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It will be shown that a quantum-mechanical description of the polarization properties of a single light 
quantum can be carried out in a way that is formally equivalent to the Pauli theory of the magnetic electron. 
 
 
 Ever since the beginning, polarization has defined a special complication for the 
corpuscular theory of light.  Attempts to understand polarization in the context of the 
theory of light quanta are often carried out in such a way that the light quanta would, in 
any event, describe a certain definite polarization state.  However, the impossibility of 
understanding such a concept is related to the fact that these experiments have found no 
general explanation.  The problem still remains today, and for that reason it might not be 
unwelcome to show that the static conception of physical quantities, as were obtained in 
the more recent development of quantum mechanics, might deliver a clarification of this 
question that is satisfactory in the sense of this theory. 
 The subject is, however, meaningful in another respect.  The fact that in statistics the 
polarization of the light quantum or the proper magnetic moment of the electron allows 
one to multiply the number of phase cells by the number 2 strongly suggests that there 
might be an intrinsic similarity between these phenomena.  C. G. Darwin 1, on the basis 
of the fact that the magnetic electron can be represented by polarizing the de Broglie 
waves, succeeded in deriving a generalization of the Schrödinger equation that is suitable 
for the magnetic electron.  Pauli 2 made an essential advance on this by means of 
considerations that were based in the general statistical interpretation of quantum 
mechanics.  Thus, Pauli made no use of the concept of polarized Schrödinger waves, and 
his results can be regarded as contradicting this notion.  In the following, we will see that 
one can describe the polarization properties of light quanta precisely by carrying over the 
Pauli conceptual structure – with that, in turn, the possibility of converting between the 
two phenomena emerges in a very surprising way. 
 We assume that the main points of the Pauli theory are known here, along with some 
extending remarks of the author 3. 
 
 
 § 1.  Observable quantities for light quanta.  We shall concern ourselves solely 
with light quanta whose frequency and direction of motion are given, so – otherwise 

                                                
 1 C. G. Darwin, Nature, March, 1927.  
 2  W. Pauli, Jr., Zeit. Phys. (to appear). 
 3  P. Jordan, Zeit. Phys. (to appear). 
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speaking – we are concerned with harmonic waves that might perhaps run parallel to the 
z-axis.  One must first set down how one can measure the polarization properties of a 
single light quantum, and how one can describe them by quantum-mechanical 
“quantities.” It likewise shows that naturally one cannot utilize the classical concept of a 
physical quantity, but only the quantum-mechanical concepts of quantities that are given 
in the statistical formulation of quantum mechanics, and are explained in an especially 
clear manner by Pauli’s arguments regarding the magnetic electron. 
 If we put a Nicol prism in the path of a purely harmonic light wave that can be 
elliptically polarized then it will split into a transmitted linearly polarized component and 
a reflected polarized component that is perpendicular to it.  If we experiment with only 
single light quanta then such a light quantum will either go through the Nicol prism or be 
reflected, and one must assume that in the former case the light quantum once more goes 
through a Nicol apparatus in such a way that it goes through it a second time, while in the 
latter case it is reflected a second time.  The different possible placements of the Nicol 
are to be referred to in terms of an angle ψ in the interval 0 ≤ ψ < π. Any such 
measurement determines a special mechanical quantity for the light quantum: We say that 
the quantity (0, ψ) has the value +12  when the light quantum is transmitted through the 

Nicol with the angle ψ, and we say that (0, ψ) is − 1
2  when it is reflected.  If one has: 

 

| ψ1 – ψ2 | = 
2

π
    (1) 

 
then the measurement of (0,ψ2) certainly delivers the value +12  when a previous 

measurement of (0, ψ1) gave the value − 1
2 , and conversely.  For that reason, we must say 

that: 

(0, ψ1) = − (0,ψ2) for  | ψ1 – ψ2 | = 
2

π
   (2) 

in the case (1). 
 Theoretically, one can also split a purely periodic light wave into circularly polarized 
partial waves with a positive and negative sense of rotation, rather than into two 
perpendicular linearly-polarized components.  Thus, the energy of the combined waves is 
also equal to the sum of the energies of the components, and for that reason, it would be 
allowable for us to assume that we can also carry out this splitting by means of an 
analyzer that – analogously to the Nicol – transmits an arbitrary polarized wave with a 
positive circular polarized component and reflects the negative component. 
 However, we would like to go a step further.  We would like to characterize the 
general elliptically-polarized wave: 
 

sin ,

sin( )

x A t

y B t δ
= 

= + 
     (3) 

 
(with a suitably chosen zero point and normalization for time) by the associated ellipse: 
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2 2

2 2
2 cos

x y xy

A B AB
δ+ − = const.   (4) 

 
with the addition of a + or – sign for a positive or negative sense of rotation, respectively.  
If ψ is the angle that the major axis of the ellipse (4) defines with the x-axis and h denotes 
the ratio of the minor axis to the major axis then we can characterize the wave (3) by 
three symbols: η, ψ, ±.  It is more convenient for the later formulas if we calculate with 
only two numbers σ = ± η and ψ ; one then has: 
 

− 1 ≤ σ ≤ 1,  0 ≤ ψ < π.    (5) 
 
The angle ψ will be undetermined in the case of σ = ± 1.  As in the textbooks on optics, it 
can be shown that: 

tan 2ψ = tan 2ϑ ⋅ cos δ,  sin 2χ = − sin 2ϑ ⋅⋅⋅⋅ sin δ,  (6) 
when one sets: 

B

A
 = tan ϑ,  σ = tan χ.    (7) 

 
 One now easily recognizes the following fact: It is possible to represent any wave σ, 
ψ as the sum of two waves of the form: 
 

σ0, ψ1  and  − σ0, ψ2,    (8) 
 

where an arbitrary value σ0 and an arbitrary angle ψ1 are prescribed, while ψ2 is 
determined from 1: 

| ψ1 – ψ2 | = 
2

π
.     (9) 

 
The intensities of the partial waves (8) and their relative phase are determined uniquely 
by σ, ψ.  The energy of the total wave σ, ψ is the sum of the energies of the components 
(8). 
 On the basis of this fact, it seems natural for us to propose as an ideal analyzer for the 
polarization properties of a light quantum an apparatus that physically implements the 
mathematical decomposition (8) for any incident wave, so it always, for example, 
transmits the one component (8) and reflects the other one.  Such an ideal analyzer is thus 
characterized in itself by the numbers σ, ψ.   If we again consider a single light quantum 
then any analyzer σ, ψ defines a special “mechanical quantity” for us; we say that we will 
measure the value +12  or − 1

2  for the quantity: 

                                                
 1 Obviously, one can also describe the two waves (8) as follows: If the one wave is represented by: 
 

x = A sin t, y = B sin(t + δ) 
then the other one has the form: 
 

x = − B sin(t + δ′ − δ), y = A sin(t + δ′ ). 
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(σ, ψ)      (10) 
 
according to whether the light quantum is transmitted or reflected, respectively.  The 
angle ψ is undetermined in the case σ = ± 1; we denote the two quantities (10) that 
remain in this case alone by: 

(± 1).      (11) 
 

In the case σ = 0, we again obtain the previous quantities that were defined with the help 
of the Nicol, namely: 

(0, ψ).      (12) 
 

 If one has measured the quantity (σ, ψ1) for a light quantum then a subsequent 
measurement of (−σ, ψ2), where ψ2 satisfies equation (9), will certainly deliver the 
opposite value to the first measurement.  As a generalization of (2), we will then have: 
 

(σ, ψ2) = − (−σ, ψ1)  for | ψ1 – ψ2 | = 
2

π
.  (13) 

In particular, one has: 
(+ 1) = − (− 1).     (14) 

If we construct the quantity: 
C1 + C2(σ, ψ1) = q     (15) 

 
from (σ, ψ1), with two c-numbers C1, C2, then q has the value the value q′ = C1 ± C2 for 
(σ, ψ1) = ± 1

2 .  We can, however, also add and multiply two different such quantities q 

according to the symbolic combination q + p, as one forms in quantum mechanics, more 
generally.  What this addition and multiplication means in our case will be deduced from 
what follows. 
 The practicability of the aforementioned explanation might perhaps involve some 
excuses.  In fact, for any reader that is completely familiar with Pauli’s theory a brief 
presentation would suffice.  It thus seems that it is precisely the polarization of light 
quantum that provides a particularly instructive example of the definition of the singular 
concepts in quantum mechanics.  Above all, it is the elementary concept of a physical 
quantity that has experienced such an essential alteration in the development from 
classical to quantum mechanics, and in whose current conception the deepening of our 
intuitive understanding finds its expression most clearly.  One is not allowed to ascribe a 
definite value to one independently of the processes of observation. 
 
 
 § 2.  Correspondence between the light quantum and the magnetic electron.  If 
we pose the question of which pairs of quantities (σ, ψ) and ( , )σ ψ  are to be regarded as 
canonically conjugate (for a suitable normalization) then (as for the magnetic electron) 
we can lean on the quantum-mechanical theorem that for given values of a quantity all 
values of the conjugate impulse are equally probable.  We then see immediately that, 
e.g., (always for a suitable normalization) the quantity (0, ψ) (linear polarization), with 
any ψ, is canonically conjugate to (+1) or (−1) (circular polarization).  (0, ψ) and (0,ψ ) 
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are also conjugate when | ψ −ψ  | is equal to π/4 or 3π/4.  Having established this, the 
quantum-mechanical theory of polarization can be constructed in a manner that is similar 
to the theory of the magnetic electron. 
 It is therefore simpler to present an invertible one-to-one correspondence between the 
observable quantities for the light quantum and magnetic electron in such a way that the 
additive and multiplicative combination and the probability relations between the 
physical quantities for light quantities are the same as they are for the corresponding 
quantities for the magnetic electron. 
 We represent the impulse component of the magnetic electron in a definite direction 
by a point x, y, z on the unit sphere x2 + y2 + z2 = 1.  We call its pole that lies at z = 1 the 
positive one and the pole at z = − 1 the negative one.  If we associate the positive pole 
with the positive circular polarization (+1) then we must, from (14), § 1, associate the 
negative pole with the negative circular polarization (−1).  Furthermore, in hindsight of 
the things that we know about canonically conjugate quantities for the light quantum, on 
the one hand, and the magnetic electron, on the other, we must make the equatorial points 
of the sphere correspond to the linear polarizations in such a way that the angular 
difference ∆ψ between two linear polarizations is half as large as the angular distance 
between the two equatorial points. 
 Finally, we must generally associate a quantity (σ, ψ) with a positive σ with a point 
of the positive hemisphere and associate the quantity (−σ, ψ) that is the mirror image of it 
in the equatorial plane with the negative hemisphere.  We shall now determine this map 
more precisely. 
 We relate every point of the sphere to a point x = a, y = b of the plane z = 0 by means 
of stereographic projection from the positive pole according to the formula: 
 

x = 
2 2

2

1

a

a b+ +
, y = 

2 2

2

1

b

a b+ +
, z = 

2 2

2 2

1

1

a b

a b

− + +
+ +

.  (1) 

 
Our problem is then to associate the points a, b (or η = a + ib) in such a way that two 
points of the sphere that are mirror opposites for the equatorial plane z = 0 correspond to 
the same ellipse.  That reinforces the situation that two such points are represented in the 
complex plane by: 

η1 = η2  and η2 = 
1

η ∗ .    (2) 

They therefore satisfy an equation: 
 

{ η – (a + ib)}{( a − b)η – 1} = η2(a – ib) – (1 + a2 + b2) η + (a + ib) = 0  (3) 
 

that belongs to a quadratic form: 
 

Q(ξ1, ξ2) = (a – ib) 2
1ξ  − (1 + a2 + b2) ξ1ξ2 + (a + ib) 2

2ξ ,  (4) 
 

which is always real for ξ2 = 1ξ ∗ .  We then define: 
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2 2 2 2 2 2

2 2 2 2 2 2

( , ) 2{ ( ) 2 } (1 )( )

{(1 ) } {(1 ) } 4 ( , ),

Q x iy x iy a x y bxy a b x y

x a b y a b bxy F x y

− + − = − − + + + + +


= − + + + + − = 
  (5) 

 
and when we associate this form F(x, y) with the point η1 = a + ib we are certain that it 
simultaneously makes the mirror image in the equatorial correspond to the point η1 = 

1

a ib−
.  We see, in addition, that: 

F(x, y) = const.     (6)  
 

always represents an ellipse that only degenerates into a double line segment in the case 
of a2 + b2 = 1.  The determinant of F(x, y) is, in fact, equal to: 
 

D = 4{(1 – a)2 + b2}{(1 + a)2 + b2} – 16b2 = 4(a2 + b2 – 1)2.  (7) 
 
We confirm that the association possesses the following previously-obtained properties: 
 
 1. The circular polarizations (+1), (−1) correspond to the poles of the sphere.  
Therefore, (6) goes to a circle for these poles [a = b = 0, (a = b = ∞, resp.)]. 
 
 2. The quantities (σ, ψ1), (−σ, ψ1), with | ψ1 – ψ2 | = π/2 are opposite.  In fact, their 
ellipses belong to two points of the sphere that lie on a diameter, as one can see from (5). 
 
 3. The linear polarizations correspond to equatorial points of the sphere; one can 
deduce this from (1) and (7).  We also see that the association of angles is then the correct 
one.  From F(x, y) = 0 in the case of a2 + b2 = 1, it follows, in fact, that: 
 

tan
2

πψ − 
 

 = − 
x

y
 = − 

1 a

b

+
,   (8) 

so: 

tan 2ψ = 
b

a
.     (9) 

 
By the association that we just carried out, it is now completely defined in general what 
we must consider to be the “sum” and “product” of two quantum-mechanical quantities 
in our case, and thus two polarization forms.  It is also generally established which 
quantities are canonically conjugate to a given one.  Naturally, all of these can also be 
easily represented in explicit formulas.  We thus content ourselves with suggesting the 
following: Formula (9) is true in general for elliptical, as well as linear, polarizations.  
The ellipse F(x, y) = const. that is obtained by means of a coordinate system x′, y′ that is 
rotated around its principal axis takes on the form: 
 

2 2 2 2 2 2 2 2(1 ) (1 )x a b y a b′ ′⋅ − + + ⋅ + +  = const.  (10) 
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In summary, we thus obtain the representation of the numbers σ, ψ in terms of a, b by 
means of: 

2 2

tan 2 ,

1
, .

1

b

a

a b

ψ

ρσ ρ
ρ

= 
− − = = +

+ 

     (11) 

Conversely [sic]: 

arctan 2 ,

1
.

1

b

a
ψ

σρ
σ

= 
+ =
− 

     (12) 

 
 
 § 3.  Probabilities and intensities.  We now ask what the probability is for a 
quantum-mechanically determined quantity for a light quantum to have the value +12  or 

− 1
2 , under the assumption that the value of another quantity is known.  More precisely, 

we then pose the following question: Let a light quantum be examined by our analyzer σ, 
ψ that yields the value +12  or − 1

2  (transmission or reflection, resp.).  This light quantum is 

again examined by another analyzer σ , ψ .  How big is the probability that it then 
undergoes transmission (reflection, resp.)? 
 We now have two methods for answering this question: The first one is the classical 
one: We get our answer by the mathematical decomposition of the wave σ, ψ into two 
components σ , ψ  and −σ , 2ψ , where 2ψ ψ−  = π/2.  Secondly, the explanation that is 

given by quantum mechanics (Pauli’s theory of the magnetic electron, resp.) provides an 
answer: We determine two points on the unit sphere that correspond to those quantum-
mechanical quantities, the first of which would give +1

2  for a first measurement, and the 

second of which would be determined by the second measurement with the desired 
probability of +1

2 .  The probability will be equal to: 

 

cos2 
2

Θ
,     (1) 

 
where Θ is the angular distance between the two points of the sphere. 
 The quantum-mechanical answer obviously agrees with the classical one in the case 
where the two analyzers that used are Nicol prisms.  The two spherical points then lie on 
the equator, and their distance Θ is equal to twice the angle between the polarization 
directions of the two Nicols.  This situation gets more involved in the general case of two 
elliptical polarizers.  From (1), § 2, the angle Θ between two points a1, b1 and a2, b2 is 
given by: 
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cos Θ = 
2 2 2 2

1 2 1 2 1 1 2 2
2 2 2 2
1 1 2 2

4 4 (1 )(1 )

(1 )(1 )

a a b b a b a b

a b a b

+ + − − − −
+ + + +

,    (2) 

so: 
2 2

1 2 1 2 1 2
2 2
1 2

2 2
1 2 1 2 1 2

2 2
1 2

4 4 (1 )(1 )
cos

(1 )(1 )

4 cos( ) (1 )(1 )
.

(1 )(1 )

a a b b ρ ρ
ρ ρ

ρ ρ ψ ψ ρ ρ
ρ ρ

+ + − −Θ = + + 


− + − − =
+ + 

   (3) 

 
This then yields the probability: 
 

cos2 
2

Θ
 = 

2 2
1 2 1 2 1 2

2 2
1 2

1 2 cos( )

(1 )(1 )

ρ ρ ψ ψ ρ ρ
ρ ρ

+ − +
+ +

, ρ1,2 = 1,2

1,2

1

1

σ
σ

+
−

,   (4) 

or also: 

cos2 
2

Θ
 = 

2 2 2 2
1 2 1 2 1 2 1 2

2 2
1 2

(1 ) ( ) (1 )(1 )cos( )

2(1 )(1 )

σ σ σ σ σ σ ψ ψ
σ σ

+ + + + − − −
+ +

.  (5) 

 
 Finally, we must compare this formula with the statement of the classical theory.  A 
somewhat lengthy calculation – for which, one can employ formulas (6), (7), § 1 and the 
formulas of the footnote on pp. 3, where nothing special needs to be said about the units – 
also leads classically, in fact, to a result that means the same thing as (4), (5). 
 In conclusion, I would like to express my deepest thanks for the fact that I got the 
impetus to carry out this argument from a conversation with Herrn Prof. C. G. Darwin.  
Darwin expressed the belief that a representation with the aid of polarized Schrödinger 
waves could also be achieved for Pauli’s theory of magnetic electrons.  It then seemed 
appealing to me to examine the converse. 
 I am indebted to Prof. N. Bohr for many stimulating conversations and to the 
International Education Board for making my sojourn in Copenhagen possible. 
 

___________ 
 

 
 
 


