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Introduction.

The question of the existence of solutions to a systeanbitrarily many differential
equations with arbitrarily many unknowns has already bessolved by French
mathematicians for some time now. After the redearwd partial results of Méray and
other authors, Riquier first solved the problem in genieral893 (). Later (1896),
Delassus? dealt with the problem by a simpler procedure, and themido answered the
guestions that had been imperfectly posed by Riquier coingethe arbitrary elements
(constant or functions) that entered into the genswhltion. Whereas this work was
done in the style of Cauchy’s theory of differengglations, and can be considered to be
its conclusion, E. Cartan dealt with the differehtmuations in the form of Pfaff
equations in his examination. His far-reaching applicatbrihe theory of Pfaffian
systems ), which came from geometry and infinitely continuousugs included a new
solution to the problem that had been addressed by Riquidd@assus, in a sense, and
that gave a deep insight into the mechanics of diffedeatjuations. Cartan’s theory
rested upon the calculus of alternating differentiainfs which had been founded by
Grassmann, Poincaré, Cartan, and Burali-Forti, whelstionship to the other branches
of mathematics (multiple integrals, topology) alom@s already noteworthy, and whose
invariance properties made the differential equations @fngéry particularly tractable.

The present work gives a systematic introduction to ttieory of systems of
differential equations in which consistent use of thewtat of alternating differential
forms is made. For the logical structure of the thewe find it expedient to use, in
place of the Pfaff system that was used by Cartaagaivalent system, which originated
in the annihilation of alternating differential formsasbitrary degree, and which Goursat
(*) has employed from the outset. lIts use, as wehasdf the notion of a differential
ideal, seems to me to achieve a tangible simplibcatbut it will be essentially treated as
a representation (supplemented by details) of Cartantsythe what follows. As much
as possible, the notation of Cartan will also beimeth as a result of which this work
will do justice to his results, as well as being a pwmntary on the profound, but
inaccessible, treatises of the great French mathaarsic

The aforementioned generalization of the theory afffPFfystems is also treated in
two articles of J. W. Thomas)(that recently appeared, as well as a work of C. Burst
that will appear soon.

Instead of giving a detailed introduction to this book, I adintent myself with the
following hint for the sake of orientation: Only aftamne makes oneself familiar with the
calculus of differential forms through a fleeting leret in Chapter | will one sufficiently
grasp the notions of “integral manifold,” “integral elemié “regular chain of integral

) The work of Riquier is summarized in the book: Ch. Riquies systémes d’equations aux dérivées
partielles Paris, 1910.

% E. Delassus, “Extension du théoréme de Cauchy aux sstiss plus généraux d’equations aux
dérivées partielles,” Ann. Ec. Norm. (B3 (1896).

% E. Cartan, “Sur l'intégration des systémes d’equatmnsdifférentielles totales,” Ann. Ec. Norm.
(3) 18 (1901). — “Sur la structure des groupes infinis de transtimma Ann. Ec. Norm. (321 (1904),
Chap. |, also cf. E Goursdtecons sur le probleme de Pfathap. VIII, Paris, 1922.

%) E. GoursatlLecons sur le probléme de Pfgfp. 111gt. seq

®) J.M. Thomas, “An existence theorem for generalizedfiph systems. The condition for a pfaffian
system in involution.” Bulletin of the Amer. Math. Sd@ (1934), 309-320.
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elements,” that are mentioned in the titles and itdatiwords in order to understand the
existence theorem and the computational procedures. driveation between partial

differential equations and Pfaffian systems is explaove@p. 67 and 68. A proof of the

fundamental theorem of Lie group theory is given in {hgeadix as an application of the
theory.

The author would like to acknowledge the ongoing suggestianfi¢hreceived from
the topological-differential geometric school of Rles as its origin. | would like to
gratefully thank Herrn Blaschke for the suggestions atatast that he has shown in my
work.

I have Herrn Henke to thank for his help in making cdioas.

Hamburg, July 29, 1934.



|. Thering of differential forms.

1. Algebraic calculations with differential forms. The set of well-defined
holomorphic functions on a region or at a fixed pdit, x2,---, X’) in complex ki, Xz,

..., Xn)-space defines a domain of integrity orirgg, in the sense of abstract algebra:
sums, differences, and products of two such functions bédong to the set. The
following considerations are based on the use of one rsughlt is called thescalar or
functionring F. We construct a non-commutative (for> 1) ring of differential forms
overF by means of certain closely-related symbols:

dx (=1,2,...n
d(xi, %) (k=1,2,..n)
A%, %0 x) Wi oo =1, 2, o),

which shall denote first, second, .p" degreedifferentials and for which we assume
from now on that:

1. The differentials are skew-symmetric in the indices, i.e.:

d()gl, )&,...’)I(p
or d()gl, )&,...’)I(p

:d(xkl,)s(z,...’){(p)
:—d(xkl,)s(z,...’)&p)

depending on whethdg, ko, ..., ko is an even or odd permutationigfio, ..., ip.

2. Themultiplication of differential®beys the rules:

d()gl,)&,...’)I(p)d(xkl,)&2,...’)%)):(1()%1,)&,...’)'(‘) , %1’ %2 oy X )

p

Thering of differential form®D thus-defined is the set of all expressions (differential
forms):

Q=a+) adx+> a dx x)+.. +Za,.lyi21_,.jp d(X,, %, o0 X ) + s
in which thea, a, ax, ... are arbitrary scalars &t

3. Theaddition of two differential form< and:
©=b+) b dx+> b dx, %)+ ...
is defined by:

Q+0=(a+h)+) (& +Q)dx +> (a +h)d0x, %)+ ...,
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andmultiplication by a scalar ¢s defined by:
cQ=Qc=ac+) a cdx +> a, cdX, X+ ...

An associative multiplication of arbitrary diffeteal forms of D is defined by
assumption 2 and the use of distributivity.

The skew symmetry of differentials gives us only orfigekbntial of degreen —
namely,d(xi, X, ..., X,) — and none of higher degree. The

ny (n n
n+ + +...+
Uil
various differentials, together with 1, which one médgoarefer to as alifferential of
degree Qdefine a basis for the ririgy overF.
If only differentials of degreg appear in a differential form then it is called a
homogeneous form of degrpeor, more simply, ddifferential) form of degrep. One
also calls the forms of first degr@¢affian forms We shall assume, once and for all, that

lower-case Greek symbotg &, @, ¢, 6, etc., will always represent homogenous forms.
For two forms:

a):Zailyizy_,,jp d(x, %, )I(p)

H:Zhbi?_,,jq d(X,, %, X))
one has:
aﬁ: Z ailviz""qulkz,mkq d()gl, )& R )l(p , %l R % )

p
iz ipkikai kg

Bw= Z ail,iz,-~-ipqlkz;~-kq d()(kl, )g(z R )s(p , )g’ )I(z RETIND ¢ )

p
g ip kikoi kg

and, from this:
(1) wd= (-1)*60w

Let Q be an arbitrary differential form and let:
Q=¥+ + ... +d"

be its decomposition into individual homogeneous parts.tie multiplication of2 with
a homogeneous formof degree, one then has:

(2) a) =Qw whenp is even
Qw=0"w whenp is odd.

Here,Q = ¥ - oV + o7 -... + (-1)"".
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From (1), the product of a form of odd degree with itgeklways null. If two or
more minus signs appear in the product of a faoof odd degree with itself then the
product is identically nullsince, from (2), one can write all of the individuadtta's ofw

Of theideals (") that one can consider in the riBg only one ideal is of interest to us,
viz., the ideal of homogeneous forms:

(3 W, @, ..., Q.

Here, the difference between right and left ideadsjpipears; the right ideal obtained from
(3), i.e., the set of elements:

in which theQ; run through all of the forms &, is identical with the corresponding left
ideal that, from (2), one can form fro@ (possibly in the form a®’) on the left-hand
side ofaw

If:
0=+ +.. +4"

belongs to the ideal that is determined by (3) thendh®gs true for each homogeneous

part 8" of ©; one then collects terms of degidr the summanday Q, on the right-hand
side of:

in order to express thé” as linear combinations of tha.
We have the following simple criterion for the linependence of Pfaff forms:

r Pfaff forms:

@ =Y a,dx v=1,2,..r
k=1

are linearly dependent when and only when theidpod vanishes:

ww ...a =0.

This follows immediately from:
a &, - G
S ED S G CIE e )

lp<lp<e-<dy

aril aiz Q,

Y Cf., Van der WaerdeModerne Algebra, Ipp. 53.
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The following remarks will be useful to us in later apgions:

If the Pfaffian formsu, @,..., w are linearly independent then all of their products
W, (i1<iz<...<ip)are also linearly independent.

In a linear relation:

n

Y 8, @@ @ =0 (@ belongs tdF),
ip<ip<e <
all of the terms after the first one disappear uportipiightion by @ . ...« , in
whichis, iz, ..., Iy represents a permutation of 1, 2, r,.since at least two equal linear

factors must appear in all of the remaining terms. &s® obtains:

28, a..a=0,

oy
from which, sincen a...a # 0, the vanishing of the must follow.
If w, @,..., @ are once again arbitrary homogeneous differential gotimnen the
expression:
Q=0(moda, @, ...,a)

means that the fori2 belongs to the ideal that is generated bydhew,..., w. From
this, one obtains all of the rules for arithmetichadbngruences

2. Differentiation. Up till now, we have used the differential only asadgebraic
symbol. In order to justify the use of the word “diéfatial,” we must first introduce a
process of differentiation iD. It shall be an additive operationnthat takes a scalar
a(x, X2, ..., Xy) to the Pfaffian form:

oda fda Jda
da=—dx +—dx +---+——d
%, X % X

0%, 0%,
and, in general, it takespd degree “monomial’:

w= ad()gl, )ﬁz,...’)l(p)
to the differential form:

n

0
dow= dad()gl,)ﬁz,...’)l(p):z_a(x‘,)ﬁl,)l(z’...,)l(p)
iz 0%

Y Cf., Van der WaerdeModerne Algebra, Ipp. 54.
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of degreep + 1. Differentiation is then defined for all diffeteal forms by requiring it to
be a linear operation. A form that is produced by thesihfitiation of a forn© will
always be indicated by placing the lettebefore it — viz.dQ — and one calls this form
the differential or derivativeof Q. %)

Thedx now appear as the differentials of the scatars

For two monomials:

a):ad(xil,)ﬁz,...’)l(p)’ 8= bd(xkl,xkz,...’x‘%),
one has:

d(w8) =d(@bd(x .+ % . %, 0 %,))
= (bda+adbd(x,,%,,, % )
=dad(x, -+, % ) bd(% ., % )
+ 1P ad(x, % ) dbd(x, -+, %, )
=dw@+ (—1)pa)d9

The sign €1)° depends only upowand we have the general formula for an arbitrary
form Q and a homogeneop¥ degree form:

(4) d(af) =dwQ + (1)’ wdQ.
In particular, we note the cape= O:
5) d@Q) =daQ +a dQ (@is a scalar).

A differential formQ whose derivativelQ vanishes identically is calladtegrable
The integrable forms define a sub-ringdfwhich follows from the fact that if:

dQ =0, do=0
then, from (4):
d(Qe) =0,

and naturalhd(Q + ®) = 0 is also true.
A differential form that can be represented by thevdtwve of another differential (in
D) will be called aotal differential.
Since we have, for a monomi@l= ad (X ,X_,-**,X ):

p

N da 0’a
d(d =d) —d d Xy Xy =
(de) g‘a& Oh % % ) kz,laxkax

d X, X iXs i Xy i X)=0,

p

) I have taken the liberty of replacing the customamatianQ’ with dQ.



8 Introduction to the theory of systems of differential equmstio

the derivative of a derivative is always null.
For any differential fornrQ we have:
(6) d(dQ) = 0.

Any total differential form is therefore integrabl&he converse is not true in general.
If the fundamental scalar ring consists of holomorgaittions at a pointx’, xJ,---, X’

then, as we shall see later (cf. pp. 63), every integfahie is a total differential.

In a ring of differential forms in which a differenti@ is defined in addition to the
algebraic operations, one will need to consider, notugwal ideals, but the so-called
differential idealswhich are ideals in the usual sense, except that lbevilog condition
is also true for themf Q belongs to the differential ideal then so do€s d

We are once more interested in homogeneous ideals.

The smallest differential ideal that contains theegiformsé, &, ..., 4 is called the
differential ideal that is generated 8y &, ..., 8. Obviously, it must contain the forms:

@) 360 + Y dgw,,

in which theQ, W range over all elements &f. However, the set of these forms is
already a differential ideal since, from (4) and (6§ tlerivative of such an expression
(7) can once more be written the same form.

If @is integrable then the differential ideal that it gabes is identical with the usual
ideal that it determines.

3. Substitution of variables. The importance of the calculus of differential ferm
that we just developed lies in itsvariance under substitution of variables.
In the equations:

(8) X = Xi(Y1, Y2, +vey Ym) (=12 ...n

let the right-hand sides be single-valued holomorphietions that are defined in a
particular neighborhoot (at a point, resp.) in compley( V-, ..., ym)-space that take the
valuesxy, Xz, ..., Xo Whenevews, Yo, ..., Ym vVary withinY. We tacitly assume that these or
corresponding regularity assumptions will be satisfied fmny other variable
substitutions.

Under the subtitution (8), all scala&, Xz, ..., X,) go to functions:

9 a(ynyz ..., Ym) = a(xa(y), Xy), ..., %a(Y))

in the ring F of single-valued holomorphic functionsyaf ys, ..., ymonY.
The transformation of the differential takes platsuch a manner that the processes
of multiplication and differentiation are invariant oggons.
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Since the differentiation of a scalar is invariam must show that whea(xs, Xz, ...,
Xn) goes toa ( yi, Yo, ..., Ym) under (8) thewla also goes to the differential:

maa

d _—
k=1 GYk

in the ring D of differential forms overF . For this, it suffices to observe thd is
transformed into:

:dx(}):ia—: dy i=1,2 ..n

because that means thaa :zg_a dx goes to:
%

a_aa_)ﬂd k:za_a

dy, .
X 0y, oy

The transformation formulas for the higher diffeals:
d()gl, )&,...’ )I(p)

are uniquely determined because of the invariarcenatiplication; from (8), the
d(x,, %,,--, x ) must go from products afx , dx ,---, dx over to:

0x 0x 0x
dx dx --- dx = L d L d L d
R {%aykl M%aykl J {%aykl J

L2 0% %)
ky<kp<---<k, a(ykla yk2’ T ykp)

(10)

AV Yoo e )-

From this, it is clear what we mean when we say wWe apply the substitution (8) to
a differential form:

Q=a+) adx+) axdx x)+..;

one replaces each coefficieat; .,

by way of (9) with the correspondirg;, ; and
each differentiald(x , x_,---, >|<p) with the expression (10).

We have the followinginvariance theorem: If Q (©,Q0, dQ,resp.) are the

differential forms that result fro® (Q, QO, dQ, resp.) by substitution in (8) then we
have:
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(11) Qe =0Q,
(12) dQ =dQ,
which one can also express as:
The operations on the differential ring are commutative under variableitsiios.

In order to prove (11), (12), it obviously suffices to(end® be monomials:

Q :ad()gl,)gz,...’)l(p): aa

© =bd(x,, X, ., % )= bé.
We have:

QO = abwé = abwd = awl = (av)( ) = OQ,

because under the assumption (10) on the transfornattidififerentials the validity of

P = @@ is already guaranteed.
As for the derivatives, upon recalling the invariancemfitiplication that we just
proved, one has:

dQ = daw= dav= dav.
One can also writelacw asd(aw), since, from (5), we have:
d(aw)=daw+adw,
and & =dx dx --- dx is the product of integrable forms, dew= 0. One thus has:

dQ =d(aw) = dQ.
4. Differential equations. Let:
@1, @2, veey @k
be certain differential forms db. A substitution of variables:
(13) X =Xi(Ug, Uz, ..., Un) (=12, ..n)
under which all of the form®; vanish is called aolution of the system of differential
equations:

(14) 0,=0,0,=0, ..., 0= 0.

Since each of the homogeneous parts of a @rwill, from (13), obviously be
annulled identically, equations (14) and the follagvones:
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(15) 6=06=0,..48=0,

whose left-hand sides consist of the various vanishimgolgeneous parts of ti@ , will
have the same solutions. It therefore suffices tosidensystems of homogeneous
differential equations.

Among thed, one can also find forms of degree zero whose assedosgjuation® =
0 are scalar.

From the invariance properties of the differentiagroperations, we conclude that:

Each solution of the differential equations:
6=06=0,..,=0

also annuls each form of the differential idedhat is generated by the left-hand sides.

If a form Q vanishes under the substitution (13) then, from (11), d2)and each
“‘multiple” QO (O is arbitrary inD) will also be annulled under (13). We callheideal

that is associated with the differential equations



II. Theory of functions and geometrical considerations.

1. Algebraic manifolds. One understands the tealgebraic manifoldin complex
(X1, X2, ..., Xn)-Space to mean a point set that can be described Isyearsgf equations:

e Xn=X) =0
e Xn—=X) =0

sB;]_(X;]_—Xf, X2—Xg
sBz(X]_—Xf, X2—Xg
(1)

BXt =X, % =X, .., X =xX°) =0

in the neighborhood of each its poirftg, X3,---, X°), in which each of the left-hand sides

is a holomorphic power series xfY. One says that this manifoM is regular at (), or
that it issimpleat () (it has &°) for a simple point), when equation (1) can be solved in
a neighborhood off) in such a way that somesay,n — r— of the coordinates behave
like holomorphic functions of the remainingoordinates; the numbeis thedimension

of M at §C). If M is regular and-dimensional atx?) then equations (1) can be expressed
in terms ofn — rother ones:

(2) $i(X1, Xo, ..., %) =0 (@ is holomorphic atx0) i=12 ..n-r),
such that the — r differentials:
n a¢
dg=>» —d
2o,

are linearly independent fox)(= (<°). In fact, the holomorphic solubility of (2) in terms
of n — rof thex follows from this, and substitution gives the equatioms the remaining
n — rof the holomorphix must satisfy, which is a system of equations of tnef(2).

The dimension of an algebraic manifditlis well-defined only at a simple point of
M, and it can vary at different partsif If one says simply “the dimension i’ then
one always means the maximum dimension khgdkes at its simple points.

The set of simple points of an algebraic manifdids always open; the non-simple,
i.e., the so-calledingular points ofM are accumulations of simple points and define a
lower-dimensional algebraic submanifold\f®)

If the set of simple points is connected then anydingle points may be connected
by a path irM that consists of only simple points; one then shgtM is irreducible. In
this caseM has the same dimension everywhere.

2. Regular systems of equations. When the equations:

() (X1, X2, ..., %) =0 (=12 ...9

) We shall content ourselves with the mere stateménhis fact without going into its not-so-
elementary proof.
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define anr-dimensional manifoldV; through () that is simple at that point then we do
not necessarily need to fimd- r linearly independent differentials among th# at ) =
(). If that is the case then one calls the systeagoations (3yegular at °) and calls
n —r = ptherank of the system.

In this case, any functio®(x, Xz, ..., X,) that is holomorphic at) and vanishes on
M, can be expressed as a linear combination of elemeiite deft-hand side of (3):

DXy, X2, o X)) =D AKX Xa, o, X) Bi(X, X, oy Xn)
i=1
(A(X) is holomorphic atxf)).
For instance, let:

dgy, dgy, ..., d¢,,

be linearly independent ax%. One chooses more functions that are holomorphic at
0O):
wp*'ll [/lp*-Za ey l//n,

so thatdgi, dgo, ..., d@,, A1, Ao, ..., dih, are linearly independent a®). The
equations:

gi=1z i=1,2,...0

U=z (i>p0)

define a one-to-one transformation of the variabled My has the following equations in
terms of thez

(4) z1=2=..=2=0.

When the functiong are transformed into functions bthey may be developed into
a power series that vanishes for (4), and can therbéoexpressed in the form:

21B1(2) + 2B(2) + ... +28,2) (the®B’s are power series).

By the applying inverse transformation to thgariables one obtains the desired sort of
representation foff in which onlygs, ¢,, ...,@, are involved.

A system of functiong/(xs, ..., X,) that are holomorphic ax{) and vanish on the zero
manifold M, of the functionsg; is called abasisfor the system of equations (3) when
every function®(xs,..., X,) that is holomorphic atx{) and vanishes oM, can be
expressed as a linear combination of ghe

© =2 AX)¢(X).
We also write:
=0 (modys, Yo, ...).

As we have seen, thg themselves define such a basis.
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Chooses' (< s) of the equations (3), say:
(5) (X1, X2, ..., %) =0 (=12 ..5)

such that they define a regular system of equations &fade p). With their help, one
can represem’ of the variables — perhaps«q, %, ...,x,— as holomorphic functions of
the remaining ones, and by substituting the expressiahsité thus obtained:

% =fi( X5 oees Xn) i=12..0)
into the remaining equations (13), one obtains a new regyséem of equations:
(6) P (X411 Xyazs s Xn) =0 i=s+1,..,9),

which is indeed, as one easily sees, of ranko', so (5) and (6) collectively define a

basis for the system (3).
We observe the following properties of regular systehejuations:

1. 1f (3) is regular atx’) then it is also regular in a sufficiently small gleborhood of
(®) in any zero locus.

2. Under abiholomorphic transformation,e., a transformation:
X =X(%, %0, %,) (=12 .0

that is a one-to-one holomorphic map of a neighborhdoa point (X, %;,---,%’)in
(X) -space onto a neighborhood £, x2,---,X’) in (X)-space, the system of equations
(3) goes to a system that is regula(tt) :

P (X, %, ,%)=0 (=1,2, ...9
and has the same rapk

3. Linear vector spaces. A p-dimensional vector subspace at a pgidt,---,x°) in
the space ofq, ..., X») is spanned by independent vectors with the components:

AVX:I.a AVX21 "-lAVXni (\/: 1, 2, ,p)
The determinant:
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Alxi1 Al Xz e A1)|(p
A% DX,
Ath Ap)gz Apxp

whose value is independent of the choice of spanning veatafsss the direction df,

unique. These so-callddrassmann direction coordinateg ; ; are not independent

for p > 1,n > 3, because there then exist algebraic relationseleeisthem that can be
interpreted as the equations for m-f)p-dimensional algebraic manifold — viz., the
Grassmann manifoldG] - in the projective space with thﬁn] homogeneous

p
coordinatez. Forn = 4, p = 2, one has one relation, which is known as the Piicke
relation, between the six homogeneous line coordinatRs ifrurthermore, the relations

between th%,iz,-~-1p in the general case are simple to exptesey follow directly from

certain quadratic relations that correspond to the Plietations precisely. The exact
form of these equations is of no interest to us; we mnyark that one can always solve
them in such a way that all of the inhomogeneous dimecidordinates:

_ Bz

uilyiz’...j p - Zl
12;-.p

appear as complete rational functions of thep]p special ones:

uk,2,3, [P o] ul,k,3, Py ul,2, ...,p'l,kl (k = p+11 p+21 CERS} n)

Naturally, there are relationships for the other inhomegas coordinates, for which
anotherz appears in the denominator insteadipfs, . p. From this, we see th& is

globally simple as an algebraic manifold in (Te]_lj-dimensional complex projective
p

z-space: the Grassmann manifold is free of singularities.
From now on, we shall understand the notat®®}(2) to mean a basis for the
relations between thg i.e., G(2) is a finite set of polynomials (e.g., quadratic ones)

P1(2), P22, ..., Pi(2 in such a way that each (naturally, homogeneous) reldhat
exists between thecan be expressed in terms of the vanishing of a lineabioation:

2 API(2 (Ai(2) are polynomials).

) See E. BertiniGeometria proiettiva degli iperspaziaMessina 1923. pp. 45-47. In the German
translation (by A. Duschek, Vienna 1924), see pp. 42-44.
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G, (2= 0 is a regular system of equations in the neighborhoodadf Bull point ?) of
G, (2.

When one also considers the variability of these poitiis totality of all p-
dimensional vector subspaces can be represented in tthecpspacer(x, 2 as then-
dimensionalx-space and the projectivespace by way of then(p)p+n-dimensional
manifold G;(2) = 0.

It is clear what we are to understand when weasagighborhood of a p-dimensional
vector subspacé/;): 0, 2): it is the set of alV, whose pointsx, 2 correspond to a

certain neighborhood o&{ 2°) in R(x, 2. The spacéd/, = (X, 2 is said to (arbitrarily)
close toVF? when &, 2 lies in an (arbitrarily small) neighborhood af,(2°).

4. Differential equations as equationsfor linear vector spaces. Let:
@) w=y, a,.lyiz'_._jp(xl, X2, ...,xn)d(xl, )gz,m,)I(p)

be a differential form of degrege on D and IetVF? be a vector subspace. We say:

vanishes orVF?, orVF? satisfies the equatiom= 0, when the coordinates’(7°) of V;?
make the expression:

Zajlyizy...jp()(fl Xg,"', )r<)) 7—10i,2;-.i,p

vanish. In general, we say g-dimensional vector subspacg (4 = p) satisfies the
eqguation of degree pp= 0, when each of the p-dimensional vector subspacdsatiea
contained in it satisfies this equatiorw= 0 will imply no conditions whatsoever for
subspace¥, with g < p: everyg-dimensional vector subspace satisfies every eiffial
equation of degree higher than Finally, to say thay/, satisfies an inhomogeneous
differential equationQ = 0 shall meanV, annuls every homogeneous part ©f
Furthermore, these definitions shall be valid fguaionsw= 0 of degree 0; in that case,
w= 0 is the only condition that is valid for theims V.

If a vector subspace satisfies the equafion Othen it also makes each multifgk©
of Q vanish.

In order to prove this, we can assume thas a monomiab =d(x_, % ,---, % )and

thatQ is homogeneous:
Q== Y d()gl, X, X).

In:
QO = Z a"lvizv"'jp d()gl, )gz,--- X, %sl,...’ %r )

L P
o ip
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one imagines that the differentials of degpee replace the determinants:

Alxi1 Al)ﬁz Al)&,

Ax  Ayx,
A(Xil,...,)s(r): 2: ! 2:

DX, DpX, o Do X,

that are defined by ang+r vectors ofVy, and then develops that determinant ipto
rowed minors of the firsp columns according to the Laplace expansion theorene On
then obtains an expression:

zA(Xkl’ )ﬁz’“.’)&r) Z ailvizv"'ip A(Xil’ )ﬁz’“. )I( ’)ﬁl N %r )’

L P
o ip

in which the first summation sign refers to tper(-rowed determinant. The sum:

2o By, DOGX X %K)

L P
g ip

vanishes everywhere thdj satisfies the equatia@ = 0.
From the theorem that we just proved, it further fefidhat:

If the vector subspace, ¥atisfies the equations
Q:=0,Q0,=0,...,.Q=0

then it also annuls every form of the (ordinary) ideals that are definddebleft-hand
sides.

A partial converse also follows from this theorem:

If a g-vectorVy annuls every equation of degree g in an idealith the basif;, Qo,
..., Q) then theQ; also vanish on ¥/ and with themall of the forms of.

Proof. It obviously suffices to consider the chse1l withQ; = Q assumed to be

homogeneous of degr@gp < 0). Suppose@(Xy, X, ..., Xg) Z 0 onV,, for instance. One
can linearly represent the components:

qu+1l qu+21 ey Axn

of the vectors ol in terms of the remaining ones, which can also be exgrdsge
saying: One can find —q Pfaffian forms of the form:
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w=dx —a1dxy — adx - ...— iqd)Qq (q<isn)

(perhaps with constant coefficients) that vanisiVgnModulo these forms, Q may be
reduced to a form that involves only the differents dx, ..., dx;:

Qo= D . dO6, %, %),

i <ip<edy

Q=Q (mod a1, @2, -..r GA).

Therefore, alQo© of degreeq vanish onV, along with all form€Q©. Thus, if one
picks a particular combination of indicesiy, ..., ip and cho0S€e+1, ip+2, ..., Iq Such that
i1, I2, ...,1q1S @ (perhaps even) permutation of 1, 2,q then we have that:

Qod (X, %, X, Xm0 X )=y, ., A0 X2, ., %) = 0

onVqy . The points oV, thus annul all of the coefficientsi.e.,Q = 0 onV,. Q.E.D.

5. Tangent elements. LetM be an algebraic manifold’j one of its simple points,
and let:

(8) ¢1:0,¢2:0, ...,¢5:0

be a regular system of equations that repreddritsa neigborhood off). Any vector
subspace at) that satisfies the equations:

d¢g1=0,d¢.=0, ...,dgs=0

is called aangent elemenif M at §C). If r is the dimension a¥1 at () then all of these
tangent elements are contained in a larger space ohdiomg. This is what we always
mean when we speak thfe tangent element axY.

The definition of tangent element is obviously indepana the choice of regular
system of equations that represihat ().

One also sees that one can define the tangent ekeraéM simply by vector
subspaces that satisfy the equations:

¢1: 0,¢2: 0, ---,¢s: 0,d¢1: 0,d¢2: 0, ...,d¢s: 0

for the points of a sufficiently small neighborhodd). Such a neighborhood must be
chosen to be small enough that all of the null poifig.p..., ¢s still belong toM and the
system of equations (8) is still regular there.

6. Direction coordinates of a vector space. The direction of a p-dimensional vector
subspace ymay be specified in the following wayet:
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(9) w :Zn:a'ik (X1, vy Xn) dX i=12..n

be anyn linearly independent Pfaff forms (say, = dx). If cwap... ap # 0 onV, then for
all of the vectors oY, the expressions:

D@ (¢ %) A%, (i >p, and &) is a given point 0¥)
k=1

may be linearly represented by the correspondirasg avithi < p. (We will always state
this fact in the forme, a, ..., ap are linearly independent &fy.) Thus, the constantg
in the Pfaffian forms:

J=w- li co

p
k=1
are always uniquely determined by the requiremeattthes; vanish onv,. Each system
of values forx and the ii—p)p constants | corresponds to precisely one p-dimeas
vector subspace.These quantities can be regarded as the direction coordinateg,of
and they have the advantage over the Grassmandicat@s that they are restricted by
no relations. Everything happens the same wayhiem on such &, only if ... @

# 0. Their relationship with the; i, is easy to understand.

Let: |
dx :Zn: Lik(X) ax (=12 ..n)

k=1

be the solution of (9) for thax. If:

d)q = z bik(Xs |)Cd( (m0d79p+1, 79p+2, ceey 79!‘1)
and:

dix, %, x)=¢,, . (xXDww... aq (modd)

then the direction coefficientg ; ; of V, are proportional to the expressiop, ).

Ip
Then, for anyp independent vectors W

Ay Xg, AvXo, ..., DA Xn v=1,2, ..p),

we have:

bik(X, 1) Wiy (in which we have st ai AvX = W),

p
k=1 1=1

Ay =

and from this:
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(10) Ziyei, = 1 OVX | =6
From the fact that:

CDINIE

ipigeeip

WGd... A1WW+1... W=l Gb... G (mod )
or, simply:

Z ali(lz,kz,-u,kpd(xkiixsz“ X )=k ap... @,
Ky Ky
and:
2T n O X o X ) = ... ap

(the a are certain determinants of thg), it follows conversely that:

{Zagkzmkp ) 2tk = lic] Wi |

(11)
ST P ]

(i>v),



[11. Integral manifolds and integral elements.

1. Integral manifolds. A system of differential equations:

(1) 6=06=0,..4=0
is calledintegrableif all of its solutions are determined.
Let:
(2) X =X(uz, Uz, ..., Up) (=12 ..n

be a solution of (1). When there are exaptlynearly independent differentiadbs(u) the
solution is called p-dimensional In the neighborhood of a system of

valuegu;?,u,---,u%), as long as the number of independxfu) is not less thap (2)
allows us to eliminate the argumentssuch tham — p of the x;, among theg = x(u°)
=x’can be expressed as holomorphic functions of the remgadries, say:

Xi = fi(X1, X2, ..., Xp) (i =pt+l,pt+2, ...,n).

From (2), (°) is a parametric representation op-aimensional algebraic manifold,
that is regular atd), at least in a neighborhood of such a system ofgall}).

We consider any forn®2 in the differential ideak such that the system (1) is
satisfied. One can think of substituting from (2) iM6— at least for allW) in a
sufficiently small neighborhood of§) — one then obtains:

X =X (i=1,2,---,p)
X =f( %) (I= ptle-,n)
and in the resulting forn®, which no longer includes the variables xa, ..., Xp, ONe

then substitutes:
(3) X =fi(ug, Uy, ..., Un) (=1,2,..p.

We obviously already hav@ = 0, since otherwise the vanishing @f as a result of
(3) would mean the existence of a linear dependency betweeprtducts of the
differentialsdx(u) (i = 1, 2, ...,p), which is impossible, from an earlier remark (ct.se
6).

One now observes that the statem#ntzanishes under the substitution:

Xi = fi(X1, X2, ..., Xp) (i =pt+l,pt+2,...,n)
is equivalent to the statement:

4 Q=0 (MOd K1 —Fps), oy (%0 =Tr)s (AXpr1 —Afisa), ..., @% —dlfy)).
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The fact that (4) implies the vanishing @f is obvious. As for the neighoring points, one
subjects/V to an identity transformation in which one replaces:

Xi with i + (x —f)
dx with  dfi + (dx — df)

and develops the coefficients ©f in powers ofx, — fi. One can write the resulting
expression as:

(5) Q=Q+ Zn: (% —fi)Qi + i (dx —df)) &,

i=p+l i=p+1

in which Q;, ©; are differential forms with coefficients that drelomorphic in °). (4)
then follows fronQ = 0, precisely.

Since the tangent elementshf annul all of the forms found in the module (4), we
conclude from (4) that every tangent elementg&atisfies the equatian= 0.

Definition: An algebraic manifold (which is irreducible and pesses only simple
points) whose tangent elements satisfy the equatrofiis called an integral manifold.

We see that every solution (2) corresponds tagral manifold, which one obtains

when the rank of the matriggij iIs not less thamp by letting u;, Uy, ..., Uy range
uk

through all possible values. It is easy to seédha obtains an irreducible manifaid,
in this way, and that all of its points, which agspond to the values afthat were left
out, are accumulation points &, the remaining points lie in lower-dimensional
algebraic manifolds.

Conversely, every integral manifol, corresponds to infinitely many solutions of
(1).

Let:
(6) Xi = fi(X1, X2, ..., Xp) (=pt1, ...,n)

be the equation a¥l, in the neighborhood of one of its poirfsx),--, . It follows
from the identity (5) that for an arbitrary differt@al formQ of a we have:

Q = Q(MOdXo+1 —Tps1, +..y Xo =T, X1 — dfgus, ..., dX, —dfy),
in which Q is the form thaf turns into under the substitution (6). Now, sieveryM,
is indeed a manifold we should have tlavanishes for all of the vector subspaces that
satisfy the equations:

Xp+1 _fp+1 = 0, ,Xn —fn = 0, pr+1 _dfp+1 = 0, ,d)Q1 —dfn = 0
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If Q were not identically null then one would certainly fimdedement of this vector

subspace that did not ann@l; therefore, one can always find a tangent vectddtdor
which the coordinatesy, X, ..., X, of the point in question take on arbitrary values in the

neighborhood o, },---, X, as well as the componems,, Ax,, ..., Ax,. One thus
necessarily has tha® is identically zero. If one now takes an arbitragrametric

representation foll,:
(7) X = fi(ug, Uz, ..., Un) (=1,2,...,n

with x (u’, W,---, )= ¥ then the substitution of (7) i can be further divided into
two steps: One first performs (6), and then:

X =fi(ug, Uy, ..., Uny) (=1,2,..p.

Q already vanishes from the first step. Every parametpresentation (7) d¥l, thus
gives a solution of the system of differential equagtio

We will now see how thproblems of integration theorgppear in the production of
complete integral manifolds. One can formulate thessblems analytically in the
following way:

Determine all regular systems of equations:

(8) ¢1:0,¢2:0, ...,¢5:0,
in such a way that:

a=0 (modg, @2 ..., @ dgy, dgo, ..., dgs),

i.e., such that one obtains the ideahat includes the differential ideal that is generated
by the functionsps, ¢, ..., @s.

2. Integral elements. A vector subspace that satisfies the equation9 is called

anintegral element.
Since the vanishing of all of the forms ofollows from the vanishing of all of the

forms of degre@ in a for ap-dimensional vector subspace, one can characterize the
dimensional integral elemerts by the equations:

ap =0,

which immediately refer to the Grassmann directiorrdmates oE,. We shall use the
notationa, to mean the totality of all forms of degrpen a. We would also like to

consider the casp = 0. The points that satisfy the scalar equatians 0 shall be
regarded as integral points or O-dimensional integral elesnen
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Every lower-dimensional vector subspace that is coedain ap-dimensional integral
element is also an integral element, since it ad$igfges the equations= 0.

If one understandsy(x, 2 to mean the replacement of théx , x ,---, X ) in ap with

expressions in terms of ; ; then one can represent the totality ofpatlimensional

Ip
integral elementg;, in the spac&(x, 2 by the algebraic manifolds:

(9) a(x,3=0, GN(2=0,

which represent a continuous band of planes in the fBeass manifold
(Concernings)(2), cf. pp. 15).

From this, we obtain gp¢1)-dimensional integral elemeB.; thatE, = (X, 2 goes
through (i.e., one that contaigs).

n o :
The ( +J homogeneous direction coordinates ; ., ~ of Ey,i must be
p 1:12 p+1

represented in the form:

(10) Woipoipe — A)fl Loiipr AX iz Lt (-D°Ax

2 17 3ihi pr 4l

Z i,

since there will be a vector:
DXy, NXo, ..., AX,

that, together withg,, spansEy.1. SinceEg.: is an integral element, one must have the
following equations, which are analogous to (9):

ap+1(X! V\) = 0! G;H(V\I) =0.

By introducing the expressions (10), the equati@js (w)= 0, and therefore the
equationsG;(2)= 0, will be satisfied identically (because thecan be written as a

(p+1)-rowed determinant, on the basis of the fadt @if 2) = 0), althoughup.1(x, W = 0

might go over to:
apr1(X, Z,Ax) = 0.

These are homogeneous linear equations idhthevery vector ok, satisfies them.
If rpes + 1 (pe2 = —1) is the number of solutiodsx in this trivially independent system
then one can say ™ (p+1)-dimensional integral elements go through(E' = 1 forr =
0 and =0 for =-1).

This numberp.; can vary withg,.

The notion of regular integral elements playsradamental role in integration theory.

Definition: A p-dimensional integral elemeh‘ﬂg = (<, 2) is called regular when:
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1. The system of equations:
ap(X, 9 =0, G,(9=0
is regular in the neighborhood @£, 2°);

2. No (pt+1)-dimensional integral elements pass throu@b that do not also pass
through the integral-Ein the neighborhood CES.

If N is the dimension of the manifold (9) in the neighborhobkd 2°) then (due to
the homogeneity of the) N+1 is the dimension of the system of solutioxisZ of (9),
and condition 1 persists, viz., that among the diffeaémnt

dao(x,2,  dG}(2)

n
in the left-hand of (9) one can find precisely( j— N — 1 of them that remain linearly
p

independent aif, 2°).

As far as the second condition is concerned, it imayexpressed analytically: the
linear system of equationsp:1(X, z,AX) = 0 has the same ramk— ., —p — 1 for all
values of the parametexszthat are sufficiently close to 2°) and satisfy equations (9).
When condition 1 is already satisfied then the rankhisflinear system of equations at
0, ) can be at most less than it is for the generad that satisfies the relations (9).

From the definition it immediately follows that anytegralE, that is sufficiently
close toE; is also regular whei] is, as well.

We will call ap-dimensional integral manifoldegular when one finds at least one
integralE, in its tangent elements.

3. Invariance under biholomorphic transformations. The fact that the
partitioning of the integral elements into regular and semg(ile., non-regular) elements
is meaningful follows from theinvariance under biholomorphic transformations.

Let:

(11) X =% (X, %, %) i=1,2,..n

be a biholomorphic transformation in a neighborhoo®dfx,---,x°), (X0, %5, -+, %),
resp., and let: B
6,=0,6,=0,..8=0

be the new system of differential equations that tedtdm using (11) in the left-hand
side of the system (1). Due to the invariance of tfferdntial ring operations and (11),
the differential ideat, which is generated b4,..., 4 over the ring of functions that are
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holomorphic atx’), goes to the differential ideal that is generated b§,,8,,---,8 over
the ring of functions that are holomorphic(@f) . The equations:

(12) @,(%,2)=0, G(2)=0

that thep-dimensional integral element,z) of the new systems defirt can thus be
obtained directly from:
(13) ap(x, 9 = 0, G(2)=0,

in which one has made the substitution:

X =% (%, %, %),
(14)
a(xil,)gz,...’)l(p) .
k1<k2<...<kpa(7k1,7(k2,...’7%) 1Ky kgt

Zilviz""jp =

(14) represents a biholomorphic transformatiorhatariablesx, 2 and (X,z) for all (x,
2) [(X,Z), resp.] for whichX) [(X), resp.] lies in the neighborhood of [ (X°), resp.].
If (13) is regular at)’, Z) then the system of equations (12) is also regatathe
corresponding poin¢x°®,z°% . Furthermore, the equations:

a,,(X,Z2,A%=0 goto ap+1(X, Z,AX) = 0

through the use of (14) along with:

ox

from which it follows that the numbeg., is the same for the corresponding elements at
(x, 2 and (X,z). From these remarks, it is clear that the regatagral elements of one

system correspond to the regular elements of ther ot

4. On the first regularity condition for integral elements. In order to specify
whether a given integral elemeﬁg: 0, ) satisfies the first regularity conditioone

can proceed as follows:

) As far as the definition and regularity of the ingelementE,, whose point in questiorx)(lies
sufficiently close tox°), is concerned, it is obviously unimportant whether comsiders: to be defined

over the original ring- or overf.
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Suppose thatz’,  # O, for instance, so that one can use the inhomogeneous
coordinates:
_ Zil,iz,-~4'p

uil,iz,-.4p = Z .
,2;.p

From this, the system:
(15) ap(X, 9 =0, G,(9=0

is regular for X%, ) if and only if the corresponding system of equations imder the

transformation:
0
_ Zl,iz,-qp

0

’ Zl,2;"vp

(X) = (XO)’ ui1,i2~'~4p = q?l I

is also regular.
Since the system of equatid®¥(2) = 0 is already regular, one can replace it in the

neighborhood ofuC) with the equations:

(16) -4

140 o,

L(W=0,

n
in which ( j—l —p(n — p of theu are expressed in terms of the remaining ones,
p

perhaps:
(17) Uk2,3,...p > Ui k3,....ps -=os U2 . p-1k, (k = ptl, ...,n).

From an earlier general remark concerning regular systémguations (cf. pp. 14),
the system:

(18) ap(X, U =0

that is obtained from the systesp(x, 2 = O by replacing the with their expressions in

the (W — Pp variables (17) must also be regular, and conversely tndargy of (15)
follows from that of (18).

For practical applications, one is accustomed tongeetdimensional vector
subspaces represented by equations in the style of pp. 19:

(19) m—iliﬁqzo i =p+1, ...,n).

Because of this, we will considaow one knows whether a vector subspace that is
defined by the poir(t®) and the equations:

P
W= lxw =0
k=1
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is an integral element, and, in particular, whether it is a regulaegnal element.

Every differential form of degreecan be representedmodulo the left-hand side of
(19) - in the form:

ax, lawa ... @,

in whicha(x, I) is a polynomial id. From this, ifas(x, [) means the totality of functions
a(x, I) that are obtained from the formsfin this way then:

a0, 19 =0

is the necessary and sufficient condition 3 I) to be an integral element.
If we further assume that, ., # 0 is the vector subspace that is definedkatl{)

and let ui?,iz,--ip denote the value of the inhomogeneous direction codedirfar &, 1°)
then equations (10) and (11) that were presented in sec.ch8ug#hat the variables:

X1, +.ey Xn, U12,. i1,k i+1,...,p (i=1,2,..p k=ptl, ...,n)

and the X, I) in the neighborhood of{, u°) [(C, 19, resp.] correspond to each other
biholomorphically, and from this, equations (18) and:

(20) ap(x,) =0

are always both regular. The integral elemedf [°) thus satisfies the regularity
condition 1 when and only when the system (20) is redoita’, 1°).

As for the second regularity condition, we will ngad into its interpretation here,
since we shall have more to say about that later inctimtext of the construction of
regular chains of integral elements.



V. Existence Theoremsfor Integral Manifolds

1. Proof of the first existence theorem. The equations,(X’, 2, Ax) = 0, which are
satisfied by all of the vectorAx and, together withE) = (, ), span an integral
element, determine amp(; + p + 1)-dimensional vector subspace &), (viz., the so-
called polar elementof E_; we denote it byH(E}). It contains all of the integral
elements that go througEg. One can specify the singlpHl)-dimensional integral

elementE°

°.1 that goes througliE) by using it, since one intersedts(E;) with an ¢ —

rp+1)-dimensional vector subspatﬁ_rpﬂ that lies in Eg; this intersecting plane then has
dimensiorp+1 for a general point K, .

First existence theorem. Let M, be a regular p-dimensional integral manifoldf
Eq= (X, 2) be its regular elements, and & _be an(n — f.1)-dimensional manifold

through M, whose tangent element &) has only oneEg+l in common WitﬂH(Eg).

There then exists exactly ong@+1)-dimensional integral manifold My in the
neighborhood ofx°) that goes through Mand is contained ian_rpﬂ :

We prove this in three steps.

A. Lemma. Since the statement of theorem is biholomorphicalhariant, we can
assume that:

Xnr+1 = Xng+2 = ... =% =0 € =rpn)

are the equations féy_, and:

Xp+1 =0,
1) X = di(Xa, X2, -y Xp) ptl<isn-1,
X =0 - <i<<n),

(¢ is holomorphic fox!, x;,---, X))

0
zero ore ;.

The equations of the desired maniftMg.1 can be expressed in the form:

fi(X1, X2, ..., Xp) p+rl<isn-r)

() 0 f—r<i).

Since °, 2) shall be a regular integral element, the systeevaétions:
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a(x,2=0, GI=0,

is regular in X°, ), and one can therefore choose one of them in fhéded side of
these equations, which we denote by:

(X, 2, @al(X, 2, ..., Ydhx, 2,

in such a way that every functidt{x, 2 that is holomorphic at{, ) and vanishes for
all integral elementg, in the neighborhood ok{, ) can be represented in the form:

F(x, 2 :zp:A(x 2 W(X, 2 (A holomorphic at®, 2°).
i=1
In this case, we simply write:

F(x,2=0 (modyn, p, ..., Y.

One finds exactly = n — w1 —p —1 linearly independent equations among those of
ap(®, 2, %) = 0. Let:

Za1(h|)2 :pl ""?(m) h=1,2,..1

bet differential forms of.1 that correspond tbsuch independent equations, and let:

D = 281'2 Jpl " 2"'.’Xp+l)

mean a completely arbitrary form @f.;.
We consider thé+1 expressions:

q)h(x ZAX) Za1(h) i ( X Zz iy _A?(Z’|£3| +) (h:11 2, ...,t),

|2 Jpl

CD(X ZAX) _Zaﬂz Jpl( X Zz i, _A?(Z’|£3| +)

The last linear form is linearly independent oé thighert for (X, 2%) and also for
every integral elemenk( 2 close to it sincext, 2°) is a regular element. Alt«1)-rowed
determinants in the coefficient matrix of this Bmdform are therefore 0 (mod ¢a, ¢4,

. o). If one then multiplies thé, and® by suitable sub-determinants(x, 2 (a
matrix, U(x, 2, resp.) then, by addition, one obtains an exgeass

Zt:Uh(x, 2) Op(x, z,AxX) + U(X, 2 P(x, z,A2),

which can be written in the form:
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> 1(42) &

with fi(x, 2 =0 (modyx, ¢, ..., ). SinceU(X, 2 can be constructed from the minors of
any of the firstt rows of any matrix, one can deduce tHét°, 7) # 0, and one is led to
the conclusion that:

For an arbitrary differential fornF in a,.1, we have:

(3) d(x, z,AX) = Zt:Aj(x 2) dn(X, z,AX%) (mod, ¢, ..., )

(An(x, 2 is holomorphic ai®, 7).

B. Construction of a Cauchy-Kowalewskian system of differential equations.

In order to simplify the formalism, we would like torite assumption (2) for the
desired integral manifoltf,.; as follows:

(4) Xi = Xi(X1, X2, ..., Xp+1) i=1,2,..n),
in which we naturally have:
Xi(X1, X2, +.vy Xpr1) =X fori<p+1,
Xi(X1, X2, ..., Xp+1) = 0 fori >n —r.

We must determine these functiog(&) so that everg of ap.1 will be annulled when
substituted in (4):

a(xil, )ﬁz ,...’)I(pﬂ)
{Za

. d(X1, X1, .oy Xp+1) =0
’p”a(xl,xzw-ﬂsm)J o

and x(x1, X, ..., X, 0) represents the manifod,. To this end, we next consider the
equations:

a()gli )‘2’...’)I(p+l)_
®) 2L NN 0(%, X1 Xour)

If one thinks of the determinants that appear lasrbeing developed in terms of the

elementsaai then, up to sign, the left-hand sides are equild@xpressions:
X

p+l
(X, z,AX),
when one introduces the expressions:
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0 - oy X _
— ()ql XZ p) A_axl

Rt T g )
into them.
From the assumptions that we made abEf,lt and Fn4, it now follows that the
equations:
(6) DL(x°, 2, A%) =0 =12 ..1

can be solved in terms of thejuantitiesAXy+2, AXp+3, ..., A%+ . Otherwise, one would

have a linear relation:
p+l n

2abx+ >, BAX=0,

i=n-r+1
which cannot be the case. For &g, that are determined by:

(7) AXpr+1 = DXprsz = ... =0%, = 0,

we shall indeed have thet > . ,+1 # 0, from which the vanishing of adf follows. One
must then hav@g = 0, because otherwise, from (7), the integal that goes througIEg
would no longer be uniquely defined. Thus, the interseaidr‘f_rpﬂ and H (Eg) will be

of dimension higher thapt1.
Equations (5) can thus be solved for the derivatives:

o0X
a),2+1+k (k: 1, 2, ...,t),

p+1

and upon settingn—+1, ..., X, to zero, the functions:

Pz Xpr Yooy X, 0%, %, %,)
axp+l o I ‘“a(xl,xz,...,)%)
0 X e X
6Xp+3 :H2 X11X’"'a)§]_r1 ()ﬂl >$2 p)
0%,y (% %0+, %)
ox_. 00, %, 1% )
L:Ht X Xou s X p
0% 0(%, %+, %)

appear on the right-hand side of the solution fdasyuvhich are holomorphic in all—r

n
+( j arguments in the neighborhood of:
p
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X1 =X, Xog = X2 a()gl’xz’m’)'(p): 0
1 Xl’ - Xn—r’ a(Xl,Xz,,)ﬂ)) Zil,iz""jp'

From the classical theorem GauchyandSonja KowalewskKi), there is precisely one
solution:
X = fi(X1, X2, ..., Xp+1) (i=p+2,...,n=0

of this system of partial differential equationattheduces to:
fi(Xe, Xo, ...\ Xp, 0) =@i(Xe, X2, ..., Xp)

for xp+1 = 0. (@ are functions that enter into the equations (LMg)
A (pt1)-dimensional manifol®,., in F~ that goes through,, is defined by:

X (i=1,2,,p+1)
(B)  X=x(x, X, .y Xpr1) =9 £ (4,0, %) (1= p+2,-,n=T)
0 (=n-r+1:--n),

which is an integral manifold of the system:
CDh:O h:]., 2,,t)

We will now show thaM,.1 makes all other form® in ap+1 Vanish automatically, so
it is the desired integral manifold.

C. Proof thatM., satisfies the equationg.1 = 0. Among the functiongi(x, 2 that
were just introduced, perhaps the fiesdf them can go in the left-hand side of:

ap+1(X, 3 = 0,

whereas the rest of them are found amongGi¥) .
We now consider the differential forms that copes to¢i(X, 2:

=2 0% dx, X x) k=12, ...,0.

vlardp p
By substituting in (8), they may become:
p+l

(9) 4Z7k = 2(—1)|_l Vk|(X1, X2, ..., Xp+1) d(Xl, ceey X1y X1y oo ey Xp+1).

1=1

1) See, e.g., E. GOURSATecons sur l'intégration des équations aux dérivées partielles du premie
ordre, Paris 1921, pp. 2.
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On the other hand, we consider the forms that betong t:

k=12,--0
P = A ¢ (|:12-..p+]j'

Let ®u(X, z,AX) be the expression that one obtains by repladifyy, X ,---, >|<p) with:

A)(il ! 42136“3 p+1 - A)'(2 ! Zé" 3 dipe *ee

in @,,. Under the substitution:

X = %% %, %),
a(xil’)ﬁz’”")s )
(10) Z iy, = e,
0(X: %, %5u1)
0%
Ax =
Xl aXp+l

Py(x, z,AX) goes toVi(Xi, X, ..., Xp+1). We apply the result (3) to the functiobhg(X, z,
Ax) and use the expressions (10)xXpe,Ax. We then observe that with this substitution:

1. All ®y(x, z,Ax) vanish identically, becaudé,., satisfies the differential equation
®n,=0;

2. All ¢x(x, 2 with k > g vanish, because the equations for Grassmann mai@pld

are satisfied identically when one substitutes phewed determinant of any
matrix withp rows anch columns forz

3. The ¢i(X, 2 with k< o reduce to:
(=1)PVipr1(Xa, X2, -, Xpr1) = VidXa, X2, -, Xp+1)
from which we conclude that we can set:
(11) Vid(X1, X2, .., Xp+1) = AV + ApVo + ... + AuoVo.

(A is holomorphic atx{))
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The same considerations may be appliedgn It is also a form imp.1, and one

shows, with the same conclusions as above, thafotine wkz dyk that is obtained
from d¢k by substitution in (8) may be written in the form:

Wk = (Bk1V1 +BVo + ...+ Bkava) d(Xl, X2, .eny Xp+1).

One can also obtaidy, directly by differentiating (9):

L V
dy, = Vg +6Vk2 +.~-+a P (X, X2 ey Xord),
a)(,l 6X2 a)S)+:L

and one then has:

avk1+avk2+-.-+avk'p+l:iB\(V .
ox  0x, 0x,, = 7

If one uses the expressions (11) for Wethen one obtains a system of linear partial
differential equations for the functiois, Va, ..., Vs that can be solved for holomorphic

ov, av, ov,
1) 1) 1)

p+l p+l p+l

and are homogeneous in tieand their derivatives.
For the function®i(xy, X2, ..., Xp+1), One has:

(12) Vi(X1, X2, ..., Xp, 0) =0 k=12, ..,0);
this makes:

(=1)° Vi(Xa, X2, ---, %o, 0) d(Xa, X2, .., Xp)
the form that is obtained frogx by the substitution:
(13) X = Xi(X, X2, ..., Xp, O) i=1,2 ..n),

and (13) represents the manifdit} that all of the forms ofi, annul (as g-dimensional

integral manifold).
From the form of the function¥y that are obtained from the system of partial
differential equations, it follows that:

(14) Vi=Vo=..=V,=0

is the only solution that satisfies the conditi@g)(
One now proves, as above fog andd®, that for any forn® in ap.1, substitution of

(8) produces an expression:
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(i Avkj At Xor -0 Yo,

which vanishes identically on account of (14).
Thus, sinceMp.: satisfies the differential equations.1 = 0, it already follows that it

satisfies all of the equations= 0, because,.1 = 0 implies that everypf-1)-dimensional

- and therefore every lower-dimensional tangent elénaérM .1 — is an integral
element.
M,-+1 is the desired integral manifold, and it is also the amlg that satisfies the
required conditions sindd.1 is already uniquely determined By =0 h =1, 2, ... 1).
The existence theorem that is thus proved can aldorbmilated in a slightly more
precise way:

When g1 2 0 (rp+1 = O, resp.), f+1)-dimensional integral manifolds go through a
regular integral-M, , and they depend on.{ arbitrary functions of p1 variables(are
uniquely determined, regp.

Any of the integraM, nearM,.; that were constructed above can be represented in
the form:
Xi = Qi(X1, X2, ...y Xpr1) i=1,2,..,n,

and from this, the functions:
(15) (X1, X2, ..., Xp+1) (h-r<i<n)

may be prescribed arbitrarily, up to the supplementargiton that:
(16) 0i(X1, X2, ..., X, 0) =i(Xe, X2, ..., Xp) (n—r <i<n).
By assuming (15), one can infer tih&., shall lie in the manifoldr,-:
X —0i(Xy, X2, ...y Xor1) =0 h-r<is<n
and (16) expresses the idea that ti&sego through the given integrip.
One easily proves an extension of this existence ¢hedhat is needed for many

purposes:

If the manifolds Mand R+ depend upon certain parametess, a», ..., a; in the
neighborhood of a holomorphic system of valagsr?,---,a?° then the integral manifold

Mp+1 also varies holomorphically with the *).

) A g-dimensional manifoldVi(a) [which is defined in the neighborhood of a poird](“depends
holomorphically on the parametess, a, ..., a; in the neighborhood of a system of valugsa?,---,a"

T

whenn — gof the coordinates of any arbitrary point neighboring®j on M(a) can be represented as
holomorphic functions of the others.
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Concerning the aforementioned existence proof, we carsayilthe following: The
bihilomorphic transformation that takEs = Fr+(a) to:

Xn-r+1 = Xn-re2 = ... =Xn =0

now depends omr, and the parameter therefore enters the differential equatiosr O

holomorphically. One further deduces that the functgnhat appear in the equations
of Mp = Mp(a) now depend on the variables:

& = @di(X, X2y ..oy Xy A1, ..., A7)
(#(x, @) is holomorphic forx) = (<), (a) = (&°)).

The Cauchy-Kowalewski system of differential equatidhat are obtained by
construction oMp.1 = Mp.1(a), like the initial conditions:

fi(Xe, X, ..., X0, 0) =@i(Xe, Xo, ..oy X, O,y ..., A7) (ptl<isn-v

now depends holomorphically on the and a simple extension of the Cauchy-
Kowalewski theorem shows that the solutions fi(xi, X2, ..., Xo+1) = @i(X1, X2, ..., Xp+1,
ai, ..., ay) are holomorphic functions of thein the neighborhoodf (a) = (d°).

2. Regular chains of integral elements. If one has a sequence of regular integral
elements:

BB Bl L

that relates to the integral elemeff, such that eact’ is contained in the following
E’, then one can speak of a regular chain:

ECOEOED--0E,0E

that ends withES. ) The elementE; itself does not need to be regular. Such a chain is

indexed by a sequence of whole numbers (we call therchtdmacteristic numbersf the
sequence):
rll r21 ey rp_ll rpl

in which r; means thato" integral& go throughE’

thing — that the polar elemeht(E®,) has the dimension + .

., or —what amounts to the same

) Here, as in all other cases, the notafidi B shall mean that of the two vector spaces (or manjfolds
A, B the first one is contained in the second one.
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Since all of the vectors that span an integral eténtegether withE’,, also define
an integral element, together wig°, that is contained irE’,, one has thaH (E°) is

contained inH (E’,) and that:
r+i+1<r+i,
or:
S=ri-rs-1=20 i=1,2,..p1).

If one letsro denote the dimension of the algebraic manitglé= O (the manifold of
integral points) in the neighborhood & =(x, x,---, X)then the numbes, which is
defined by:

S=ro-r -1,
is also positive or zero, because thalimensional tangent element af = 0 in ()
contains therg+1)-dimensional polar spade (EJ):

a10C, Ax) = 0.
All of the formsdag belong toas.
One now chooses — as is always possible — any sequence:

Vno—rl 0 Vn(irz a0 \/ncirp

of (n — r)-dimensional vector spaces af)(that are contained in each other in the
specified way and are such that the intersectioftgf with H(E?,) is preciselyE’. If

one has any sequence:
(17) Vn—r1 0 \/n—r2 a0 \/n—rp

of analogously-ordered vector spaces then they uniquely degamegular chain:
(18) EEDEOEO..OE

of integral elements that are close to & assuming that the__ are arbitrarily close

to theVnO_ri [thus, among other things, the poir} 6f V is arbitrarily close toxf).] One
takesE, to be the pointX); thus, if one has already obtained:

EcUEIUOEO...OE4

then one obtaink; as the intersection &f(Ei-1) anav,_, . Due to the fact that:

Ei-1 O H(Ei-), E1 UV, OV,

n-r
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this intersection space indeed goes throkgh and it is also exactlidimensional and
close toE’ when one already assumes tBatE;, ..., E, are arbitrarily close td,, E,

.,E,, just as one assumes that the are arbitrarily close to th‘e!no_rv :
Since the intersection of”  and H(E) is non-degenerate the same is true for the

intersection of the tangent elementsagf= 0 at &°) with Vno_rl , Which therefore has the
dimensionro —r; — 1. On the basis of this fact and the fact thatrp <n —r, one can
determine ann — 1p)-dimensional vector subspace\q‘f_rl that contains no tangentsde
=0, and in a number of ways.

3. Corollariesto thefirst existence theorem. The second existence theorem. Now
let:
(19) F..OF.,0OF 0O-0OF

n—ry n-=ry

be ( — r)-dimensional algebraic manifolds that go through &nd are regular (simple)
at () and have thé/no_ri for tangent elements there.

Due to the assumptions oq(’_ro, F.-,andao = 0 have only one poirlo = o®) in
common in the neighborhood of). From the existence theorem that was proved above,
there is precisely one one-dimensional manifvd that that goes througiM, and is
contained inF,_., and there is precisely one two-dimensional integnahifold M
through M, that is in F_ , etc. By induction, one concludes the existence and

uniqueness of a sequence of integral manifolds:
(20) Mo O M OMO... OM,

that have the relationship to the sequence (19) thaseeence (18) has to the chain
7).
One can also express thecond existence theoreghat is thus posed as:

In a neighborhood ofX°), the sequencél9) of manifoldsF,_, leaves exactly one p-
dimensional manifold Mfixed, under the requirement that,Mnd F_. have an i-
dimensional intersectioft = 0, 1, 2, ...,p).

In fact, the intersection dfl, and F . must be an integral manifold since every

lower-dimensional manifold that lies in an integral maldifis itself an integral manifold.
If one then seeks to construct thig of the sequencMo, M1, M2, ... then one will be
unavoidably led to the above construction.
The actual meaning of the previous existence theoremb@sbmes clear in the
analytical formulation.
Let a coordinate system:
Z = zZi(X, X2, ..y Xn) i=12,..n
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[dz dz ...dz # 0 at &°) and  z(®, %, X)=0]

be introduced in the neighborhood &f)(such thatE? can be determined frorﬁg by

means of the equations:
dz.1=dz4p=...=d% =0 h=12..p-1).

dz, dz, ..., dz are then linearly independent tErﬁ le.:

dz, z, ...,z) %0

on E;. SinceVnO_rp contains the elemerﬁg, we also have thalz dz ...dz,# 0 onVnO_rp :

and it is therefore possible to fing Pfaffian forms that vanish orVn_rp and are
independent odiz, dz, ..., dz and each other. One can put them into the form:

p
dz - > lrdz, P<i<ry+p)
k=1

by indexing thez (i > p) in an appropriate manner. Tl“sﬁé)_rp_l that lies inVnO_rp then

annuls not only these forms, but alip andrp,-1 —rp — 1 =5-1 more Pfaffian forms,
which can be written, if necessary by re-orderingzthath i > rp + p, in the form:

p-1
dz_zliidzk (ptp<isrpa+p-1)
k=1

One sees as one continues that the ordering af @ihe p) may be arranged so that in
generalV,” can be described by means of the equationd/fr,;, along withs, + 1
more equations:

(21) dz+1 =0, dz-) lgdz =0 (o1 + V+I<i<r, + V).
k=1

Finally, IetVnO_ro be represented by the equations\!ﬁ_rrl and:
dz=0 (L + 1 <i<rg).
If one is given the pointx§) and the:
Prp+t P -1+ (P -2t ...+ Zp+s

constantd, then the sequence:
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(22) Vo, OV, 00V,
and therefore also the chain:
(23) €)=K 0E0ED-0E,

is uniquely determined. If one varies the poxt X, ..., X,) on the manifoldip = 0 in a
neighborhood of>{) as well as the constantig in the neighborhood of the system of
valuesl; in the equations:

p

dz - | dz =0 (p< i< [+ ),
k=1
p-1 _

dz->|dz =0 (p+ p<isr +p-1),
k=1

Vn—r,,

dz—ihdvo (fatv+l<isy+v),
k=1

dz/ﬂ: d%+2:"': dg:O

(v=p,p-1, ..., 1)

then one obtains all of the sequences that are dq@2} [(23), resp.]:
Vn—rl O Vn—r2 0---0 Vn—rp
X =E0EDEO0..0E

and one also obtains every integral element that sedio Eg exactly once. We also

remark that the manifold qf-dimensional integral elements in the neighborhoodEg)f

has dimension:
(24) fr+S1+25+ 33+ ...+ (—1)5-1+prp.

One now considers a sequence of algebraic manifolds:
Fn—ro D Fn—rl D Fn—rz D o D Fn—rp
whose elements are defined in the following way:

F.-., IS given by:
Z-¢(z 2, ...,29) =0 b<isrp+p-1);
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F.- - is the intersection oF . with:
z,=0, z—-¢(n, 2, ...,201) =0 (p+p<isrppi+p-1).
In general:F,_, is the intersection oF_, ,, with:
Zx1 =0, z-¢(z,2,...,2)=0 Cvatv+1l<isr,+v)
and finally F_, is the intersection oF,_, with:
r+1<i<r
z—-¢i=0 ! °1.
@ = const.

When the functions (constants, resp.)which are assumed to be holomorphiczat (
= 0, satisfy only the condition that for:

the Pfaffian forms:
r,,tVv+1<i<r, +v
dz —d¢gi(z, z, ..., 2) v=L12:-,p
r. = —1, by assumptio
are arbitrarily close to the forms that were coesed above:

v r..+v+1<i<r, +v
dz - ledz, (”ﬂ ’ j
k=1

V:1,2,-'- P

and the values af; are arbitrarily small, then the manifolBshat are so defined satisfy
the assumptions that were demanded on pp. 39. fHusydetermine @-dimensional

integral manifoldM, . SinceM, possesses a tangent element that neighbots; oand
d(zi, 2, ...,2) # 0 for E, it may be represented in the form:

z=f(z, 2 ...,2) (i=p+1,...,n).

The fact thaM, hasF,_, in common withM, can be deduced from:

fi(z, 2, ..., 2, 0, ..., 0) =¢i(z1, 2, ..., ).

One sees from this that a choice of function @rstant)¢ will determine a choice of
integralM,, . By varying theg, one obtainsll p-dimensional integral manifolds that
possess a tangent element that neighborEgonThe totality of these integral manifolds

therefore depends on:
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S arbitrary constants,

S “ functions of 1 variable
& 1] [1] 2 1]
%‘)—l 11 13 p_l o

Ip . ‘ p ‘

If we do without any mention o¥,_  and the condition that th¥,’ that is

determined by:
dz =dz=..=dz =0

contains no tangent @ = 0, which replaces the equivalent condition that:
dzdz ...dz # 0 onao = 0 at ¢°),

then we can summarize the result so obtained in tlosving way:

Second existence theorem. Let:
)= 0B 0EO0-0FE
be a regular chain of integral elements, and let:

rOl rll r21 ERE] rp

be the associated characteristic numbers. Let the coordinate system:

i=1,2.--n
Z = Zi(xla Xo, ,Xn) [ Oj

z(X, %)=
and the Pfaffian forms:
; r,, tV+1<i<r, +v
g =dz - lpdz, v=1,2;-.,p
k=1 .
rw = —1, by assumptio
be selected in such a way tha} is determined orE; by:

dz+1=dz4=...=dz =0

and on the polar spade(E.., ) by:
=0 p<isr,+v
dz+1=dzu = ... =dz =0,
and that:
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dzdz ...dz #0

for the tangent element tg = Oat (X°). The p-dimensional integral manifoldyMwhich
possesses a tangent element cIosEEtpmay be represented in the form:

z=f(z, 2, ..., 7) (P <i<n),
in which:
f(z,2,.2,,3) (X E [+ D,
fi(z,2,,2.0,0)  (p+ p<is g+ p-d),
(23)
f.(z,0,--,0,0) G+ xisr+ 1),
fi(0,0,-“,0,0) (1+1<isro)

can be arbitrarily assigned, assuming that the values of these functiersificiently
small for(z) = Oand that for(z) = Othe forms:

df(z, z, ..., 2, 0, ..., 0) (it v+ 1l<i<r,+V)

are arbitrarily close to the corresponding Pfaffian forms:

Zl/:liﬁdzk :
k=1

M, is then uniquely determined by the dé2a).

On the basis of the remarks that were made at tthefthe proof of the existence
theorem (pp. 36) one can further add that if the initied §28) are holomorphic functions
of definite parameters;, a, ..., arin the neighborhood of a system of valuaks £ (ao)
then the solutioz; = fi(z, z, ..., ) also depends holomorphically on tte



V. Remarkson the computational aspects of the results obtained.

1. Determination of chains of integral elements. For practical applications of the
existence theorems that were just proved, it becoreesssary to develop a procedure
for determining the regular chains and characteristicheusna We would like to treat this
problem in the following form:

Problem: Letw, w, ..., ap be p linearly independent Pfaffian forms. Determine alll
p-dimensional integral elements on whigh w, ..., a are linearly independent and
intersected by a sequence of regular integrab¥g way of:

Wr1=Wi2=...=p= 0
forv=0,1,2,..p-1

Along with thewone chooses — pmore Pfaffian formsy., ..., a in such a way

that wa ...ax# 0. For thep-dimensional integral elemef, on which @, a, ..., &
are linearly independent, one can make the Ansatz:

W) a= -3 ,a p<is<n)

andE, is then determined by appending the equations:
(2) w=0 a<i<p).

Modulo the left-hand side of (1) and (2), every fornajiqmay be uniquely reduced to
the form:
alx, , Iy, ..., 1) ww ...«

in whicha(x, Iy, I, ..., 1,) is linear in each of the variablks
Ip+1’k, Ip+2,kl ey Ink (k: l, 2, ,V)
The functionsa(x, Iy, I, ..., |,) that thus appear in the forms may be completed
with a (X, I, I, ..., 1,), and one has:

av=afX, bl .. ) wap ...an, (MO Wy, ..., T, ..., Th).
Modulo the same thing, one obviously has:

a1 = apa(X, by 2, o 1) dad o
+apa(X, b, by s b2, 1) @@ w2 + ..
+ aV_l(Xl |Vl |21 ey IV—l) @@ ---@—l,
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and from this, we have:
al/—lm/ = aV_l(Xl |ll |21 ey IV—l) Cq.@ Cq/l
ap1h1 Eapa(X by oy lvo L) day .. .

Sincea,1aw anda,-1a-1 are contained im,, we conclude that the,-1(x, kL, 2, ...,
l-1) and thea,-1(x, h, ..., I, I) occur in the expressions, = a,(X, I, Iz, ..., 1) in the

same way.
Because of this, in order for tipedimensional vector space &) (vhose direction is
determined by (1) to be an integral element it is necessatgufficient that:

ap(x, |]_, |2, sy Ip) = 0

Let (¢, )be a solution of these equations and Bt be the associated

integral element. How is one to know whether tharchzat is determined bES using
(2), viz.:
X)=EO0EO0EO-0E

is regular?

2. Search for regular chains. We first pursue the consequences of the given
assumption thatd, 12,12, | o) determines a regular chain.

Since °) is a simple point of the manifolsh = 0, the equationso(x) = 0 can be
holomorphically solved fon — o of thex —say,X ., ..., X. — in the neighborhood 01’(00.
In general, one has:

For an appropriate ordering of they (i > p) the equations:
CLV(X, |1, |2, saay Iv) = 0
may be solved in a neighborhood(dt 1°) in such a way that the:

lik (i>rk+k,k: 1, 2, ...,V)

vV
are then represented as holomorphic functions,ofxx ..., x_and the remainingZ(rk +
k=1

k — p) quantities i.

Proof: The cas& = 0 has already been settled. We assume thasdertion has
already been proved for the case of the equation:

(3) CLV_]_(X, |1, |2, ceey Iv—l) =0.
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In order to render the given indices no longer necessargonsider the variables:
Xi (i >ro), li (i>re+k,k=1,2,...n-1)

to beprincipal and the remaining, | to beparametric.

Every system of values for the parametric variatiies ltes in a neighborhood of(
1°) leaves precisely one’ € 1)-dimensional integral elemegy = (x, I, l2, ..., 1.1, 1,) in
the neighborhood oE? , fixed, and the condition for this is:

(4) au(X, Iy, 12, ... lua, 1) =0,

since ther-dimensional vector space that goes throbgh and satisfies the equations:
V -
m_zlika‘l(:() p<is<n)
k=1

@ =0 v<i<p)

is an integrak,. If one then lets thk vary then one obtains all of the integ&lthat go
throughE,-; and satisfy the equations:

w=0 v<i<p).

The vector spac¥(x) that is defined by the poirnt)(and the last equations hHag; in
common withH(E,-1) in any case (becaus®, = @w+1 = ... =« = 0 on it). The
intersection oV(x) andH(E,-1) thus remains on the original integéal: WhenE,-; is
sufficiently close toE_,, this intersection cannot be degenerate. Due tcethdarity of
E?,, H(E,-1) varies continuously wheB,-; varies continuously in the neighborhood of
E, (regularity condition 2), and the intersection #{E ) and V(O is certainly non-
degenerate. Otherwise, the forms.i, ... , « are linearly independent oH (E’,),
which cannot be true, sindg; lies in H(E),), and all of thew (i = 1, 2, ...,p) on E;
are linearly independent.

The intersection dfi(E,-;) andV(x) therefore has the dimensiop+ v— (p —V); i.e.,
it consists ofeo”™ P integralE,. If one therefore introduces the expressions foxthe
l2, ..., |1 into equations (4) through the parametric variables tbemlf values of the
parametric variables that are sufficiently closexfolf) one reduces them to— p —(r, +
V—p) =n—r, —vindependent equations, which can be solvednferr, —v of the
variabled. These are then holomorphic in the parametgeksl,, ..., .1 and represented
in terms of the remaining, + v—p quantitied, (they are, in fact, linear in them).

One finds the equations:

aV‘l(Xl |ll ey II/-21 IV) = 0
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amongst (4), and, due to their similarity with (3), the€i > r,.; + v— 1) can be deduced
as holomorphic functions of the parametgrsl;, ..., l,» and the remainindi,, so
equations (4) rendéy, (i >r,1 +v—1), aswellasr(-1 + v—1-p) — (r,-1 + v—p) more
= s,1 quantitiedl;, soluble. For an appropriate ordering of thgr,-1 + v—1>1i > p)
one can assume that they are, in fact)ithe@ithr,; + v—1>i>r,; + v. The theorem
is thus proved.

Under the assumption that there is a system of solufighd’,---,1°) that defines a
regular chainEy O E’ O--- O E], the equations:

ap(x, |1, |2, ceny Iv) =0

can be completely solved in the neighborhood (xf,l°,---,1°) by means of the
successive solution of the partial system:

aO(X) = 1
a, (% 1)) =0,

(5) a, (X1, 15) =0,

a, (X1, 1) =0.
Under back-substitution, the foregoing equations reduce to:
CLV(X, |1, |2, saay Iv) = 0

in the n — ;— n linearly independent equations in terms of thelh light of the fact that
ao(X) = 0, one therefore has only linear equations to solve at every step. Thermgnbe

of the x and thew (i > p) and the solution of5) can be so arranged that tl{eo-called
principal) quantities:

Xi (i >rg), lik i>re+kk=1,2,...p
appear as holomorphic functions of the remainisgrcalled parametricvariablesx, .

3. Criterion for regular chains. We will now show that,conversely, if the
equations:

ap(x, |]_, |2, sy Ip) = 0
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can be solved in the manner that was just described in the neighborhoodsofutien
(x°,12,---,1%) then a regular chain of integral elements can be determined from

12, 19).

Proof. We shallleth —p,—v(v=1, 2, ...,p) denote the number of independgnn
the equations:

(6) ay (17,07, 12,0, ) =0,

although we do not know how they are connected withhheacteristic numbersof the
(possibly non-regular) chaif, 0 E’ 0 --- 0 E; that is determined &y’,17,---,17).
Since the equations:
At (010 12,0 ) =0
are generally contained in:
ay (12,12, 1,) =0,

we can choose the numbering of tdae(i > p) in such a way that one can find- p, —
vindependent variabldg (i > o+ V) among the equations (6).
Among the equations im(x), we selech — o of them, in which we have denoted the

dimension ofio(x) = 0 at () by o, such that ab€) n — o of thex — sayx (i > o) — can

be solved holomorphically. Likewise, we choase- p, — i corresponding equations
from:

CL/,(X, |1, |2, ceny |/1_1) =0

that admit a solution from the, (i > g, + ) for () = 00), (1) =(17), ey (pa) :(Iﬁ_l).
The totality of the equations thus obtainedrfor 0, 1, 2, ...n will be denoted by:

(7) a, (X, b1z ..., 1) =0.
Among the:
(8) ay (X, I, 12, ..y 1p) =0
we then have:
P
> (h-p—K
k=0

equations that can be solved in the neighborhoo@C1°) in terms of just as many
variables, namely, the “principak (i > @), Ik (i > o« + k, k=1, 2, ...,p). The
statement that we just proved can now be rephrased

By substituting the expressions for the principal that are obtained fron(8) into
ap(X, I, I2, ..., 1p) = 0,all of these equations are already satisfied.
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In order to show thaE. is regular, we make the following Ansatz for the gntd-E,
that neighborE):

m_zlika‘l(:() Pp<isn),
k=1

m_zlika‘l(:() (v<is<p).
k=1

Modulo the left-hand side of these equations, one nay se
al/ = aV(XI |ll |21 "'IIVl A) Cq.@ m/!

such that:
(9) a(X, Iy, 12, ..., 1, ) =0

is the condition for the integr&y .
The first regularity condition folE? demands that the last system of equations is

regular for:
(10) ©0=0% 0=0) NH=()
(cf. pp. 28).

Among the equations (9), @V:(n -p, — K) equations:
(11) a, (X, b, Iz, ...;1,, A) =0

be so selected that faf)(= (0) they go to (7). By construction, this €ystis regular for
the system of values (10). We shall show thatetkgressions that are obtained from
them for the principak, | as holomorphic functions of the remainirngl and thed by
substitution in (9) already satisfy these equatidestically!

We now assume that the aforementioned substitudoes not make all of the
expressionsi(X, |, A) vanish. There will then be one or more relatitbe$ween the

“parametric” variablesi (i <rg), lk (p<i< o+ k, k=1, 2, ...,V) and the/ that are
satisfied for 4) = (0), but not generally all values #f This means that the manifold of
integralE,, which satisfies the equations:

(12) @=-3 A =0 w<isp.

has a lower dimension for general values! ¢fian it does forA) = (0), where it has the
value:
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N, =p+> (o +k=p).
k=1

However, this is not the case, since, by (12)ethdll be at leasto™ integralE, in
the neighborhood oEg that intersect the integr&l;. We shall make this conclusion

more precise:
Letx = xi(X), li = l(X, I) be the expressions that are determinedyby; ) = 0 in the
manner just described, with all of thel in the parametric variables. The formulas:

X = Xi(X),
(13) m—zp:Lik(x,l)q:O p<i<n

then deliver all of the integrdd, that neighborEg. Along with (12) these formulas
deliver a collection of integre, whose dimensiorN; (1) is immediately obvious when

one uses thex (k > n), which are expressed in termsaf w, ..., w by (12), in (13),
from which it might arise that:

m—zp:Lik(x,l)q:O P <i<n).

N, (1) = m is then the rank of the matrix of derivatives bé ti with respect to the

parameterg, |. In any case, this dimension cannot be greatspétial cases of - e.g.,
(A) = (0) - than in the general case dthat lie in the neighborhood of{ = (0). For Q)
= (0), however, from (12) and (13) one obtain®oatheE, that are determined from:

CLV(X, |1, |2, saay Iv) = 0;

i.e., N, (0)=N,, and thereforeN, (1) = N,.
What the second regularity condition f&f entails, as we shall observe next, is that
for any integralE, on whicha.; = 0 the equations:

v+l

m_zlika‘kzo b <is<n),
k=1
v+l

m—Z/]ika,L:O ¢+1<i<p),
k=L

along with the following conditions, which are avgdus to (9):

(14) CLV+1(X, |1, |2, . |V+1, |) =0,
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collectively delivero®™ integralE,.; that go through them; then, as we have just seen,
equations (14) can be solved in such a way thagbthequantities:

|i|/+1 (D<i£,0u+1+ v+ 1),
Aiv+1 (v+1<i<p)

stay arbitrary.
Now the regularity of the system of equations (14) mesiavalid when one

transforms it to other direction coordinated that enter into the new Pfaffian forms:

2= na (=12 .0  (al#0)

in the same manner as thel do in«w If one is careful that the matripy) is sufficiently
small compared to the identity matrix then the new eomstt

c‘|/+1(X’|_1’|_2"" ’E+1'A_): 0

can be solved in the same way as (14). In particthlay, therefore leave:

<

“a P<i<purtv+1),
(v+1<i<p)

A

iv+l

arbitrary, and one concludes that*** integralE,.; go through an¥, that satisfies the
equationa,,,= 0. Due to the fact that the arbitrariness in thaaehof @,,, is restricted

v+l
only by inequalities, it follows thae®** integral€,.1 go through the general integi@)-

in the neighborhood o, hence, just as many as go throughitself.

The regularity of the chain that is determined(i, 17,17 ,--- | ), viz.:

EEOEO0EDO-O E[?
is thus proved.
The rest follows fronp, =r, (v =1, 2, ...,p); o =rowas clear to begin with

4. Another formulation of the criterion. The question of whether a solution
1005, 1) of:
(16) a, (X%, 12,12, 19)=0

p

corresponds to a regular chain can sometimes be addrededidves:
One first sees whethex’) is a simple point ofi; = 0. If this is the case amglis the

dimension ofiy = 0 at (°) thenone further notes the number of equations in the left-hand
side of:
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(16) c‘V(XO’IlO’ 20’“.’||/0—lj|/):O

that are independent of And sets them equal tohp, — v. Furthermore, leN be the
dimension of the zero manifold odp(x, h, l2, ..., lp) in the neighborhood of
(%, 17,13, 1 7). One then always has:

a7 ro+p1+p2+...—M2N,

and (x°,17,1;,--- 1) therefore determines one and only one regular chain when one

demands equality in the latter expression. In this gase,r, .

If one choosen - p, — v equations fromu,(X, Iy, |2, ..., 1) = 0 whose left-hand sides
are independent of for:
X, by ey b)) =0, 12,4412,
and solves the equations that are thus obtainedvfer 1,2 , ...,p then one can

p
expressZ(n - p,— V) of thel in terms ofry, X, and the remaining:
v=1

s -1
Do, tv-p)=+pitprt ... +pp__p(|; )
v=1
I holomorphically. It might be that all of the etjoasa (X, kL, I, ...,1,) = 0 are already

satisfied; from the criterion that was just esstiid, (x°,1°,---,1°) determines a regular

chain. Otherwise, (17) is a strict inequality, @my chain that belongs <°,1,--,1°)
is certainly not regular.

5. Another formulation of the second existence theorem. Now let w = dx , in
particular. The solutior{x’,1?,---,1%) of ap(X, h, I2, ..., 1) = 0 may determine a regular

chain, and the quantities:
Xi (i>ro) and ik (@(>re+k)

become principal, as above.
The forms:

9 =dx —)_lpdx, rAHv+l<isr,+v)
k=1

then have the properties that were required bgxistence theorem on pp. 43.
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The equations:
v-1
(18) dx —Zliﬁdxk -liydx, =0 b<i<y),
k=1

dx -Aivdx, =0 v<i<p),
together with'):
(19) aV(XO’ I101 201“ ’ ’l VO—l VO ’AV ): 0’

determine all of the integré, that go throughE’,, and thus also the polar space
H(E,). E’, is uniquely determined oHl (E.,), as required, by:

(20) dx =0 (v<i<p),

2 =0 (p<isr,+v),
since (18) and (20) have:

Aiv: 01

IiV:Ii?/ (p<i5rv+V),

as consequences, and the remaihingre uniquely determined by (19).
On the basis of the general existence theoremghoséhas:

The integral manifolds Mthat possess tangent elements that neighborE@n
(x°,1°,---,1°) may be represented in the form:

Xi = fi(Xe, X, ...\ Xp) i=p+1,..,n.

For those xthat have exactly parametric “derivatives:”

L= 2% k=12, ...p

the:
fi(Xa X2, oy Xin X ogaee 2 X))

and, for the parametric; xhat have no parametric derivatives, the:
f0C, X, %),
can be described arbitrarily. Therefore, it is asged that the differences between:

fi(xfaxg,"")ﬂ?) and Xf (i>p)

) These equations go to (9) when one sets all df te < v) to zero.
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[ij and |
0X, o

In order to simplify the application in practice, we @éawmade no reference to the
ordering of thex; (i > p) in these formulas. We also point out that theitsah of the
equation:

are sufficiently small.

av(x, |1, |2, ...,Iv) = 0

must always be determined in such a way thag :giis parametric then all of the
X
“preceding” derivatives:
9% 9% ox
0% 0% 0%,
are also parametric.

6. Setting up theequationsa/x, I, 1, ...,1,) =0. Let:

Y, Wy, ..., Wy

be homogeneous forms efthat define a basis for this ideal, so that any férwf a can

be represented in the form:
(21) =Y O, +¥Yo0, + ... +WYDy,.
For example:

6,6, ..,806,6,..,8
define such a basis.

One reduces th¢ modulo the forms:
p -
(22) m_zlik% (i=p+1,...n)
k=1

so that they are expressed only in terms otthew, ..., @

p
W= D Doy @, @y
k <ky<-<kg
By setting all of the coefficieris, ., that have k ky, ..., kg < v equal to zero, one

obtains a basis for the system of equatiap&, h, Iz, ..., 1,) = 0. Obviously, the
equations:
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bkl,kz,-n,lg] =0 ke, ko, ..., KgS V)

are found among the/x, I) = 0, and, from (21), all of the expressiangx, ) will be

linear combinations of these
Since the variabledy enter into the forms (22) symmetrically, all of the
coefficients, , .., that belong to the sani can be obtained from one of them — say,

P12, g =b(X, k2, ...,1g) — by permutation of the variables:

B s = BOX b bl ).

7. Prolongation of a system of differential equations. If one assumes that no
regular chains intersect:

w=0 h<i<p

on an integrak, on whichawa ... ap # 0 forn = 1, 2, ...,p then one next seeks to
representE, as the last link of a regular chain by setting the w, ..., @ equal to
suitable linear combinations:

p
@=Y P (=1,2 ..p).
k=1

It can therefore happen that sofgecannot be reached by any regular chain, at all.
The integral manifold$1,, whose tangen, are all singular, in this sense, will not be
immediately obtained from the existence theorems\ese stated above. In this case,
which is certainly not rare, one proceeds as follows:

As above, let:

p
w-)> | =0 (=p+1---n),
(23) | ; |k6q< ( p )

a, (%1, )= 0

be the equations that determine the integpadn whichaw a ... ap # 0. If the situation
that was just described is the case then one regards (28)sgstem of differential
equations in the variables |, and deals with them (the so-callelonged systerof the
original one) in the same way as with the old systefrthe desired integral manifolds
are still not attainable then one defines the next pgaibon, etc.

It remains to be shown that after finitely many steps will either come to the
conclusion that there are absolutely no intepfglof the desired sort, or obtain a
prolonged system in which every integh&l-can be obtained by means of our existence
theorems)

) See E. Cartan, “Sur la structure des groupes infintsadeformations,” no. 10-12, Ann. de I'Ecole
Normale (3)21 (1904).
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We incidentally remark that if one takes into accohatappearance of new variables
| then any system of differential equations can bestoamed into a system (23) of scalar
and Pfaff equations.

8. Rules for calculation in an important special case. With regard to the
applications to the theory of systems of partial défeial equations (cf. pp. 67, 68) we
would like to take a closer look at the case for whiwh bbasis fow is chosen in such a

way that except for the scalar equatians O it contains only certain Pfaffian forms:

&, 6, .., 6

and certain forms of degree two of the form:
p
W= szika)k i=12..m (ware Pfaffian forms).

We therefore assume thad € (X°) is a simple point of the manifolah(x) = 0, and

that the formd, &, ..., & are linearly independent forx)(= (°); the Pfaffian
formsaw, w, ..., @ have the same meaning as above.
If there exists a linear relation:

(24) 2aw+ 2bg=0 (modag)

between the formg, wthen it is clear that for any of the desired integnahifolds (on
which a, @, ..., & shall still be linearly independent) we must have:

a=0,a=0,..8=0.

One then must add the last equationde 0 andday, d&, ..., dg, to thed. If Q) is
still a simple point of the manifold:

a=0,a=0,..8=0

then one recalls the procedure by which one either establibat there are no integral
manifolds of the desired type that go through 6r a prolonged system for whick)
(x®) is no longer a simple point of the scalar equationsne ultimately obtains a system
for which ¢C) is a simple point ofi = 0 and the equation§ together with thew are

linearly independent, mogh. We would like to pursue this last possibility further. We

therefore assume that there are no relations dbtine (24), and make the restriction that
the 8, w also remain linearly independent o9 = ().
Along with these + h forms, let there bg = n — p — hmore Pfaffian forms:
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@, @, ..., T,

which are chosen in such a way that thef, @w are collectivelyn linearly independent
forms at §) = (<).
According to the general procedure, we make the Ansatz:

p

8=> L (=12, ..h
k=1
p

@=> 1, (=12, ..0),
k=1

in which we can set, = 0 from the outset. Only when we want to simplify the
comparison with earlier considerations will we introglticel’. Thel and|’ collectively
play the role that was previously played by the varialbédsne.

The equations;(x, ) = 0 now read:

7=0 i=1,2,..h),
and when we set:
q
@ =) &y, 0, (mod &, &, ..., 6, A, @, ..., @),
p=1
we get:
l,=0 i=1,2,..h),
Zq: L+ =0 i=12:--m
p:laikppv e T j:1,2,---,V—

for thosev > 1 equations (partial equations, resp.) for which the swmluti terms ot ,,
I is at issue.

With our previous notation, we thus have:

(25) n-p—1=h
n-p,—v=h+oa+o+..+0-,

whenai + & + ... + 0,-1 denotes the rank of the system of homogeneous equations:

i :1’2,... ,m
aij1|1v+aij2|2v+...+aijq|qv =0 j:1’2,...,|/— .

One can also sayi + & + ... + 0,1 is the number of forms:
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i - i:l’z’...,m
p:laikp L J :1’2,... V-

that are linearly independent fod € ().
From (25), one computes:

p
Y, tv-p=pla+1-p)-P-1)0i—-(P-20%~ ...~ Op1,
v=1
or,sinceg=n—-h-p=o+1-p:
p
Y0, +v-p=pd—(pP-1)dG-P-2)0 ...~ 1.
v=1

On the other hand, let:

U =Y 8, @kt 1Y G gk (Moddy, . &) (G = ~Gig.
0.k ik

We then have that:

0.() =0 [i:1,2,~~-,hj
(26) I;:: 0, | k=12;--,p
q i=1,2:--m
pZ_laikﬂlpj _e\jpl;k +%ij =0 [ j<k<p j

are the equations that were previously notated,py [) = 0. Therefore, iIN=ro+ M is

the dimension of the manifold in the space of Ja@esax, | that is described by (26) for
(x) = 0€) then, from the remarks on pp. 51 one always hasnequality:

(27) M<pq—-(p-1)ai~(p-2)% ~ ... = Gy,
in which the validity of the equality sign is chereristic of the existence of a regular

chain of the desired type.
If the inequality sign is valid then it can just aell happen (cf. pp 53) that by

replacing thew, @, ..., ap with other formsay, @, ,---,d, that are related by:

then for the new numbers, o, ..., g1, M, we have:
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M=pq—-(p—-1)a-(p-2)x—... —Cp1.

Obviously, a1 + & + ...+ 0, is equal to the number of linearly independent forms
amongst the:

231 u(j)m i=12:--m

— kp =k P j:1,2,"' b, '

We summarize the results obtained:

The basis for the idealconsists of:

1. The scalar equationgy(x) = 0, which define a simpleydimensional manifold at

(%) = 6);

2. The Pfaffian forms:
&.l &, ey 311

which are linearly independent of each other andaw, ..., @ at(x) = 0O);

3. Certain forms of degree two of the form:
p -
[//I :Z(Uika)k (I =1, 2, ,m)

By the use of g = n — p — h of the Pfaffian fommsas, ..., @ , which are independent
of & 6 one sets:

q
@ =Y a,m, (modw 6
=1

and computesr as the number of linearly independent Pfaffian farm

i[i%wﬁ”jwp (=12, ..m),

p=1\ k=1

o1 + & as the number of linearly independent forms:

i[i%wﬁ”jwp (=12, ..m,

p=1\ k=1

i
p=1

p
[Z aikpuIEZ)jmp

k=1
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etc., and finally o1 + & + ... + gy1 is the number of linearly independent forms that

appear in:
$($aslo (iztzem )
ik p

=\ ke ] :1’2,...,p—
for (x) = (). Theu!” are therefore to be considered to be unknowns.

One further prolongs the resulting system of differential equationsebérsatz:

p

(yp:Z|pk% (p: 1, 2,...,Q)

k=1

and lets § + M denote the dimension of the manifold that is defibg the scalar
equations of the new system in the neighborho@g) of (x°), with | arbitrary.

One then always has:
M<pg—(p-1)ai—pP-2)%- ...~ O,

and the p-dimensional integral elemeni(gt= (X°) is representable as the final link in a
regular chain when and only when one has striciadiu

In the last case, the general integral manifold thesgmthrough the neighborhood of
() = () depends on:

S =ro—p-—gq arbitrary constants,

St =0 “ functions of 1 variable,
S =0 “ “ 2 variables,
&)_l : Ob_l [13 13 p _1 H’

rp = q _01 — 0.2 - - Ob—l “ 13 p u.

In order to define these arbitrarily determined piedddomore precisely, one needs
only to specify that the/® be constants, in such a way that among the aforeoneuwti

Pfaffian forms just as many of them are linearly indejeen as for the undetermined
If one then computes), @, , --,&, from:

then regular integrak, will intersect:

cT)Vﬂ :@wz :...:@p: 0
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on the integrak, with ww ...« # 0 that goes through®. Therefore, everything has
been prepared for the application of the existence ¢heor

One observes that something was not said in the foregaisgs forall of the
integralE,, independently of the direction of the elementdpag asawap ...ap # 0. It
consists of the statement that everything is lineahéndetermination of the standard
equations.

The procedure that was given then proves to be suitdi#e one is compelled to go
to more prolongations of a system (cf. the remarks orb@p. Under prolongation the
system retains the assumed normal form, and indeedswe@mone prolongs an arbitrary
system one arrives at a system for which the corsides that we just presented are
applicable.

With the previous notation (cf. section 7), let:

p
a)u_zlikaf(:O (=p+1l--n),
p=)
a, (X151 )=0

(23)

be the preceding Pfaffian system that is obtained frosystem with the idead by
prolongation. The ideal that belongs to (23) has a basis that consists of:

the scalarsuag(ly, Iz, ..., Ip),
the Pfaffian forms:
dap(|1, |2, . |p),
p .
8=aw-) |, (i=p+1,...,n),
k=1

the forms of degree twal4.

Since the formsu (i = 1, 2, ...,n) involve only the variables, one can represent the
da as linear combinations of the produetew, and by reduction mod.1, G2,...,.6,
they may even be expressed in terms of ¢hey (k < | < p) alone. After these
transformations, the forms:

p p
da = dm_zdlikwk _zlikdwk
k=1 k=1

take the desired form:

and, together withuy(X, li, ..., Ip), day(X, ), and theg, they still define a basis faA.



V1. Applicationsand Examples

1. Theorem on total differentials. Any differential formaw over the ring of
holomorphic functions at a poi(t’,---.x’)whose derivative vanishes identically is a
total differential.

Proof. By normalization, we set:

1 n

w:a_ Z 35,5, 0 %0, %) 0K, Xy X),
Slplayeedg
in which thea, ; , are skew-symmetric in the indices. We must determifeem:
1 n
- Ve O X0 X )
(q_l)!ilyizzqu—l v ! 2 ot
(Vi;,.;,., Skew-symmetric)
such that:
d6-m=—" > dy d(X, X,y X )
(q—1)!hi2...,-ql el Tat T e
(1) ql Ze'1|2 Jq(ll’lz ) 0.
id2,edg

. . . . n .
We regard this as a differential equation in mhe( j variablesx, vand we can

q+1
formulate our problem in the following way: Determine aimensional integral
manifold of (1) that is representable in the form:

\/ilviZV"'jq—lz fil,iz,"'jq-l(xl’ Xy X )

To this end, we seek amdimensional integral element on whidfx, X2, ..., X)) Z 0
and is such that a regular integral chain intersects:

dx =0 @<i<n)
forv=0,1,2,..n-1.
By substitution in (1) for the coefficients(x , X, -, X )(up to sign), the Ansatz:

n

|1|2 Jq:L Z 1|,2 |
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gives the result:

CRPYIE PR FTPFIE tiyz;'i,d-,q-l ' i, ot d g 2

s D

iq'iZ""jq-lil 1i,2,--~i,q,

in which the indices are skew-symmetric.
Sinced(d@ - @) = 0, by assumptiordd — w defines a basis for the ideal and the

equationsy(x, Iy, ...,1,) = 0 are equivalent to:
(2) wigig = 0 (1 <iz ..., <ig< V).
One must regard all of t“%iz,...jq_l,u as the variablelk,. One sees that equations (2)
differ from the givena,—1(x, h, ...,1,-1) = 0 by the appearance of:
wigeiqw = 0 (1 <iz, ..., <ig1<V),

and that the latter succeeds in determining thaaspondinglilyizy_”jq’V. The regularity of

the desired chain follows from this and therefolso ahe existence of an integral
manifold with the desired properties.

It is also easy determine the arbitrary functitreg enter into the general solution of
the problems; however, we would therefore not wihdwell on this fact, especially
since the indeterminacy of the solution can bebdisteed directly in this case.

One has two formé,, & for which:

dé =@, dé = @,
so we haval(8 - &) = 0, from which, by an application of the theorémat we just
proved it follows that?, and & differ by a total differential. Conversely, iteth follows
from 6 = 6+ dJthatdé = d6.
2. Completely integrable Pfaff systems. A system of differential equations:
6=06=0,..,48=0,

in which the Pfaffian forms in the left-hand side:a
8=2 a,dx,
k=1

is called aPfaffian systemand, in particular, it is calledompletely integrablevhen &,
6, ..., 4 already define a basis for the differential idksalk they generate, hence, when:
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dg =0 (mod8, &, ..., ) (=12 ...

With no loss of generality, we can assume thatdtlzee linearly independent and
perhaps choose them so that they are linearly indepemdémedx withi >n —1in a

neighborhood of(x’,---,x°). Consequently, there can be no integral manifolds of

dimension higher tham — |, but there is always one of dimensio#s |
By substitution in theq as coefficients ofix,, the Ansatz:

n-
dx =Y I, dx, (i>n-)
k=1
then gives the expressions:

LiV = :E: E%klkv +ay,

k>n-1

and the new equations that enigx, I, ...,1,) = 0, when compared -1(X, h, ..., 1)
=0, are:
() Li,=0 (=12 ...

All 1y, are uniquely determined from (3); there are no paramigiriand allx; are
parametric (because we have no equatipr= 0). From the remarks on pp. 54, we

conclude:
In the neighborhood of’, X ,---, X° the integraMn4 can be represented in the form:

(4) X% = fi(X1, X2, ..., Xnu1) (i>n-)

and they depend on exactlgonstants, since the values:

foa (X %, %, )= G (=12 ..l

can be assigned arbitrarily. There is thus exactly @ne- ))-dimensional integral
manifold through each point in the neighborhoodkd (

As long as the& remain in the neighborhood of the valie=x__,,,, the M4 depend

holomorphically on the; i.e., the right-hand sides of (4)x1, X2, ..., X)) = fi(X, €) are
holomorphic functions af. Due to the fact that:

fri0C 0) = ¢,
its functional determinant in theeis different from zero. By solving the equation:
5) X — fi(Xe, X2, ..y Xty C1, C2, ..., C) =0 i>n-1)

for c, one obtains the equations:
Fi(Xs, X2, ..., %) =G (i=1,2, ..,
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in which the left-hand sides represent so-callegrals. By the “integral’ of a
completely integral Pfaffian system, one generallglarstands that term to mean a
function that takes a constant value for any integealifald.

The functiongi(x1, X2, ..., X)) define acomplete system of integrals,the sense that
any other integratb(x;, X, ..., X,) that is holomorphic atx{) can be expressed as a
function of theF. Namely, letg(cy, ¢, ..., ¢) be the holomorphic functions i ( ¢, ...,

a) =(x2,.,, -+, X ) that reduce t@ when one considers (5). Then:

cD(X;]_, X2, ..., Xn) - ¢(F1, Fz, ceey F|)

is an integral that vanishes on all integvils. However, an integrd¥,4 goes through
each point in the neighborhood af)( from which it follows that:

cD(X;]_, X2, ..., Xn) = ¢(F1, Fz, ceey F|).
For every integra® one obviously has:
ddo=0 (modé, &, ..., Q).

In particular, one has:
(6) dF=0 (modé&, &, ...,8) (i=1,2,..)),

and since theF are linearly independent, one can use these instead 8atha basis for
the ideal.

Conversely, if one has a systenl @ifiearly independent Pfaffian equations ¢
(7) 6=06=0,..48=0,

and| functionsFi, Fs, ..., F; whose differentials atd{) are linearly independent and
satisfy the congruence (6) then (7) is completely iratiglgt One then has:

3 =0 (moddFl, sz, . dF|),
from which it follows that:
dg8=0(modé, 6, ..., Q).

One must ultimately remember that systems of ordiddigrential equations are also
obtained from completely integrable systems [(fomn — 1).
3. Differential equationsfor the characteristic surfacesin spaces of two complex
variables. In four-dimensional spade®, , when the two complex variables:
X = X1 + Xy, Yy =X +iXyg

are two-dimensional integral manifolds of the system:
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®) dx,9=0,  d(xy)=0 [f: %" i.x?-‘j
y = X3 - |X4

or.
d(x1, Xs) = d(X2, X4) = 0, d(x1, X4) = d(%2, X3) =0

they are precisely theharacteristic surfaces.e., surfaces that are representable as the
null hypersurface of a holomorphic functib(x, y) = 0.
From (8), it follows that one cannot also haif,x)= 0 for a two-dimensional

integral element E,; therefore, letdx = dx = 0. Otherwise, all three
differentialsdx, dy, dzof dx will be linearly dependent ok,. As long as one is not

dealing with the integral manifold:
X = const., X = const.,

one can therefore make the Ansatz:

y =f(x, X),
y=9( X)

for the integraM,, and one obtains from (2):

ﬂ: O, a_g: O,
oXx 1)
and therefore:
y =f(x), y=1(X) Q.E.D.

Every vectorE; in Ry is an integral element, and exactly one integsajoes through
everyEk;. If z1, z, z, z are the direction componentsEfthen:

21 A3 — 30X — 20X + 22 A% = O,
20Xy — Zh AN — A3+ 3 AX =0

are the equations(x, z,Az) = 0 for the polar elemeit(E;). Only for z=z=z=2z=
0 are they linearly dependent. One therefore avag, + 2 =2;i.e.y,=0.

With the help of the first existence theorem (@P) we then state the following
theorem, which is due to Levi-Civitaxactly one characteristic surface goes through any
regular analytical curve segment.

4. Partial differential equations. The true significance of the theory that we just
developed is clear from the remark that any systémpartial differential equations in
arbitrarily many unknowns and arbitrarily many etipras can be handled by the calculus
of differential forms.
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We then consider, perhaps, the case of a systdnpaitial differential equations of
second order:

0z 0z 9°z 9°z 0%z
F ) PR ] ~ L ] I 1:0 |:l, 2, ,h
[mesiage o g g v )70 )
in the unknowng(xy, ..., Xn).

The integration of these systems is equivalent tetbblem of determining all of the
n-dimensional integral manifolds that are representaliiee form:

Z =¢ (X1, ..y Xn),
P = @i(X, ey Xn),
Fik = Pi(Xe, ..., Xn)

for the systems of differential equations that arepmsed of thé equations of degree O:
Fi(X1 X2, +vvy X0y Z P1y «oey Pry F12, T12, -, Ton) = 0 i=1,2,..h

and then + 1 Pfaff equations:

n

dz->" pdx =0,
9) - (=12 ..,n).

dp - rdx =0
k=1

In this way, any system of partial differentialuatjons turns into to a system of
scalar and Pfaff equations.

The previously-remarked situation that it is sames impossible to represent the
integralE, in the form (9) as the final link of a regular chaorresponds precisely to the
well-known fact that a system of partial differemtequations can lead to the given
independent equations by restating the integrglmbinditions.



Appendix.
TheMain Theoremsof Lie Group Theory.

1. Definition of a Lie group. An r-parameter Lie group germ is a collection of
elements that can be represented by symbols:

S

.8, g

with r real or complex numbess, a, ..., & as indices, and between which relations of
the following type exist:

1. An element, perhaps:
S =900

is distinguished as the so-calleéntity element.

2. One assumes that when the systems of vadues (..., &), (01, by, ..., ) liein a
certain neighborhootd of the system of values (0, O, ..., 0) there is a middpon of

both elements:
S :Salyazma ' $= SDvazf”vt}
that is defined, and which leads to a uniquely determined element
Sioc -2,
Themultiplication lawwill be described by:

Cv=¢fay, &, ..., a&; by, b, ..., bx) (v=1,2,...r)

in which theg,(a, b) are analytical functions that are holomorphic fba&, (b) in U.

3. We have:
_ SH=95S5=S5,
ie.:
ofa, &, ...,a; 0,0, ...,0) =9,/0, ..., 0,81, @, ..., &) =a, (v=1, 2, ...,r),
and:
o¢(ab), ¢ (ab), 0
d(a,a,,8)

for (a) = (b) = (0).

4. The associativity law:
SR =EH S

holds when all of the elements being multiplieds$gatcondition 2.
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According to 3, the equation:
SSH=%

can be solved fog only when b) and €) are sufficiently close to (0), and the solution is
uniquely determined when one further assumes #)dieg in a fixed, sufficiently small
neighborhood of the system of values (0). In particw@ can solve:

S =9,

and by equating:
S(ES) = (ES =S

with:

S =S,
it then follows for sufficiently smak that:

S =9,
due to the uniqueness of the solut§mf:

S3=S.

There is therefore dnverseS, =S_* with the property:

S$'S=5S5'=%.
The equation:
SS=%
can then be uniquely solved for:
S =S's,

which one can easily conclude from the fact that:

0t 9,
a(b,b,,---.y)
for (a) = (b) = (0).
In the sequel, we will assume for all of the elatsevith which we will be concerned
that theparameters(= indices) lie in a sufficiently small neighborldbof @) = (0).
Furthermore, we will simplify the phrase “group gérto “group.”

2. Theinvariant Pfaffian forms w Structure constants. Let Si+ 4o be an element
that corresponds to the parameter values:

a +day, ap +da, ..., a +da,
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in which we understanda;, d&, ..., da to mean that all of the computations will be
regarded as infinitesimal quantities in which all of thedpiads that they define of second
and higher order will be ignored.

For the element:

S =S S+ da,
one then computes:
#[a ¢ =a,+da, (v=1,2, ...,
from which it follows tht:
Cv= w(a, da) (v=1, 2, ...,n),

when one understandsg(a, da) to mean the linear form in thia that is defined by:

() davzi{—wgﬁa’ ?

u=1 '’

j @a, da).

The expressionsuf(a, da) are regarded as Pfaffian forms over the rRgof
holomorphic functions o#y, &, ..., & at @ = (0) and play an important role in the
theory of Lie groups.

LetS =S , . . be an arbitrary element of the group. Due to #ue that:

S;l Sirda = (S& Sa)_lsk Sat da
and:
5S =Sk 9

SSirda = Spkardpka APk, 8 =Z(%jd%)’

7]
we have:

wfa, da) = wlg(k a), dg(k, a));

i.e., the Pfaffian forms:
w(a da), ax(a, da), ..., a(a, da)

remain invariant under the substitutions:

(2) a, » oKy, ..., K&, ..., &) (v=1,2, ...

We thus determine all of the forms in the ringldferential forms oveR that remain
invariant under the latter substitution! Let:

r

©= Y g, dada- da

inigeip

be such a differential form of degrpe From (1), one can also express it in the form:
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r

3) e = Z hl,iz,...jpar’lar’z”'@p'

i <ip<ed

Due to the invariance and the linear independence of thdugref the s, the
coefficientshlyiz,_._jp must remain separately invariant when such an expregsaargoes

the substitution (2). For each of these coefficibntne thus has:
h(ay, &, ..., &) =h(4i(k &), g2k a), ..., #(k, a)),
from which it follows for @) = (0) that:
h(0, O, ..., 0) =h(ky, k, ..., k)

when one regardg,(k,, 0); i.e.,his a constant.

With this, in order for a differential forr to remain invariant under the substitution
(2) it is necessary and sufficient that when it is expressed irothe(8) it has nothing
but constant coefficients.

In particular, the constant linear combinations ofdhe

hicw + o + ... +hhw

are characterized as the Pfaffian forms that areismvannder (2).
Due to their invariance under the substitutions (2), ttierdntial forms:

da, dw, ..., dw

go to productsyax that are linear combinations with constant coeffiserWe write:

(4) daw, =1> ¢ w,w, (c?7=-c?).

p.0

For reasons that we shall explain, the constefftsthat appear in this expression are

called thestructure constantsf the group. They satisfy certain quadratic relatidrad
one obtains by differentiating (4):

dda, =1 ¢ dw,w, —1> ¢’ w,dw,
o o
or:

> ¢’ dw,w, = 0.
P

By taking (4) into account, one then has:
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r
1 po ~af -
3 Y w0
p.a,By=1
or:

(5) S L EE)=0 G afy=1.2 )

3. Determination of multiplication formulas from the forms w The substitutions
(2) are characterized by the property that they leave the feamay, ..., a invariant.

Proof: Leta,@,, -, be the same forms as, w, ..., @, only with g, ---,a (
da,---,dg, resp.) written in place @, ..., & (da, ..., da, resp.).

The Pfaffian system:
(6) w,-aw=0 v=1,2, ..

in the 2 variablesa, a is completely integrable, since:
d@, - da, =1 ¢’ (@@, - w,w,)=0 (mod@ - a, ..., @ - @).
The left-hand sides are linearly independent endh,,..., da , and thus there is a

solution of the form:
a,=ffay ..., a) (v=12,..r)

that is holomorphic at the poird)(= (0) and takes arbitrary (sufficiently small)lwesk;,

..., k for (@) = (0). Since this solution is uniquely deterndri®y the initial data, and, on
the other hand, since the functions:

(7) a,= ks, ko, ..., ke g, ..., &) (v=1,2,...r)

satisfy the differential equations (6) and the samt&l conditions, they give the general
solution of (6). Q.E.D.

4. Isomorphisms. Two r-parameter Lie groupS andG are calledsomorphicwhen
their elements:

Sa :Sayaiv“'vér (Té = Téiyéi,"',?} ’ resp)

can be related to each other with the help of@sfoamation that is biholomorphic in the
neighborhood ofd) = (0), (a) = (0):

aV:gu(a[léz’“'!_a) And ﬁ,,zg,(q,az, ,ar)
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(@40, 0, ...,00=0py=1,2, ...0)

in such a way that from:

SS=&
one infers the relations:
Toa Ton = T
and conversely, from:
TL=T
one infers that:
g(a) g(b) %(c)

If we let &, (a, da)denote the Pfaffian forms that are defined by:

Ta_l Tavia = Toa ag
then from the fact that:

(a) Sardgd = Jyaram
we conclude that:

(8) w,(9(a), dg(@) =) h,@, (3 d3 =12 ..
H=1
The determinant that is formed from the consthpi$s non-zero, since it is equal to:
[a(gpgz’”"g{)j .
0@, 8) Jog

Due to the invariance of the differential ring ogge®ns, the Pfaffian forms on the
left-hand side of (8) have the same derivatives:

dw, =1> ¢ w,w,
p.0
as the originatJs. One thus has:

{Zh/wj:% Zﬂth:a R, 0,

and from this it follows that:
_ —_ lz ﬂa) a)ﬂ ,
with:

(9) = ¢, .

v,p,0
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in which (h) denotes the inverse matrix taJ:
hih,, = Giu.

For isomorphic groups @nd G the structure constants@have the relation to each
other that is expressed K9).

Conversely, the isomorphism of the groupsu@® G follows from the existence of
relation (9).

Proof: From earlier remarks, one can obtain theipliglation formula inG:

SS=Sp@p
in such a way that the substitutions:

(10) a, » ¢Uky, ..., Kk, &, ...,a&) (n=1,2,..1

leave thew, @, ..., w invariant and the system of values (0, O, ..., 0) goésifo.(, k).
Correspondingly, ifg are the functions that appear in:

under the substitution:

3 - ,(kka3)

then they , @, ,---,@ , or — what amounts to the same thing — the forms:
g,(a, da) =z h,&,(a d3 (v=1,2,..yr)
H=1

are left unchanged, and the conditjk, 0) = k, is satisfied.

Since one has, from (9), that:
dé, :%ZCV"”HPQJ :
p.0

the Pfaffian system:

6,(a,da)— wfa, dg =0 v=1,2 ..r
is completely integrable:
d(6,— aw) =1 ¢ (6,6, ~w,w,)=0 (modé —a, ..., 8 —w).
p.0

There is therefore a solution:

(11) a, =9g,(a,az ...,a) (v=1,2,...r)
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with:
g,,0, ...,0)=0,

and this comes about by means of a biholomorphic transtiomithat takes the systems
of forms:

M.l @l "'la?; &.l &1---13’
into each other.

The substitutions that are defined by:
g9,(a) -~ 9,(9(k), 9(a)
therefore leave tha, w, ..., w invariant and takg, (O) to:
#,(@(K). 9(0)) =2, (3(K.0)= g (K,

and therefore take (0, O, ..., 0) t&,(ks, ..., k). They thus represent the same
substitution as (10), and it follows that:

9,(g(k), g(a) =g (#(k 3).

In other words; from:

SS=Sp@p
it follows that:
To00 Taca = Tap(k -

Due to the invertibility of the transformation (11), wkso have the invertibility of
this relation, and the isomorphism of the groGpand G is proved.

5. Determination of a group with given structure constants. Not every system of
1r?(r —1)constantsc/” can be occur as the system of structure constants: of a

parameter Lie group; in any case, relation (5) must befisdt However, the existence
of this relation is, as we shall see, already swfitfor the existence of an associated Lie

group.

If the 1r?(r —1) constants:

¢’ (v,po=12,..r¢”=-cF)
satisfy the relations:

(12) Zr:(cgﬂqf’y+cgy(f”+(;"§ﬂ):0 @B yv=12 .5

then there are r linearly independent Pfaffian ferm
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@=3h, (8,2 -.a) da,

whose derivatives are:
(13) day, =1 ¢’ w,@, .

p.0
Proof: If one starts with:

w =3 b, da,
H=1

in (13) then one obtains:

=Y db,da, -1 3 ¢, b, da da=0 0=1,2, ...1).
B

p.o.aB
We regard this as a system roflifferential equations of degree two in the r?

variablesa, b We must then concern ourselves with findindimensional integral
manifolds for this system that can be representeceirfioitm:

Dap=fop(aa, a, ..., &).
If one takes relations (12) into account then one eesityputes that:
dé,=0 (modé, &, ..., &).
The ideak that is associated with the system:
6=06=0,..,4=0

thus hasd,, &, ..., & as a basis already.
From the general procedures (cf. pp. 45-55) we make the Ansatz

db/‘ﬁ:zlwa dag A, L=12, ...

and substitute this in the formg. We then get the following expressions for the
coefficients ofd(as, ag (up to sign):

Laog=laag=laga =2 ¢’ (b b, — by h,)
0.0

(L/laﬁ == L/wa).

If one therefore seeks thedimensional integral elements, on whidd, da,, ..., da
are linearly independent and whose intersectiotis. wi

day1=das,=...=da =0
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will be regular integrak,, then the equations:

(14) Ligs=0 A=L2or
hap a<Bsv

define a basis for the equations that we previously denoted by

CLV(X, |1, |2, ey Iv) = 0

The quantities, s with 8 = v take over the role df .
Equations (14) are soluble in terms of the quantities:

|,mﬁ witha <,

and the totality of equations (14), when takenuer 2, 3, ...,r, succeed in expressing all
of thesd 5 (a < V) in terms of the remaining onksgg (a = V).

From this, one speaks of the quantitigg with a < v asprincipal, and the other ones
asparametricderivatives. All of the assumptions in the existencerthae are satisfied,
as well as the assumption that along with:

| =719 az
Aap a, (azp

all of the preceding derivativelga, liw, ..., liap1 shall also be parametric, and we
conclude the existence of solutions:

bio=frda, @, ..., &) A, a=1,2, ..,
in which the section:
fiadas, &, ...,24, 0,0, ..., 0)

can be arbitrarily prescribed. In any case, one caeftirerreach the conclusion that the
Pfaffian forms:

=) f.(a,a, .. a)da
a=1

that one constructs in the neighborhoodapf< (0) are linearly independent. Q.E.D.

Once the Pfaffian forms have been determinedntagrating a completely integrable
system (cf. sec. 3), one then computes the sutistitu

a, > ¢k, @)

that leavew, @, ..., @ invariant and takea] = (0) to @) = (k). Then, by way of:
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SS=S@b

one will state the multiplication laws of a Lie growhmose structure constants will be
precisely the givert?”. For two arbitrary systems of values:

[(CCT CR & I (TR P )

that are sufficiently close to (0, O, ..., 0) one likewhse:
gk ¢, @) = g( gk 1), ),
ay - guk ¢(, a)

is the substitution that leaves, @, ..., @ fixed and takesd) = (0) toa, = @[k, ¢(I, 0))
= @k, ). We therefore have associativity, and one immetjiatees that the remaining
characteristic properties of a group germ will alscs$ati

because:

Their?(r —1) constants:
¢’ wp o=1,2,..r ¢c”=-c”)

are structure constants of an r-parameter Lie group when and only whesatiefy the
relations:

S @) =0 @y v=12 )

6. Representation of aLie group by substitutionsor transformations. Let G be a
Lie group with the parametess, &, ..., a. Furthermore, let:

fi(x, @ =fi(xe, X2, ..., Xn, A1, S, ..., &) i=1,2..n
be analytical functions of, athat are holomorphic in the neighborhood of, say:
(x) = (), @ = (0)
fi(x,0) =X

and reduce to:

for (a) = (0).
When these functions satisfy the functional eauneti

(15)  fi(fo(x, b), ..., fa(X, b), &1, @2, ..., &) =Fi(Xe, -.., %, B1(a, ), ..., &(a, b))
(=12 ...n

one says that they providerepresentation of Gs a substitution group.On the other
hand, if they satisfy the relations:
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(16) f(F(%, @), ..\ Fa(% @), D1, Doy ooy By) =Fi(Xey ooy Xy 22, D), .., Gr(@ D))
(i=1,2 ..

then they provide aepresentation of Gas a transformation group.In fact, the
replacement:
(17) X - fi(x, @ (i=1,2,..n)

can be regarded as a substitution in the first caseratite second case, a transformation
to a groupl that is homomorphic t&. Naturally, the existence of (16) and (17) is
required only for sufficiently smallj, (b), and for a neighborhood of)(= (c). Strictly
speaking, we are therefore dealing with only a germ aftstgution (transformation,
resp.).
Due to the fact that:
ok o(l, a) = p(g(k, 1), @),

a, > ¢k, @)

the substitution:

provides a representation Gfas a substitution group if the transformed variablesgre
a, ..., &. Likewise, by means of:

a, - ¢ofa K

we can define a representation®fs a transformation group. One calls the group thus
defined theparameter groupf G.
In the sequel, we will always regard the replacement:

(18) % — fi(x, a) (=12 ..n)

as a substitution, and briefly denote it®yin which we observe that various elements of
G S, S, ..., can be indexed quite well by the same substitution.

We denote the function that results from the holgrh@ functionF(x;, %o, ..., X,) at
(¥) = (xo0) by an application of (18), namely:

F(fi(x, a), f2(x, @, ..., fa(X, @)
by:

(19) F(Xe, Xy ooey X )™
Let:

X +Y.8, &ilXe, X, oy Xo) .
v=1

be the leading terms in the developmentfi@f, @ as a power series ia. The
development of (19) then leads to the following:

F(Xa X, - %)% = F(Xg, %o, oy X)) + D 8, XoF + ...
v=1
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when one understands to mean the operator:

X, = z &i(xe, %o, xn)%

n
i=1

These operators and their linear combinations:
2 A Xy

are called thenfinitesimal operatorof the group. One also speakd imprecisely— of

infinitesimal substitutions (transformations, resp.).

7. Determination of a substitution group from itsinfinitesmal operators. From:
f|(Xl a) :)qsd = )ﬁ%ﬂia( %&da%): f|(Xl a+ da)(sa_ls.ﬁda)_l
and the readily apparent relation:

(5'S. ) = Swia da
it follows that:

dfi(x, :Z%;;’a)d& +2¥ da =0

k k

when the Pfaffian forms:

4 = dx +Zr:cuv (a, da) &ui(X, X2, ..., X%n) i=12,..n

vanish. Otherwise, one deduces that:

dfi(x, =0 (modé, &, ..., &).

Due to the fact thdi(x, 0) =X, the differentialgdfi(x, a) are linearly independent, so
one also has, conversely, that:

=0 (moddfy, dfy, ..., dfy),
from which it then follows that:
(20) 4=0 (mod&, &, ..., 8) (i=1,2, ...n).

The Pfaffian system:
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(21) dx +Zr:a),, (a, dg &ii(X1, %2, ..., %) =0 (=12, ..n

v=1
is thus completely integrable, and the functions:
fi(x, @ =fi(x, X, ..., Xn, A1, 3, ..., &) i=1,2...,n

are integrals that take the valug¥i =1, 2, ...,n) on the integral manifolds that go
through the point) x; =x°, ..., %, =x°, a=a;=...=a,= 0.

This theorem makes it possible to determine the substis fi(x, @ when the
infinitesimal operators and tha/(a, dg are given.

The problem ofinding all representations of a Lie group that is described by the
Pfaffian formswy(a, da) (v =1, 2, ...,r) as a substitution groups equivalent to the
problem of determining all systems of operators:

xvzz &i(xa, %o, ""X”)a% (=12 ..r

n
i=1

in such a way that the Pfaff system that is construti@t theseé, is completely
integrable. There are thanndependent integrals:

fi(x, @ =fi(xg, X, ..., Xn, &1, S, ..., &) i=1,2,..n)

that reduce ta (X0, ...,x°, resp.) on the integral manifoltisthat go throughx) = (),
(@) = (0). Since the Pfaff forms), remain invariant under the substitutions:

ay — ¢v(k, a) (i =1, 2, ...,I’),

fi(x, ..., %, @1(k, @), ..., ¢k, @) i=12 ..n

the functions:

are also integrals of (21), and due to the fact ¢hét, 0) = O they reduce to:
(22) fi(x), .., X, ki, ko, ...y k) i=1,2,..n)
on the integral manifol. On the other hand, the:

fi(fu(k, @), ..., fa(k, @), ki, ko, ..., k) i=1,2,...n)

are integrals of (21) that take the same values (2R).o@ne therefore has (cf. pp. 65):

) We assume that,---, x°) is a system of values that lies in a neighborhoog,ptf ..., c,).
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fi(fuk, @), ..., fa(k, @, ki, ko, ..., k) =fi(xq, ..., %, #1(K, A, ..., & (K, Q)
i=12,..n
for an arbitrary system of values for the variablea, kin the neighborhood ok} = (c)

(& = (0), K = (0), resp.), and these functional equations expresdattiethat a
representation db as a substitution group is given by:

X — fi(x, ).
In order to obtain the conditions for complete inadgity of the system (21), we

summarize the formg with the help of an arbitrary (holomorphic & € (c)) function
F(x1, ..., X)) by the expressions:

QJ

n F r
z — z%va.
v=1

i=1 X|

The complete integrability of (21) is then obviously eglent to the condition:

d(dF +Y @ X,F) =0 (Mod6, &, ... &)

v=1
for arbitraryF.
From the identity:

(23) dF +>a X,F =0 (modé&, 6, ..., &)
and the observation that:

dg=0 (modé, &, ..., 8),

differentiation gives the relation:
(24) 2day X, F-2wdX F =0 (mod§).
By applying (23) toX, F instead of, one obtains:

dX,F=->w,X, X, F (mod 8),
U

such that (24) can also be written as:

Yda, X, F-1> w,w, (X, XoF = XsX,F) =0 (mod¥).
P,
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Only the differentialgda appear in the left-hand side of this congruence, although a
dx must necessarily appear in any differential formhefform:

Q6 +Q6+ ... + Q.6 (theQ are Pfaffian forms)

that does not vanish identically. One thus has:

(25) Yda X, -1 w,w, (X, Xs) =0,

0o
in which X, X,) means the well-known bracket operation:
(Xp Xo) = Xp Xo= XX,
Due to the linear independence of théby substituting:
dw =32¢ w,w,

in (25) one obtains the so-called composition formulas:

(Xo X0) :Zr:c,f"fxv wo=1,2,..y).

v=1

This shows that:

The r operators:

: 0
Xe =Y EilKe, Yoy oy %) — (=12 ..
i=1 aXi
correspond to a representation of & a substitution group when and only when the
composition formulas:

r

(26) XuXo) =D 07 X, (0,0=1,2,..1

v=1

are satisfied.

From this, thec/” are the structure constants of the gr@up

8. Linear dependence of infinitesmal operators. Lets <r of the operatorX, be
linearly independent. Choose asindependent linear combinations:

szz;hwxv w=1,2,...9
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(with constanh), and, conversely, let:

Xv=>"9,Y, (v=1,2, ..r.
H=1
Correspondingly, if one sets:

(YpYo) =3 12,

Zr:gw, wfa, dg = 1(a da) w=12,..9).

Then, from:
Y da Xy =1 w,a, (X, X5) =0

p.0
it follows that:

Y da X, =1 w,w, (X Xo) =0,

p.0
S
or: D(dr, =1> yr,r,) X =0,
A=1 p.0
which has the relations:
27) dry =1X yj’”rprg 1=12,..9

as a consequence, due to the linear independemiceYof
Thus, the system aflinearly independent Pfaff equations a} € (0):

I)(a,dd =0 hn=12 ..9
is completely integrable. In addition to thexdependent integrals of this system that are
holomorphic at4) = (0):

bfa, a, ..., &) v=1,2,...9,

which might possibly vanish fora = (0), one chooses, when< r, anyr — s more
holomorphic functions that vanish &) & (0):

b(as, &, ..., &) (v=stl, ...,1),
in such a way that:
b, =bJa, &, ..., &) v=1,2, ..

defines a biholomorphic transformation in the nbmthood of & = (0). By introducing
the variable® instead of the, the forms:

r/a, dg =(b, db

depend upon only the differentialb, with v< s:
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(28) =W, (b1, by, ..., 1) dh.
H=1
The equation:
(29) dm, =32y’ m,m, 1=1,2,..9,

which follows from (27), then shows, when one intrody@&; here, that one must have:

awﬂ,u —

ah, 0 (v=stl, ...,1),

i.e., the formss, 78, ..., 7& depend upon only the variables b, ... bs.
By using theb instead of the, the differential equations (21) take the simple form:

dx + .71, (b, d/7i(xe, Xe, ..., %) % (=12, ..n),
v=1 1

in which we have set:
4 0
Yo=) 1, (X1, X, ...y X0) — .
2 o
We see that the integrals:
fi(xy, X, «ouy X0, &, @2, ... &)

can also be written in the form:

Oi(XL X2, -0 X, 02(8), D2(2), ... Br(d)),
such that whes <r only s of the parameters in the substitution group:
(30) X — fi(x, a)

are essential. They can also be regarded as a repteseoff thes-parameter Lie group
g with structure constantg)’ (v, p, 0= 1, 2, ...,) that is determined by:

T8, 7%, ..., 7K.

If the operatorss, Xz, ..., X, are linearly independent then the substitution (30) is a
one-to-one correspondence with the elementsGpfone has a so-calledaithful
representationof G. Both parameter groups give faithful representationssoés
substitution (transformation, resp.) groups.

9. Theinvariant Pfaffian form @ Up till now, our considerations were based on
the Pfaffian formsw, w, ..., w that were introduced as the parameters of the
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infinitesimal substitutios,* S, ... Instead of these forms, one can reach the same
conclusions by starting with the forms:

(31) wi(a, dg, ax(a, d9, ..., @(a, da,
which are defined by:

Sa+da Sﬂl = %szz,m,w, '
One then easily establishes that the forms (31) areamtainder the substitutions:

a, » ¢fay, &, ... a, ki, ky, ... k) (v=1, 2, ...

Likewise, their derivatives naturally have constant fodehts; however, in order to
comprehend their relationship with thg!’, it is expedient to first interpret the
considerations of sec. 7 in the foregoing case. Onediately infers that the functions:

Oi(X1, X2, +.vy X0, &1, B2, ... &) i=12..n

that correspond to the substituticBs:

X — Gi(x, a)
are integrals of the Pfaffian system:

(32) S =dx — X wa, dg&i(xa, X, ..., %) =0 i=12 ..n).

One obtains the functiorfigx, a) by determining those solutions:
X =fi(x, %0, ..., X°, &, &, ... &) i=1,2..n

that reduce to X, %3, ..., xX°) for (@ = (0). From the complete integrability of the
system (32), one infers (just as one did for the devieaiof equations (25)) the relations:

(33) Y day Xy +1> w,w, (X, Xo) =0,
P,

from which, by (26), one has:
> (dw, +1> ¢’w,mw,) X, =0.
v=1 p.o

These formulas are true for any representatioB@;ah particular, they are true for a
faithful representation, for which the operatdtsare certainly independent. One thus
has:

(34) doy = -1 ¢’w,m, (v=1,2,..n).

P.o
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