
However, by virtue of the relations:
p= Z2-PX7Qqy

/1+ p2+q2’

1.1_ (@+g’)r-pgs+(d+p)it
R Rr (1+ p2+q2)3/2

that equation can be written:

o0& on _ (1 1) 2, 2
—+—L =|P| =+= -2/ 1+ p*+q°.
ox oy { R R P

One will then have:
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2\ 1+ p* +q° dx dy = P(%+%j\/1+ p*+q° dxdy—(?ﬂLg—nj dxdy,
X oy

or, more simply:
2 dS= P(£+ijd8 9¢ 191 gy
R R ox oay

Upon integrating this and letting denote the area of a portion of the surface that is
bounded by an arbitrary contour, we will have:

(D) 25 = HP( +—jd8+j( = qjdx,

in which the double integral extends over the enpiortion that one considers, and the
simple integral extends over the entire boundaryecu One can deduce several curious
consequences of that equation. However, for tke edour immediate purposes, it will
suffice for me to remark that when one extenddritegration over the entire surface, the
simple integral will obviously disappear. One wiilen have simply:

25 = HP( +—de Q. E.D.
THEOREM 111: Now consider the equation:
B

which represents a surface whose mean curvatuoeristant. When one puts that
equation into the form:

multiplying by P / 4dS and integrating, one will easily find that:

(F) M=2al +a7:”(%—%jzpd5,

while represent three times the volumeMby Having said that, if one multiplies equation
(E) bydSand integrates then, by virtue of equatiBh one will find that:

ffos( 5+ )= 2pdo=25,
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one will then have:
S=al.

When one multiplies the new equatidt) by P dS and integrates, one will have:
S= M,
a

by virtue of equation@). Upon eliminatingS from those equations, one will have:

M=a’l.
That condition reduces equatid#) to:

jm%-%TMB:Q

P dS=r?sin 8d8dg,

However, since:

one will easily see that for the class of surfabas bne considers, all of the elements that
comprise the last integral are essentially positiV@e total integral cannot vanish then
unless each of the elements becomes zero.

One will then have:

1
+ =
R’

N

Therefore:

which shows that the desired surface is a sphere whdges isa.




