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On the polarization of light quanta
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Translated by D. H. Delphenich

It will be shown that a quantum-mechanical descriptionhef polarization properties of a single light
guantum can be carried out in a way that is formally eqemiab the Pauli theory of the magnetic electron.

Ever since the beginning, polarization has defined a specraplication for the
corpuscular theory of light. Attempts to understand pmdéion in the context of the
theory of light quanta are often carried out in suetag that the light quanta would, in
any event, describe a certain definite polarizatiorestddowever, the impossibility of
understanding such a concept is related to the facthbs¢ experiments have found no
general explanation. The problem still remains todag,fanthat reason it might not be
unwelcome to show that the static conception of physjaahtities, as were obtained in
the more recent development of quantum mechanics, méiver a clarification of this
guestion that is satisfactory in the sense of thisrthe

The subject is, however, meaningful in another r@sp&he fact that in statistics the
polarization of the light quantum or the proper magneticnent of the electron allows
one to multiply the number of phase cells by the nunzbstrongly suggests that there
might be an intrinsic similarity between these pireena. C. G. Darwifh, on the basis
of the fact that the magnetic electron can be reptes by polarizing the de Broglie
waves, succeeded in deriving a generalization of the Biclgér equation that is suitable
for the magnetic electron. Padlimade an essential advance on this by means of
considerations that were based in the general statistiterpretation of quantum
mechanics. Thus, Pauli made no use of the conceptarized Schrodinger waves, and
his results can be regarded as contradicting this notiothe following, we will see that
one can describe the polarization properties of light quargcisely by carrying over the
Pauli conceptual structure — with that, in turn, the il#gi of converting between the
two phenomena emerges in a very surprising way.

We assume that the main points of the Pauli theekaown here, along with some
extending remarks of the author

8 1. Observable quantities for light quanta. We shall concern ourselves solely
with light quanta whose frequency and direction of moao@& given, so — otherwise

C. G. Darwin, Nature, March, 1927.
W. Pauli, Jr., Zeit. Phys. (to appear).

®  P.Jordan, Zeit. Phys. (to appear).
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speaking — we are concerned with harmonic waves that péyhaps run parallel to the
z-axis. One must first set down how one can measw@weadlarization properties of a
single light quantum, and how one can describe them Dby tyuamechanical
“gquantities.” It likewise shows that naturally one canuatilize the classical concept of a
physical quantity, but only the quantum-mechanical concepgsaritities that are given
in the statistical formulation of quantum mechanics, aedexplained in an especially
clear manner by Pauli’'s arguments regarding the magreticen.

If we put a Nicol prism in the path of a purely harmonghtiwave that can be
elliptically polarized then it will split into a transtted linearly polarized component and
a reflected polarized component that is perpendiculdr téf we experiment with only
single light quanta then such a light quantum will eidne through the Nicol prism or be
reflected, and one must assume that in the formerthadeht quantum once more goes
through a Nicol apparatus in such a way that it goes thrivagsecond time, while in the
latter case it is reflected a second time. The w@hffepossible placements of the Nicol
are to be referred to in terms of an anglein the interval 0< ¢ < 7z Any such
measurement determines a special mechanical quantityeftight quantum: We say that
the quantity (0,4) has the value 4+ when the light quantum is transmitted through the

Nicol with the angley, and we say that (@) is -+ when it is reflected. If one has:

I
|¢’1—¢’z|—5 (1)

then the measurement of ¢B) certainly delivers the value &+ when a previous

measurement of (@/1) gave the value }, and conversely. For that reason, we must say
that:

O, ¢n)=—(04)  for |¢’1—¢’z|:]—2T 2)

in the case (1).

Theoretically, one can also split a purely perio@jbtlwave into circularly polarized
partial waves with a positive and negative sense oftiootarather than into two
perpendicular linearly-polarized components. Thus, tieegy of the combined waves is
also equal to the sum of the energies of the compgnand for that reason, it would be
allowable for us to assume that we can also carrytlustsplitting by means of an
analyzer that — analogously to the Nicol — transmitaditrary polarized wave with a
positive circular polarized component and reflects tlygatige component.

However, we would like to go a step further. We woulte to characterize the
general elliptically-polarized wave:

3)

X = Asint,
y = Bsin(t+9)

(with a suitably chosen zero point and normalizafayrtime) by the associated ellipse:



Jordan — On the polarization of light quanta 3

2 2
X—2+L2—2ﬂ cosd = const. 4)
A B AB

with the addition of a + or — sign for a positive egative sense of rotation, respectively.
If is the angle that the major axis of the ellipse (4ine@sfwith thex-axis andh denotes
the ratio of the minor axis to the major axis thenca@ characterize the wave (3) by
three symbolsn, ¢, . It is more convenient for the later formulas if eadculate with
only two numbergr=+ 17 and ¢ ; one then has:

-1<o0<1, Osy~<rm (5)

The angley will be undetermined in the case@f £ 1. As in the textbooks on optics, it
can be shown that:

tan 2y = tan 29 [£o0sJ, sin 2y =-sin 29 [kin g, (6)
when one sets:

= tandg, o= tany. (7)

One now easily recognizes the following fact: It isgble to represent any wawe
 as the sum of two waves of the form:

o, Y and - oo, Y, (8)

where an arbitrary valuep and an arbitrary angle, are prescribed, whiles is
determined front:

v/
le—wzl—? (9)

The intensities of the partial waves (8) and theirtnedaphase are determined uniquely
by g, ¢. The energy of the total wawe ¢ is the sum of the energies of the components
(8).

On the basis of this fact, it seems natural for yzwrépose as an ideal analyzer for the
polarization properties of a light quantum an apparatas ggthysically implements the
mathematical decomposition (8) for any incident wave,itsalways, for example,
transmits the one component (8) and reflects the otier Such an ideal analyzer is thus
characterized in itself by the numbersy. If we again consider a single light quantum
then any analyzer, ¢ defines a special “mechanical quantity” for us; we satwe will
measure the valuest+or -1 for the quantity:

1 Obviously, one can also describe the two waves (8)llasvk: If the one wave is represented by:

x = Asint, y=Bsint + 9
then the other one has the form:

Xx=-Bsint + - 9, y=Asint + &).
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(o ¥ (10)

according to whether the light quantum is transmittedefleated, respectively. The
angle ¢is undetermined in the case= + 1; we denote the two quantities (10) that
remain in this case alone by:

(x12). (12)

In the caser= 0, we again obtain the previous quantities that weraekkivith the help
of the Nicol, namely:

©, ¥. (12)

If one has measured the quantity, (1) for a light quantum then a subsequent
measurement of—(g, (), where ¢, satisfies equation (9), will certainly delivéine
opposite valugo the first measurement. As a generalization ofW2)will then have:

(0, 4) == (-0, ) for  [¢a—gp|=7. (13)
In particular, one has:
(+1)=-(-1). (14)
If we construct the quantity:
C1+Cx(g ¢n)=q (15)

from (g, ¢n), with two c-numbersC,, C,, thenq has the value the valug = C; + C; for
(g, yn) = 3. We can, however, also add and multiply two differerch quantities)

according to the symbolic combinatign+ p, as one forms in quantum mechanics, more
generally. What this addition and multiplication meameur case will be deduced from
what follows.

The practicability of the aforementioned explanatioighn perhaps involve some
excuses. In fact, for any reader that is complefatyiliar with Pauli’'s theory a brief
presentation would suffice. It thus seems that pricisely the polarization of light
guantum that provides a particularly instructive exampliefdefinition of the singular
concepts in quantum mechanics. Above all, it is tkenehtary concept of physical
guantity that has experienced such an essential alteratiomeindévelopment from
classical to quantum mechanics, and in whose curremeptianthe deepening of our
intuitive understanding finds its expression most cjea@ne is not allowed to ascribe a
definite value to onendependently of the processes of observation

8§ 2. Correspondence between the light quantum and the magnetic electron. If
we pose the question of which pairs of quantitgs/) and (g,f) are to be regarded as
canonically conjugatéfor a suitable normalization) then (as for the nmetge electron)
we can lean on the quantum-mechanical theoremfahagiven values of a quantity all
values of the conjugate impulse agually probable We then see immediately that,
e.g., (always for a suitable normalization) thergiig (0, ¢) (linear polarization), with
any ¢, is canonically conjugate to (+1) ofl() (circular polarization). (Qg) and (0f)
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are also conjugate whenj—@ | is equal torf4 or 374. Having established this, the
guantum-mechanical theory of polarization can be corsulun a manner that is similar
to the theory of the magnetic electron.

It is therefore simpler to present an invertible ém@ne correspondence between the
observable quantities for the light quantum and magnedatreh in such a way that the
additive and multiplicative combination and the probabililations between the
physical quantities for light quantities are the samehayg aire for the corresponding
guantities for the magnetic electron.

We represent the impulse component of the magnettretein a definite direction
by a pointx, y, zon the unit sphen& +y? + Z = 1. We call its pole that lies at 1 the
positiveone and the pole at= — 1 thenegativeone. If we associate the positive pole
with the positive circular polarization (+1) then weisty from (14), 8§ 1, associate the
negative pole with the negative circular polarizatjeh). Furthermore, in hindsight of
the things that we know about canonically conjugate quasititir the light quantum, on
the one hand, and the magnetic electron, on the atleemust make the equatorial points
of the sphere correspond to the linear polarizationsuch a way that the angular
differenceAy between two linear polarizations is half as large asahgular distance
between the two equatorial points.

Finally, we must generally associate a quantty() with a positiveo with a point
of the positive hemisphere and associate the quantty) that is the mirror image of it
in the equatorial plane with the negative hemisphere.shgé now determine this map
more precisely.

We relate every point of the sphere to a primta, y = b of the plane = 0 by means
of stereographic projection from the positive pole acogrthh the formula:

(= 28 . o Z_—1+a\2+b2 )
1+a?+b?’ y 1+a?+b?’ 1+a?+b*

Our problem is then to associate the poatb (or 7 = a + ib) in such a way that two
points of the sphere that are mirror oppositesterequatorial plane= 0 correspond to

the same ellipse. That reinforces the situati@m tWwo such points are represented in the
complex plane by:

1
=1 and /= el (2)

They therefore satisfy an equation:
{n-@+ibH(a-bn-1}=F(a-ib)— (1 +a*+b’) n+(@+ib) =0 (3)
that belongs to a quadratic form:

Q& &) =(@-ib)& - (L +a° +P’) && + (@+ib) &7, 4

which is always real fof; = &’. We then define:
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QUx+ iy, x=iy) =2 d X~ ) +2 X+ + &+ B( %+ 9} 5)

=x{@1-a*+b}+ L + p’+ F 4 bxy F,Xx)y

and when we associate this foRfx, y) with the pointr; = a + ib we are certain that it
simultaneously makes the mirror image in the equatooaiespond to the poing, =

We see, in addition, that:

a-ib’
F(x, y) = const. (6)

always represents an ellipse that only degenerates idouble line segment in the case
ofa® +b?= 1. The determinant 6%, y) is, in fact, equal to:

D = 4{(1 —a)* + b®{(1 + a)* +b%} — 16b? = 4@&° + b* — 1. (7)
We confirm that the association possesses the falpwieviously-obtained properties:

1. The circular polarizations (+1);7X) correspond to the poles of the sphere.
Therefore, (6) goes to a circle for these podesh =0, @=b =, resp.)].

2. The quantitiesd, ¢n), (o, ¢n), with | ¢n — ¢ | = 712 areopposite In fact, their
ellipses belong to two points of the sphere that lia diameter, as one can see from (5).

3. The linear polarizations correspond to equatorial pahthe sphere; one can
deduce this from (1) and (7). We also see that the asmwocof angles is then the correct
one. FronF(x,y) = 0 in the case af + b® = 1, it follows, in fact, that:

tan[w—’lj __Xx__1lta ®)
2 y
SO.
tan 2y = b ()
a

By the association that we just carried out, masv completely defined in general what
we must consider to be the “sum” and “product” wb tquantum-mechanical quantities
in our case, and thus two polarization forms. sltalso generally established which
guantities are canonically conjugate to a given. oNaturally, all of these can also be
easily represented in explicit formulas. We thostent ourselves with suggesting the
following: Formula (9) is true in general for eligal, as well as linear, polarizations.
The ellipseF(x, y) = const. that is obtained by means of a coordisgstenx’, y' that is
rotated around its principal axis takes on the form

X? -+ a®+b*)*+ y2[(1++ a®+ b’)* = const. (10)
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In summary, we thus obtain the representation of thmbersg, ¢ in terms ofa, b by
means of:

tan 2y =E ,
. (12)
—0':—'0, p: [a2+b2.
1+p
Conversely [sic]:
g =arctan
12
4o (12)
1-0

8 3. Probabilities and intensities. We now ask what the probability is for a
quantum-mechanically determined quantity for a light quartin have the value 4 or

-1, under the assumption that the value of another quastkgown. More precisely,

we then pose the following question: Let a light quantenexamined by our analyzer
that yields the value 4 or -1 (transmission or reflection, resp.). This light chuam is
again examined by another analyzgr, ¢. How big is the probability that it then
undergoes transmission (reflection, resp.)?

We now have two methods for answering this question:fif$teone is the classical
one: We get our answer by the mathematical decomposifithe waveg, ¢ into two
componentsz,  and-a, @,, where|f —{,| = 712. Secondly, the explanation that is
given bygquantum mechanig®auli’s theory of the magnetic electraresp.) provides an
answer: We determine two points on the unit spherectivaéspond to those quantum-
mechanical quantities, the first of which would givé for a first measurement, and the
second of which would be determined by the second measuremiténthe desired
probability of +}. The probability will be equal to:

©]
co > 1)

whereO is the angular distance between the two points ofphere.

The quantum-mechanical answer obviously agrees with dssichl one in the case
where the two analyzers that used are Nicol prisntge tWo spherical points then lie on
the equator, and their distan€eis equal to twice the angle between the polarization
directions of the two Nicols. This situation getsrenmvolved in the general case of two
elliptical polarizers. From (1), 8§ 2, the an@ebetween two points;, b; anday, by is
given by:
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cosO = 4ala2+4qu+ (1: Ei_ lg)(:l-_z é_ @), 2)
A+a +b)(A+ &+ b))
SO.
coso = Jad 4Qb22+ (1- pz )= p3)
@+ )2t p;)
— 40,0, COS(/’rl/’z)‘* (]-_pi )(1_:022 )
@+ o)1+ p3)

3

This then yields the probability:

2

co2 @ = 1200 cosé(lfl—wzz ¥ p1P% o= 1+,
2 (1+:01 )L+ :02) 1_01,2

: (4)

or also:

®)

o2 @ = 00,0 +(0,+0,) +(1-07)(A-05)cosfy =}
2 201+ 07 )1+ 0?) '

Finally, we must compare this formula with the staetrof the classical theory. A
somewhat lengthy calculation — for which, one can eynfdomulas (6), (7), 8 1 and the
formulas of the footnote on pp. 3, where nothing speced®éo be said about the units —
also leads classically, in fact, to a result thaaingethe same thing as (4), (5).

In conclusion, | would like to express my deepestkbdor the fact that | got the
impetus to carry out this argument from a conversatioh Werrn Prof. C. G. Darwin.
Darwin expressed the belief that a representation thi#haid of polarized Schrédinger
waves could also be achieved for Pauli’'s theory of magedectrons. It then seemed
appealing to me to examine the converse.

| am indebted to Prof. N. Bohr for many stimulating censations and to the
International Education Board for making my sojourn ip&thagen possible.




