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 1. Consider a continuous fluid mass that is animated by a motion that does not alter 
its continuity.  Let u, v, w denote the components of the velocity of the molecule along 
the three axes; they are continuous functions of time t and the coordinates x, y¸ z of a 
geometric point (viz., Euler variables).  The molecules that are situated on a closed curve 
C0 at the time t0 form a closed curve C at any instant.  One can state Helmholtz’s theorem 
by saying that the curvilinear integral: 
 

C
u dx v dy wdz+ +∫  

 
preserves the same value at any instant. 
 The proof of that theorem that is applicable to fluids that are devoid of viscosity is 
subordinate to the following restrictions, in addition: 
 
 a. The forces that act upon each volume element, whether internal or external, admit 
a potential. 
 b. The pressure is a function of only the density. 
 
 Duhem has shown (1) how thermodynamics permits one to study the motion of fluids 
for which these restrictions make no sense.  We propose to study what happens to 
Helmholtz’s theorem in his theory; we continue to suppose that the viscosity is zero. 
 One will easily perceive everything that is due to Duhem in the lecture of this note.  
Not only is his method imprinted upon it, but indeed some of its pages are devoted to 
reproducing his results without modification.  We pray that one will excuse us for the fact 
that he has already done that himself.  It seems to us that this reproduction is useful in 
bringing to light the inadequacy of the statements (a) and (b) in hydrodynamics and the 
possibility of replacing them with other ones that are more general. 
 
 
 
 

                                                
 (1) “Le potential thermodynamique et la pression hydrostatique,” Annales scientifiques de l’École 
Normale supériure (3) 10 (1893).  Traité d’Électricité et de Magnétisme, t. II, 1892. 
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I. 
 

 2. In the fluids that are customarily studied in hydrodynamics, the physical and 
chemical state at a point is defined completely by the density ρ and the absolute 
temperature T.  Here, we shall suppose that in order to make that definition, one must add 
a finite number of algebraic parameters to these two variables – one, for example, which 
we denote by λ − and a finite number of geometric parameters – one, for example, such 
as the vector M whose projections onto the three axes will be A, B, C.  The variables ρ, λ, 
A, B, C, T will be supposed to be normal.  Thermodynamics then will lead one to put the 
internal thermodynamic potential of a fluid mass into the form: 
 

(1)     F = ( , , , , , )
E

A B C T dϕ ρ λ ρ τ∫  + Ψ. 

 
In that expression, ϕ (ρ, λ, A, B, C, T) ρ dτ is the internal thermodynamic potential of the 

volume element dτ ; the ∫ sign represents a triple integral that is extended over all of the 
volume E of the fluid.  Ψ is a complementary term that depends upon the relative position 
of the various fluid elements and the variables that fix the state of each of them except for 
the temperature. 
 The most natural hypothesis that one can make on Ψ is that it can be written in the 
form of a sextuple integral (1): 
 

(2)   Ψ = 1
2 ( , , , , , , , , , , , , , , , )A B C A B C x y z x y z d dψ ρ λ ρ λ ρρ τ τ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∫∫ , 

 
whose field is the six-dimensional set that is obtained by successively associating each 
point of E with all of the other points of the same domain.  ρ, λ, A, B, C refer to the 
volume element dτ with the coordinates x, y, z; ρ′, λ′, A′, B′, C′ refer to the element dτ′ 
with the coordinates x′, y′, z′. 
 In truth, since a fluid is isotropic, ϕ depends upon A, B, C only through the 
intermediary of M.  Similarly, A, B, C, A′, B′, C′, x, y, z, x′, y′, z′ do not enter into the 
function ψ in an arbitrary manner.  That function depends upon only the magnitude of the 
vectors M and M′, the angle that they make between them, the ones that they make with 
the line that joins the elements dτ and dτ′, and the length of that line.  However, these 
remarks will be of no interest in the context of what we have in mind. 
 We suppose that the integral Ψ can be calculated by two successive triple integrals, 
and we set: 
(3)      V (x, y, z, t) = 

E
dψρ τ′ ′∫ . 

 
The point x, y, z can be found inside of E or outside of it.  By hypothesis, the function V 
exists in both domains.  We suppose, in addition, that it is continuous in each of these 
domains and that it will admit first-order partial derivatives with respect to x, y, z that are 

given by the rule for derivation under the ∫ sign.  These are the hypotheses that were 
                                                
 (1) DUHEM, “Le potential thermodynamique et la pression hydrostatique.” 
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made by Duhem in his memoir on the thermodynamic potential and hydrostatic pressure 
that we have already cited.  In that memoir, one will find the analytical discussion of 
them, which we shall not duplicate.  It permits one to write: 
 

 
V

x

∂
∂

 = d d d
x x x

ψ ρ ψ λ ψρ τ ρ τ ρ τ
ρ λ

∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′+ +
∂ ∂ ∂ ∂ ∂∫ ∫ ∫  

+
A B C

d d d
x A x B x C

ψ ψ ψρ τ ρ τ ρ τ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′+ +
∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫ , 

and if we set: 

(4)   

, , ,

, , ,

,

i i i

i i i

i

X d Y d Z d
x y z

a d b d c d
A B C

I d

L d

ψ ψ ψρ τ ρ τ ρ τ

ψ ψ ψρ τ ρ τ ρ τ

ψ ρ τ
ρ
ψ ρ τ
λ

∂ ∂ ∂ ′ ′ ′ ′ ′ ′= − = − = − ∂ ∂ ∂


∂ ∂ ∂ ′ ′ ′ ′ ′ ′= − = − = − ∂ ∂ ∂
 ∂ ′ ′= −
 ∂
 ∂ ′ ′= −
 ∂

∫ ∫ ∫

∫ ∫ ∫

∫

∫

 

 
then the value of ∂V / ∂x will become: 
 

(5)   

.

One will likewise have :

.

.

i i i i i

i i i i i

i i i i i

V A B C
X I L a b c

x x x x x x

V A B C
Y I L a b c

y y y y y y

V A B C
Z I L a b c

z z z z z z

ρ λ

ρ λ

ρ λ

∂ ∂ ∂ ∂ ∂ ∂ = − − − − − − ∂ ∂ ∂ ∂ ∂ ∂


 ∂ ∂ ∂ ∂ ∂ ∂ = − − − − − − ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ = − − − − − − ∂ ∂ ∂ ∂ ∂ ∂

 

 
 The actions that the rest of the masses exert upon the element dτ are composed of a 

force ρ dτ ( )i i iX Y Z+ +  and the influences ρ dτ I, ρ dτ Li , ρ dτ ai , ρ dτ bi, ρ dτ ci .  

Equations (5) show that the force is not derived from a potential; that is why the 
restriction (a) of paragraph 1 will not be stated here. 
 One remarks that the existence of the influences ρ dτ ai , ρ dτ bi, ρ dτ ci  supposes that 
a couple acts upon the element dτ : Indeed, the virtual work that it does is non-zero when 
the element dτ turns around itself.  One knows that similar couples are encountered in the 
study of magnetic bodies, and if one adopts the ideas of Helmholtz, in that of the 
interaction between two electric currents. 
 
 
 3. The actions that bodies that are outside of the fluid exert upon it are, in one case, 
the pressure P dω that is applied to each element dω of the exterior surface, and in the 
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other, the forces ρ ( )i i iX Y Z+ +  dτ and the influences ρ ae dτ, ρ be dτ, ρ ce dτ that are 

applied to each volume element dτ.  One must add the inertial forces: 
 

− ρ ( )x y zj j j+ +  dτ 

 
to the latter, in which j is the acceleration. 
 Let us express the virtual work that is done by these actions.  Imagine a virtual 
modification for which each material point is displaced by: 
 

x y zδ δ δ+ + . 
 

 

2 

1 1 

2 

Ω1 Ω1 
Ω2 

Ω2 

0 

 
Figure 1 

 
 The volume that is occupied by the fluid is deformed.  Before the modification, it 
consisted of the part 0 and the infinitely small part 1, which were divided along the 
portion Ω1 of the original surface.  After the modification, it will be composed of 0 and 
the space 2 that is confined to 0 along the portion Ω2 of the original surface.  We agree to 
denote the variations that the parameters ρ, λ, A, B, C, T experience at each geometric 
point by the symbol δ and the ones that they experience at each material point by the 
symbol ∆.  The virtual work of the external actions and the inertial forces is: 
 
 δTe + δJ = 

1 2

[ cos( , ) cos( , ) cos( , ) ]S P P x x P P y y P P z z dδ δ δ ω
Ω +Ω

+ +  

 + 
0 1

[( ) ( ) ( )e x e y e xX j x Y j y Z j zρ δ δ δ
+

− + − + −∫  

 + Le ∆λ + ae ∆A + be ∆B + ce ∆C] dτ . 
 
One obviously has: 

∆λ = δλ + x y z
x y z

λ λ λδ δ δ∂ ∂ ∂+ +
∂ ∂ ∂

, 

 
and one can write analogous relations for ∆A, ∆B, ∆C.  The expression for δTe + δJ can 

be transformed into: 
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(6)  

1 2

0

0

0

[ cos( , ) cos( , ) cos( , ) ]

[ ]

Se

e e e e

e x e e e e

e y e e e e

e z e e e

J P P x x P P y y P P z z d

L a A b B c C d

A B C
X j L a b c xd

x x x x

A B C
Y j L a b c y d

y y y y

A B
Z j L a b

z z

δ δ δ δ δ ω

ρ δλ δ δ δ τ

λρ δ τ

λρ δ τ

λρ

Ω +Ω
+ = + +

+ + + +

∂ ∂ ∂ ∂ + − + + + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂+ − + + + + ∂ ∂ ∂ ∂ 

∂ ∂ ∂+ − + + +
∂ ∂ ∂

∫

∫

∫

T

0
.e

C
c z d

z z
δ τ











 ∂  +  ∂ 

∫

 

 
 
 4. One will obtain the equations of motion by expressing the idea that: 
 

δF – δTe – δJ = 0 

 
for any virtual modification for which the temperature of each molecule remains 
constant. 
 In the sequel, the variables A, B, C will play a role that is identical to that of λ, as they 
have done up to now.  One can simplify the notation greatly by now supposing that for 
the sake of calculations they do not exist.  It is easy to re-establish the terms that they 
contribute at the end by analogy with the ones that are given for λ. 
 
 

 5. The calculation of δ ϕ ρ∫ dτ can be performed by following the method that was 

developed by Duhem in his memoir “Sur l’équilibre et le mouvement des fluides 
mélanges” (1).  One sets: 

(7)      
,

.

H

ES
T

ϕϕ ρ
ρ

ϕ

∂ = + ∂


∂ = −
 ∂

 

 
 S will be the entropy of the unit of mass of the fluid, which is regarded as 
homogeneous.  The desired variation will be: 
 

                                                
 (1) Travaux et Mémoires des Facultés de Lille, t. III, Mémoire no. 11, Chap. VI, pp. 91; 1893. 
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(8)  

1 2

0

0

2 [ cos( , ) cos( , ) cos( , )] ,S

d

H T H T
ES x ES y

x x x x

H T
ES z d

x x

x n x y n y z n z d

ϕδ ϕ ρ τ ρ δλ δτ
λ

ρ δ δ

δ τ

ϕρ δ δ δ ω
ρΩ +Ω

∂ = ∂


 ∂ ∂ ∂ ∂    + + + +    ∂ ∂ ∂ ∂   


∂ ∂   + +   ∂ ∂  


∂ + + +
 ∂

∫ ∫

∫
 

 
in which n denotes the interior normal to the fluid. 
 
 
 6. We nonetheless insist upon the calculation of δΨ. 
 Ψ varies for two reasons: 
 
 1. Due to the variations dρ, dλ, dρ′, dλ′ at any geometric point of the field 0. 
 2. Due to the annihilation of matter that is contained in 1 and the creation of matter 
that is contained in 2. 
 
 One will write: 
 

(9)  

( )

00

02,02

22

00 01,10 11

2 ( )( )( )

( )( )( )

( )( )( )

.

d d

d d

d d

d d d d d d

δ ψ δψ ρ δρ ρ δρ τ τ

ψ δψ ρ δρ ρ δρ τ τ

ψ δψ ρ δρ ρ δρ τ τ

ψρρ τ τ ψρρ τ τ ψρρ τ τ

 ′ ′ ′Ψ = + + +

 ′ ′ ′+ + + +

 ′ ′ ′+ + + +

 ′ ′ ′ ′ ′ ′− + +


∫∫

∫∫

∫∫

∫∫ ∫∫ ∫∫

 

 
 The symbol 00 represents the six-dimensional set that is obtained by successively 
associating each point of 0 with all of the other points of 0.  The symbol 02, 20 represents 
a set that is composed of two parts, the first of which 02 is obtained by successively 
associating each point of 0 with all the points of 2, and the second of which 20, by 
associating each point of 2 with all the points of 0.  The symbols 22, 11, and 01, 10 have 
analogous interpretations. 
 First consider the two integrals that relate to the region 00 whose difference figures in 
(9).  By reason of symmetry, that difference will be equal to: 
 

2
00 00 00

2 2d d d d d d
ψ ψρ ψ δρ τ τ ρ ρ δρ τ τ ρρ δλ τ τ
ρ λ

∂ ∂′ ′ ′ ′ ′ ′+ +
∂ ∂∫∫ ∫∫ ∫∫ , 

or rather: 

(9′)    2 
0 0 0

2 2 iV d I d L dδρ τ ρ δρ τ ρ δλ τ− −∫ ∫ ∫ . 
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Moreover, δρ can be expressed as a function of δx, δy, δz.  Indeed: 
 

δρ = ∆ρ − x y z
x y z

ρ ρ ρδ δ δ∂ ∂ ∂− −
∂ ∂ ∂

 and ∆ρ = − ρ 
x y z

x y z

δ δ δ ∂ ∂ ∂+ + ∂ ∂ ∂ 
. 

 
Hence: 

δρ = − 
( ) ( ) ( )x y z

x y z

ρ δ ρ δ ρ δ ∂ ∂ ∂+ + ∂ ∂ ∂ 
. 

 
 An integration by parts then transforms the sum (9′) into: 
 

(9″) 

1 2

0 0

2

( ) ( ) ( )
2 2

2 ( )[ cos( , ) cos( , ) cos( , )] .S

i

V I V I V I
x y z d L d

x y z

V I x n x y n y z n z d

ρ ρ ρρ δ δ δ τ ρ δλ τ

ρ ρ δ δ δ ω
Ω +Ω

  ∂ − ∂ − ∂ −+ + −  ∂ ∂ ∂ 
 + − + +


∫ ∫
 

 
 Now, take the integrals that relate to 01, 10, and 11 in (9).  One can write them as: 
 

− 
1 1 0 1 0

d d d dρ τ ψ ρ τ ρ τ ψ ρ τ
+

′ ′ ′ ′−∫ ∫ ∫ ∫ , 

namely: 

− 2 
1
V dρ τ∫ . 

 
Similarly, the ones that are taken over 02, 20, and 22 give: 
 

2
2
V dρ τ∫ . 

 
 In regard to the latter term, we remark that the δρ and the δλ are not infinitely small 
in the region 2.  However, the integrals that relate to them are: One calculates them by 
giving the values to ρ, λ, V that those quantities have at the points of 0 that are infinitely 
close to the surface Ω2 before the modification. 

 The difference 2 
1
V dρ τ∫  − 2 

2
V dρ τ∫  is written: 

 
(9″′)  − 2 

1 2

S
Ω +Ω

ρ V [δx cos(n, x) + δy cos(n, y) + δz cos(n, z)] dω. 

 
 In this calculation, one supposes that: 
 

1 1 0
d dρ τ ψ ρ τ

+
′ ′∫ ∫  and 

1 0
d dρ τ ψ ρ τ′ ′∫ ∫  

 
are equal, up to second order.  Indeed, that is what will happen, in general, with the 
hypotheses that Duhem stated for the function ψ.  However, it will be false if one 
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supposes, for example, as one does in the theory of capillarity, that this function has a 
meaningful value only when the points (x, y, z), (x′, y′, z′) are very close to each other.  
We leave that case aside, and remark simply that if one encounters it then the only things 
that will be modified will be the double integrals of δΨ, but not the triple integrals.  Now, 
the latter suffice for the purpose that we have in mind. 
 By virtue of (9), (9′), (9″), we then write: 
 

(10) 

1 2

0 0

2

( ) ( ) ( )

[ cos( , ) cos( , ) cos( , )] .S

i

V I V I V I
x y z d L d

x y z

I x n x y n y z n z d

ρ ρ ρδ ρ δ δ δ τ ρ δλ τ

ρ δ δ δ ω
Ω +Ω

  ∂ − ∂ − ∂ −Ψ = + + −  ∂ ∂ ∂ 
 − + +


∫ ∫
 

 
 
 7. Formulas (6), (8), (10) give δF – δTe – δJ.  That expression is composed of a sum 

of volume integrals and surface integrals.  The consideration of the volume integrals will 
give the equations of motion for the interior of a fluid mass.  We write them by re-
establishing the terms that are due to A, B, C: 
 

(11)     

,

,

,

,

e i

e i

e i

e i

L L

a a
A

b b
B

c c
C

ϕ
λ
ϕ

ϕ

ϕ

∂ = + ∂


∂ = +
 ∂
 ∂ = +
 ∂
 ∂
 = +

∂

 

 

(12) 

( )
,

( )
,

( )
.

e x e e e e

e y e e e e

e z e e e e

H T V I A B C
ES X j L a b c

x x x x x x x
H T V I A B C

ES Y j L a b c
y y y y y y y

H T V I A B C
ES Z j L a b c

z z z z z z z

ρ λ

ρ λ

ρ λ

 ∂ ∂ ∂ − ∂ ∂ ∂ ∂+ + = − + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ − ∂ ∂ ∂ ∂ + + = − + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ − ∂ ∂ ∂ ∂+ + = − + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
 Suppose that: 
 

Xe dx + Ye dy + Ze dz + Le dλ + ae dA + be dB + ce dC – ES dT 
 
is the exact differential of a function – R(x, y, z, t) with respect to x, y, z at each instant.  
Equations (12) will be written: 
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(12′)    

( )
,

( )
,

( )
,

x

y

z

H V I R
j

x
H V I R

j
y

H V I R
j

z

ρ

ρ

ρ

 ∂ + − + = − ∂
∂ + − + = − ∂

 ∂ + − + = − ∂

 

 
which are formulas that can be inferred from Helmholtz’s theorem in a known way [see 
POINCARÉ, Théorie des tourbillons, Chap. I.  Equations (12′) have the form of 
equations (7), pp. 10 in that book.] 
 The function R will exist, in particular, whenever the following conditions are 
satisfied: 
 
 a′.  The external actions admit a potential; i.e., Xe dx + Ye dy + Ze dz + Le dλ + ae dA + 
be dB + ce dC is the exact differential of a function – Ω (x, y, z, λ, A, B, C). 
 b′. At any instant, there exists a relation: 
 
(13)     K (S, T) = 0 
 
between temperature and entropy per unit mass in the entire fluid mass. 
 
 The latter condition will be, in turn, certainly fulfilled if, upon starting with a state in 
which the relation (13) is true, each element of matter experiences only transformations 
for which that relation does not cease to be verified.  In particular, it will be fulfilled if, 
upon starting at an instant at which all of the mass is homogeneous, each material 
element experiences only isothermal or adiabatic transformations. 
 
 
 8. A consideration of double integrals of δF − δTe – δJ will give the boundary 

conditions.  They are: 

(14)   

2 2

2 2

2 2

cos( , ) cos( , ),

cos( , ) cos( , ),

cos( , ) cos( , ).

P P x I n x

P P y I n y

P P z I n z

ϕρ ρ
ρ
ϕρ ρ
ρ
ϕρ ρ
ρ

  ∂= −  ∂ 
  ∂ = −  ∂ 
  ∂
 = − ∂  

 

 
 These equations show, first of all, that P has the same direction as n (the pressure 

must then be normal to the surface); it then shows that P must have the value ρ 2 ϕ
ρ

∂
∂

– ρ 2 

I. 
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Σ 
E′ 

S′ 

E″ 
S″ 

 
Figure 2. 

 
 In order to define the pressure that is exerted on an interior element dσ, pass a surface 
Σ through dσ that divides the fluid into two parts E′ and E″.  Remove E′ without 
suppressing the action that it exerts upon the volume elements of E″, and which will 
have: 

E E
d dρ τ ψρ τ

′′ ′
′ ′∫ ∫  

 
for a potential.  In order to maintain d’Alembert’s fictitious equilibrium in E′, one must 
then apply an exterior pressure Π to each elements dσ of Σ.  By definition, Π will be the 
pressure inside of the fluid.  We shall now calculate it. 
 The thermodynamic potential in E″ is: 
 

1
2E E E

d d dϕρ τ ψρρ τ τ
′′ ′′ ′′

′ ′+∫ ∫∫ . 

 
By virtue of formulas (8) and (10), its variation under a virtual modification will be: 
 

E E

H T
d ES x

x x

ϕρ δλ τ ρ δ
λ′′ ′′

∂  ∂ ∂ + + ∂ ∂ ∂ 
∫ ∫  

     + 
H T H T

ES y ES z d
y y z z

δ δ τ
 ∂ ∂ ∂ ∂ + + +    ∂ ∂ ∂ ∂   

 

+ 2S
S

ϕρ
ρ′′+Σ

∂
∂

[δx cos (n, x) + δy cos (n, y) + δz cos (n, z)] dω 

− 
( ) ( ) ( )

iE E

V I V I V I
L d x y z d

x y z

ρ ρ ρρ δλ τ ρ δ δ δ τ
′′ ′′

′′ ′′ ′′ ′′ ′′ ′′ ∂ − ∂ − ∂ −′′ + + + ∂ ∂ ∂ 
∫ ∫  

− 2S
S

Iρ
′′+Σ

′′  [δx cos (n, x) + δy cos (n, y) + δz cos (n, z)] dω . 

 
V″, I″, iL′′  are the integrals V, I, Li, when they are taken in only the region E″. 
 The work that is done by the action that is exerted by E′ on E″, with the opposite sign, 
has the expression: 
 

 [
E E E

d d
ψ ψρ ρ τ λ ρ τ
ρ λ′′ ′ ′

∂ ∂′ ′ ′ ′∆ + ∆
∂ ∂∫ ∫ ∫  
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 + δx 
E E E

d d z d d
x y z

ψ ψ ψρ τ δλ ρ τ δ ρ τ ρ τ
′ ′ ′

∂ ∂ ∂ ′ ′ ′ ′ ′ ′+ + ∂ ∂ ∂ 
∫ ∫ ∫ , 

namely: 

( )iE E

V V V
x y z d I L d

x y z
δ δ δ ρ τ δρ δλ ρ τ

′ ′

′ ′ ′ ∂ ∂ ∂ ′ ′+ + − + ∂ ∂ ∂ 
∫ ∫ , 

or finally: 

− 
( ) ( ) ( )

iE E

V I V I V I
L d x y z d

x y z

ρ ρ ρρ δλ τ ρ δ δ δ τ
′′ ′′

′ ′ ′ ′ ′ ′ ′ ′ ′ ∂ − ∂ − ∂ −′ + + + ∂ ∂ ∂ 
∫ ∫  

− S
S′′+Σ

ρ 2 I′ [δx cos (n, x) + δy cos (n, y) + δz cos (n, z)] dω 

 
V′, I′, iL′  are the integrals V, I, Li, when they are taken in only the region E′. 
 Finally, the virtual work that is done by the other external actions is, with the opposite 
sign, the expression: 
 

− ( ) ( ) ( )e x e y e zE
X j x Y j y Z j z dρ δ δ δ τ

′′
 − + − + − ∫  

  − S
S′′

 P [cos (P, x) δx + cos (P, y) δy + cos (P, z) δz] dω 

  − S
Σ

 Π [cos (Π, x) δx + cos (Π, y) δy + cos (Π, z) δz] dω . 

 
 Upon equating the sum of the three expressions above to zero, and remarking that: 
 
 V  = V′ + V″, 
 I  = I′  + I″, 
 Li = i iL L′ ′′+ , 

 
one will obtain the equations of motion for the mass E″ in the form (11), (12), and the 
value of Π in the form: 

(15)     Π = ρ 2 ϕ
ρ

∂
∂

 – ρ 2 I, 

 
and one verifies that Π is normal to dσ. 
 The relation (15) shows that the pressure on the element dσ depends upon the state of 
the total mass by the intermediary of I.  One sees how difficult that it would be to 
introduce the restriction (b) of no. 1 here. 
 
 
 9. We recall that an example of a fluid to which the preceding considerations will 
apply is given by the ones whose elements obey the law that was proposed by Faye in his 
studies on the tails of comets. 
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II. 
 

 10.  The hypotheses that were made in no. 2 on the complementary term Ψ are not 
necessary.  Weakly-magnetic perfect fluids offer an example in which they are not true.  
The action of a magnetic mass on an interior element is not defined.  That implies the 
impossibility of putting Ψ into the form (2).  That also implies the impossibility of stating 
the restriction (a) of no. 1 for these bodies.  However, if one adopts the ideas of Duhem 
(1), one can write the internal thermodynamic potential of a system that is composed of 
permanent and immobile magnet P and a weakly-magnetic perfect fluid E as follows: 
 

(16)  F = 1
2( , , ) ( )

P E P E
M T d A B C dϕ ρ ρ τ α β γ τ

+ +
− + +∫ ∫ . 

 

P 
1 

2 

0 1 

2 

 
Figure 3. 

 

 Here, M = 2 2 2A B C+ +  is the magnetic moment of the element dτ .  As for α, β, γ, 

they are the components of the magnetic field that is inside the magnetic mass along the 
three axes. 
 We assume, moreover, that the virtual work that is done by the inertial forces and 
external actions and act upon the fluid has the form: 
 

(17) 1 2

0

[ cos( , ) cos( , ) cos( , ) ]

[( ) ( ) ( ) ] ,

Se

e x e y e z

J P P x x P P y y P P z z d

X j x Y j y Z j z d

δ δ δ δ δ ω

ρ δ δ δ τ
Ω +Ω

 + = + +



+ − + − + −
 ∫

T

 

 
which is only a particular case of the form (6). 

 The variation of dϕρ τ∫  can be calculated by formula (8): It will be: 

 

                                                
 (1) Traité d’Électricité et de Magnetisme, t. II, pp. 159 and 405.  
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(18) 

1 2

0

0

2

( )

[ cos( , ) cos( , ) cos( , )] ,S

d A A B B C C d
M M

H T
ES x

x x

H T H T
ES y ES z d

y y z z

x n x y n y z n z d

ρ ϕδ ϕρ τ δ δ δ τ

ρ δ

δ δ τ

ϕρ δ δ δ ω
ρΩ +Ω

∂ = + + ∂


 ∂ ∂  + +  ∂ ∂ 


 ∂ ∂ ∂ ∂  + + + +     ∂ ∂ ∂ ∂   


∂ + + + ∂

∫ ∫

∫
 

 
in which H and S are defined by the equalities (7), as always. 

 However, the variation of Ψ = − 1
2 ( )

P E
A B C dα β γ τ

+
+ +∫  cannot be obtained by 

applying the preceding results.  It can nonetheless be calculated by method that is 
completely analogous to the one that we discussed above.  It was Liénard who first gave 
the exact value (1).  We content ourselves by pointing out the result of his calculations, 
while returning to his work in the work that follows. 
 

(19) 
1 2

0

2 2

( )

[ 2 cos ( , )]

[ cos( , ) cos( , ) cos( , )] .

S

A B C d

A B C M M n

x n x y n y z n z d

δ α δ β δ γ δ τ

α β γ π

δ δ ω
Ω +Ω

 Ψ = − + +

 + + + +


× + +

∫
 

 
 
 11. The expression δF – δTe – δJ is a sum of triple and double integrals.  A 

consideration of the former will give the equations of motion inside of the fluid: 
 

(20)     

,

,

,

M
A

M
M

B

M
M

C

M

α ϕρ

β ϕρ

γ ϕρ




= ∂


∂
 = ∂

∂


= ∂
 ∂

 

 

                                                
 (1) “Pressions à l’intérieur des aimantes et des diélectriques,” Lumière électrique, t. II, pp. 7; 1984.  
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(21)    

,

,

.

e x

e y

e z

H T
ES X j

x x
H T

ES Y j
y y

H T
ES Z j

z z

 ∂ ∂+ = − ∂ ∂
∂ ∂ + = − ∂ ∂

 ∂ ∂+ = − ∂ ∂

 

 
 Imagine that Xe dx + Ye dy + Ze – ES dT is an exact differential with respect to x, y, z 
of a function – R (x, y, z, t) at any instant.  Equations (21) then take the form: 
 

(21′)    

( )
,

( )
,

( )
,

x

y

z

H R
j

x
H R

j
y

H R
j

z

 ∂ + = − ∂
∂ + = − ∂

 ∂ + = − ∂

 

 
which leads to Helmholtz’s theorem. 
 The function R will exist, in particular, whenever conditions (a′) and (b′) of no. 7 are 
verified. 
 
 
 12. The boundary conditions are given by considering the double integrals of δF – 
δTe – δJ.  Upon taking (20) into account in order to transform the term αA + βB + γ C, 

and upon setting: 

(22)    Π = ρ2 
ϕ
ρ

∂
∂

 + Mr
M

ϕ∂
∂

 + 2πM2 cos2 (M, n), 

one will have: 

(23)    

cos( , ) cos( , ),

cos( , ) cos( , ),

cos( , ) cos( , ).

P P x n x

P P y n y

P P z n z

= Π
 = Π
 = Π

 

 
 As in no. 8, one confirms that the pressure on an element dσ that is interior to the 
fluid is precisely Π, and that the pressure is normal to dσ, but it depends upon its 
orientation (1), even though the pressure at a point undefined, and the restriction (b) of no. 
1 will make no more sense here than the restriction (a). 
 
 
 13. In truth, when a magnetic fluid is in motion, either conduction currents or 
displacement currents will be produced in it.  The study of that motion thus belongs to 

                                                
 (1) LIÉNARD, loc. cit.  
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electrodynamics and goes beyond the usual methods of thermodynamics (Duhem has 
insisted upon this point); Helmholtz’s methods will permit one to address it in all of its 
complexity.  The case that we have treated is an ideal case, namely, the case of a 
fictitious fluid that is neither a conductor nor one that is susceptible to dielectric 
polarization.  It thus presents very little of interest in the theory of electricity.  Here, we 
shall assume the viewpoint of energetics, and we would simply like to show by that 
example that is is possible for material systems to exist for which the form (2) of the term 
Ψ is no longer exact, and for which the notion of internal force, which is paramount in 
mechanics, fails completely, but can be effectively replaced by that of energy. 
 
 

III. 
 

 14. We have thus given a new statement (a′), (b′) to the restrictions (a), (b) to which 
the proof of Helmholtz’s theorem is subordinate that has the advantage of applying to the 
cases in which the usual statements have no meaning.  The conditions (a′), (b′) present 
the greatest analogy with the ones that Duhem found while seeking the case in which the 
equations of motion admit a vis viva integral (1) for systems that depend upon a finite 
number of variables.  The following proof of Helmholtz’s theorem will perhaps bring to 
light the reasons for that parallelism better than the preceding developments did. 

 

1 

2 
3 

4 

n 

 
Figure 4 

 

 In order to show that 
e
u dx∫ + v dy + w dz is constant, it is necessary and sufficient to 

show that xe
j dx∫ + jy dy + jz dz is zero (see POINCARÉ, Théorie des tourbillons, pp. 

12).  Consider a fluid ring along C with an infinitely small section that we divide by 
sections that are normal to C into elements 1, 2, …, n that are infinitely small in their 
three dimensions and that all contain the same mass dm.  Since a material system is 
defined by normal variables, one knows that under an arbitrary virtual displacement 
(isothermal or not) the variation of the internal thermodynamic potential minus the terms 
that are due to the variation of the temperature will be equal to the force that is done by 
the external actions plus the forces of inertia.  We write down that equality for the ring C, 

                                                
 (1) “L’intégrale des forces vives en Thermodynamique,” Journal de Mathématiques pures et appliqués 
(5) 4 (1898), 5. 
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and for the modification of the location and physical and chemical state that each element 
must experience, 1 will replace 1, …, n will replace 1. 
 The thermodynamic potential of the ring has the form: 
 

1

n

ϕ∑ (ρ, λ, T) dm + ζ , 

 
in which ζ does not depend upon the temperature of the elements 1, 2, …, n, and will 
once more take the same value when the total mass of the fluid returns to the same state.  
The left-hand side of our equality will then be: 
 

−
1

n

T

ϕ∂
∂∑  dT dm. 

 
 The external actions consist of: 
 
 Firstly, the ones that are due to bodies that are foreign to the fluid.  The virtual work 
that they do is, by hypothesis, of the form: 
 

1

n

e e e eX x Y y Z z L x y z
x y z

λ λ λδ δ δ δ δ δ
  ∂ ∂ ∂+ + + + +  ∂ ∂ ∂  

∑  dm. 

 
 One then has the actions that are exerted on the ring by the rest of the fluid.  The work 
that they do δη will be zero, since all of the mass will return to the same state. 
 Finally, one has the pressures that are applied to the surface of the ring.  The work 
that they do is zero, since the fluid is inviscid, so they will be normal to the elements they 
press upon; i.e., to the path that is traversed. 
 We must then write: 
 

− 
1

n

T

ϕ∂
∂∑ dT dm = 

1

n

e e e eX x Y y Z z L x y z
x y z

λ λ λδ δ δ δ δ δ
  ∂ ∂ ∂+ + + + +  ∂ ∂ ∂  

∑  dm 

−
1

(
n

xj∑ dx + jy dy + jz dz) dm . 

 
 In order to calculate each of the terms in that equation, one can obviously no longer 
imagine each element substituting for the one that follows, but only that one of them – 1, 
for example – makes a complete circuit around C.  One will then get: 
 

− 
e

dT
T

ϕ∂
∂∫

 = ( )e e e ee
X dx Y dy Z dz L dλ+ + +∫ − ( )x y ze

j dx j dy j dz+ +∫ . 
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 Upon expressing the idea that ( )x y ze
j dx j dy j dz+ +∫  is zero, one will recover the 

sufficient conditions (a′) and (b′) of nos. 7 and 11.  If they are satisfied then one can say 
that there exists a vis viva integral under the virtual displacement that we have considered 
for the element 1. 
 
 
 15. That proof of Helmholtz’s theorem is only a generalization of a method that was 
pointed out by Lagrange for finding the equilibrium conditions for liquids (1). It presents 
two inconvenient aspects.  It leaves the virtual modification that the ring C experiences 
somewhat obscure; it is only by having a very confused notion of the nature of a fluid 
that one can glimpse the possibility that it will exist.  Moreover, it supposes (with no 
explanation) that the pressure is normal to the element that it presses upon.  From these 
viewpoints, it therefore cannot replace the developments of nos. 1 through 12.  They have 
shown us that the normal direction of the pressure will result from the fact that the 
thermodynamic potential ϕ ρ dτ depends upon the distribution of matter around the point 
x, y, z by the intermediary of only its density.  However, by contrast, it has the advantage 
of being independent of the form of the term Ψ in no. 2.  In fact, the hypotheses that were 
made on δζ and δη (which replace δΨ, here) follow directly from the principles of 
thermodynamics, and it seems difficult to ignore that fact. 
 
 

IV. 
 

 16. In the motion of a fluid mixture, Duhem has shown that Helmholtz’s theorem 
applies to any fluid, in particular, when the external actions admit a potential, and if the 
temperature of the mass is uniform at any instant (2).  Its proof supposes that the various 
elements of the fluid masses exert no action upon each other.  It is easy to remove that 
restriction.  For example, take two fluids that we distinguish by the indices 1 and 2.  Let ρ 
be the density of the mixture, let ρ1, ρ2 be the partial densities (ρ = ρ1 + ρ2), let λ1, λ2 be 
two arbitrary parameters, and let T be the temperature.  We write the thermodynamic 
potential: 

 F = ϕ∫ (ρ1, ρ2, λ1, λ2, T) ρ dτ 

 + 1
2 ψ∫∫ (ρ1, ρ2, λ1, λ2, 1ρ′ , 2ρ ′ , 1λ′ , 2λ′ , x, y, z, x′, y′, z′) ρρ′ dτ dτ′ . 

 
 One supposes that the virtual work that is done by the external actions has the form: 
 

 δTe  = 1 1( eX xδ∫ + Ye1δy1 + Ze1δz1 + Le1 ∆λ1) ρ1 dτ 

 + 2 2( eX xδ∫ + Ye2δy2 + Ze2δz2 + Le2 ∆λ2) ρ2 dτ 

 + S P [cos(n, x) δx + cos(n, y) δy + cos(n, z) δz] dω, 
 

                                                
 (1) Mécanique analytique, Part I, section VII, art. 7.  
 (2) Équilibre et mouvement des fluides mélanges, pp. 101. 
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δx1, δy1, δz1 refer to the fluid 1, while δx2, δy2, δz2 refer to fluid 2. 
  On the surface, the expression: 
 

cos (n, x) δx + cos (n, y) δy + cos (n, z) δz 
 
will be the same for both fluids (1). 
 We set: 

 H1 = ϕ + ρ 
1

ϕ
ρ

∂
∂

, 

 H2 = ϕ + ρ 
2

ϕ
ρ

∂
∂

, 

 I1 = − 
1

d
ψ ρ τ
ρ

∂ ′ ′
∂∫

, 

 I2 = − 
1

d
ψ ρ τ
ρ

∂ ′ ′
∂∫

, 

 Li1 = − 
1

d
ψ ρ τ
λ

∂ ′ ′
∂∫

, 

 Li2 = − 
2

d
ψ ρ τ
λ

∂ ′ ′
∂∫

, 

 
 The equations of motion are obtained by a method that is completely analogous to the 
one that we applied above.  One will thus arrive at the following formulas for fluid 1: 
 

1

ϕ
λ

∂
∂

= Le1 + Li1, 

 1 1 1( )H V IT

x T T x x

ω ρϕ∂ ∂ −∂ ∂ − + + ∂ ∂ ∂ ∂ 
 = X e1 + L e1 1

x

λ∂
∂

– j1x , 

 1 1 1( )H V IT

y T T y y

ω ρϕ∂ ∂ −∂ ∂ − + + ∂ ∂ ∂ ∂ 
 = Ye1 + L e1 1

y

λ∂
∂

– j1y , 

 1 1 1( )H V IT

z T T z z

ω ρϕ∂ ∂ −∂ ∂ − + + ∂ ∂ ∂ ∂ 
 = Z e1 + L e1 1

z

λ∂
∂

– j1z , 

 
and some analogous formulas for fluid 2.  ω1 and ω2 denote some functions that verify 
the equality ω1 − ω2 = 0 and that thermodynamics is powerless to determine. 
 If the external actions admit a potential, and if the temperature is uniform in the mass 

at any instant then Helmholtz’s theorem will be true.  It is further true that 1

1T

ωϕ
ρ

∂ +
∂

 is a 

function of only T.  Unfortunately, it is difficult to see what sort of physical reality would 
correspond to that statement.  In particular, it is difficult to find the case here that 

                                                
 (1) DUHEM, Équilibre et mouvement des fluides mélanges, pp. 37.  
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corresponds to the adiabatic motions of isolated fluids.  There is, moreover, no reason to 
emphasize that the quantity of heat that is released by a fluid element 1 that is mixed with 
another fluid 2 will not be a well-defined quantity. 
 
 

___________ 


