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On the quantum electrodynamics of charge-free fielsl
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Translated by D. H. Delphenich

As a continuation obDirac’s theory, in which the electrodynamical field quansitere regarded as
non-commuting numberg{numbers), commutation relations between the field quesititill be presented
here that have eelativistically-invariant form, at least in the special case of the absencehafged
particles (pure radiation field). It will be shown thihese relations can also be formulated without
employing the Fourier decomposition of the field. Moreoaageneral mathematical method will be given
that allows one to reinterpret relations betwgerumbers that depend continuously upon space and time
coordinatesd-functions) as relations between suitably-chosen ter#hat are applied to generalizgd
functions that depend upon the entire field evolution (fonals).

As is known,Dirac (') was the first to succeed in adapting quantum-mechanical
methods to the treatment of the electromagnetiadiatself when he regarded the
amplitude of the partial waves of the field asrfumbers” and presented commutation
relations for them. Due to the fact that one withar at an essential advance in that way,
now that an analogous treatment of a simpler problemalreaady been given'§,
namely, the problem of the scalar (one-dimensionalewaguation, it must certainly
appear that a known difficulty th&instein found in regard to the energy oscillations of
a wave field by a quantum-mechanical treatment of the @geiliations of the field can
be solved. In factDirac succeeded in presenting a consistent theory of the emissi
absorption, and dispersion of radiation. Furthermaoejan () has adapted tHgirac
method for the quantization of wave-fields to the czsmatter waves that correspond to
Fermi statistics, and the results of a recent papéptjan andKlein (© ) make it seem
very promising moreover, that one might be able tclattiae still-unsolved problem of a
guantum theory of the interaction of particles when cowesiders the final propagation
velocity of the force effects. Such a theory musb éreat the electrostatic and radiation
effects of the electromagnetic field by means of a edifnethodology.

Nonetheless, the topic of the present article shillinet be the general interaction
problem, but rather, for the time being, we intend tdifyesomething that was missing
from the formulation of the theory that was achievedhe cited papers, and which was
also continually stressed by their authors. Namelyhase papers, the time coordinate

()  P.A. M. Dirac, Proc. Roy. Soc. London (A)14(1927), 243, 710.
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(") P. Jordan, ibidem 44 (1927), 473. Added in proof: Cf., al$d Jordan and E. Wigner (to
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was always singled out from the spatial coordinatespeacaliar way, so the results were
not relativistically invariant. By contrast, the medls that will be employed in the
present paper for the quantization of the electromagretids arerelativistically
invariant.

At first, in 8 1the standpoint will be assumed that the electrontagfeld strengths
can be decomposed into polarized, monochromatic parde¢sa la Fourier, and that
their amplitudes will fulfill certain commutation reilabs as §-numbers.” We will
succeed in formulating these relations in such a waly nbareference system of the
special theory of relativity will be singled out frometlother ones, while, at the same
time, the previous results for the oscillation propertieshe radiation energy will be
reproduced correctly by the theory. However, this stamipain be replaced by a more
general one’} from which a Fourier decomposition of the field is nsed explicitly, and
the field strengths themselves can be regarded as awomtiofg-numbers that depend
continuously upon the space-time coordinates. Such setsurhbers might be briefly
referred to asd-functions.” In8 2to 4 of the first part of this paper, this more general
standpoint will be developed, always while maintaining na$dtc invariance. Let it be
remarked here that these arguments can also be adaptptetedy to matter waves of
force-free particles and will lead to a relativistigalivariant quantization of those waves
in the event that one is dealing with particles of same type that obey tl&nstein-
Bose statistics. However, since the quantization of mattaves in the other case of
particles with Fermi statistics has still not beeltyfexplained ('), we shall not go into
that in more detail here in this article. One mightbatdy expect of a still-pending
general relativistically-invariant quantum theory of wéedds that, on the one hand, also
has to consider electromagnetic fields that corredptun the presence of charged
particles, and on the other hand, has to include the ndiuef electromagnetic fields on
matter fields in the calculations, that it will incluttee commutation relations of the free
electromagnetic radiation field that are presentee,h@ong with the matter waves of
force-free particles, as special limiting cases.

The second part of this paper will address the questibowftheg-functions that are
applied to certain “probability amplitudegls can be interpreted. In ordinary quantum
mechanics, as is known, one goes from the equations:

pPgq —ap= .
27

and the law of energy:
H (p’ q) = El

which are initially relations betweepnumbers, to a differential equation for the function

¢ (g), in which one replacep with the operator%%, g with the multiplication
i

operator, and then writé$ (p, ) as an operator that is applied¢o

() Cf., alsoP. Jordan, Zeit. Phys45 (1927), 766.
(") Remark by the editor: However, one might confer theemientioned paper dbrdan andWigner.
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In the case of a harmonic oscillator, where one can se
1 m
H(p, ) =—p°+ = Q2rw)’ &,
2m 2

as Schrddinger has shown, the associated differential equationgfawill lead to the
eigenvalues:

En=(M+3) hw with n=0,1,2, ...,

while the ¢+~functions will be given by the so-callétermite polynomials; in particular,
2Py, ,
one will haveyp () =Ce " " forn=0.

Now, this has a complication as a consequence whentr@atsinfinitely-many
oscillators (which correspond to the infinitely-many asg of freedom of radiation),
such as in the eigen-oscillations of cavity radiati¢irst of all, the total energy density
of the radiation will become infinitely large, sincm the limiting case, a very large
cavity) radiation with a frequency betweerand v + dv for n = 0 would itself yield the
amount:

8v? hv
3 —dv
c 2

for it. Secondly, when only a finite number of @ngoscillations is excited, the product
of the infinitely-many eigen-oscillations will n@onverge, in general, such that e
function of those infinitely-many amplitudeg of the oscillators will not possess a well-
defined value at first.

Various considerations seem to suggest that, mtrast to the eigen-oscillations in a
crystal lattice (where one can speak of there béagpretical, as well as empirical
grounds for the presence of a zero-point enerdng,“zero-point energy” ofiv/ 2 per
degree of freedom has no physical reality for tigereoscillations of radiation. Namely,
since one deals with strictly-harmonic oscillatéos those eigen-oscillations, and since
the “zero-point radiation” cannot be absorbed, tecatl, or reflected, its existence,
including its energy or mass, would seem to desdrgypossibility of proving that it has
any physical reality. For that reason, it is ptadipasimplest and most satisfying to
imagine that such a zero-point radiation does weh@xist for the electromagnetic field.

In conjunction with that, it is perhaps interegtio remark that it is possible to also
formulate that picture mathematically for an indival harmonic oscillator. Namely, if
one introduces the quantities:

1 .
P=——  p-i
ZT/Omp iy v, maq,
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1 .
=——p+iy 7v,mq,
Q > T/Om p omd
in place ofp andq, then it will follow from:

pPgq —ap= n
27

that one has the relation:
) h
PQ-QP=i(pg—-qp=—,
217

and furthermore, one will have:
1 2 m 2 2
—p°+ —(21Ty
5 p 2( 0)" q

1 . 1 . .
= ZHVO{W p+iy mv,m QJ[W p— i v,mq(+ v i (pgq — gp

=2 QP + h2|/0 .

If one introduces a new Hamiltonian function:

H (P, Q) =2mvy QP=E,
with

-
PQ-QP=_"

then one will come to the eigenvalues:
En =n hVO

with no zero-point energy. One can also exhibit eigactians ofy¢e (Q) for which the

variableQ is generally a complex quantity. One might perhageehbat the problems
with convergence that are connected with the zero-paiiiation for infinitely-many

oscillators might someday be overcome in that way.

In the second part of the present work, however, thodeshall be given for defining
{functions of the field and operations with them tha er harmony with the given
relations betweeg-functions without an explicit use of the Fourier decosifion of the
field being necessary. Unfortunately, we have not succee@dethrrying out an
elimination of the zero-point energy under this ctindiin a satisfactory way that would
be analogous to the consideration above for the individs@llator. Therefore, what
will be done in the second part of this paper will be, large extent, improvements that
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require extension, and will have more to do with theegal mathematical methods that
will employed there than with the special relatiomst twill be given there.

l. Method of g-functions andg-numbers

8 1. Fourier decomposition of the field. Relativistically-invarant commutations
relations for the amplitudes of the eigen-oscillations— We imagine that the
electromagnetic radiation field is decomposed intoigdantonochromatic plane waves,
and indeed, we think of travelling waves that then fulfdl special limiting conditions
that might suggest, perhaps, impermeable cavity walls.cdBgrast, it is preferable to
employ Fourier series at first, instead of Fourieegnals. Letts be the propagation

vector of a plane partial wave (viz., a vector in tireadion of the wave normal with a
magnitude that is equal to the wave number), g ¥ ks be its absolute value, and let

be its oscillation number, such that one has:

VS EZ

ks=—=
c

OI\J | V’<I\J

(1)

The indexs shall only distinguish between the various eigen-freqesnciAt first, the
propagation vectorgs that appear in the Fourier decomposition of the fielghtnbe
assigned a density in the spacetQff, ¢, (briefly: “t-space”) that would correspond to

the eigen-oscillations of a cubical cavity of edgéso a volume of?®). That is, we
assume that the mean volume of a celi-gpace upon which (except for the polarization

factor that is yet to be discusseepartial wave of the Fourier series falls is equal to:

A&A&A&:%n (2)

The field strength€ and$) are now combinations of the field strengéhsand $s of the
individual eigen-oscillations, which consist of monochroowaves:

E=DE, H=)9,.

Now, we have yet to consider thato linearly-independent polarized waves are possible
for eachts whose directions of oscillation are perpendiculagéso In order to represent
them formally, for eack, we introduce an orthogonal coordinate systémy( {)s whose

{-axis is parallel tds, and lete!”, ¢!¥, ¢ be unit vectors in the directiods 7, {. Let

the amplitudesa® of the electric field strengths of the one linegrblarized eigen-
oscillation (which will be denoted by the index 1) be pataib the é-axis, while the
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other one (which will be demoted by the index 2) is partdlehe 7-axis. If we include

/ vV . :
the factor f? , On grounds that will become clear shortly, then wewste:

¢, =\ (Pl +ea) cos2rf(e )~ It ot

+(eP0 +e!9b{P)sin 277 [(e £ )- [€ . |ct ]},
3)

9. =[e¥¢ ] = (9 — e3a?) cos 27r(e 1)~ | k | cf
s 4 L3 n s & s g sl

+(Pb® — eI sin 27 [ £ ) |K, | ct]}.

The factor % in (3) is chosen so that the total cavity energy:

Es=1[(€+9%)av

(to the extent that it originates in a single, éing-polarized partial wave) will be equal
to:

Ee=1v (a2 +b), (4)

in which eitheral”, b or a?, b®® are substituted foas andbs . (The field strengths in
this are measured Heavisideunits.)

Since the energhlis (except for the zero-point energy) must be a pigltofhiy — that
is, that:

3(a + 1)

(in any case, up to an additive constant) must hlaeeharacteristic valuég = 0, 1, 2,
... — it is reasonable to set:
bt~ b0 = b7 - b2a= h )

in which one naturally has that andbs: commute with each other far# s’ just as
different as or differentbs will. Moreover, it also seems natural to assuimat the
amplitudes that belong to the various polarizatl@actions commute with each other:

aél)af) _ a(sz) a(sl) =0 BYH2- g2Hv=0 }
4 S S S S ' (II)

a0 - b2 =0, - b =0
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It is easy to see that the commutation relations @tion: “CR”) (1) and (1) are

independent of the choice of unit vectm@%, e,‘f), as long as they are perpendicular to
each other and tés . One can similarly prove the invariance of (I) ghgl under a

change of the zero-point of the coordinate systemwiaa initially distinguished by the
Fourier decomposition (3) of the field. Namely, Hiandbs transform according to:

a, = asCoss +bssing,
b, =—assind + bs cosx,

for each polarization direction, and one therefore hrafact:
ab-bd =asbs—has. (5)

When one further observes that it is not the precdees ofts, but only its density (2)
that enters intd-space, it will be further easy to see, when oneiders (1), that the CR

() fulfill the requirement ofelativistic invariance.
This will also become especially clear when @rasses from Fourier series to
Fourier integrals in the limit.One will then have:

ZaSZ%:ZaS’jAkXAkyAkZ - [E®dk dk dk

for each polarization direction [we drop the indéx or (2) for the sake of simplicity],

and analogously foEbj%. Furthermore, from the definition & (ky, ky, k) = E (¥),
that will imply:
1 «11;, ... >
LEL 5l @ o0V - [E@K dy ok,

(6)
E (8) = v () [A° (¥) + B* (®)].

When we, on the one hand, sum over all eigen-asioifls with¢s in a certain domain
Q, (¢) in e-space, and on the other hand, sum over the omhetwit another domaif,
(), and letQ1, () denote the volume of the domaintkspace that isommonto Q; and
Q,, we can further compute:

6N Q;(E)  Ein Q,(t) £n Q,(E) € dn Qq(t)

IS as -0y al-oun

That will then next imply that the value on thetdefnd side is equal to the number of
eigen-oscillations that are common to both sumsided by L°, which agrees with
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Q1(€), according to (2). On the other hand, the sumsappear on the left-hand side
will be equal, in the limit, to the corresponding integtthiat are defined by (¢) and
B(£), such that we can write:

[ Ay dk dk di [ BE) di di dj- [ B(e)dk dk dk [ A€ di di d}

Q,

=ih le y (7)

or with the help of theDirac J-function that will be considered more closely in the
following paragraph:
A®)BE)-B@{E)A(®) =ihdoE-¥t). (8)

What is more important than the passage to the fnaowih Fourier series to Fourier
integral is to abandon the Fourier decomposition ofigle entirely, along with its direct
conception as a continuum ginumbers (§-functions”). In order to do that, it will be
necessary to define a new, relativistically-invari&tfiinction, which will be done in the
following paragraphs.

§ 2. Definition and meaning of the relativistically-invariant A-function. — The
ordinaryDirac o-function for one variablg is defined by the equation:

.T5(X) dx = 1 when @ p)includes the zero - poi ©)

. |0 otherwise.

One will also have:
¢ f(O h includes th -poi
jf(x)é(x)dx:{ (©) when & b) includes the zero p.}. 10
. 0 otherwise

then.
The “function” d (x) can be regarded as ahbreviationfor asequencef functions

b
a(x), %X, ..., N (), ... for which Lim '[JN(X) dx exists and has the value that is given

above. Similarly:

f f(x) 3(X) dx shall mean ~ lim i f(X) 3, (%) dx.

a

As such a sequence of functions, one can take, e.qg.:
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& (¥) = sin 277N X
JTX

N
= 2[ cos 2rk xdk, (11)
0

since one will then have:

b beo . ¢ h - S
im [ £(x)6,(3 dx= | f(LjSIn Yy | (0 whena< 0b> 0
T e \27IN ) Ty 0 whena> 0p> 0

Naturally, (11) is, however, not the only possible sequén¢e) that satisfies (10) in the
limit asN - co.

Now, we shall encounter a well-defined sequence of fomefly (X, vy, z t) in the
following paragraphs, and in fact, it is given by:

A (X, Y, Z, ct) = m l%sinzmkxxmy y+ k z | k| c dk dk dJ (12)

(kl={k+k+Kk).

[e]l<sN
What is essential in this is the coupling of the caoédfits oft with those ok, y, z, which
says that all partial waves from which (12) is composkaiace with the velocitg. Ay
(x, y, z t) is, moreover, relativistically-invariant for a fixe@rp-point of the coordinate
system, since, as one easily computes, for the cagkich:

Ke, Ky, Koy i K|
define the components of a four-vector of length zero:

1

— kxk kz,
k|

it is invariant under Lorentz transformations.
We would now like to characterize the sequeh¢ég...) as aA-function, i.e., by way
of:

im [ 00y, 2 94, (x.. 9 dV,

in which we have integrated over a four-dimensianaild-domain, and we have set:
dVs =dx dy dz c dt

We will once more write this limit symbolically as:

[T y,z9A(x y 29 dy
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and consider all sequencsg for which this limit coincides for afito not be essentially
different. Next the integral (12) by be evaluated. khi@ng polar coordinates intid

space withx (¢, £) =J, cosd=u:

dk dk, dk, = 277 k [ d | k | du
yields:

N +1
An (X...t) :4nj|k|d |k|j sinZr K [fu-ct)dL (1 =+ X2+ Y2+ ),
0 -1

N
:2J‘d|k|%[003277|k|(r +ct) —cos 27| k| (r — ct),
0

or finally:

Ay (X...1) = i
m

(12)

[sinZnN t+ct) sinziN (—ct)}
r +ct r —ct '

(Observe that the negative sign in the bracketesaMgto remain finite fot # 0, r = 0!)
In complete analogy with the properties of thection Jy (X) at the beginning of this

paragraph, we can now also give tILim j f(..)AdV,. LetVs be the domain of

integration, and le¥,"be its three-dimensional section with the “lightaedr + ct = 0,
while V;" is the section with the light-come- ct= 0. One will then have:

jf(x...t)AN(x...t) dy,

= I f(x,y,zct=- r)% dxdydz'[ {xyzdst )lré dxdy ()]
Vi Vs
and this equation should now be regarded as theitiati of the relativistically-invariant

A-function (observing the invariance OM), independently of itsparticular
r

realization by the sequence (12). If one $etsl in (Il) then one will get the value of
[ady,:

Va

IAdV4: J- dxdydz_J- dxrdyd. an

v, Al Vs

On the basis of (1 we can say, intuitively, that: Tiefunction that is introduced here
is a spatially-isotropic spherical-shell wave tisatoncentrated on an infinitely-thin shell
r =ctin the limit, and that first contracts with theesg of light in order to make= 0 at
the zero-point = 0, and then expands again with the speed df lijforeover, one has:

A-X-Yy,-z-t)=—AKXY,zZt). (13)



Jordan and Pauli — On the quantum electrodynamics ojetigee fields. 11

It still remains for us to remark that the derivativéshe A-function are defined by
the limit:

jfa—Adv_ lim jfa—Adv4 = |im [—jia dvj
v 0% uw 9% N7 0%

dxdydz of dxdyd
ISl

V3

in which it has been assumed thatanishes on the boundary of the integration region.
The higher partial derivatives are defined analogouslyhdtldg be remarked that in the
sense of this definition, one has:

308 - (14)

8 3. CR for the electromagnetic field strengths, when coitered to be g-
functions, while eliminating the Fourier decomposition.— We would now like to
attempt to characterize the values of the commutatibrany components of the
electromagnetic field strengths at two different spaoe- points while maintaining
relativistic invariance, without explicitly calling uponetiFourier decomposition in the
final result. We shall then deal with ascertaining tkressions:

¢ (P) & (P’) - &(P) & (P’), $i (P) H5<(P") = 95« (P) i (P7),
& (P) 5« (P7) = & (P) 51 (P"),
in which P andP’shall be abbreviations for the four coordinateg, z t of P and those

X,y,Z,t’of P, and in which, k = 1, 2, 3 are indices that characterize the components
along thex, y, andz directions, resp. We will also employ the squarekeasymbols:

[& (P), & (P)], [9i (P), $H« (P")], [& (P), Hx (P)]

for the given expressions.
We would like to start our calculation with the exggiens (3) for the field strengths:

€= | lle a +e, @) cos 2((ex)- et

+ (e, b (1)+e b®)sin 277 (€ v )~ € |ct]},

9=y 13{(e, & e, @) cos (e o) |t fct]
+ (e, b® —e, bP)sin 277 [(e ;¢ ) ¢, |ct]}.
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Equations (1) are true individually foa®”, b® and a®, b®, while a commutes with
b® anda!? with b, according to ().
We must employ relations of the form:

(edi (edk * (en)i (en)k = Ak — (e9i (e,
(i k=xy,z dc=0fori#k 1fori=Kk),

(ef)i (en)k - (e,7)i (e{)k = (e()l = %

(i, k, | is an even permutation of 1, 2, 3),

in which one consider théaxis to be parallel tatd), moreover. For a given meaning of
the indices, if we then set:

a, = a, =t F - @) E).,

. } (15)
B =-Bi =t [Ey), By =0 fori =k ),

and further:
(Ps) = 2rt[(esv) — | &s | ct],  (R)=2m[(¢,) —|¢es|ct],

then we will get from I) that:

[& (P), & (P)] =[%i (P), Hic (P")] =ih C%Z‘,Elai‘? [cos@, )sin @, ) sinP, )cosk,

=ihc %ZEMS sin@.- P,),
and likewise:

(€ (P), 5 (P)] = = [ (P), & (P)] = ih ¢ %Zle—zlﬁfﬁ sin (P~ P)

[so, in particular&; (P) commutes withH; (P)].

We now replace%Z(m) with j(n-)dkx dk, dk, according to (2), but first we

would like to integrate over a sphere of radiuim ¢-space and only then pass to the limit

N - o. Furthermore, we employ the fact that when wee tdde second derivative of
sin(P.—P,) with respect to the spatial coordinatesand x, of P or P’, the factor
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-47°¢ £ will appear before sin (...), or in the case of the dgies with respect t®

andct, the factor + 47 | & | & . In that way, the factore® and B can be replaced
with suitable combinations of such second derivatives aadwihget:

[&i (P), €& (P")] = [%i (P), 9« (P)]

_ Ihc i
.[.” e |[6X, ox, ~ O Fﬁj sin P’— P)x dk dk, dk; ,

[&i (P), 5 (P")] =-[9i (P), & (P")]
_ ihc 0° o,
-mlélcatax sin P’ - P)y dk, dk, dk, .

Differentiation and integration can be exchanged in #msl, the integral in front of the
differentiation will give precisely the functiody that appears in (12) when the
argument — x ..., t"— thave been replaced. If we dendtéx —x ...,t"—1) byA (P’

— P) and pass to the limit ™ - c then we will ultimately come to:

[€,(P), € (P)] =[5( B, H,(P)]

- 87 | ax dx,

[€(P), 5 (P)]1 =—{5( B, €(P)] =

_ihc( ? o 0

It

ihc

jA(P’— P),

62

X

P- P

(1

872 cotax

(i, k=1, 2, 3; in the second equation, the right-hand sitld®zero fori
will be an even permutation of 1, 2, 3, fef k)
One should further remember that according to (13)hase

=k andi, k |

A(P'-P

(Fa1, Faz, Faz) =1 &, (F23, Fa1, F12) = 9,
(X1, X2, X3, Xa) = (X, Y, Z ict),

=-AP'-P. (13)

With:

(1) can be summarized in the four-dimensional ingatiform:

ihc

[Fik (P), Fm (P")] = a7

— Dikim (P = P), ()

in whichAi im is an abbreviation for:
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62 62 62 62
Aik,lm: 5k| _5|I +5|m _d(m A. (16)
0x 0x, 0% 0X, 0%0X% 0 X0 X

When one compares (I11) and ()llone will call into play the property that:

2
—A =0,
~ X’

a

which was expressed in equation (14) of the previous paragraph.

8 4. Simple consequences of the CR for the field stgths. On the relationship
between quantum electrodynamics and Maxwell's equations: Theg-functions that
represent the field strengths in the form of quanturtildynamics that is founded here
are notarbitrary functions of space and time, but ones that saMsyxwell’s vacuum
field equations:

oF, , OF;  OF; _ 0

ox, 0% 0% (V)
Zai =0.
7 OX,

This is already included in our starting point, namely, deeomposition of fields into
transverse partial waves that propagate with the spekghtf The charge and current
densities are assumed to vanish everywhere in thist iFlased upon the assumption
that the consideration of that special case is an abetrabtat is compatible with the
laws of quantum electrodynamics. However, if one ascéyatt assumption then one can
say that the classical field equations (V) will alater into quantum electrodynamics
explicitly, and indeed azuxiliary conditions that are imposed upon the g-functions of the
field strengths.

In order for the CR (lll) to be compatible with thelfi equations (1V), the left-hand
side of equations (16) must commute with any of the figlehgth componentB,,, by
means of (II1). Therefore, since that is, in fact, the casat thill already guarantee us
the derivation of the CR (Il from those of the Fourier decomposition of the field.
However, one can easily confirm the CR by directudation. The consideration that

arises from the second of equations (V) is especsathple, since the operatioEai
k 0%

will give:
0 9°A

[‘ﬁ”ma}?@

for arbitrary fixedl, m when it is applied to the right-hand side of (lll), ahdt will be
identically zero, from (14). The calculation thaiatek to the first equations in (IV) will
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proceed in an analogous, but somewhat lengthier, way. wilheeach the goal more
rapidly when one introduces the tendg that is dual toFy , whose components are
given by:

(F2D31F3D11F1§):_i ¢, (F4D1’F4D2’F4D3):_53’

and with their help, the first of equations (IV) are kmot® also be capable of being
written:

Z‘E: 0. (IV)

7 0%,

Now, the transition to the dual tensor means that eplaces ¢ with —§, and therefore,
¢ with i $H, and$ with —i & . As one sees immediately from (Ill), the valuésalb
bracket expressions will simply change sign in that widgnce, one also has:
O O v ’ |hC , ,
[Fi(P), Fn(P)] == [Fi (P), Fim (P")] = = ﬁﬂik, m (P'=P), (n

from which, the commutability of (I with F, likewise follows, just as the

commutability ofzai with Fi, would follow from (111').

Moreover, since it is easy to verify that one fas(P), F-(P)] = -[F(P), F.(P)]

= 0, on the basis of (lll), along with (17), it will fow further in conjunction with (II1)
that the tensors satisfy:

Ex =Fi + F,, Ei =Fik— F. (18a)
[Ex (P), E,(P)]=0, [} (P), En(P)]=0, (18b)
[Ei (P), En(P)]=2[Fi (P), Fim (P")] + 2[R (P), Fim (P")],
[Ex(P), En(P)]=2[Fi (P), Fim (P")] = 2 [F(P), Fim (P")] .
For that reason, the relations (18b) are especialhankahle, since they mean that
one is allowed to substitute ordinary functions (viz-functions”) for theg-functions

E, (P) alone [or for the function&; (P) alone] in special applications, since their values
at different space-time points will always commute.e@iill also obtain functions with

similar properties when one reflects the field strendih (P) relative to an arbitrarily-
chosen zero-point:
Fi (P)= 3[Fix (P) + Fic (= P)], Fi (P)=3[Fi (P) - Fi (- P)],

such that one has:
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Fc(P)=F.(=P), F.(P)=-F/(-P).
One easily gets:

[Fc (P). Fin(P)]

— g;cz [A|klm (P H + Aikim (P + P) +Alk|m( P’/ — H + Diim ( P’ + P)]

Since one has the symmetry propertieNaf, :

Digm (P'— P) == Aigm (=P’ + P),
Digm (P + P) == Digm (- P"= P),

which are analogous to (33the middle two terms, as well as the first and fesn in
the bracket will cancel each other, and the righmdhside will vanish. One will also find

an analogous result f¢F, (P), F.(P")], such that one has:
[Fi (P), Fn(P)] = [F (P), R, (P)] = 0. (19a)
By contrast, it easily follows in the same way that

[F(P), Fa(P)] = 'h° 2 [ (P'= P) + Buan (P74 P (19b)

[Fo(P), Fa(P)] = 'h° 2 [ ("= P) = Buan (P74 P (19¢)

The commutation of the left-hand sides of taxwell equations with all field
strength components can also be formulated by applyingttes equations:When the
F. (P) are replaced with the right-hand side (@®b) for fixed I, m, and P they will be
solutions of theMaxwell equationg(1V), and the same thing will also be true when the
right-hand side o{19b)is substituted forF_(P') for fixed i, k, and P Due to the use of
the A-function, it is more rigorous to always speak of singuilaiting cases of the
solutions of thevlaxwell equations, instead of those solutions.

We will employ the latter property of the relations (18gr on. Here, let us merely
remark that no simply-formulated, relativistically-inizat CR exists for the four-
potential in which only thé&-function and its derivatives.

Il. Method of functionals and functional operators
8 1. One-dimensional continuum, treated non-relativistically.— We consider

longitudinal standing oscillations in a one-dimensioraitmuum with the boundary
conditions:
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gx)=0 for x=0 and x=I.
We can then set:

2
and analogously for the "impulse": (20)

p(xX) = fz n sin 277K x.

q(x) = \/_ZGESII‘IZHKX Ig:si, snteger,

Let the classical equations of motion be:
p.=— 27T Vs s, Q= 27vs s, Vs=Ck,

and let the total energy be:
E=2 4P +2m) a) -—j[p(x)ﬂ:z[ H X (21)

Quantum-mechanically, the CR:

L when s=¢
psqs—osps: 277i ’ (22)

0 when s# ¢

are combined with (18). As would follow from a gilm calculation (), these are
equivalent to:

PXaX)-gXx)p X = % O (x=X) [x,x"in (0,N)], (23)

in which 0 means th®irac function (cf., I, 82).
Now, as is known, when one introduces a Schrodifugetion:

Y, .-y s, --.),

the infinitude of variables, ..., s, ... can also be interpreted as an operator equation
when one replaces:
ds with the operator: multiplication by ,

Ps " " " differentiationl_i :
27 oq

S

This relates to the identity:

() Cf., e.g.P. JordanandO. Klein, Zeit. Phys45 (1927), 751.
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9 ay-a¥-
aas(f’slsl,l/) asaas ¥

The law of energy then leads from (21) to the diffde¢equation:

>y

S

VYL (20 v )=
( 4,72}685 +(252(2nv5) asjw E g (24)

The solution of this equation does not generally convergenfinitely-many variables,
which is connected with the finite zero-point energhrf/ 2 per eigen-oscillation. This
still-completely-unsolved difficulty was discussed taghly in the introduction.

Except for that, however, we are forced to posefdhewing question: What is the
analogue of the operator representations of equations 1(@#2)24) when we start from
the functiong (x), and therefore, a continuum of independently-varyingatséas, instead
of a countable infinitude of variableg, ..., qs, ...? The answer to that can be given with
the help oVolterra’s functional mathematics. A functional:

P{q (¥}

is the association of maumberto a functiong (x). It is said to balifferentiableat the
point P when the following limiting value always exists indepenfjeat the particular
way that is arrived at: One defines a varied functjgx) + G(X), and lets the interval in

which G(X) is non-zero contract to the pomt= P, while at the same timﬁq(x) dx also
converges to zero. One then has:

Plax+q3 - ax

Wox:p = lim
a0P [q(x dx
One can also write this as:
) 1
Wog:p=  lim [y +aq ¥} -W @K . (25)
a0 B) - 000 %) a1

with the help of thed-function. The ordinary rule for the different@ti of sums and
product remains true. The second derivative isyddfanalogously by:

, 1
Yomamree= M W odd 3 +aq ¥ -V, b @K - (25a)
400 - 80x %)

A special case of this is the second derivativePfo= P, which we will denote by the
indexq(x), q(x); PP.
We shall now look for functional operators fpr(x) andq (x), that is, ones that

associate new functionaf¥ and ¥ with W. They can be described by the formulas:
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[P de W{q (3} - ¥,{a ()}

Ja® de OW{q (¥} - P,{qa ()},

in which one must integrate over an arbitrarily-giveteiivalJ of x on the left, and the

dependency of the functional® and ¥ on that interval is expressed by adding an index
J to the expression. Now, that association must bseshin such a way that the relation
(23) will be fulfilled when it is regarded as an operatuation. It is clear that:

[ [ P00 dx}mv{ A9 =5 W O

X X

(26)

UM}BM ¥ =4 @k Ef(opx dx
% X

satisfy that condition.
The law of energy (21) further yields the functibimtegro-differential equation:

J'(_)(%Tj qu(x),q(x); ppUXp+ Czl:'[(%j dX:l W=EW. (27)

In order to exhibit the analogue of the orthogityatondition, one needs the
definition of:

[ewe 00

in function space. A closely-related definitiongimi be to divide the line segment (P,
into N intervals and consider the step-polyggns) that might have the constant values
01 to gy in the individual intervals. One then passedlimit N — oo to:

[eye00= Li[nmwa(ql,.--, O)@e (Qr--.r Gy)dq ... dov = O (E - E).

Nevertheless, the aforementioned convergence wliffids a hindrance here, for the
moment.

§ 2. Relativistically-invariant functional treatment of the caseof two canonically-
conjugate scalarg-functions that satisfy the wave equation— As a preparation for the
problem of vacuum electrodynamics, the followinqgier problem shall be treated to
begin with. Two scalar state-quantitieand g both satisfy the (four-dimensional) wave
equation:
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Zazf =0, i£=0- (28)

4
a-1 GXLZ, = ox;

Furthermore, when they are regardedafuhctions” ofx, y, z t, the CR:
fPaP)-gP)fP)=ihAP-PF) (29)

shall be true for them, in which is the function that was defined in 1,28 while the
values off at different points commute with each other, and likevias the values of.
One asks how this CR can be interpreted as a relabbmeen functional operators,
analogous to the introduction of the operators (26) inta (23)

As a result of the fact thgt(P) commutes witlg (P”), one is allowed to consider the
functionals:

W{g (X, ..., Xa)}

in which the values of (xi, ..., Xa) are now ordinary numbers. However, it is essential
that g (x1, ..., Xx4) can no longer be arbitrary function »f ..., x4, but only one that
satisfies the wave equation. We must also remain iditlee domain of these special
functions when we varg (x). In particular, it is no longer possible then to d®the
variation ofg (xi, ..., X4) in such a way that it is non-zero only in the neighbodhof a
world-point. The fact that the argument of the funttl¥ is subject to the wave
equation, or more generally, a linear partial diffeienequation, as an auxiliary
condition, then makes an alteration @blterra’s concept of functional derivation
necessary.

Meanwhile, such a thing will emerge automatically whea simply replace the
ordinary o-function in the notation (25) for th€olterra derivative with the spherical
shell waveA-function of I, 82 when we recall that, from I, 8, equation (13), it is a
solution of (28).

We shall now define a functional derivative by:

Wy = M Z[4Eg Y +ad ) - O (30)

g% (P)] - A(P-P)

then. Since the rules of differentiation of sumsl gmoducts still persist for this
derivative, as well, it is further immediately cletlvat (29) will be satisfied by the
following operator Ansatz, which is completely analogou26):

[[ax) d-- x| B¥{g (9} = ih[ Wy, p0x... dx; (31)

Vs

operator

likewise,f (), as an operator, means simple multiplicatiori £%).

The question that was posed in this paragrapmsgvered completely in that way,
and we can now direct our attention to our actoal,gnamely, the functional equation of
the quantum electrodynamics of light.
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8 3. Representation of the CR of vacuum electrodynamics aslagvistically-
invariant relations between functional operators.— When we introduce the Fourier
amplitudedb, ..., bs, ... that are defined by I, equation (3) as independentblasiathe
functional representation will be clear, and tp@umberas will correspond to the
operatorin 0 / das . The difficulty with convergence that was mentiomedI, 8§ 1 will
also assert itself here, and can also appear as prdidletmaa large extent in what
follows.

However, above and beyond that, a difficulty wilcaarise when we would not like
to employ an explicit Fourier decomposition in our functlorggpresentation. As we
have mentioned already in the previous paragraph, in faet,ohly physical field
guantities that can be employed as the argument ofetidmal are the ones that
commute with each other at all space-time points whew are regarded asfunctions.
By the assumption of the CR (llIl) for the field stgémsF; that was formulated in Part I,
they cannot come under consideration as arguments of gofadcbut rather, according

to I, 8§ 4, equation (18b) or (19a), only one of the four systemgquaintities F, (P),
F.(P), Ex (P), E/(P) that were defined there. Appealing to these functiams]

especially the reflected quantitiés’ (P) and F, (P) relative to a fixed point, seems to
be very artificial, but it is nonetheless impossitoleus to avoid it.

The following consideration is carried out for functitsnaf the skew-symmetric part
F.(X,...,X,) of theMaxwell equations [Part |, equation (IV)] relative to a fixedaze

point, which we can also denote by:
PR (X %) )

Naturally, one can also switch the rolesFf and F, in all of the following arguments.

Analogous arguments will also be true when one introdEgesr E, as arguments of

the functionals.

The problem is entirely similar to the one in theypous paragraph, except that here
several (viz., six) functions will appeamultaneoushas the argument of the functional
that will be independent of each other, due to equatidf)s famely, makeMaxwell’s
equations. Hence, one cannot differentiate each ofitheeomponents of the field
strengthandividually now, sinceone field-strength component cannot be varied without
varying the other ones. Once more, it is MRinction that serves to remedy that, and
this time with its second derivatives. If we introdube expressiol\k;m that was
defined in Part I, equation (16) then, from ¥,8or each index-pair (K):

Fin (P) = Bicim (P" = B) + Aiim (P7+ P) = 4y, (P, P) (32)
will be an allowable variationof the F_ for a fixed P, since it satisfieMaxwell’s

equations and also fulfills the symmetry condition [vézghange of sign when one goes
from (P’) to (- P’)]. We can then define tHellowing six derivative®f our functional
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W{F.(P)} , which are characterized bfy, k) and skew-symmetry in that index-pair,
analogy with (30):

Vol PP} = Im o S{WR(P) raSFA(P) - R B . (39

OFim (P') ~ Ligm (P, P)

It is then also immediately clear that the CR (I8l)fulfilled, when it is regarded as an
operator equation, when the operator that belomds (P) is defined according to:

ihc

[{---Imdvpjmv{ R(P} =15

.[ .[ Wikl Fin P)} dV;, (34)

in which dVp refers to the volume element of the four-dimenai@pace of coordinates
X1, ..., Xa Of P in this, and] refers to an arbitrary, finite, four-dimensionatierval, while:

[[Fa(P)dV,

J

means simple multiplication by that quantity, asperator.

Here, some brief arguments should be mentionedatieaanalogous to the ones that
led to the exhibition of equation (25) in Il,18 At first, it is probably clear how one
might define thesecondderivatives of our functiona¥’; we write the most general
second derivative as:

W

ik,rs; PR ?

yet in what follows only the special caBe= P will be needed. It is essential to consider
that the energy integral must be regarded as elguivdo the impulse integral in a
relativistically-invariant theory, such that we lalbtain four simultaneous second-order

partial functional differential equations from tHeigen™-functional ¥, that depends

upon the four total energy-impulse componehts — E; (J1, J2, J3) =ic &. It is known
thatJy is expressed in terms of the field strengths assital electrodynamics as follows:

4
K= [ | YR Fu—d.0 4(F,) | dxdydz

t=const|_ r=1 (rs)

We can choose the sectibr= const. to be = 0, in particular; i.e., the one that goes
through the zero-point that we employed for thettspd of the field strengths intd-,’

and F,. Each of the four integraliz then splits into two parts that depend upon Bje

(F,, resp.) alone, since the integrals over the mivexths vanish on the grounds of
symmetry. We then get the four simultaneous (spwading tdk = 1 to 4) equations:
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(rs)

h 2 4o 4 ) )
(%j ,[_,[o,[ |:; l.IJ|<I’;4r:F’P - 5k42% l'IJrs;rs; PP:| dXP dyP db
t=0

+wfff {Z Fu P —44%2(5;)2} e clye 0z = 3, (35)

rs

which are formed analogously to (27), and in whi¢ls a function that depends upon the
F.(x.), and in turn, thely as parameters. These equations play a role foroa€ed!

radiation field that is analogous to that of tBehrodinger differential equation for a
certain quantum state of a closed mechanical system.

As we have mentioned already in the Introductionetpgations that were cited in the
last paragraphs of this Part I, for which, direct in&igin methods are still not available,
are regarded as provisional to a greater degree than theeartguabout-functions that
were developed in Part I. However, we regard the intramudf functionals into a
consistent quantum-theoretic reinterpretation of thesatal field physics to be natural,
despite many unsolved problems in regard to the implementatspecial cases.




