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The vortex theorem in thermodynamics
By M. JOUGUET

Translated by D. H. Delphenich

1. Consider a continuous fluid mass that is animated bytamthat does not alter
its continuity. Letu, v, w denote the components of the velocity of the moéalbng
the three axes; they are continuous functions of timaed the coordinates y, z of a
geometric point (viz., Euler variables). The molectlted are situated on a closed curve
Co at the timé, form a closed curv€ at any instant. One can state Helmholtz’s theorem
by saying that the curvilinear integral:

.[Cu dx+ vdy+ wd:

preserves the same value at any instant.
The proof of that theorem that is applicable to fluisst are devoid of viscosity is
subordinate to the following restrictions, in addition:

a. The forces that act upon each volume element, whetieenal or external, admit
a potential.
b. The pressure is a function of only the density.

Duhem has showrt)(how thermodynamics permits one to study the motfdiuils
for which these restrictions make no sense. We propmsaudy what happens to
Helmholtz’s theorem in his theory; we continue to suppbaethe viscosity is zero.

One will easily perceive everything that is due to Duherthe lecture of this note.
Not only is his method imprinted upon it, but indeed somesopdges are devoted to
reproducing his results without modification. We pray tha will excuse us for the fact
that he has already done that himself. It seems thaishis reproduction is useful in
bringing to light the inadequacy of the statemeajsafd p) in hydrodynamics and the
possibility of replacing them with other ones that acgergeneral.

() “Le potential thermodynamique et la pression hydtipte,” Annales scientifiques de I'Ecole
Normale supériure (3)0 (1893). Traité d’Electricité et de Magnétisme I, 1892.
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2. In the fluids that are customarily studied in hydrodynamibe physical and
chemical state at a point is defined completely by dbesity o and the absolute
temperaturd. Here, we shall suppose that in order to make thatitdefi, one must add
a finite number of algebraic parameters to these twiablas — one, for example, which
we denote byl —and a finite number of geometric parameters — one,x@ample, such
as the vectoM whose projections onto the three axes wilth8, C. The variablep, A,

A, B, C, T will be supposed to be normal. Thermodynamics thenlead one to put the
internal thermodynamic potential of a fluid mass int fibrm:

(1) F:J.E¢(,0,)I,A,B,C,T)pdr + W,

In that expressiong (o, 4, A, B, C, T) pdris the internal thermodynamic potential of the

volume elementr; the,[ sign represents a triple integral that is extended aNef the
volumeE of the fluid. W is a complementary term that depends upon the relatsigqro
of the various fluid elements and the variables thath state of each of theemcept for
the temperature.

The most natural hypothesis that one can mak® amthat it can be written in the
form of a sextuple integrat)

(2) W= %H Y(p,A,AB,Co AN A B,C,xy,z2%'y, 200 d d,

whose field is the six-dimensional set that is oiga by successively associating each
point of E with all of the other points of the same domajo. A, A, B, C refer to the
volume elementr with the coordinatey, y, z;, p’, A', A', B', C' refer to the elemerdr’
with the coordinates, vy, Z.

In truth, since a fluid is isotropicg depends upom, B, C only through the
intermediary ofM. Similarly, A, B, C, A, B, C, X, ¥, z X, Y, Z do not enter into the
function ¢ in an arbitrary manner. That function dependshupaly the magnitude of the
vectorsM andM’, the angle that they make between them, the datgthey make with
the line that joins the elements andd7r’, and the length of that line. However, these
remarks will be of no interest in the context ofavkve have in mind.

We suppose that the integktllcan be calculated by two successive triple inegra
and we set:

(3) VXVYzt)= jEwp'dr'.

The pointx, y, z can be found inside & or outside of it. By hypothesis, the functign
exists in both domains. We suppose, in additibat it is continuous in each of these
domains and that it will admit first-order partgdrivatives with respect tq y, zthat are

given by the rule for derivation under t[ﬁesign. These are the hypotheses that were

) DUHEM, “Le potential thermodynamique et la pressiodrbgtatique.”
p
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made by Duhem in his memoir on titeermodynamic potential and hydrostatic pressure
that we have already cited. In that memoir, one fivil the analytical discussion of
them, which we shall not duplicate. It permits one tiew

av aw (J ] 6,0 aw (J ! aA aw U !
= | Zodr+= | —Z podr'+— | = o'dr
[=-p 6xj 2" [P

ox ox ox? A
+6_A a_wp'dr'+@ a_wp'dr’+a_c a_wp'dr"
ox-* 0A 0x* 0B ox’ 0C
and if we set:
al// ] I aw 1 ! al// ! !
X =—|=—2'dr, =—|—Z=p'd’, 7=—|—L o d',
. Iaxpr Y Iayp Z Iazp
a [l 1] a ] ] a ! !
a=-[Lgar, b=-[Loa. ¢=-[La,
(4) o
I:—j—p’dr',
0p
—__ al/l ! !
L = Ia—/]pdr

then the value adV / ox will become:

ov 0p 04 0A . 0B 0C
e X - E L g p == ==,
0x Yox "axaax l:?6x (':ax
One will likewise have :

(5) ov 0 04 0A |, 0B 0C
=Y 1R g oo o
dy dy 'dy dy 0y 0y
ov 0p 04 0A . 0B 0C
—=-Z-12FE-|,F-3g—-b—-c¢c—.
0z ' 0z "azaazbaz‘;az

The actions that the rest of the masses exert thmoerlementir are composed of a
force p dr ()?i +Y+ Z) and the influencep dr |, pdrLi, pdra, pdrhb, pdrg .

Equations (5) show that the force is not deriveaimfra potential;, that is why the
restriction @) of paragraph 1 will not be stated here.

One remarks that the existence of the influepresa;, pdr b, pdr g supposes that
a couple acts upon the elemeét Indeed, the virtual work that it does is non-zettwen
the elementr turns around itself. One knows that similar cespdre encountered in the
study of magnetic bodies, and if one adopts th@sdef Helmholtz, in that of the
interaction between two electric currents.

3. The actions that bodies that are outside of tinel &xert upon it are, in one case,
the pressur® dwthat is applied to each elemeaiw of the exterior surface, and in the



Jouguet — The vortex theorem in thermodynamics. 4

other, the forcep (>_(i +Y + Z) dr and the influencep a. dr, p be d7, p c. dr that are
applied to each volume elemat One must add the inertial forces:

-p (T, +7,+7,) dr

to the latter, in whicl is the acceleration.
Let us express the virtual work that is done by thesereti Imagine a virtual
modification for which each material point is dis@ddy:

Ix+dy+0z.

AR

Q

Q]_ Ql
Q>

N

Figure 1

The volume that is occupied by the fluid is deformd@kfore the modification, it
consisted of the part 0 and the infinitely small partwhjch were divided along the
portion Q, of the original surface. After the modificationwill be composed of 0 and
the space 2 that is confined to 0 along the po@enf the original surface. We agree to
denote the variations that the paramejrd, A, B, C, T experience at each geometric
point by the symbob and the ones that they experience at each materiatl ppithe
symbolA. The virtual work of the external actions and thextial forces is:

0T+ & = QSQ [Pcos(P,x)d x+ Pcos(P,yP v Pcos(P,z) z]a@

[ Pl(X= j) Ox+(Y,= |) Oy+(Z,~ }) 2
+Le AA + 2. AA + b AB + c. AC] d7.

One obviously has:

A=+ ﬂ5x+ﬂdy+ﬂ52,
0x oy 0z

and one can write analogous relations4é;, AB, AC. The expression fod7e + & can
be transformed into:
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0T, +3)= S [Pcos(P,x)d x+ Pcos(P,yp y Pcos(P,z) Zd

4fm&mmwwmqmd

+ ol X, i+ L D +a 22 4p 284 c 28
" | 0x 0X 0X oXx

By oA . 4B ac}

}5xdr
(6)

+ p Ye—jy+L86—y+a—+be—+c dyd

oy oy oy

+'[p Z —j,+L ﬂ+aa_A+ba_B+c oc
0 e z eaz

. S . —— |0Z .
0z 0z 0z

4. One will obtain the equations of motion by expressingdba that:
F—-Jde-aA=0

for any virtual modification for which the temperature efch molecule remains
constant.

In the sequel, the variablés B, C will play a role that is identical to that 4f as they
have done up to now. One can simplify the notatioattyrddy now supposing that for
the sake of calculations they do not exist. It is daske-establish the terms that they
contribute at the end by analogy with the ones tlagaen forA.

5. The calculation oﬁj @ pdr can be performed by following the method that was

developed by Duhem in his memoir “Sur I'équilibre et leuvement des fluides
mélanges”{). One sets:

H=g+p2?,

@ op
Es=-92.
oT

S will be the entropy of the unit of mass of the flumhich is regarded as
homogeneous. The desired variation will be:

() Travaux et Mémoires des Facultés de Lilldll, Mémoire no. 11, Chap. VI, pp. 91; 1893.
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5j¢pdr: jop%&lar

+J'0pKa—H+ ESa—Tj5x+(—x+ ES?LJ

1) ()4
®) oH oT
(— + ES—) ozl d
0Xx 0Xx

+ S ,0 [5xcos(n X)+dycosf,y ¥ zcosh,z)]d

Q,+Q,

in whichn denotes theterior normal to the fluid.

6. We nonetheless insist upon the calculatiodf
W varies for two reasons:

1. Due to the variatiordp, dA, dp’, dA”at any geometric point of the field O.
2. Due to the annihilation of matter that is camtd in 1 and the creation of matter
that is contained in 2.

One will write:

20% = [ @+ ay)(po+p)(p' +dp)dr dr’
+Hoz,oz(¢’ +Y)(p+dp)(p' +d0')dr dr’
+[[_@w+ow)p+d)(p +d)dr dr

~(II, yoordrdr+ ([ woo'dr '+ [[ goo o '),

(9)

The symbol 00 represents the six-dimensional Is&t is obtained by successively
associating each point of O with all of the otheings of 0. The symbol 02, 20 represents
a set that is composed of two parts, the first bfctv 02 is obtained by successively
associating each point of O with all the points2pfand the second of which 20, by
associating each point of 2 with all the point®ofThe symbols 22, 11, and 01, 10 have
analogous interpretations.

First consider the two integrals that relate ®rbgion 00 whose difference figures in
(9). By reason of symmetry, that difference wel équal to:

Zﬂoo,o’z//dodr dr’+2”00,0’,0?3—ﬁ5p dr dr’+2”00,0,0’g—f5/1 o d,

or rather:
(9) 2j0v5pdr—2jop|5pdr—2jopgm ar .
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Moreover,do can be expressed as a functioqfdy, dz. Indeed:

5,0:Ap—a—'05x—a—p5y—a'052 and Ap:—p(

00X 00y 00z
+ + .
0x oy 0z

ox dy 0z

gp=- {0(05X)+0(p5y)+0(p52)]

0x oy 0z

An integration by parts then transforms the sui(o:

oV -pl) (v -pl) oV -pl) _
2[0;{ SLox+ oy Sy+=— Jz}dr ZIOpLéAd

+2Q+SQ (oV — p?1)[oxcos(n ,x+dycosh,y¥d zcosh ,z)|d .

(9")

Now, take the integrals that relate to 01, 10, and 19)in@ne can write them as:

B L'Odr.[yowp' dT'—L,OdT'[Ol/I,O' dr,
namely:
—ZIledr.

Similarly, the ones that are taken over 02, 20, and 22 give

ZIZVpdr.

In regard to the latter term, we remark that dpeand thedl are not infinitely small
in the region 2. However, the integrals that relatéhem are: One calculates them by
giving the values t@, A, V that those quantities have at the points of O thainéiretely
close to the surfac@, before the modification.

The difference %V pdr -2 LV pdr is written:
9") -2 QSQ pV[XKcosh, X) + oy cosq, y) + oz cosh, 2)] dw

In this calculation, one supposes that:
Lpdrj‘mz//p' dr’ and Lpdrj‘oz//p' dr’'

are equal, up to second order. Indeed, that is what wilbdra in general, with the
hypotheses that Duhem stated for the functgan However, it will be false if one
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supposes, for example, as one does in the theory dlacigyi that this function has a
meaningful value only when the points ¥, 2), (X, Y, Z) are very close to each other.
We leave that case aside, and remark simply thakeifemcounters it then the only things
that will be modified will be the double integralsdP, but not the triple integrals. Now,
the latter suffice for the purpose that we have indmin

By virtue of (9), (9, (9'), we then write:

W = jop{a(va‘xp')5x+a(va‘yp')5y+a(va‘zp')5z} a-[ pLa o
—Q+SQ 0?1 [dxcosn,x)+dycosh,y ¥ J zcosh z)]d .

(10)

7. Formulas (6), (8), (10) giveF — 1. — &J. That expression is composed of a sum

of volume integrals and surface integrals. The consita of the volume integrals will
give the equations of motion for the interior of aidlunass. We write them by re-
establishing the terms that are dué\id@, C:

a¢—L +L,
0A
0
_¢:ae+ai’
11
(11) 6¢_ i
0B ’
—¢:c +C,
oC
oH oT , (v -pl) _ 0A 9B aC
— +ES— +L—+a—+hb—+ c—,
ox BT ax KX Leax ax Xax" %ax
oH oT , (v -pl) _ 0A, p98, IC
12 —  +ES— = + —+ —+ —+ G—,
(12) oy ay 3y Y- I'e ae Q 3y
oH 0T, d(V-pl) _ aA aB .0C
2L yES— 94, 392, p9B, 2C
0z 62 0z = AT Le 0z ae °0 z ea z
Suppose that:

XedX+Yedy+Z.dz+LedA +8cdA+ b dB+C. dC—-ES dT

is the exact differential of a functionR{x, y, z, t) with respect tc, y, z at each instant.
Equations (12) will be written:
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O(H+V-pl+R) _ .
ox X
OH+V-pl+R) _ .
ay
OH+V-pl+R) _ .
__JZ’
0z

(12)

y?

which are formulas that can be inferred from Helmbeltkeorem in a known waysé¢e
POINCARE, Théorie des tourbillonsChap. I. Equations (12 have the form of
equations (7), pp. 10 in that book.]

The functionR will exist, in particular, whenever the following cotidns are
satisfied:

a'. The external actions admit a potential; d@.dx+ Ye dy+ Z. dz+ Le dA + ac dA +
b. dB + c. dCis the exact differential of a function-(x, y, z, 4, A, B, C).
b'. At any instant, there exists a relation:

(13) K(ST)=0
between temperature and entropy per unit mass in the #@otd mass.

The latter condition will be, in turn, certainly fuléid if, upon starting with a state in
which the relation (13) is true, each element of maiperiences only transformations
for which that relation does not cease to be verifigdparticular, it will be fulfilled if,
upon starting at an instant at which all of the mashkoisiogeneous, each material
element experiences onfothermalor adiabatictransformations.

8. A consideration of double integrals dF - d7. — & will give the boundary
conditions. They are:

Pcos(P,x)= pz%—pzl cosf x )

L dp |
(14) Pcos(P,y)= ng—pzl cosf y )
Pcos(P,z)= ng—pzl cosf z)

These equations show, first of all, tHathas the same direction as(the pressure

09 _ >

must then be normal to the surface); it then shoasRtimust have the value? 6__'0
0
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Figure 2.

In order to define the pressure that is exerted on andanelementig, pass a surface
> throughdo that divides the fluid into two parts8’ and E". RemoveE' without
suppressing the action that it exerts upon the volumeeelsnofE”, and which will
have:

[ o] upar

for a potential. In order to maintain d’Alembert’s fictus equilibrium INnE', one must
then apply an exterior pressufeto each elementdoof Z. By definition,T will be the
pressure inside of the fluid. We shall now calculate i

The thermodynamic potential i is:

.[E,,¢pdT+%'UE"E’¢/pp’ dr dr'.

By virtue of formulas (8) and (10), its variation underraual modification will be:

jp 5)|drj (G—H+ESG—TJ5
0A [9)4 0X
ML ST 5 +(—+ E&j
oy oy

+ Sp [&cosh X) + dy cos f, y) + % cos 6, 2)] dw

S'+3
—_[,,,OLi"é/ldr+'[ P oV’ =pl’) 5., OV —p! )5y+6(\/ A1) 5.l o
; - 0X oy 0z

- S§z,ozl " [ox cos , X) + dy cos Q,y) + dzcos , 2)] dw.

V', 1", L' are the integral¥, |, L, when they are taken in only the regigh

The work that is done by the action that is exerteH'lmn E", with the opposite sign,
has the expression:

10
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al// 11 I aw {J ] aw U !
+5<jE,&p dr +5)|jE,a—yp dr +5ZJEE,0 dr]o a,

namely:

N AV AV
ox+ 2 5y+ 2 5zlp a—[ (1dp+ L) p o,
JE'[ax oy Vs jp [T+ 1) p

or finally:
, a(\/l_plll) a(\/l_plll) a(vl_plll)
- Joldr+ Ox+ oy+ oz|d
[.oL IE,,p{ o PVl A }

- S§zp2 |"[ox cos @, X) + dy cos ,y) + azcos 6, 2] dw

V' 1, L' are the integral¥, |, Li, when they are taken in only the regih

Finally, the virtual work that is done by the other exé¢actions is, with the opposite
sign, the expression:

= [ p[(X.= i) ox+ (Y= |)oy+(Z,- [)oz] o
- §P[cos P,X) X+ cosP,y) oy +cos P, 2 & dw
- § M [cos (1,X) ox+ cos (1,y) oy + cos (1, 2 & dw.

Upon equating the sum of the three expressions abowedpand remarking that:

V =V+V
| =17 +17
Li = Li'+|_(",

one will obtain the equations of motion for the m&%sn the form (11), (12), and the
value ofl1 in the form:

(15) N=p"—-p

and one verifies thdl is normal tado:

The relation (15) shows that the pressure on the etetaestepends upon the state of
the total mass by the intermediary &f One sees how difficult that it would be to
introduce the restrictiorbj of no.1 here.

9. We recall that an example of a fluid to which the pd#tg considerations will
apply is given by the ones whose elements obey thehlawvas proposed by Faye in his
studies on the tails of comets.
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10. The hypotheses that were made in 2i@n the complementary terk are not
necessary. Weakly-magnetic perfect fluids offeeaample in which they are not true.
The action of a magnetic mass on an interior elengenbt defined. That implies the
impossibility of putting® into the form (2). That also implies the imposdipibf stating
the restriction ) of no.1 for these bodies. However, if one adopts the idé&ubem
(%), one can write the internal thermodynamic potémtiaa system that is composed of
permanent and immobile magrieand a weakly-magnetic perfect fltidas follows:

(16) F=[, poMT)pdr-3[ (Fa+B6+Q)d.

/2

2/

Figure 3.

Here,M = |/ A*>+ B?+ C? is the magnetic moment of the elemdnt As fora, S5, y,

they are the components of the magnetic field thatsisle the magnetic mass along the
three axes.

We assume, moreover, that the virtual work that isedoy the inertial forces and
external actions and act upon the fluid has the form:

OT,+ 0] :QSQ [Pcos(P,x)d x+ Pcos(P,yp # Pcos(P,2) Za

(17)
+ (X = 1) Ox+(Y,= ) Oy+(Z- ]) 67

which is only a particular case of the form (6).
The variation ofj gpdr can be calculated by formula (8): It will be:

() Traité d’Electricité et de Magnetisme II, pp. 159 and 405.
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5[ gpdr = Ioﬁ%(’*“* BSB+ C3Q d
oH oT
+'[ pK—X+ESa—j5
(a_H+ESa—TJ5 +(_+ Eéa—j %
ay oy
+ S p? ¢[5xcos(n X)+dycosn,y ¥ zcosh,z)]d

Q,+Q,

in whichH andS are defined by the equalities (7), as always.
However, the variation o = —%IP+E(Aa+ BB+ Cy) dr cannot be obtained by

applying the preceding results. It can nonetheless leilaged by method that is
completely analogous to the one that we discussed allbwas Liénard who first gave
the exact value’). We content ourselves by pointing out the result othlsulations,
while returning to his work in the work that follows.

(19)

= —jo(a5A+ BOB+ydC) dr
+Q+SQ [a A+ BB+ yC+2mM? cos (M ,n)]

x[doxcos(n,x)+d ycosf,y)} zcosh,z)]d

11. The expressiordF — dle — A is a sum of triple and double integrals. A
consideration of the former will give the equationsnoftion inside of the fluid:

(20)

A:al

)

“Pressions a l'intérieur des aimantes et des didees,”Lumiere électriquet. I, pp. 7; 1984.
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oH oT
—+ES—= X -
0Xx ax X L
oH

21 —+ES—:

(21) % Y-
oH 6T
_+ES__ —
0z 0z 2"k

Imagine thatXc dx + Y. dy + Z. —ES dTis an exact differential with respectxpy, z
of a function R (X, y, z t) at any instant. Equations (21) then take the form:

OH+R) _
ox  °
OH+R) _
6—y_
d(H+R) _
oz )2

(21)

y?

which leads to Helmholtz’s theorem.
The functionR will exist, in particular, whenever conditiors ) and ©') of no.7 are
verified.

12. The boundary conditions are given by considering the doutdgrals ofd~ —
dle — AJ. Upon taking (20) into account in order to transfore tiktrmaA + B + yC,
and upon setting:

(22) M= p2 a¢ S |\¢; + 27M? cos (M, n),

one will have:
Pcos(P,x)=I1 cosf x)
(23) Pcos(P,y)= cosf y)
Pcos(P,z)=1 cosf,z)

As in no.8, one confirms that the pressure on an elerdenthat is interior to the
fluid is preciselyll, and that the pressure is normaldo, but it depends upon its
orientation {), even though the pressure at a point undefined, anestrition b) of no.

1 will make no more sense here than the restricapn (

13. In truth, when a magnetic fluid is in motion, eitheonduction currents or
displacement currents will be produced in it. The studghat motion thus belongs to

) LIENARD, loc. cit.
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electrodynamics and goes beyond the usual methods of tthmamics (Duhem has
insisted upon this point); Helmholtz’'s methods will peroriie to address it in all of its
complexity. The case that we have treated is an idas¢, namely, the case of a
fictitious fluid that is neither a conductor nor one tth® susceptible to dielectric
polarization. It thus presents very little of intéresthe theory of electricity. Here, we
shall assume the viewpoint of energetics, and we woulglgifike to show by that
example that is is possible for material systemsist ér which the form (2) of the term
W is no longer exact, and for which the notion of ingrforce, which is paramount in
mechanics, fails completely, but can be effectiveplaeed by that of energy.

14. We have thus given a new statemex), (b') to the restrictionsa), (b) to which
the proof of Helmholtz’s theorem is subordinate that the advantage of applying to the
cases in which the usual statements have no meaningcohldéions &), (b') present
the greatest analogy with the ones that Duhem fountéwbeking the case in which the
equations of motion admit s vivaintegral {) for systems that depend upon a finite
number of variables. The following proof of HelmholtzZ®drem will perhaps bring to
light the reasons for that parallelism better tHangreceding developments did.

Figure 4

In order to show tha.feu dx+ v dy+ w dzis constant, it is necessary and sufficient to

show that j _ixdx+ jy dy + j; dzis zero (see POINCAREThéorie des tourbillonspp.

12). Consider a fluid ring alon@ with an infinitely small section that we divide by
sections that are normal © into elements 1, 2, ..n that are infinitely small in their
three dimensions and that all contain the same mhass Since a material system is
defined by normal variables, one knows that under an anpitrigtual displacement
(isothermal or not) the variation of the internartimodynamic potentiahinus the terms
that are due to the variation of the temperatuiét be equal to the force that is done by
the external actions plus the forces of inertia. Wigevdown that equality for the ring,

() “Lintégrale des forces vives en Thermodynamiquetirdal de Mathématiques pures et appliqués
(5) 4 (1898), 5.
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and for the modification of the location and physical ahemical state that each element
must experience, 1 will replace 1, n.will replace 1.
The thermodynamic potential of the ring has the form:

S 6(0, A T)dm+,

in which ¢ does not depend upon the temperature of the elements 1,2, and will
once more take the same value when the total mase d@titth returns to the same state.
The left-hand side of our equality will then be:

—z% dT dm
T oT

The external actions consist of:

Firstly, the ones that are due to bodies that aeagorto the fluid. The virtual work
that they do is, by hypothesis, of the form:

Z X 0x+ Y0 y+ ZJ # l{ sxs ya)lé }} dm
T oy 0z

One then has the actions that are exerted on the ritigelvgst of the fluid. The work
that they dadr will be zero, since all of the mass will returrntbh@ same state.

Finally, one has the pressures that are applied to tha&ceuof the ring. The work
that they do is zero, since the fluid is inviscid, lseytwill be normal to the elements they
press upon; i.e., to the path that is traversed.

We must then write:

Ny aA
-y Z2dT dm= Y | X Ox+ YO y+ Z0 2 s %225 w225 7| dm
Zl“aT Zl‘, X+ Y3 y+ Z9 le[ 3y yaz }}

—Z(J’x dx +jy dy +j, d2) dm.
1
In order to calculate each of the terms in thata¢iqn, one can obviously no longer

imagine each element substituting for the one ftiltws, but only that one of them — 1,
for example — makes a complete circuit aro@dOne will then get:

_ J‘eg__fd-r = Ie(xedX+\édy+ Zdzx | d)- je(jxdx+ j,dy+ j,d2).
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Upon expressing the idea thftet(jxdx+ j,dy+ j,d2 is zero, one will recover the

sufficient conditionsd’) and @') of nos.7 and11. If they are satisfied then one can say
that there exists @s vivaintegral under the virtual displacement that we leresidered
for the element 1.

15. That proof of Helmholtz’s theorem is only a generaimaof a method that was
pointed out by Lagrange for finding the equilibrium comudis for liquids ¥). It presents
two inconvenient aspects. It leaves the virtual modibcathat the ringC experiences
somewhat obscure; it is only by having a very confused natidhe nature of a fluid
that one can glimpse the possibility that it will éxisMoreover, it supposes (with no
explanation) that the pressure is normal to the eletmat it presses upon. From these
viewpoints, it therefore cannot replace the developmemntes.1 throughl2. They have
shown us that the normal direction of the pressuré redult from the fact that the
thermodynamic potentigt o dr depends upon the distribution of matter around the point
X, ¥, z by the intermediary of only its density. However,doyntrast, it has the advantage
of being independent of the form of the teémn no.2. In fact, the hypotheses that were
made ond{ and dn (which replaced¥, here) follow directly from the principles of
thermodynamics, and it seems difficult to ignore that.

V.

16. In the motion of a fluid mixture, Duhem has shown tHaimholtz’'s theorem
applies to any fluid, in particular, when the extemetions admit a potential, and if the
temperature of the mass is uniform at any inst3nt I¢s proof supposes that the various
elements of the fluid masses exert no action upon ether. It is easy to remove that
restriction. For example, take two fluids that weidguish by the indices 1 and 2. Let
be the density of the mixture, let, 0, be the partial densitiep & o1 + ©,), let A1, A, be
two arbitrary parameters, and [€tbe the temperature. We write the thermodynamic
potential:

F={ g0 0l Ao, T) par
+3{[ @ (on o2 A, do, 0, 50 AL A %Y, 2 XY, 2) po drdr

One supposes that the virtual work that is done by tlerettactions has the form:

Ie = [ (XuO%+ Yerdys + Zar@a + Lea A1) 1 AT
+ [ (X00% + YeoOys + Zea @ + Lea Ay) o AT
+ SP[cosh, X) I + cosh, ) dy + cosh, 2) &] dw

A Mécanique analytiquePart I, section VII, art. 7.
(®) Equilibre et mouvement des fluides mélanges 101.
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O, Oy1, o refer to the fluid 1, whilexz, dy., dz refer to fluid 2.
On the surface, the expression:

cos ,X) Xx+cosf,y)dy+coshz oz

will be the same for both fluidg)(
We set:

Liz = - ja—)lzp'dr',

The equations of motion are obtained by a methodglwmpletely analogous to the
one that we applied above. One will thus arrive atffdiowing formulas for fluid 1:

0¢
——=Le + Lig,
a/]l el 1
OH, (0¢  &\oT oV -pl) _ oA,

=Xa+La ——ji,
ox loT T )oax X o ox

aHl %_*_ai a_T a(\/ pll) —Ye

dy \0T T)oy oy

OH, (94, «)oT , o -pl)
0z 0T T)o0z 0z

0A .
+Lea a—yl—le,

:Zel+|—e1%—jlz,
0z

and some analogous formulas for fluid Zz2 and & denote some functions that verify
the equalitycy — a3 = 0 and that thermodynamics is powerless to déterm
If the external actions admit a potential, andhé temperature is uniform in the mass

at any instanthen Helmholtz’s theorem will be true. It is foer true that— ¢ IS a
,01

function of onlyT. Unfortunately, it is difficult to see what saft physical reallty would

correspond to that statement. In particular, idificult to find the case here that

() DUHEM, Equilibre et mouvement des fluides mélanges37.
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corresponds to the adiabatic motions of isolated fluifilsere is, moreover, no reason to
emphasize that the quantity of heat that is relebgedfluid element 1 that is mixed with
another fluid 2 will not be a well-defined quantity.




