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 Blaschke recently gave (1) the Frenet formulas for a curve that is traced in a space (Rn) with a 
Riemannian metric in which one defines parallel displacement as Levi-Cività did (2).  Upon 
employing the same calculation procedures that Blaschke did, we have obtained the Frenet 
formulas for a curve that is traced in a space (Wn) with a Weyl metric. 
 An n-dimensional Weyl (3) space (Wn) is an n-dimensional multiplicity in which the metric is 
defined by two forms (one quadratic and one linear): 
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d is an invariant for any continuous transformation (T) of the form: 
 

xi = i (y1, …, yn) (i = 1, 2, …, n) . 
 
Moreover, if one makes a change of calibration – i.e., if one takes a unit of length that is   times 
smaller ( = continuous function of x1, …, xn) – then the two forms will become: 
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 The laws of geometry must be satisfied under the following two conditions: 
 
 1. They are expressed by formulas that are invariant under any transformation (T). 
 

 
 (1) Math. Zeit. 6 (1919).  
 (2) Rendiconti del Circolo mat. di Palermo 42 (1917). 
 (3) See WEYL, Raum, Zeit, Materie, 4th edition, § 16. 
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 2. Those formulas remain invariant if one changes gik into  gik and i into i  1
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 Weyl define parallel displacement in relation to this new concept.  Let a vector with 
components 1( , , )n   be attached to the point P (x1, …, xn) .  We say that its measure is: 
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Upon displacing P to P (xi + dxi) by congruence, its components will become i id  , with: 
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 Let C be a curve whose parametric equations are xi = xi (s) .  Imagine that we have fixed a 
vector  at each point P (s) whose components ( )i  are continuous functions of s according to a 
continuous law.  Let P (s) and P (s + ds) be two neighboring points, so they will then correspond 
to the two vectors  and .  Displace  from P to P by congruence, so one will get a vector * at 
P that is generally different from .  The difference  * is an infinitely small vector that is 
attached to the arc PP.  Form: 

 () = 
ds

  . 

 
 We will then get a new vector  () that is attached to the point P (s) of the curve C and depends 
upon the field  in an invariant manner (1).  Then let  = 1 with the components (1)

i  = dxi / ds .  
Then set: 
  (1) = 2  with components (2)

i , 

  (2) = 3     (3)
i , 

 …………………………………….., 
  (n1) = n  with components ( )

i
n . 

 
 The n-hedron 1, 2, …, n is not orthogonal, in general.  Orthogonalize it using Schmidt’s 
method (2) by defining an n-hedron that is composed of the n vectors: 
 

 
 (1) WEYL, loc. cit., pp. 103.  
 (2) “Integralgleichungen, etc….,” Math. Ann. 63. 
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 The n-hedron (N), H1, …, Hn is orthogonal and normalized; i.e.: 
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 The Frenet formulas for the curve C are the formulas that give the values of s : 
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 One finds, by some simple calculations, that: 
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in which: 
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 The ( )

i
k  are then homogeneous linear functions of the ( )

i
q .  The determinant of those 

functions is skew-symmetric; the i are the (n – 1) radii of curvature of the curve.  That determinant 
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possesses a principal diagonal whose terms are all equal to 1
2

d
ds
 .  For a space (Rn), the formulas 

(F) will be the same as the ones that we just found, except that all of the terms in the principal 
diagonal will be equal to zero. (The i will not have the same value, since they depend upon the 
i.) If one regards the trihedron (N) as moving along the curve C then one can say that one passes 
from one of its position to the neighboring position by displacing by congruence and then 
subjecting it to a rotation that is defined by the curvatures 1 / i of C, and finally deforming it with 
a homothety of ratio 1 + d / 2 . 
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