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Introduction. 
 

 The question of the existence of solutions to a system of arbitrarily many differential 
equations with arbitrarily many unknowns has already been resolved by French 
mathematicians for some time now.  After the research and partial results of Méray and 
other authors, Riquier first solved the problem in general in 1893 (1).  Later (1896), 
Delassus (2) dealt with the problem by a simpler procedure, and then he also answered the 
questions that had been imperfectly posed by Riquier concerning the arbitrary elements 
(constant or functions) that entered into the general solution.  Whereas this work was 
done in the style of Cauchy’s theory of differential equations, and can be considered to be 
its conclusion, E. Cartan dealt with the differential equations in the form of Pfaff 
equations in his examination.  His far-reaching application of the theory of Pfaffian 
systems (3), which came from geometry and infinitely continuous groups, included a new 
solution to the problem that had been addressed by Riquier and Delassus, in a sense, and 
that gave a deep insight into the mechanics of differential equations.  Cartan’s theory 
rested upon the calculus of alternating differential forms, which had been founded by 
Grassmann, Poincaré, Cartan, and Burali-Forti, whose relationship to the other branches 
of mathematics (multiple integrals, topology) alone was already noteworthy, and whose 
invariance properties made the differential equations of geometry particularly tractable. 
 The present work gives a systematic introduction to the theory of systems of 
differential equations in which consistent use of the calculus of alternating differential 
forms is made.  For the logical structure of the theory, we find it expedient to use, in 
place of the Pfaff system that was used by Cartan, an equivalent system, which originated 
in the annihilation of alternating differential forms of arbitrary degree, and which Goursat 
(4) has employed from the outset.  Its use, as well as that of the notion of a differential 
ideal, seems to me to achieve a tangible simplification, but it will be essentially treated as 
a representation (supplemented by details) of Cartan’s theory in what follows.  As much 
as possible, the notation of Cartan will also be retained, as a result of which this work 
will do justice to his results, as well as being a commentary on the profound, but 
inaccessible, treatises of the great French mathematicians. 
 The aforementioned generalization of the theory of Pfaff systems is also treated in 
two articles of J. W. Thomas (5) that recently appeared, as well as a work of C. Burstin 
that will appear soon. 
 Instead of giving a detailed introduction to this book, I will content myself with the 
following hint for the sake of orientation:  Only after one makes oneself familiar with the 
calculus of differential forms through a fleeting lecture in Chapter I will one sufficiently 
grasp the notions of “integral manifold,” “integral element,” “regular chain of integral 

                                                
 1) The work of Riquier is summarized in the book: Ch. Riquier, Les systèmes d’equations aux dérivées 
partielles, Paris, 1910. 
 2) E. Delassus, “Extension du théorème de Cauchy aux systèmes les plus généraux d’equations aux 
dérivées partielles,”  Ann. Éc. Norm. (3) 13 (1896). 
 3) E. Cartan, “Sur l’intégration des systèmes d’equations aux différentielles totales,”  Ann. Éc. Norm. 
(3) 18 (1901). – “Sur la structure des groupes infinis de transformation,”  Ann. Éc. Norm. (3) 21 (1904), 
Chap. I, also cf. E Goursat, Leçons sur le problème de Pfaff, Chap. VIII, Paris, 1922. 
 4) E. Goursat, Leçons sur le problème de Pfaff, pp. 111, et. seq. 
 5) J.M. Thomas, “An existence theorem for generalized pfaffian systems.  The condition for a pfaffian 
system in involution.”  Bulletin of the Amer. Math. Soc. 40 (1934), 309-320. 



Introduction to the theory of systems of differential equations 
 

2 

elements,” that are mentioned in the titles and italicized words in order to understand the 
existence theorem and the computational procedures.  The connection between partial 
differential equations and Pfaffian systems is explained on pp. 67 and 68.  A proof of the 
fundamental theorem of Lie group theory is given in the appendix as an application of the 
theory. 
 The author would like to acknowledge the ongoing suggestions that he received from 
the topological-differential geometric school of Blascke as its origin.  I would like to 
gratefully thank Herrn Blaschke for the suggestions and interest that he has shown in my 
work. 
 I have Herrn Henke to thank for his help in making corrections. 
 

Hamburg, July 29, 1934. 



 

I.  The ring of differential forms. 
 

 1.  Algebraic calculations with differential forms.  The set of well-defined 
holomorphic functions on a region or at a fixed point 0 0 0

1 2( , , , )nx x x⋯  in complex (x1, x2, 

…, xn)-space defines a domain of integrity or a ring, in the sense of abstract algebra: 
sums, differences, and products of two such functions also belong to the set.  The 
following considerations are based on the use of one such ring: It is called the scalar or 
function ring F.  We construct a non-commutative (for n > 1) ring of differential forms 
over F by means of certain closely-related symbols: 
 
    dxi                (i = 1, 2, …, n) 
    d(xi, xk)            (i, k = 1, 2, …, n) 

………. 

1 2
( , , , )

pi i id x x x⋯          (i1, i2, … ip = 1, 2, …, n), 

 
which shall denote first, second, …, pth degree differentials, and for which we assume 
from now on that: 
 

1. The differentials are skew-symmetric in the indices, i.e.: 
 

1 2
( , , , )

pi i id x x x⋯ =
1 2

( , , , )
pk k kd x x x⋯  

or  
1 2

( , , , )
pi i id x x x⋯ = −

1 2
( , , , )

pk k kd x x x⋯  

 
depending on whether k1, k2, …, kp is an even or odd permutation of i1, i2, …, ip. 
 
   2.   The multiplication of differentials obeys the rules: 
 

1 2
( , , , )

pi i id x x x⋯
1 2

( , , , )
pk k kd x x x⋯ =

1 2 1 2
( , , , , , , , )

p pi i i k k kd x x x x x x⋯ ⋯ . 

 
 The ring of differential forms D thus-defined is the set of all expressions (differential 
forms): 
 

Ω = a + ia∑ dxi + ika∑ d(xi, xk) + … +
1 2, , , pi i ia∑ ⋯ 1 2

( , , , )
pi i id x x x⋯  + … 

 
in which the a, ai, aik, … are arbitrary scalars of F. 
 
 3.  The addition of two differential forms Ω and: 
 

Θ = b + ib∑ dxi + ikb∑ d(xi, xk) + … 

 
is defined by: 
 

Ω + Θ = (a + b) + ( )i ia b+∑ dxi + ( )ik ika b+∑ d(xi, xk) + …, 
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and multiplication by a scalar c is defined by: 
 

cΩ = Ωc = ac + ia∑ cdxi + ika∑ cd(xi, xk) + … 

 
 An associative multiplication of arbitrary differential forms of D is defined by 
assumption 2 and the use of distributivity. 
 The skew symmetry of differentials gives us only one differential of degree n − 
namely, d(x1, x2, …, xn) − and none of higher degree.  The 
 

n + 
2

n 
 
 

+
3

n 
 
 

+…+
n

n

 
 
 

 

 
various differentials, together with 1, which one may also refer to as a differential of 
degree 0, define a basis for the ring D over F. 
 If only differentials of degree p appear in a differential form then it is called a 
homogeneous form of degree p, or, more simply, a (differential) form of degree p.  One 
also calls the forms of first degree Pfaffian forms.  We shall assume, once and for all, that 
lower-case Greek symbols ω, ϑ, ϖ, ϕ, θ, etc., will always represent homogenous forms. 
 For two forms: 
 
  ω =

1 2, , , pi i ia∑ ⋯ 1 2
( , , , )

pi i id x x x⋯  

  θ =
1 2, , , qi i ib∑ ⋯ 1 2

( , , , )
qi i id x x x⋯  

one has: 
 ωθ =

1 2 1 2

, , , , , , ,1 2 1 2

, , , , , ,p q

i i i k k kp q

i i i k k ka b∑
⋯ ⋯

⋯ ⋯ 1 2 1
( , , , , , , )

p pi i i k kd x x x x x⋯ ⋯  

 θω =
1 2 1 2

, , , , , , ,1 2 1 2

, , , , , ,p q

i i i k k kp q

i i i k k ka b∑
⋯ ⋯

⋯ ⋯ 1 2 1 2
( , , , , , , , )

p pk k k i i id x x x x x x⋯ ⋯  

 
and, from this: 
(1)   ωθ = (−1)pqθω. 
 
 Let Ω be an arbitrary differential form and let: 
 

Ω = ω(0) + ω(1) + … + ω(n) 
 
be its decomposition into individual homogeneous parts.  For the multiplication of Ω with 
a homogeneous form ω of degree p, one then has: 
 
(2)   ωΩ = Ωω    when p is even 
   Ωω = Ω*ω    when p is odd. 
 
Here, Ω* = ω(0) − ω(1) + ω(2) −… + (−1)nω(n). 
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 From (1), the product of a form of odd degree with itself is always null.  If two or 
more minus signs appear in the product of a form ω of odd degree with itself then the 
product is identically null, since, from (2), one can write all of the individual factors of ω. 
 Of the ideals (1) that one can consider in the ring D, only one ideal is of interest to us, 
viz., the ideal of homogeneous forms: 
 
(3)     ω1, ω2, …, ωr. 
 
Here, the difference between right and left ideals disappears; the right ideal obtained from 
(3), i.e., the set of elements: 

ω1Ω1 + ω2Ω2, …+ ωrΩr, 
 
in which the Ωi run through all of the forms of D, is identical with the corresponding left 
ideal that, from (2), one can form from Ωi (possibly in the form of )i

∗Ω on the left-hand 

side of ω. 
 If: 

Θ = θ(0) + θ(1) + … + θ(n) 
 
belongs to the ideal that is determined by (3) then the same is true for each homogeneous 
part θ(i) of Θ; one then collects terms of degree i in the summands ωv Ωv on the right-hand 
side of: 

Θ =
1

r

v v
v

ω
=

Ω∑  

 
in order to express the θ(i) as linear combinations of the ωv. 
 We have the following simple criterion for the linear dependence of Pfaff forms: 
 
 r  Pfaff forms: 

ωv =
1

n

vk k
k

a dx
=
∑      (v = 1, 2, …, r) 

 
are linearly dependent when and only when their product vanishes: 
 

ω1ω2 … ωr = 0. 
 
This follows immediately from: 

ω1ω2 … ωr =

1 2

1 2

1 2

1 2

1 2

1 1 1

2 2 2
( , , , )

r

r

r

r

r

i i i

n
i i i

i i i
i i i

ri ri ri

a a a

a a a
d x x x

a a a

< < <
∑
⋯

⋯

⋯
⋯

⋯ ⋯ ⋯ ⋯

⋯

. 

 

                                                
 1) Cf., Van der Waerden, Moderne Algebra I, pp. 53. 
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 The following remarks will be useful to us in later applications: 
 
 If the Pfaffian forms ω1, ω2,…, ωr are linearly independent then all of their products 

1 2 pi i iω ω ω⋯  (i1 < i2 < … < ip) are also linearly independent. 

 
 In a linear relation: 

1 2 1 2

1 2

, , , p p

p

n

i i i i i i
i i i

a ω ω ω
< < <
∑ ⋯

⋯

⋯ = 0  (a belongs to F), 

 
all of the terms after the first one disappear upon multiplication by

1pi
ω

+
,

2pi
ω

+
, …,

ri
ω , in 

which i1, i2, …, ir represents a permutation of 1, 2, …, r, since at least two equal linear 
factors must appear in all of the remaining terms.  One also obtains: 
 

∑ 
1 2, , , pi i ia
⋯

ω1ω2…ωr = 0, 

 
from which, since ω1ω2…ωr ≠ 0, the vanishing of the a must follow. 
 If ω1, ω2,…, ωr are once again arbitrary homogeneous differential forms then the 
expression: 

Ω ≡ 0 (mod ω1, ω2, …, ωr) 
 
means that the form Ω belongs to the ideal that is generated by the ω1, ω2,…, ωr.  From 
this, one obtains all of the rules for arithmetic with congruences (1). 
 
 
 2.  Differentiation.  Up till now, we have used the differential only as an algebraic 
symbol.  In order to justify the use of the word “differential,” we must first introduce a 
process of differentiation in D.  It shall be an additive operation in D that takes a scalar 
a(x1, x2, …, xn) to the Pfaffian form: 
 

da = 1 2
1 2

n
n

a a a
dx dx dx

x x x

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯  

  
and, in general, it takes a pth degree “monomial”: 
 

ω = ad
1 2

( , , , )
pi i ix x x⋯  

to the differential form: 
 

dω = dad
1 2

( , , , )
pi i ix x x⋯ =

1 2
1

( , , , , )
p

n

l i i i
l l

a
x x x x

x=

∂
∂∑ ⋯  

 

                                                
 1) Cf., Van der Waerden, Moderne Algebra I, pp. 54. 
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of degree p + 1.  Differentiation is then defined for all differential forms by requiring it to 
be a linear operation.  A form that is produced by the differentiation of a form Ω will 
always be indicated by placing the letter d before it – viz., dΩ − and one calls this form 
the differential or derivative of Ω. 1) 
 The dxi now appear as the differentials of the scalars xi. 
 For two monomials: 
 

ω = ad
1 2

( , , , )
pi i ix x x⋯ , θ = bd

1 2
( , , , )

qk k kx x x⋯ , 

one has: 
 

d(ωθ)  = d(abd
1 1

( , , , , )
p qi i k kx x x x⋯ ⋯ ) 

 = (bda + adb)d
1 2

( , , , )
pi i ix x x⋯  

 = dad
1

( , , )
pi ix x⋯ bd

1
( , , )

qk kx x⋯  

    + (−1)p ad
1

( , , )
pi ix x⋯ dbd

1
( , , )

qk kx x⋯  

 = dω θ + (−1)pω dθ. 
 
 The sign (−1)p depends only upon ω and we have the general formula for an arbitrary 
form Ω and a homogeneous pth degree form: 
 
(4)    d(ωΩ) = dω Ω + (−1)pω dΩ. 
 
In particular, we note the case p = 0: 
 
(5)    d(aΩ) = da Ω + a dΩ    (a is a scalar). 
 
 A differential form Ω whose derivative dΩ vanishes identically is called integrable. 
 The integrable forms define a sub-ring of D, which follows from the fact that if: 
 

dΩ = 0, dΘ = 0 
then, from (4): 

d(ΩΘ) = 0, 
 
and naturally d(Ω + Θ) = 0 is also true. 
 A differential form that can be represented by the derivative of another differential (in 
D) will be called a total differential. 
 Since we have, for a monomial ω = ad

1 2
( , , , )

pi i ix x x⋯ : 

 

d(dω) =
1 2 1 2

2

1 ,

( , , , ) ( , , , , )
p p

n

l i i i k l i i i
l k ll k l

a a
d d x x x x d x x x x x

x x x=

∂ ∂=
∂ ∂ ∂∑ ∑⋯ ⋯ = 0, 

 

                                                
 1) I have taken the liberty of replacing the customary notation ′Ω with dΩ. 
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the derivative of a derivative is always null. 
 
 For any differential form Ω we have: 
 
(6)     d(dΩ) = 0. 
 
 Any total differential form is therefore integrable.  The converse is not true in general.  
If the fundamental scalar ring consists of holomorphic functions at a point 0 0 0

1 2, , , nx x x⋯  

then, as we shall see later (cf. pp. 63), every integrable form is a total differential. 
 In a ring of differential forms in which a differentiation is defined in addition to the 
algebraic operations, one will need to consider, not the usual ideals, but the so-called 
differential ideals, which are ideals in the usual sense, except that the following condition 
is also true for them: if Ω belongs to the differential ideal then so does dΩ. 
 We are once more interested in homogeneous ideals. 
 The smallest differential ideal that contains the given forms θ1, θ2, …, θl is called the 
differential ideal that is generated byθ1, θ2, …, θl.    Obviously, it must contain the forms: 
 

(7)    
1 1

l l

i i i i
i i

dθ θ
= =

Ω + Ψ∑ ∑ , 

 
in which the Ω, Ψ range over all elements of D.  However, the set of these forms is 
already a differential ideal since, from (4) and (6), the derivative of such an expression 
(7) can once more be written the same form. 
 If θ is integrable then the differential ideal that it generates is identical with the usual 
ideal that it determines. 
 
 
 3.  Substitution of variables.  The importance of the calculus of differential forms 
that we just developed lies in its invariance under substitution of variables. 
 In the equations: 
(8)   xi = xi(y1, y2, …, ym)    (i = 1, 2, …, n) 
 
let the right-hand sides be single-valued holomorphic functions that are defined in a 
particular neighborhood Y (at a point, resp.) in complex (y1, y2, …, ym)-space that take the 
values x1, x2, …, xn whenever y1, y2, …, ym vary within Y.  We tacitly assume that these or 
corresponding regularity assumptions will be satisfied for any other variable 
substitutions. 
 Under the subtitution (8), all scalars a(x1, x2, …, xn) go to functions: 
 
(9)   a ( y1, y2, …, ym) = a(x1(y), x2(y), …, xn(y))  
 
in the ring F  of single-valued holomorphic functions of y1, y2, …, ym on Y. 
 The transformation of the differential takes place in such a manner that the processes 
of multiplication and differentiation are invariant operations. 
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 Since the differentiation of a scalar is invariant we must show that when a(x1, x2, …, 
xn) goes to a ( y1, y2, …, ym) under (8) then da also goes to the differential: 
 

1

m

k
k k

a
da dy

y=

∂=
∂∑  

 
in the ring D  of differential forms over F .  For this, it suffices to observe that dxi is 
transformed into: 

1

( )
m

i
i i k

k k

x
dx dx y dy

y=

∂= =
∂∑    (i = 1, 2, …, n) 

 

because that means that  da = i
i

a
dx

x

∂
∂∑  goes to: 

 

i
k

i k

xa
dy

x y

∂∂
∂ ∂∑ = k

k

a
dy

y

∂
∂∑ . 

 
 The transformation formulas for the higher differentials: 
 

1 2
( , , , )

pi i id x x x⋯  

 
are uniquely determined because of the invariance of multiplication; from (8), the 

1 2
( , , , )

pi i id x x x⋯  must go from products of 
1 2
, , ,

pi i idx dx dx⋯ over to: 

 

1 2 pi i idx dx dx⋯  = 1

1

1 1

i
k

k k

x
dy

y

 ∂
  ∂ 
∑ 1

1

1 1

i
k

k k

x
dy

y

 ∂
  ∂ 
∑ … 1

1

1 1

i
k

k k

x
dy

y

 ∂
  ∂ 
∑  

(10) 

   = 1 2

1 2

1 2 1 2

( , , , )
( , , , )

( , , , )
p

p

p p

n
i i i

k k k
k k k k k k

x x x
d y y y

y y y< < <

∂

∂∑
⋯

⋯
⋯

⋯
. 

 
 From this, it is clear what we mean when we say that we apply the substitution (8) to 
a differential form: 

Ω = a +∑ ai dxi +∑ aik d(xi, xk) + …; 

 
one replaces each coefficient 

1 2, , , pi i ia
⋯

 by way of (9) with the corresponding 
1 2, , , pi i ia
⋯

 and 

each differential 
1 2

( , , , )
pi i id x x x⋯  with the expression (10). 

 We have the following invariance theorem:  If Ω ( , , ,dΘ ΩΘ Ω resp.) are the 

differential forms that result from Ω (Ω, ΩΘ, dΩ, resp.) by substitution in (8) then we 
have: 
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(11)    ΩΘ = ΘΩ , 

(12)    d dΩ = Ω , 
 
which one can also express as: 
 
 The operations on the differential ring are commutative under variable substitution. 
 
 In order to prove (11), (12), it obviously suffices to let Ω and Θ be monomials: 
 
   Ω = a

1 2
( , , , )

pi i id x x x⋯ = aω, 

   Θ = b
1 2

( , , , )
qk k kd x x x⋯ = bθ. 

We have: 

( )( )ab ab ab a bωθ ωθ ωθ ω θΩΘ = = = = = ΘΩ , 
 
because under the assumption (10) on the transformation of differentials the validity of 

ωθ ωθ=  is already guaranteed. 
 As for the derivatives, upon recalling the invariance of multiplication that we just 
proved, one has: 

d da da daω ω ωΩ = = = . 
 
One can also write daω  as ( )d aω , since, from (5), we have: 
 

( )d aω =daω +adω , 
 
and 

1 2 pi i idx dx dxω = ⋯  is the product of integrable forms, so dω = 0.  One thus has: 

 

( )d d a dωΩ = = Ω . 
 
 
 4.  Differential equations.  Let: 

Θ1, Θ2, …, Θk 
 
be certain differential forms on D.  A substitution of variables: 
 
(13)    xi = xi(u1, u2, …, um)   (i =  1, 2, …, n) 
 
under which all of the forms Θi vanish is called a solution of the system of differential 
equations: 
(14)     Θ1 = 0, Θ2 = 0, …, Θk = 0. 
 
 Since each of the homogeneous parts of a form Θ will, from (13), obviously be 
annulled identically, equations (14) and the following ones: 
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(15)    θ1 = 0, θ2 = 0, …, θl = 0, 
 
whose left-hand sides consist of the various vanishing homogeneous parts of the Θi , will 
have the same solutions.  It therefore suffices to consider systems of homogeneous 
differential equations. 
 Among the θ, one can also find forms of degree zero whose associated equations θ = 
0 are scalar. 
 From the invariance properties of the differential ring operations, we conclude that: 
 
 Each solution of the differential equations: 
 

θ1 = 0, θ2 = 0, …, θl = 0 
 

also annuls each form of the differential ideal a that is generated by the left-hand sides. 

 
 If a form Ω vanishes under the substitution (13) then, from (11), (12), dΩ and each 
“multiple” ΩΘ (Θ is arbitrary in D) will also be annulled under (13).  We call a the ideal 

that is associated with the differential equations. 



 

II.  Theory of functions and geometrical considerations. 
 
 
 1.  Algebraic manifolds.  One understands the term algebraic manifold in complex 
(x1, x2, …, xn)-space to mean a point set that can be described by a system of equations: 
 
  B1(x1 − 0

1x , x2 − 0
2x , …, xn − 0

nx ) = 0 

  B2(x1 − 0
1x , x2 − 0

2x , …, xn − 0
nx ) = 0 

(1)   … 
  Bs(x1 − 0

1x , x2 − 0
2x , …, xn − 0

nx ) = 0 

 
in the neighborhood of each its points 0 0 0

1 2( , , , )nx x x⋯ , in which each of the left-hand sides 

is a holomorphic power series in (x0).  One says that this manifold M is regular at (x0), or 
that it is simple at (x0) (it has (x0) for a simple point), when equation (1) can be solved in 
a neighborhood of (x0) in such a way that some − say, n – r − of the coordinates x behave 
like holomorphic functions of the remaining r coordinates; the number r is the dimension 
of M at (x0).  If M is regular and r-dimensional at (x0) then equations (1) can be expressed 
in terms of n – r other ones: 
 
(2)  ϕi(x1, x2, …, xn) = 0  (ϕ is holomorphic at (x0) (i = 1, 2, …, n − r), 
 
such that the n – r differentials: 

dϕi =
1

n
i

k
k k

dx
x

ϕ
=

∂
∂∑  

 
are linearly independent for (x) = (x0).  In fact, the holomorphic solubility of (2) in terms 
of n – r of the x follows from this, and substitution gives the equations that the remaining 
n – r of the holomorphic x must satisfy, which is a system of equations of the form (2). 
 The dimension of an algebraic manifold M is well-defined only at a simple point of 
M, and it can vary at different parts of M.  If one says simply “the dimension of M” then 
one always means the maximum dimension that M takes at its simple points. 
 The set of simple points of an algebraic manifold M is always open; the non-simple, 
i.e., the so-called singular points of M are accumulations of simple points and define a 
lower-dimensional algebraic submanifold of M. 1) 
 If the set of simple points is connected then any two simple points may be connected 
by a path in M that consists of only simple points; one then says that M is irreducible.  In 
this case, M has the same dimension everywhere. 
 
 
 2.  Regular systems of equations.  When the equations: 
 
(3)    ϕi(x1, x2, …, xn) = 0    (i = 1, 2, …, s) 
                                                
 1) We shall content ourselves with the mere statement of this fact without going into its not-so-
elementary proof. 
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define an r-dimensional manifold Mr through (x0) that is simple at that point then we do 
not necessarily need to find n – r linearly independent differentials among the dϕi at (x) = 
(x0).  If that is the case then one calls the system of equations (3) regular at (x0) and calls 
n – r = ρ the rank of the system. 
 In this case, any function Φ(x1, x2, …, xn) that is holomorphic at (x0) and vanishes on 
Mr can be expressed as a linear combination of elements on the left-hand side of (3): 
 

Φ(x1, x2, …, xn) =
1

s

i=
∑ Ai(x1, x2, …, xn)ϕi(x1, x2, …, xn) 

 
(Ai(x) is holomorphic at (x0)). 

 For instance, let: 
dϕ1, dϕ2, …, dϕρ , 

 
be linearly independent at (x0).  One chooses r more functions that are holomorphic at 
(x0): 

ψρ+1, ψρ+2 , …, ψn , 
 
so that dϕ1, dϕ2, …, dϕρ , dψρ+1, dψρ+2, …, dψn are linearly independent at (x0).  The 
equations: 

ϕi = zi  (i = 1, 2, …, ρ)  
ψi = zi  (i > ρ) 

 
define a one-to-one transformation of the variables, and Mr has the following equations in 
terms of the z: 
(4)     z1 = z2 = … = zρ = 0. 
 
 When the functions F are transformed into functions of z they may be developed into 
a power series that vanishes for (4), and can therefore be expressed in the form: 
 

z1B1(z) + z2B2(z) + … + zρBρ(z)   (the B’s are power series). 

 
By the applying inverse transformation to the x variables one obtains the desired sort of 
representation for F in which only ϕ1, ϕ2, …,ϕρ are involved. 
 A system of functions ψi(x1,…, xn) that are holomorphic at (x0) and vanish on the zero 
manifold Mr of the functions ϕi is called a basis for the system of equations (3) when 
every function Φ(x1,…, xn) that is holomorphic at (x0) and vanishes on Mr can be 
expressed as a linear combination of the ψi: 
 

Φ =∑ Ai(x)ψi(x). 
 We also write: 

Φ ≡ 0  (mod y1, y2, …). 
 
As we have seen, the ϕi themselves define such a basis. 
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 Chooses′ (≤ s) of the equations (3), say: 
 
(5)    ϕi(x1, x2, …, xn) = 0   (i = 1, 2, …,s′ ) 
 
such that they define a regular system of equations of rank ρ ′ (≤ ρ).  With their help, one 

can representρ ′ of the variables x − perhaps x1, x2, …,xρ ′ − as holomorphic functions of 

the remaining ones, and by substituting the expressions that are thus obtained: 
 

xi = fi( 1xρ ′+ , …, xn)   (i = 1, 2, …,ρ ′ ) 
 
into the remaining equations (13), one obtains a new regular system of equations: 
 
(6)    iϕ ( 1xρ ′+ , 2xρ ′+ , …, xn)  = 0  (i = s′ +1, …, s), 

 
which is indeed, as one easily sees, of rank ρ − ρ ′ , so (5) and (6) collectively define a 
basis for the system (3). 
 We observe the following properties of regular systems of equations: 
 
1. If (3) is regular at (x0) then it is also regular in a sufficiently small neighborhood of 

(x0) in any zero locus. 
 
2. Under a biholomorphic transformation, i.e., a transformation: 
 

xi = xi( 1 2, , , nx x x⋯ )    (i = 1, 2, …, n) 

 
that is a one-to-one holomorphic map of a neighborhood of a point 0 0 0

1 2( , , , )nx x x⋯ in 

( )x -space onto a neighborhood of 0 0 0
1 2( , , , )nx x x⋯  in (x)-space, the system of equations 

(3) goes to a system that is regular at 0( )x : 
 

iϕ ( 1 2, , , nx x x⋯ ) = 0    (i = 1, 2, …, s) 

and has the same rank ρ. 
 
 
 3.  Linear vector spaces.  A p-dimensional vector subspace at a point 0 0

1( , , )nx x⋯  in 
the space of (x1, …, xn) is spanned by p independent vectors with the components: 
 

∆vx1, ∆vx2, …, ∆vxn,    (v = 1, 2, …, p). 
 The determinant: 
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1 2

1 2

1 2

1 2

1 1 1

2 2

, , ,

p

p

p

i i i

i i

i i i

p i p i p i

x x x

x x
z

x x x

∆ ∆ ∆

∆ ∆
=

∆ ∆ ∆

⋯

⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮

⋯

, 

 
whose value is independent of the choice of spanning vectors, makes the direction of Vp 
unique.  These so-called Grassmann direction coordinates 

1 2, , , pi i iz
⋯

are not independent 

for p > 1, n > 3, because there then exist algebraic relations between them that can be 
interpreted as the equations for a (n–p)p-dimensional algebraic manifold – viz., the 
Grassmann manifold n

pG  − in the projective space with the n
p

 
 
 

  homogeneous 

coordinates z.  For n = 4, p = 2, one has one relation, which is known as the Plücker 
relation, between the six homogeneous line coordinates in R3.  Furthermore, the relations 
between the 

1 2, , , pi i iz
⋯

 in the general case are simple to express 1); they follow directly from 

certain quadratic relations that correspond to the Plücker relations precisely.  The exact 
form of these equations is of no interest to us; we only remark that one can always solve 
them in such a way that all of the inhomogeneous direction coordinates: 
 

1 2

1 2

, , ,

, , ,
1,2, ,

p

p

i i i

i i i
p

z
u

z
= ⋯

⋯

⋯

 

 
appear as complete rational functions of the (n−p)p special ones: 
 

uk,2,3, …, p, u1,k,3, …, p, …, u1,2, …, p-1,k,  (k = p+1, p+2, …, n). 
 

 Naturally, there are relationships for the other inhomogeneous coordinates, for which 
another z appears in the denominator instead of u1,2,3, …, p.  From this, we see that npG  is 

globally simple as an algebraic manifold in the 1
n

p

  
−  

  

-dimensional complex projective 

z-space: the Grassmann manifold is free of singularities. 
 From now on, we shall understand the notation ( )n

pG z  to mean a basis for the 

relations between the z, i.e., ( )n
pG z  is a finite set of polynomials (e.g., quadratic ones) 

P1(z), P2(z), …, Pl(z) in such a way that each (naturally, homogeneous) relation that 
exists between the z can be expressed in terms of the vanishing of a linear combination: 
 

∑ Ai(z)Pi(z)    (Ai(z) are polynomials). 
 

                                                
 1) See E. Bertini, Geometria proiettiva degli iperspazia,  Messina 1923.  pp. 45-47.  In the German 
translation (by A. Duschek, Vienna 1924), see pp. 42-44. 
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( )n
pG z = 0 is a regular system of equations in the neighborhood of each null point (z0) of 

( )n
pG z . 

 When one also considers the variability of these points, the totality of all p-
dimensional vector subspaces can be represented in the product space R(x, z) as the n-
dimensional x-space and the projective z-space by way of the (n−p)p+n-dimensional 
manifold ( )n

pG z = 0. 

 
 It is clear what we are to understand when we say a neighborhood of a p-dimensional 
vector subspace 0

pV = (x0, z0): it is the set of all Vp whose points (x, z) correspond to a 

certain neighborhood of (x0, z0) in R(x, z).  The space Vp = (x, z) is said to (arbitrarily) 
close to 0

pV  when (x, z) lies in an (arbitrarily small) neighborhood of (x0, z0). 

 
 
 4.  Differential equations as equations for linear vector spaces.  Let: 
 
(7)    ω =∑

1 2, , , (
pi i ia

⋯
x1, x2, …, xn)

1 2
( , , , )

pi i id x x x⋯  

 
be a differential form of degree p on D and let 0

pV  be a vector subspace.  We say: ω 

vanishes on 0
pV , or 0

pV  satisfies the equation ω = 0, when the coordinates (x0, z0) of 0
pV  

make the expression: 

1 2 1 2

0 0 0 0
, , , 1 2 , , ,( , , , )

p pi i i n i i ia x x x z∑
⋯ ⋯

⋯  

 
vanish.  In general, we say: A q-dimensional vector subspace Vq (q ≥ p) satisfies the 
equation of degree p, ω = 0, when each of the p-dimensional vector subspaces that are 
contained in it satisfies this equation.  ω = 0 will imply no conditions whatsoever for 
subspaces Vq with q < p: every q-dimensional vector subspace satisfies every differential 
equation of degree higher than q.  Finally, to say that Vq satisfies an inhomogeneous 
differential equation Ω = 0 shall mean: Vq annuls every homogeneous part of Ω.  
Furthermore, these definitions shall be valid for equations ω = 0 of degree 0; in that case, 
ω = 0 is the only condition that is valid for the points Vq. 
 
 If a vector subspace satisfies the equation Ω = 0 then it also makes each multiple ΩΘ 
of Ω vanish. 
 
 In order to prove this, we can assume that Θ is a monomial Θ =

1 2
( , , , )

rk i kd x x x⋯ and 

that Ω is homogeneous: 
Ω ==∑

1 2, , , pi i ia
⋯ 1 2

( , , )
pi i id x x x⋯ . 

 In: 
ΩΘ =

1 2

1 2

, , ,
, , ,

p

p

i i i
i i i

a∑ ⋯

⋯
1 2 1

( , , , , , )
p ri i i k kd x x x x x⋯ ⋯  
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one imagines that the differentials of degree p+r replace the determinants: 
 

1 2

1 2

1

1 2

1 1 1

2 2
( , , )

r

r

r

i i k

i i

i k

p r i p i p r k

x x x

x x
x x

x x x+ +

∆ ∆ ∆

∆ ∆
∆ =

∆ ∆ ∆

⋯

⋯ ⋯
⋯

⋮ ⋮ ⋮ ⋮

⋯

 

 
that are defined by any p+r vectors of Vq, and then develops that determinant into p-
rowed minors of the first p columns according to the Laplace expansion theorem.  One 
then obtains an expression: 
 

1 2
( , , , )

rk i kx x x∑∆ ⋯
1 2

1 2

, , ,
, , ,

p

p

i i i
i i i

a∑ ⋯

⋯
1 2 1

( , , , , , )
p ri i i k kx x x x x∆ ⋯ ⋯ , 

 
in which the first summation sign refers to the (p+r)-rowed determinant.  The sum: 
 

1 2

1 2

, , ,
, , ,

p

p

i i i
i i i

a∑ ⋯

⋯
1 2 1

( , , , , , )
p ri i i k kx x x x x∆ ⋯ ⋯  

 
vanishes everywhere that Vq satisfies the equation Ω = 0. 
 From the theorem that we just proved, it further follows that: 
 
 If the vector subspace Vq satisfies the equations: 
 

Ω1 = 0, Ω2 = 0, …, Ωl = 0 
 
then it also annuls every form of the (ordinary) ideals that are defined by the left-hand 
sides. 
 
 A partial converse also follows from this theorem: 
 
 If a q-vector Vq annuls every equation of degree q in an ideal a with the basis Ω1, Ω2, 

…, Ωl then the Ωi also vanish on Vq, and with them, all of the forms of a. 

 
 Proof.  It obviously suffices to consider the case l = 1 with Ω1 = Ω assumed to be 
homogeneous of degree p (p ≤ q).  Suppose d(x1, x2, …, xq) ≠ 0 on Vq, for instance.  One 
can linearly represent the components: 
 

∆xq+1, ∆xq+2, …, ∆xn 
 
of the vectors of Vq in terms of the remaining ones, which can also be expressed by 
saying: One can find n − q Pfaffian forms of the form: 
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ωi = dxi – αi1dx1 – αi2dx2 - …– αiqdxq   (q < i ≤ n)  
 
(perhaps with constant coefficients) that vanish on Vq.  Modulo these forms ωi, Ω may be 
reduced to a form that involves only the differentials dx1, dx2, …, dxq: 
 

Ω0 =
1 2

1 2

, , , p

p

q

i i i
i i i

c
< < <
∑ ⋯

⋯
1 2

( , , )
pi i id x x x⋯ , 

i.e.: 
Ω ≡ Ω0  (mod ωq+1, ωq+2, …, ωn). 

 
 Therefore, all Ω0Θ of degree q vanish on Vq along with all forms ΩΘ.  Thus, if one 
picks a particular combination of indices i1, i2, …, ip and chooses ip+1, ip+2, …, iq such that 
i1, i2, …, iq is a (perhaps even) permutation of 1, 2, …, q then we have that: 
 

Ω0
1 2 1

( , , , , , )
p ri i i k kd x x x x x⋯ ⋯ =

1 2, , , pi i ic
⋯

d(x1, x2, …, xq) = 0 

 
on Vq .  The points of Vq thus annul all of the coefficients c, i.e., Ω = 0 on Vq.  Q.E.D. 
 
 
 5.  Tangent elements.  Let M be an algebraic manifold, (x0) one of its simple points, 
and let: 
(8)    ϕ1 = 0, ϕ2 = 0, …, ϕs = 0 
 
be a regular system of equations that represents M in a neigborhood of (x0).  Any vector 
subspace at (x0) that satisfies the equations: 
 

dϕ1 = 0, dϕ2 = 0, …, dϕs = 0 
 
is called a tangent element of M at (x0).  If r is the dimension of M at (x0) then all of these 
tangent elements are contained in a larger space of dimension r.  This is what we always 
mean when we speak of the tangent element at (x0). 
 The definition of tangent element is obviously independent of the choice of regular 
system of equations that represent M at (x0). 
 One also sees that one can define the tangent elements of M simply by vector 
subspaces that satisfy the equations: 
 

ϕ1 = 0, ϕ2 = 0, …, ϕs = 0, dϕ1 = 0, dϕ2 = 0, …, dϕs = 0 
 
for the points of a sufficiently small neighborhood of (x0).  Such a neighborhood must be 
chosen to be small enough that all of the null points of ϕ1, …, ϕs still belong to M and the 
system of equations (8) is still regular there. 
 
 
 6.  Direction coordinates of a vector space.  The direction of a p-dimensional vector 
subspace Vp may be specified in the following way: Let: 
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(9)    ωi =
1

n

ik
k

α
=
∑ (x1, …, xn) dxk  (i = 1, 2, …, n) 

 
be any n linearly independent Pfaff forms (say, ωi = dxi).  If ω1ω2… ωp ≠ 0 on Vp then for 
all of the vectors of Vp the expressions: 
 

0 0
1

1

( , , )
n

ik n k
k

x x xα
=

∆∑ ⋯   (i > p, and (x0) is a given point of Vp) 

 
may be linearly represented by the corresponding ones with i ≤ p.  (We will always state 
this fact in the form: ω1, ω2, …, ωp are linearly independent on Vp.)  Thus, the constants l ik 
in the Pfaffian forms: 

ϑi = ωi −
1

p

k=
∑ l ikωk 

 
are always uniquely determined by the requirement that the ϑi vanish on Vp.  Each system 
of values for x and the (n−p)p constants l corresponds to precisely one p-dimensional 
vector subspace.  These quantities l can be regarded as the direction coordinates of Vp, 
and they have the advantage over the Grassmann coordinates that they are restricted by 
no relations.  Everything happens the same way for them on such a Vp only if ω1ω2… ωp 
≠ 0.  Their relationship with the

1 2, , , pi i iz
⋯

is easy to understand. 

 Let: 

dxi =
1

n

k=
∑ βik(x)ωk     (i = 1, 2, …, n) 

 
be the solution of (9) for the dx.  If: 
 

dxi  ≡ 
1

n

k=
∑ bik(x, l)ωk  (mod ϑp+1, ϑp+2, …, ϑn) 

and: 

1 2 1 2, , ,( , , , ) ( , )
p pi i i i i id x x x x lϕ≡

⋯
⋯ ω1ω2… ωp  (mod ϑ) 

 
then the direction coefficients 

1 2, , , pi i iz
⋯

 of Vp are proportional to the expressions ϕ(x, l).  

Then, for any p independent vectors in Vp: 
 

∆v x1, ∆v x2, …, ∆v xn     (v = 1, 2, …, p), 
 
we have: 

∆v xi = 
1

p

k=
∑ bik(x, l) wkv  (in which we have set

1

n

l =
∑ αkl ∆v xl = wkv), 

and from this: 
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(10)    
1 2, , , pi i iz
⋯

= | ∆v xi | =
1 2, , , ( , )

pi i i x lϕ
⋯

| wkv |. 

From the fact that: 
ω1ω2… ωk-1ωiωk+1… ωp ≡ l ikω1ω2… ωp (mod ϑ) (i > v), 

or, simply: 

1 2 1 2

1

, , ,
, ,

( , , )
p p

p

ik
k k k k k k

k k

d x x xα∑ ⋯

⋯

⋯ ≡ l ikω1ω2… ωp , 

and: 

1 2 1 2, , , ( , , )
p pk k k k k kd x x xα∑ ⋯

⋯ ≡ l ikω1ω2… ωp 

 
(the α are certain determinants of the αik), it follows conversely that: 
 

(11)    1 2 1 2

1 2 1 2

, , , , , ,

, , , , , ,

( ) | |

( ) | | .
p p

p p

ik
k k k k k k ik ik

k k k k k k ik

x z l w

x z w

α

α

 =
 =

∑
∑

⋯ ⋯

⋯ ⋯

 

 



 

III.  Integral manifolds and integral elements. 
 
 
 1.  Integral manifolds.    A system of differential equations: 
 
(1)    θ1 = 0, θ2 = 0, …, θl = 0 
 
is called integrable if all of its solutions are determined. 
 Let: 
(2)    xi = xi(u1, u2, …, un)   (i = 1, 2, …, n) 
 
be a solution of (1).  When there are exactly p linearly independent differentials dxi(u) the 
solution is called p-dimensional.  In the neighborhood of a system of 
values 0 0 0

1 2( , , , )mu u u⋯ , as long as the number of independent dxi(u) is not less than p (2) 

allows us to eliminate the arguments u such that n – p of the xi among the xi = xi(u
0) 

= 0
ix can be expressed as holomorphic functions of the remaining ones, say: 

 
xi = fi(x1, x2, …, xp)   (i = p+1, p+2, …, n). 

 
From (2), (u0) is a parametric representation of a p-dimensional algebraic manifold Mp 
that is regular at (x0), at least in a neighborhood of such a system of values (u0). 
 We consider any form Ω in the differential ideal a such that the system (1) is 

satisfied.  One can think of substituting from (2) into W – at least for all (u) in a 
sufficiently small neighborhood of (u0) – one then obtains: 
 

1 2

( 1,2, , )

( , , , ) ( 1, , )
i i

i i p

x x i p

x f x x x i p n

= =
 = = +

⋯

⋯ ⋯
 

 
and in the resulting form Ω , which no longer includes the variables x1, x2, …, xp, one 
then substitutes: 
(3)    xi = fi(u1, u2, …, un)             (i = 1, 2, …, p). 
 
 We obviously already have Ω  = 0, since otherwise the vanishing of Ω  as a result of 
(3) would mean the existence of a linear dependency between the products of the 
differentials dxi(u) (i = 1, 2, …, p), which is impossible, from an earlier remark (cf. sec. 
6). 
 One now observes that the statement: W vanishes under the substitution: 
 

xi = fi(x1, x2, …, xp)   (i = p+1, p+2, …, n) 
is equivalent to the statement: 
 
(4) Ω ≡ 0  (mod (xp+1 – fp+1), …, (xn – fn), (dxp+1 – dfp+1), …, (dxn – dfn)). 
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The fact that (4) implies the vanishing of Ω  is obvious.  As for the neighoring points, one 
subjects W to an identity transformation in which one replaces: 
 

xi with fi + (xi − fi) 
dxi with dfi + (dxi − dfi) 

 
and develops the coefficients of Ω in powers of xi − fi.  One can write the resulting 
expression as: 

(5)   Ω = 
1

(
n

i
i p

x
= +

Ω + ∑ − fi)Ωi +
1

(
n

i
i p

dx
= +
∑ − dfi) Θi, 

 
in which Ωi, Θi are differential forms with coefficients that are holomorphic in (x0).  (4) 
then follows fromΩ  = 0, precisely. 
 Since the tangent elements of Mp annul all of the forms found in the module (4), we 
conclude from (4) that every tangent element of Mp satisfies the equation a = 0. 

 
 Definition:  An algebraic manifold (which is irreducible and possesses only simple 
points) whose tangent elements satisfy the equation a = 0 is called an integral manifold. 

 
 We see that every solution (2) corresponds to an integral manifold, which one obtains 

when the rank of the matrix i

k

x

u

 ∂
 ∂ 

 is not less than p by letting u1, u2, …, um range 

through all possible values.  It is easy to see that one obtains an irreducible manifold Mp 
in this way, and that all of its points, which correspond to the values of u that were left 
out, are accumulation points of Mp; the remaining points lie in lower-dimensional 
algebraic manifolds. 
 Conversely, every integral manifold Mp corresponds to infinitely many solutions of 
(1). 
 Let: 
(6)    xi = fi(x1, x2, …, xp)          (i = p+1, …, n) 
 
be the equation of Mp in the neighborhood of one of its points0 0 0

1 2, , , nx x x⋯ .  It follows 

from the identity (5) that for an arbitrary differential form Ω of a we have: 

 
Ω ≡ Ω (mod xp+1 – fp+1, …, xn – fn, dxp+1 – dfp+1, …, dxn – dfn), 

 
in which Ω  is the form that Ω turns into under the substitution (6).  Now, since every Mp 
is indeed a manifold we should have that Ω vanishes for all of the vector subspaces that 
satisfy the equations: 
 

xp+1 – fp+1 = 0,   …, xn – fn = 0,   dxp+1 – dfp+1 = 0,   …, dxn – dfn = 0. 
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 If Ω  were not identically null then one would certainly find an element of this vector 
subspace that did not annul Ω ; therefore, one can always find a tangent vector to Mp for 
which the coordinates x1, x2, …, xp of the point in question take on arbitrary values in the 
neighborhood of 0 0 0

1 2, , , px x x⋯ , as well as the components ∆x1, ∆x2, …, ∆xp .  One thus 

necessarily has that Ω  is identically zero.  If one now takes an arbitrary parametric 
representation for Mp: 
(7)    xi = fi(u1, u2, …, um)             (i = 1, 2, …, n) 
 
with 0 0 0 0

1 2( , , , )i m ix u u u x=⋯  then the substitution of (7) in Ω can be further divided into 

two steps: One first performs (6), and then: 
 

xi = fi(u1, u2, …, um)             (i = 1, 2, …, p). 
 

Ω already vanishes from the first step.  Every parametric representation (7) of Mp thus 
gives a solution of the system of differential equations. 
 We will now see how the problems of integration theory appear in the production of 
complete integral manifolds.  One can formulate these problems analytically in the 
following way: 
 Determine all regular systems of equations: 
 
(8)    ϕ1 = 0, ϕ2 = 0, …, ϕs = 0, 
in such a way that: 

a ≡ 0 (mod ϕ1, ϕ2, …, ϕs, dϕ1, dϕ2, …, dϕs), 

 
i.e., such that one obtains the ideal a that includes the differential ideal that is generated 

by the functions ϕ1, ϕ2, …, ϕs. 
 
 
 2.  Integral elements.  A vector subspace that satisfies the equations a = 0 is called 

an integral element. 
 Since the vanishing of all of the forms of a follows from the vanishing of all of the 

forms of degree p in a for a p-dimensional vector subspace, one can characterize the p-

dimensional integral elements Ep by the equations: 
 

ap = 0, 

 
which immediately refer to the Grassmann direction coordinates of Ep .  We shall use the 
notation ap to mean the totality of all forms of degree p in a.  We would also like to 

consider the case p = 0.  The points that satisfy the scalar equations a0 = 0 shall be 

regarded as integral points or 0-dimensional integral elements. 
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Every lower-dimensional vector subspace that is contained in a p-dimensional integral 
element is also an integral element, since it also satisfies the equations a = 0. 

 If one understands ap(x, z) to mean the replacement of the 
1 2

( , , , )
pi i id x x x⋯  in ap with 

expressions in terms of 
1 2, , , pi i iz
⋯

 then one can represent the totality of all p-dimensional 

integral elements Ep in the space R(x, z) by the algebraic manifolds: 
 
(9)    ap(x, z) = 0, ( )n

pG z = 0, 

 
which represent a continuous band of planes in the Grassmann manifold 
(Concerning ( )n

pG z , cf. pp. 15). 

 From this, we obtain a (p+1)-dimensional integral element Ep+1 that Ep = (x, z) goes 
through (i.e., one that contains Ep). 

 The 
1

n

p

 
 + 

 homogeneous direction coordinates 
1 2 1, , , pi i iw

+⋯
 of Ep+1 must be 

represented in the form: 
 
(10)   

1 2 1 1 2 1 2 2 3 1 1 2 2, , , , , , , , , , ,( 1)
p p p p p

p
i i i i i i i i i i i i i iw x z x z x z

+ + + +
= ∆ − ∆ + − ∆

⋯ ⋯ ⋯ ⋯
 

 
since there will be a vector: 

∆x1, ∆x2, …, ∆xn 
 
that, together with Ep, spans Ep+1.  Since Ep+1 is an integral element, one must have the 
following equations, which are analogous to (9): 
 

ap+1(x, w) = 0,  1( )n
pG w+ = 0. 

 
 By introducing the expressions (10), the equations 1( )n

pG w+ = 0, and therefore the 

equations ( )n
pG z = 0, will be satisfied identically (because the w can be written as a 

(p+1)-rowed determinant, on the basis of the fact that ( )n
pG z = 0), although ap+1(x, w) = 0 

might go over to: 
a p+1(x, z, ∆x) = 0. 

 
 These are homogeneous linear equations in the ∆x; every vector of Ep satisfies them.  
If rp+1 + 1 (rp+1 ≥ –1) is the number of solutions ∆x in this trivially independent system 
then one can say: 1pr +∞ (p+1)-dimensional integral elements go through Ep (

r∞ = 1 for r = 
0 and  = 0 for r = −1). 
 This number rp+1 can vary with Ep . 
 The notion of regular integral elements plays a fundamental role in integration theory. 
 
 Definition: A p-dimensional integral element0pE  = (x0, z0) is called regular when: 
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 1.  The system of equations: 
 

ap(x, z) = 0,  ( )n
pG z = 0 

 
is regular in the neighborhood of (x0, z0); 
 
   2.  No (p+1)-dimensional integral elements pass through 0

pE  that do not also pass 

through the integral-Ep in the neighborhood of 0
pE . 

 
 If N is the dimension of the manifold (9) in the neighborhood of (x0, z0) then (due to 
the homogeneity of the z) N+1 is the dimension of the system of solutions (x, z) of (9), 
and condition 1 persists, viz., that among the differentials: 
 

dap(x, z), ( )n
pdG z  

 

in the left-hand of (9) one can find precisely n +
n

p

 
 
 

− N − 1 of them that remain linearly 

independent at (x0, z0). 
 As far as the second condition is concerned, it may be expressed analytically: the 
linear system of equations a p+1(x, z, ∆x) = 0 has the same rank n – rp+1 – p – 1 for all 

values of the parameters x, z that are sufficiently close to (x0, z0) and satisfy equations (9).  
When condition 1 is already satisfied then the rank of this linear system of equations at 
(x0, z0) can be at most less than it is for the general (x, z) that satisfies the relations (9). 
 From the definition it immediately follows that any integral-Ep that is sufficiently 
close to 0

pE  is also regular when 0
pE  is, as well. 

 We will call a p-dimensional integral manifold regular when one finds at least one 
integral-Ep in its tangent elements. 
 
 
 3.  Invariance under biholomorphic transformations.  The fact that the 
partitioning of the integral elements into regular and singular (i.e., non-regular) elements 
is meaningful follows from their invariance under biholomorphic transformations. 
 Let: 
(11)    xi = 1 2( , , , )i nx x x x⋯    (i =  1, 2, …, n) 

 
be a biholomorphic transformation in a neighborhood of 0 0 0

1 2( , , , )nx x x⋯ , 0 0 0
1 2( , , , )nx x x⋯ , 

resp., and let: 

1θ = 0, 2θ = 0, …, lθ = 0 

 
be the new system of differential equations that results from using (11) in the left-hand 
side of the system (1).  Due to the invariance of the differential ring operations and (11), 
the differential ideal a, which is generated by θ1,…, θl over the ring f of functions that are 
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holomorphic at (x0), goes to the differential ideal a  that is generated by 1 2, , , lθ θ θ⋯  over 

the ring of functions that are holomorphic at 0( )x .  The equations: 
 
(12)    ( , )p x za = 0,  ( )n

pG z = 0 

 
that the p-dimensional integral elements ( , )x z  of the new systems define 1) can thus be 
obtained directly from: 
(13)    ap(x, z) = 0,  ( )n

pG z = 0, 

 
in which one has made the substitution: 
 

(14)   

1 2

1 2 1 2

1 2 1 2

1 2

, , , , , ,

( , , , ),

( , , , )
.

( , , , )
p

p p

p p

i i n

i i i

i i i k k k
k k k k k k

x x x x x

x x x
z z

x x x< < <

=

∂
=

∂∑⋯ ⋯

⋯

⋯

⋯

⋯

 

 
(14) represents a biholomorphic transformation in the variables (x, z) and ( , )x z  for all (x, 

z) [ ( , )x z , resp.] for which (x) [ ( )x , resp.] lies in the neighborhood of (x0) [ 0( )x , resp.].  
If (13) is regular at (x0, z0) then the system of equations (12) is also regular at the 
corresponding point 0 0( , )x z .  Furthermore, the equations: 
 

1( , , )p x z x+ ∆a = 0  go to  ap+1(x, z, ∆x) = 0 

 
through the use of (14) along with: 

∆xi = i
k

k k

x
x

x

∂
∆

∂∑ , 

 
from which it follows that the number rp+1 is the same for the corresponding elements at 
(x, z) and ( , )x z .  From these remarks, it is clear that the regular integral elements of one 
system correspond to the regular elements of the other. 
 
 
 4.  On the first regularity condition for integral elements.  In order to specify 
whether a given integral element 0pE = (x0, z0) satisfies the first regularity condition, one 

can proceed as follows: 
 

                                                
 1) As far as the definition and regularity of the integral element Ep, whose point in question (x) lies 
sufficiently close to (x0), is concerned, it is obviously unimportant whether one considers a to be defined 
over the original ring F or over f. 
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 Suppose that 0
1,2, ,pz
⋯

≠ 0, for instance, so that one can use the inhomogeneous 

coordinates: 

1 2

1 2

, ,

, ,
1,2, ,

p

p

i i i

i i i
p

z
u

z
= ⋯

⋯

⋯

. 

 From this, the system: 
(15)    ap(x, z) = 0,  ( )n

pG z = 0 

 
is regular for (x0, z0) if and only if the corresponding system of equations in u under the 
transformation: 

(x) = (x0), 1 2

1 2 1 2

0
, ,0

, , , , 0
1,2, ,

p

p p

i i i

i i i i i i
p

z
u u

z
= = ⋯

⋯ ⋯

⋯

 

is also regular. 
 Since the system of equations( )n

pG z = 0 is already regular, one can replace it in the 

neighborhood of (u0) with the equations: 
 
(16)    

1 2 1 2, , , , ( )
p pi i i i i iu uϕ−

⋯ ⋯
= 0, 

in which 
n

p

 
 
 

−1 – p(n – p) of the u are expressed in terms of the remaining ones, 

perhaps: 
(17)   uk,2,3,…, p , u1,k,3,…, p , …, u1,2,…, p−1,k , (k = p+1, …, n). 
 
 From an earlier general remark concerning regular systems of equations (cf. pp. 14), 
the system: 
(18)     ap(x, u) = 0 

 
that is obtained from the system ap(x, z) = 0 by replacing the u with their expressions in 

the (n – p)p variables (17) must also be regular, and conversely the regularity of (15) 
follows from that of (18). 
 For practical applications, one is accustomed to seeing p-dimensional vector 
subspaces represented by equations in the style of pp. 19: 
 

(19)    ωi − 0

1

p

ik k
k

l ω
=
∑ = 0   (i = p+1, …, n). 

 
 Because of this, we will consider how one knows whether a vector subspace that is 
defined by the point (x0) and the equations: 
 

ωi − 0

1

p

ik k
k

l ω
=
∑ = 0 
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is an integral element, and, in particular, whether it is a regular integral element. 
 
 Every differential form of degree p can be represented − modulo the left-hand side of 
(19) − in the form: 

a(x, l)ω1ω2 … ωp , 
 

in which a(x, l) is a polynomial in l.  From this, if ap(x, l) means the totality of functions 

a(x, l) that are obtained from the forms of ap in this way then: 

 
ap(x

0, l0) = 0 

 
is the necessary and sufficient condition for (x0, l0) to be an integral element. 
 If we further assume that 01,2, ,pz

⋯
 ≠ 0 is the vector subspace that is defined at (x0, l0) 

and let 
1 2

0
, , pi i iu
⋯

 denote the value of the inhomogeneous direction coordinates for (x0, l0) 

then equations (10) and (11) that were presented in sec. 18 teach us that the variables: 
 

x1, …, xn, u1,2,…, i−1, k, i+1,…, p  (i = 1, 2, …, p, k = p+1, …, n) 
 
and the (x, l) in the neighborhood of (x0, u0) [(x0, l0), resp.] correspond to each other 
biholomorphically, and from this, equations (18) and: 
 
(20)     ap(x, l) = 0 

 
are always both regular.  The integral element (x0, l0) thus satisfies the regularity 
condition 1 when and only when the system (20) is regular for (x0, l0). 
 As for the second regularity condition, we will not go into its interpretation here, 
since we shall have more to say about that later in the context of the construction of 
regular chains of integral elements. 



 

IV.  Existence Theorems for Integral Manifolds 
 
 

 1.  Proof of the first existence theorem.  The equations ap(x
0, z0, ∆x) = 0, which are 

satisfied by all of the vectors ∆x and, together with 0
pE  = (x0, z0), span an integral 

element, determine an (rp+1 + p + 1)-dimensional vector subspace at (x0), viz., the so-
called polar element of 0

pE ; we denote it by 0( )pH E .  It contains all of the integral 

elements that go through 0pE .  One can specify the single (p+1)-dimensional integral 

element 0
1pE +  that goes through 0

pE  by using it, since one intersects 0( )pH E  with an (n – 

rp+1)-dimensional vector subspace 
1

0

pn rV
+−  that lies in 0

pE ; this intersecting plane then has 

dimension p+1 for a general point in 
1

0

pn rV
+− . 

 
 First existence theorem.  Let Mp be a regular p-dimensional integral manifold, let 

0
pE = (x0, z0) be its regular elements, and let 

1pn rF
+− be an (n – rp+1)-dimensional manifold 

through Mp whose tangent element at (x0) has only one 0
1pE +  in common with 0( )pH E .  

There then exists exactly one (p+1)-dimensional integral manifold Mp+1 in the 
neighborhood of (x0) that goes through Mp and is contained in 

1pn rF
+− . 

 
 We prove this in three steps. 
 
 A.  Lemma.  Since the statement of theorem is biholomorphically invariant, we can 
assume that: 

xn−r+1 = xn−r+2 = … = xn = 0    (r = r p+1) 
 
are the equations for

1pn rF
+− and: 

    xp+1  = 0, 
(1)    xi = ϕi(x1, x2, …, xp)          (p+1 < i ≤ n – r), 
    xi = 0            (n−r < i < ≤ n), 
 

(ϕi is holomorphic for 0 0 0
1 2, , , )px x x⋯  

 
are the equations for Mp, and also assume that the direction coordinate w1,2,…,p+1 is not 
zero on 0

1pE + . 

 The equations of the desired manifold Mp+1 can be expressed in the form: 
 
    xi = f i(x1, x2, …, xp)             (p+1 < i ≤ n – r) 
(2)    xi = 0      (n – r < i). 
 
 Since (x0, z0) shall be a regular integral element, the system of equations: 
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ap(x, z) = 0, n
pG = 0, 

 
is regular in (x0, z0), and one can therefore choose one of them in the left-hand side of 
these equations, which we denote by: 
 

ψ1(x, z), ψ2(x, z), …, ψρ(x, z), 
 
in such a way that every function F(x, z) that is holomorphic at (x0, z0) and vanishes for 
all integral elements Ep in the neighborhood of (x0, z0) can be represented in the form: 
 

F(x, z) =
1

( ,i
i

A x
ρ

=
∑ z)ψi(x, z)   (Ai holomorphic at x0, z0). 

 
 In this case, we simply write: 

F(x, z) ≡ 0   (mod ψ1, ψ2, …, ψρ). 
 
One finds exactly t = n – rp+1 – p – 1 linearly independent equations among those of 

ap(x
0, z0, ∆x) = 0.  Let: 

Φh =
1 2 1 1 2 1

( )
, , , ( , , , )

p p

h
i i i i i ia d x x x

+ +∑ ⋯
⋯   (h = 1, 2, …, t) 

 
be t differential forms of ap+1 that correspond to t such independent equations, and let: 

 
Φ =

1 2 1 1 2 1, , , ( , , , )
p pi i i i i ia d x x x

+ +∑ ⋯
⋯  

 
mean a completely arbitrary form of ap+1. 

 We consider the t+1 expressions: 
 
    Φh(x, z, ∆x)  =

1 2 1 1 2 1 2 2 3 1

( )
, , , , , , , ,( , , )

p p p

h
i i i i i i i i i ia x z x z

+ + +
∆ − ∆ +∑ ⋯ ⋯ ⋯

⋯ ⋯  (h = 1, 2, …, t), 

    Φ(x, z, ∆x)  = 
1 2 1 1 2 1 2 2 3 1, , , , , , , ,( , , )

p p pi i i i i i i i i ia x z x z
+ + +

∆ − ∆ +∑ ⋯ ⋯ ⋯
⋯ ⋯ . 

 
 The last linear form is linearly independent of the higher t for (x0, z0) and also for 
every integral element (x, z) close to it since (x0, z0) is a regular element.  All (t+1)-rowed 
determinants in the coefficient matrix of this linear form are therefore ≡ 0 (mod ψ1, ψ2, 
…, ψρ).  If one then multiplies the Φh and Φ by suitable sub-determinants Uh(x, z) (a 
matrix, U(x, z), resp.) then, by addition, one obtains an expression: 
 

1

( ,
t

h
h

U x
=
∑ z) Φh(x, z, ∆x) + U(x, z) Φ(x, z, ∆z), 

 
which can be written in the form: 
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1

( ,
n

i
i

f x
=
∑ z) ∆xi 

 
with fi(x, z) ≡ 0 (mod ψ1, ψ2, …, ψρ).  Since U(x, z) can be constructed from the minors of 
any of the first t rows of any matrix, one can deduce that U(x0, z0) ≠ 0, and one is led to 
the conclusion that: 
 
 For an arbitrary differential form F in ap+1, we have: 

 

(3)   Φ(x, z, ∆x) ≡ 
1

( ,
t

h
h

A x
=
∑ z) Φh(x, z, ∆x)  (mod ψ1, ψ2, …, ψρ) 

 
(Ah(x, z) is holomorphic at x0, z0). 

 
 
 B.  Construction of a Cauchy-Kowalewskian system of differential equations. 
 
 In order to simplify the formalism, we would like to write assumption (2) for the 
desired integral manifold Mp+1 as follows: 
 
(4)    xi = xi(x1, x2, …, xp+1)   (i = 1, 2, …, n), 
 
in which we naturally have: 
    xi(x1, x2, …, xp+1) = xi   for i ≤ p + 1, 
    xi(x1, x2, …, xp+1) = 0   for i > n − r. 
 
 We must determine these functions xi(x) so that every Φ of ap+1 will be annulled when 

substituted in (4): 

1 2 1

1 2 1, , ,
1 2 1

( , , , )

( , , , )
p

p

i i i

i i i
p

x x x
a

x x x
+

+
+

∂ 
  ∂ 
∑ ⋯

⋯

⋯
d(x1, x1, …, xp+1) = 0 

 
and xi(x1, x2, …, xp, 0) represents the manifold Mp.  To this end, we next consider the 
equations: 

(5)    1 2 1

1 2 1, , ,
1 2 1

( , , , )

( , , , )
p

p

i i i

i i i
p

x x x
a

x x x
+

+
+

∂

∂∑ ⋯

⋯

⋯
= 0          (h = 1, 2, …, t). 

 
 If one thinks of the determinants that appear here as being developed in terms of the 

elements 
1

i

p

x

x +

∂
∂

 then, up to sign, the left-hand sides are equal to the expressions: 

Φh(x, z, ∆x), 
when one introduces the expressions: 
 



Introduction to the theory of systems of differential equations 32 

1 2

1 2, , ,
1 2

( , , , )

( , , , )
p

p

i i i

i i i
p

x x x
z

x x x

∂
=

∂⋯

⋯

⋯
, ∆xi =

1

i

p

x

x +

∂
∂

 

into them. 
 From the assumptions that we made about 0

pE  and Fn−r, it now follows that the 

equations: 
(6)     Φh(x

0, z0, ∆x) = 0      (h = 1, 2, …, t) 
 
can be solved in terms of the t quantities ∆xp+2 , ∆xp+3 , …, ∆xn−r .  Otherwise, one would 
have a linear relation: 

1

1

p

i i
i

xα
+

=
∆∑ +

1

n

i i
i n r

xβ
= − +

∆∑ = 0, 

 
which cannot be the case.  For the 0

1pE +  that are determined by: 

 
(7)    ∆xn-r+1 = ∆xn-r+2 = … = ∆xn = 0, 
 
we shall indeed have that w1,2,…,p+1 ≠ 0, from which the vanishing of all α follows.  One 
must then have β = 0, because otherwise, from (7), the integral Ep+1 that goes through 0pE  

would no longer be uniquely defined.  Thus, the intersection of 
1

0

pn rV
+−  and 0( )pH E  will be 

of dimension higher than p+1. 
 Equations (5) can thus be solved for the derivatives: 
 

1

1

p k

p

x

x
+ +

+

∂
∂

     (k = 1, 2, …, t), 

 
and upon setting xn−r+1, …, xn to zero, the functions: 
 

2

1

p

p

x

x
+

+

∂
∂

= 1 2

1 1 2
1 2

( , , , )
, , , ,

( , , , )
pi i i

n r
p

x x x
H x x x

x x x−

∂ 
  ∂ 

⋯
⋯

⋯
 

 

3

1

p

p

x

x
+

+

∂
∂

= 1 2

2 1 2
1 2

( , , , )
, , , ,

( , , , )
pi i i

n r
p

x x x
H x x x

x x x−

∂ 
  ∂ 

⋯
⋯

⋯
 

… 

1

n r

p

x

x
−

+

∂
∂

= 1 2

1 2
1 2

( , , , )
, , , ,

( , , , )
pi i i

t n r
p

x x x
H x x x

x x x−

∂ 
  ∂ 

⋯
⋯

⋯
 

 
appear on the right-hand side of the solution formulas, which are holomorphic in all n – r 

+
n

p

 
 
 

 arguments in the neighborhood of: 
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x1 =
0
1x ,  xn−r = 0

n rx − , 1 2

1 2

( , , , )

( , , , )
pi i i

p

x x x

x x x

∂

∂

⋯

⋯
 = 

1 2

0
, , , pi i iz
⋯

. 

 
 From the classical theorem of Cauchy and Sonja Kowalewski 1), there is precisely one 
solution: 

xi = fi(x1, x2, …, xp+1)  (i = p+2, …, n – r) 
 
of this system of partial differential equations that reduces to: 
 

fi(x1, x2, …, xp, 0) = ϕi(x1, x2, …, xp) 
 
for xp+1 = 0.  (ϕi are functions that enter into the equations (1) for Mp.) 
 A (p+1)-dimensional manifold Mp+1 in Fn−r that goes through Mp is defined by: 
 

(8) xi = xi(x1, x2, …, xp+1) = 1 2 1

( 1,2, , 1)

( , , , ) ( 2, , )

0 ( 1, , ),

i

i p

x i p

f x x x i p n r

i n r n
+

= +
 = + −
 = − +

⋯

⋯ ⋯

⋯

 

 
which is an integral manifold of the system: 
 

Φh = 0     (h = 1, 2, …, t). 
 
 We will now show that Mp+1 makes all other forms Φ in ap+1 vanish automatically, so 

it is the desired integral manifold. 
 
 C.  Proof that Mp+1 satisfies the equations ap+1 = 0.  Among the functions ψi(x, z) that 

were just introduced, perhaps the first σ of them can go in the left-hand side of: 
 

ap+1(x, z) = 0, 

 
whereas the rest of them are found among the ( )n

pG z . 

 We now consider the differential forms that correspond to ψk(x, z): 
 

ψk =
1 2 1 2

( )
, , , ( , , , )

p p

k
i i i i i ib d x x x∑ ⋯

⋯   (k = 1, 2, …, σ). 

 
By substituting in (8), they may become: 
 

(9)  
1

1

1

( 1)
p

l
k

l

ψ
+

−

=
= −∑ Vkl(x1, x2, …, xp+1) d(x1, …, xl-1, xl+1, …, xp+1). 

                                                
 1) See, e.g., E. GOURSAT, Leçons sur l’intégration des équations aux dérivées partielles du premier 
ordre, Paris 1921, pp. 2. 
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 On the other hand, we consider the forms that belong to ap+1: 

 

Φkl = dxl ψk    
1,2, ,

1,2, , 1

k

l p

σ= 
 = + 

⋯

⋯
. 

 
Let Φkl(x, z, ∆x) be the expression that one obtains by replacing 

1 2
( , , , )

pi i id x x x⋯  with: 

 

1 2 3 1 2 2 3 1, , , , , ,, ,
p pi i i i i i i ix z x z

+ +
∆ − ∆ +

⋯ ⋯
⋯  

 
in Φkl.  Under the substitution: 
 

(10)   1 2

1 2

1 2 1

, , ,
1 2 1

1

( , , , ),

( , , , )
,

( , , , )

,

p

p

i i p

i i i

i i i
p

i
i

p

x x x x x

x x x
z

x x x

x
x

x

+

+

+


 =
 ∂ = ∂
 ∂
 ∆ =

∂

⋯

⋯

⋯

⋯
 

 
Φkl(x, z, ∆x) goes to Vkl(x1, x2, …, xp+1).  We apply the result (3) to the functions Φkl(x, z, 
∆x) and use the expressions (10) for x, z, ∆x.  We then observe that with this substitution: 
 

1. All Φh(x, z, ∆x) vanish identically, because Mp+1 satisfies the differential equation 
Φh = 0; 

 
2. All ψk(x, z) with k > σ vanish, because the equations for Grassmann manifold n

pG  

are satisfied identically when one substitutes the p-rowed determinant of any 
matrix with p rows and n columns for z; 

 
3. The ψk(x, z) with k ≤ σ  reduce to: 

 
(−1)pVk,p+1(x1, x2, …, xp+1) = Vk(x1, x2, …, xp+1) , 

 
 from which we conclude that we can set: 
 
(11)   Vkl(x1, x2, …, xp+1) = Akl1V1 + Akl2V2 + … + AklσVσ . 
 

(A is holomorphic at (x0)) 
 



IV.  Existence theorems for integral manifolds. 
 

35 

 The same considerations may be applied to dψk.  It is also a form in ap+1, and one 

shows, with the same conclusions as above, that the form kdψ = dψk that is obtained 

from dψk by substitution in (8) may be written in the form: 
 

kdψ = (Bk1V1 + Bk2V2 + … + Bkσ Vσ) d(x1, x2, …, xp+1). 

 

One can also obtain kdψ  directly by differentiating (9): 

 

kdψ = , 11 2

1 2 1

VV V k pk k

px x x
+

+

 ∂∂ ∂
+ + +  ∂ ∂ ∂ 

⋯ d(x1, x2, …, xp+1), 

 
and one then has: 

, 11 2

11 2 1

k pk k
k

p

VV V
B V

x x x

σ

ν ν
ν

+

=+

∂∂ ∂+ + + =
∂ ∂ ∂ ∑⋯ . 

 
 If one uses the expressions (11) for the Vkn then one obtains a system of linear partial 
differential equations for the functions V1, V2, …, Vσ that can be solved for holomorphic 
 

1

1p

V

x +

∂
∂

, 2

1p

V

x +

∂
∂

, …,
1p

V

x
σ

+

∂
∂

, 

 
and are homogeneous in the V and their derivatives. 
 For the functions Vk(x1, x2, …, xp+1), one has: 
 
(12)    Vk(x1, x2, …, xp, 0) = 0  (k =1, 2, …, σ); 
this makes: 

(−1)p Vk(x1, x2, …, xp, 0) d(x1, x2, …, xp) 
 
the form that is obtained from ψk by the substitution: 
 
(13)    xi = xi(x1, x2, …, xp, 0)   (i =  1, 2, …, n), 
 
and (13) represents the manifold Mp that all of the forms of ap annul (as a p-dimensional 

integral manifold). 
 From the form of the functions Vk that are obtained from the system of partial 
differential equations, it follows that: 
 
(14)    V1 = V2 = … = Vσ = 0 
 
is the only solution that satisfies the condition (12). 
 One now proves, as above for Φkl and dΦ, that for any form Φ in ap+1, substitution of 

(8) produces an expression: 
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1
k k

k

A V
σ

=

 
 
 
∑  d(x1, x2, …, xp+1), 

 
which vanishes identically on account of (14). 
 Thus, since Mp+1 satisfies the differential equations ap+1 = 0, it already follows that it 

satisfies all of the equations a = 0, because ap+1 = 0 implies that every (p+1)-dimensional 

− and therefore every lower-dimensional tangent element of M p+1 − is an integral 
element. 
 Mp+1 is the desired integral manifold, and it is also the only one that satisfies the 
required conditions since Mp+1 is already uniquely determined by Φh = 0 (h = 1, 2, …, t). 
 The existence theorem that is thus proved can also be formulated in a slightly more 
precise way: 
 
 When rp+1 ≥ 0 (rp+1 = 0, resp.), (p+1)-dimensional integral manifolds go through a 
regular integral-Mp , and they depend on rp+1 arbitrary functions of p+1 variables (are 
uniquely determined, resp.). 
 
 Any of the integral-Mp near Mp+1 that were constructed above can be represented in 
the form: 

xi = gi(x1, x2, …, xp+1)   (i = 1, 2, …, n), 
 

and from this, the functions: 
(15)      gi(x1, x2, …, xp+1)   (n− r < i ≤ n) 
 
may be prescribed arbitrarily, up to the supplementary condition that: 
 
(16)    gi(x1, x2, …, xp, 0) = ϕi(x1, x2, …, xp)   (n− r < i ≤ n). 
 
By assuming (15), one can infer that Mp+1 shall lie in the manifold Fn−r: 
 

 xi − gi(x1, x2, …, xp+1) = 0   (n− r < i ≤ n) 
 
and (16) expresses the idea that these Fn−r go through the given integral-Mp. 
 One easily proves an extension of this existence theorem that is needed for many 
purposes: 
 
 If the manifolds Mp and Fn−r depend upon certain parameters α1, α2, …, ατ in the 
neighborhood of a holomorphic system of values 0 0 0

1 2, , , τα α α⋯  then the integral manifold 

Mp+1 also varies holomorphically with the α  1). 

                                                
 1) A q-dimensional manifold M(α) [which is defined in the neighborhood of a point (x0)] “depends 
holomorphically on the parameters α1, α2, …, ατ in the neighborhood of a system of values 0 0 0

1 2, , , τα α α⋯ ” 

when n – q of the coordinates x of any arbitrary point neighboring (x0) on M(α) can be represented as 
holomorphic functions of the others. 
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 Concerning the aforementioned existence proof, we can still say the following: The 
bihilomorphic transformation that takes Fn−r = Fn−r(α) to: 
 

xn−r+1 = xn−r+2 = … = xn = 0 
 
now depends on α, and the parameter α therefore enters the differential equation a = 0 

holomorphically.  One further deduces that the functions ϕi that appear in the equations 
of Mp = Mp(α) now depend on the α variables: 
 

ϕi = ϕi(x1, x2, …, xn, α1, …, ατ) 
 

(ϕi(x, α) is holomorphic for (x) = (x0), (α) = (α0)). 
 

 The Cauchy-Kowalewski system of differential equations that are obtained by 
construction on Mp+1 = Mp+1(α), like the initial conditions: 
 

fi(x1, x2, …, xp, 0) = ϕi(x1, x2, …, xn, α1, …, ατ)  (p+1 < i ≤ n – r) 
 

now depends holomorphically on the α, and a simple extension of the Cauchy-
Kowalewski theorem shows that the solutions xi = fi(x1, x2, …, xp+1) = ϕi(x1, x2, …, xp+1, 
α1, …, ατ) are holomorphic functions of the α in the neighborhood of (α) = (α0). 
 
 
 2.  Regular chains of integral elements.  If one has a sequence of regular integral 
elements: 

0 0 0 0
0 1 2 1, , , , pE E E E −⋯  

 
that relates to the integral element 0

pE , such that each 0
iE  is contained in the following 

0
1iE +  then one can speak of a regular chain: 

 
0 0 0 0 0
0 1 2 -1p pE E E E E⊂ ⊂ ⊂ ⊂ ⊂⋯  

 
that ends with 0

pE . 1)  The element 0
pE  itself does not need to be regular.  Such a chain is 

indexed by a sequence of whole numbers (we call them the characteristic numbers of the 
sequence): 

r1, r2, …, rp−1, rp, 
 
in which r i means that ir∞  integral-Ei go through 0

1iE − , or – what amounts to the same 

thing – that the polar element 0
1( )iH E −  has the dimension r i + i. 

                                                
 1) Here, as in all other cases, the notation A ⊂ B shall mean that of the two vector spaces (or manifolds) 
A, B the first one is contained in the second one. 
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 Since all of the vectors that span an integral element, together with 0
1iE + , also define 

an integral element, together with 0iE , that is contained in 0
1iE + , one has that 0( )iH E  is 

contained in 0
1( )iH E +  and that: 

r i + i + 1 ≤ r i + i, 
or: 

si = r i − ri+1 − 1 ≥ 0   (i = 1, 2, …, p−1). 
 
 If one lets r0 denote the dimension of the algebraic manifold a0 = 0 (the manifold of 

integral points) in the neighborhood of 0 0 0 0
0 1 2( , , , )nE x x x= ⋯ then the number s0, which is 

defined by: 
s0 = r0 − r1 − 1, 

 
is also positive or zero, because the r0-dimensional tangent element of a0 = 0 in (x0) 

contains the (r1+1)-dimensional polar space 0
0( )H E : 

 
a1(x

0, ∆x) = 0. 

 All of the forms da0 belong to a1. 

 One now chooses – as is always possible – any sequence: 
 

1 2

0 0 0

pn r n r n rV V V− − −⊂ ⊂ ⊂⋯  

 
of (n – ri)-dimensional vector spaces at (x0) that are contained in each other in the 
specified way and are such that the intersection of 0

in rV −  with 0
1( )iH E −  is precisely 0

iE .  If 

one has any sequence: 
(17)    

1 2 pn r n r n rV V V− − −⊂ ⊂ ⊂⋯  

 
of analogously-ordered vector spaces then they uniquely determine a regular chain: 
 
(18)    E0 ⊂ E1 ⊂ E2 ⊂ … ⊂ Ep 
 
of integral elements that are close to the 0

iE , assuming that the 
in rV −  are arbitrarily close 

to the 0

in rV −  [thus, among other things, the point (x) of V is arbitrarily close to (x0).]  One 

takes E0 to be the point (x); thus, if one has already obtained: 
 

E0 ⊂ E1 ⊂ E2 ⊂ … ⊂ Ei−1 
 
then one obtains Ei as the intersection of H(Ei−1) and

in rV − .  Due to the fact that: 

 
Ei−1 ⊂ H(Ei−1),  Ei−1 ⊂ 1in rV − −  ⊂

in rV − , 
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this intersection space indeed goes through Ei−1, and it is also exactly i-dimensional and 
close to 0

iE  when one already assumes that E0, E1, …, En are arbitrarily close to 0
0E , 0

1E , 

…, 0
1iE − , just as one assumes that the n rV

ν−  are arbitrarily close to the 0n rV
ν− . 

 Since the intersection of 
1

0
n rV −  and 0

0( )H E  is non-degenerate the same is true for the 

intersection of the tangent elements of a0 = 0 at (x0) with 
1

0
n rV − , which therefore has the 

dimension r0 – r1 – 1.  On the basis of this fact and the fact that n – r0 < n – r1 one can 
determine an (n – r0)-dimensional vector subspace of 

1

0
n rV −  that contains no tangents to a0 

= 0, and in a number of ways. 
 
 
 3.  Corollaries to the first existence theorem. The second existence theorem.  Now 
let: 
(19)    

0 1 2 pn r n r n r n rF F F F− − − −⊂ ⊂ ⊂ ⊂⋯  

 
be (n – ri)-dimensional algebraic manifolds that go through (x0) and are regular (simple) 
at (x0) and have the 0

in rV −  for tangent elements there. 

 Due to the assumptions on 
0

0
n rV − , 

0n rF − and a0 = 0 have only one point M0 = (x0) in 

common in the neighborhood of (x0).  From the existence theorem that was proved above, 
there is precisely one one-dimensional manifold M1 that that goes through M0 and is 
contained in 

1n rF − , and there is precisely one two-dimensional integral manifold M2 

through M1 that is in 
2n rF − , etc.  By induction, one concludes the existence and 

uniqueness of a sequence of integral manifolds: 
 
(20)    M0 ⊂ M1 ⊂ M2 ⊂ … ⊂ Mp 
 
that have the relationship to the sequence (19) that the sequence (18) has to the chain 
(17). 
 One can also express the second existence theorem that is thus posed as: 
 
 In a neighborhood of (x0), the sequence (19) of manifolds 

in rF −  leaves exactly one p-

dimensional manifold Mp fixed, under the requirement that Mp and 
in rF −  have an i-

dimensional intersection (i = 0, 1, 2, …, p). 
 
 In fact, the intersection of Mp and 

in rF −  must be an integral manifold since every 

lower-dimensional manifold that lies in an integral manifold is itself an integral manifold.  
If one then seeks to construct the Mp of the sequence M0, M1, M2, … then one will be 
unavoidably led to the above construction. 
 The actual meaning of the previous existence theorem first becomes clear in the 
analytical formulation. 
 Let a coordinate system: 

zi = zi(x1, x2, …, xn)   (i = 1, 2, …, n) 
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[dz1 dz2 …dzp ≠ 0 at (x0)  and 0 0 0
1 2( , , , )i nz x x x⋯ = 0] 

 
be introduced in the neighborhood of (x0) such that 0Eν  can be determined from 0pE  by 

means of the equations: 
dzν+1 = dzν+2 = … = dzp = 0  (n = 1, 2, …, p – 1). 

 
dz1, dz2, …, dzp are then linearly independent on 0

pE , i.e.: 

 
d(z1, z2, …, zp) ≠ 0 

 
on 0

pE .  Since 0

pn rV −  contains the element 0pE , we also have that dz1 dz2 …dzp ≠ 0 on 0

pn rV − , 

and it is therefore possible to find rp Pfaffian forms that vanish on 
pn rV −  and are 

independent of dz1, dz2, …, dzp and each other.  One can put them into the form: 
 

dzi − 0

1

p

ik k
k

l dz
=
∑     (p < i ≤ rp + p) 

 
by indexing the zi (i > p) in an appropriate manner.  The 0 1pn rV − −  that lies in 0

pn rV −  then 

annuls not only these forms, but also dzp and rp−1 – rp – 1 = sp−1 more Pfaffian forms, 
which can be written, if necessary by re-ordering the zi with i > rp + p, in the form: 
 

dzi −
1

0

1

p

ik k
k

l dz
−

=
∑    (rp + p < i ≤ rp-1 + p − 1). 

 
 One sees as one continues that the ordering of the zi (i > p) may be arranged so that in 
general 0

n rV
ν−  can be described by means of the equations for 0

1n rV
ν− + , along with sν + 1 

more equations: 

(21)   dzν+1 = 0, dzi − 0

1
ik k

k

l dz
ν

=
∑ = 0       (rν+1 + ν + 1< i ≤ rν + ν). 

 
 Finally, let 

0

0
n rV −  be represented by the equations for 

1

0
n rV −  and: 

 
dzi = 0     (r1 + 1 < i ≤ r0). 

 
 If one is given the point (x0) and the: 
 

prp + (p – 1)sp-1 + (p – 2)sp-2 + … + 2s2 + s1 
 
constants 0ikl  then the sequence: 
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(22)    
1 2

0 0 0

pn r n r n rV V V− − −⊂ ⊂ ⊂⋯ , 

and therefore also the chain: 
(23)    (x0) = 0 0 0 0

0 1 2 pE E E E⊂ ⊂ ⊂ ⊂⋯ , 

 
is uniquely determined.  If one varies the point (x1, x2, …, xn) on the manifold a0 = 0 in a 

neighborhood of (x0) as well as the constants l ik in the neighborhood of the system of 
values 0

ikl  in the equations: 

 

1

1

1
1

1
1

1 2

0 ( ),

0 ( 1),

:

0 ( 1 ),

0

p

i ik k p
k

p

i ik k p p
k

n r

i ik k
k

p

dz l dz p i r p

dz l dz r p i r p

V

dz l dz r i r

dz dz dz

ν

ν

ν ν

ν ν

ν ν

=

−

−
=

−

+
=

+ +


− = < ≤ +




− = + < ≤ + −





− = + + < ≤ +

 = = = =

∑

∑

∑

⋯ ⋯

⋯

 

 
(ν = p, p −1, …, 1) 

 
then one obtains all of the sequences that are close to (22) [(23), resp.]: 
 

1 2 pn r n r n rV V V− − −⊂ ⊂ ⊂⋯  

 
(x) = E0 ⊂ E1 ⊂ E2 ⊂ … ⊂ Ep, 

 
and one also obtains every integral element that is close to 0

pE  exactly once.  We also 

remark that the manifold of p-dimensional integral elements in the neighborhood of 0
pE  

has dimension: 
(24)   r0 + s1 + 2s2 + 3s3 + … + (p – 1)sp−1 + prp . 
 
 One now considers a sequence of algebraic manifolds: 
 

0 1 2 pn r n r n r n rF F F F− − − −⊂ ⊂ ⊂ ⊂⋯  

 
whose elements are defined in the following way: 
 
 

pn rF − is given by: 

 zi – ϕi(z1, z2, …, zp) = 0  (p < i ≤ rp + p – 1); 
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 1pn rF − −  is the intersection of 
pn rF − with: 

 
zp = 0,  zi – ϕi(z1, z2, …, zp-1) = 0 (rp + p < i ≤ rp-1 + p – 1). 

 
 In general: n rF

ν−  is the intersection of 1n rF
ν− +  with: 

 
zν+1 = 0, zi – ϕi(z1, z2, …, zν) = 0 (rν+1 + ν + 1 < i ≤ rν + ν) 

 
and finally 

0n rF −  is the intersection of 
1n rF −  with: 

zi – ϕi = 0      1 01

const.

r i r

ϕ
+ < ≤ 

 = 
. 

 
 When the functions (constants, resp.) ϕ, which are assumed to be holomorphic at (z) 
= 0, satisfy only the condition that for: 
 

z1 = z2 = … = zp = 0 
the Pfaffian forms: 

dzi – dϕi(z1, z2, …, zν)   
1

1

1

1,2, ,

1, by assumptionp

r i r

p

r

ν νν ν
ν

+

+

 + + < ≤ +
 = 
 = − 

⋯  

are arbitrarily close to the forms that were considered above: 
 

dzi − 0

1
ik k

k

l dz
ν

=
∑    1 1

1,2, ,

r i r

p
ν νν ν

ν
+ + + < ≤ + 

 = ⋯
, 

 
and the values of ϕi are arbitrarily small, then the manifolds F that are so defined satisfy 
the assumptions that were demanded on pp. 39.  They thus determine a p-dimensional 
integral manifold Mp .  Since Mp possesses a tangent element that neighbors on 0

pE  and 

d(z1, z2, …, zp) ≠ 0 for 0
pE , it may be represented in the form: 

 
zi = f i(z1, z2, …, zp)   (i = p+1, …, n). 

 
 The fact that Mp has n rF

ν−  in common with Mν can be deduced from: 

 
fi(z1, z2, …, zν, 0, …, 0) = ϕi(z1, z2, …, zp). 

 
 One sees from this that a choice of function (or constant) ϕ will determine a choice of 
integral-Mp .  By varying the ϕ, one obtains all p-dimensional integral manifolds that 
possess a tangent element that neighbors on 0

pE .  The totality of these integral manifolds 

therefore depends on: 
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 s0 arbitrary constants, 
 s1 “ functions of  1 variable 
 s2 “ “  2 “ 
  … 
 sp−1 “ “  p−1 “ 
 rp “ “  p “ 
 
 If we do without any mention of n rV

ν−  and the condition that the 
0

0
n rV −  that is 

determined by: 
dz1 = dz2 = … =

0r
dz = 0 

 
contains no tangent to a0 = 0, which replaces the equivalent condition that: 

 
dz1dz2 …

0r
dz ≠ 0   on a0 = 0 at (x0), 

 
then we can summarize the result so obtained in the following way: 
 
 Second existence theorem.  Let: 
 

(x0) = 0 0 0 0
0 1 2 pE E E E⊂ ⊂ ⊂ ⊂⋯  

 
be a regular chain of integral elements, and let: 
 

r0, r1, r2, …, rp 
 
be the associated characteristic numbers.  Let the coordinate system: 
 

zi = zi(x1, x2, …, xn)   0 0
1

1,2, ,

( , , ) 0i n

i n

z x x

= 
 = 

⋯

⋯
 

and the Pfaffian forms: 

ϑi = dzi − 0

1
ik k

k

l dz
ν

=
∑   

1

1

1

1,2, ,

1, by assumptionp

r i r

p

r

ν νν ν
ν

+

+

 + + < ≤ +
 = 
 = − 

⋯  

be selected in such a way that 0Eν  is determined on 0
pE  by: 

 
dzn+1 = dzν+2 = … = dzp = 0 

 
and on the polar space 0

1( )H Eν − by: 

ϑi = 0     (p < i ≤ rν + ν) 
dzn+1 = dzν+2 = … = dzp = 0, 

and that: 
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dz1dz2 …
0r

dz ≠ 0 

 
for the tangent element to a0 = 0 at (x0).  The p-dimensional integral manifold Mp , which 

possesses a tangent element close to 0
pE , may be represented in the form: 

 
zi = f i(z1, z2, …, zp)    (p < i ≤ n), 

in which: 

(23)   

1 2 1

1 2 1 1

1 2 1

1 0

( , , , , ) ( ),

( , , , ,0) ( 1),

( ,0, ,0,0) ( 2 1),

(0,0, ,0,0) ( 1 )

i p p p

i p p p

i

i

f z z z z p i r p

f z z z r p i r p

f z r i r

f r i r

−

− −

< ≤ +
 + < ≤ + −

 + < ≤ +


+ < ≤

⋯

⋯

⋯ ⋯

⋯

⋯

 

 
can be arbitrarily assigned, assuming that the values of these functions are sufficiently 
small for (z) = 0 and that for (z) = 0 the forms: 
 

dfi(z1, z2, …, zν, 0, …, 0) (rν+1 + ν + 1 ≤ i < rν + ν) 
 
are arbitrarily close to the corresponding Pfaffian forms: 
 

0

1
ik k

k

l dz
ν

=
∑ . 

 
Mp is then uniquely determined by the data (23). 
 
 On the basis of the remarks that were made at the end of the proof of the existence 
theorem (pp. 36) one can further add that if the initial data (23) are holomorphic functions 
of definite parameters α1, α2, …, ατ in the neighborhood of a system of values (α) = (α0) 
then the solution zi = f i(z1, z2, …, zp) also depends holomorphically on the α. 



 

V.  Remarks on the computational aspects of the results obtained. 
 

 1.  Determination of chains of integral elements.  For practical applications of the 
existence theorems that were just proved, it becomes necessary to develop a procedure 
for determining the regular chains and characteristic numbers.  We would like to treat this 
problem in the following form: 

 
 Problem:  Let ω1, ω2, …, ωp be p linearly independent Pfaffian forms.  Determine all 
p-dimensional integral elements on which ω1, ω2, …, ωp are linearly independent and 
intersected by a sequence of regular integral-Eν by way of: 
 

ων+1 = ων+2 = …= ωp= 0 
for ν = 0, 1, 2, …, p – 1. 
 
 Along with the ω one chooses n – p more Pfaffian forms ωp+1, …, ωn in such a way 
that  ω1ω2 …ωn ≠ 0.  For the p-dimensional integral element Ep on which  ω1, ω2, …, ωp 
are linearly independent, one can make the Ansatz: 
 

(1)    ϖi = ωi −
1

p

ik k
k

l ω
=
∑     (p < i ≤ n), 

 
and Eν is then determined by appending the equations: 
 
(2)     ωi = 0      (n < i ≤ p). 
 
 Modulo the left-hand side of (1) and (2), every form in aν may be uniquely reduced to 

the form: 
a(x, l1, l2, …, lν) ω1ω2 …ων , 

 
in which a(x, l1, l2, …, lν) is linear in each of the variables lk: 
 

lp+1,k , lp+2,k , …, lnk   (k = 1, 2, …, ν). 
 
 The functions a(x, l1, l2, …, lν) that thus appear in the forms aν may be completed 

with aν(x, l1, l2, …, lν), and one has: 

 
aν ≡ aν(x, l1, l2, …, lν) ω1ω2 …ων (mod ων+1, …ωp, ϖp+1, …, ϖn). 

 
 Modulo the same thing, one obviously has: 
 

aν−1 ≡ aν−1(x, l1, l2, …, lν−1) ω1ω2 …ων−1 

    + aν−1(x, l1, l2, …, lν−2, lν) ω1ω2 …ων−2ων + … 

    + aν−1(x, lν, l2, …, lν−1) ωνω2 …ων−1, 
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and from this, we have: 
 aν−1ων  ≡ aν−1(x, l1, l2, …, lν−1) ω1ω2 …ων , 
 aν−1ων−1  ≡ aν−1(x, l1, …, lν−2, lν) ω1ω2 …ων . 

 
 Since aν−1ων and aν−1ων−1 are contained in aν, we conclude that the aν−1(x, l1, l2, …, 

lν−1) and the aν−1(x, l1, …, lν−2, lν) occur in the expressions aν ≡ aν(x, l1, l2, …, lν) in the 

same way. 
 Because of this, in order for the p-dimensional vector space at (x) whose direction is 
determined by (1) to be an integral element it is necessary and sufficient that: 
 

ap(x, l1, l2, …, lp) = 0. 

 
 Let (x0, 0 0 0

1 2, , , )pl l l⋯ be a solution of these equations and let 0
pE  be the associated 

integral element.  How is one to know whether the chain that is determined by 0
pE  using 

(2), viz.: 
(x0) = 0 0 0 0

0 1 2 pE E E E⊂ ⊂ ⊂ ⊂⋯  

is regular? 
 
 
 2.  Search for regular chains.  We first pursue the consequences of the given 
assumption that (x0, 0 0 0

1 2, , , )pl l l⋯ determines a regular chain. 

 Since (x0) is a simple point of the manifold a0 = 0, the equations a0(x) = 0 can be 

holomorphically solved for n – r0 of the x − say,
0 1rx + , …, xn – in the neighborhood of (x0).  

In general, one has: 
 
 For an appropriate ordering of the ωi (i > p) the equations: 
 

aν(x, l1, l2, …, lν) = 0 

 
may be solved in a neighborhood of (x0, l0) in such a way that the: 
 

l ik   (i > rk + k, k = 1, 2, …, ν)  
 

are then represented as holomorphic functions of x1, x2, …,
0r

x and the remaining 
1

( k
k

r
ν

=
∑ + 

k − p) quantities lik. 
 
 Proof:  The case ν = 0 has already been settled.  We assume that the assertion has 
already been proved for the case of the equation: 
 
(3)    aν−1(x, l1, l2, …, lν−1) = 0. 
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In order to render the given indices no longer necessary we consider the variables: 
 

xi (i > r0),  l ik (i > rk + k, k = 1, 2, …, n – 1) 
 
to be principal and the remaining x, l to be parametric. 
 Every system of values for the parametric variables that lies in a neighborhood of (x0, 
l0) leaves precisely one (ν – 1)-dimensional integral element Eν−1 = (x, l1, l2, …, lν-1, lν) in 
the neighborhood of 0

1Eν −  fixed, and the condition for this is: 

 
(4)    aν(x, l1, l2, …, lν-1, lν) = 0, 

 
since the ν-dimensional vector space that goes through Eν−1 and satisfies the equations: 
 

ωi −
1

ik k
k

l
ν

ω
=
∑ = 0    (p < i ≤ n) 

 
 ωi  = 0    (ν < i ≤ p) 
 
is an integral-Eν .  If one then lets the lν vary then one obtains all of the integral-Eν that go 
through Eν−1 and satisfy the equations: 
 
 ωi = 0      (ν < i ≤ p). 
 
 The vector space V(x) that is defined by the point (x) and the last equations has Eν−1 in 
common with H(Eν−1) in any case (because ων = ων+1 = … = ωp = 0 on it).  The 
intersection of V(x) and H(Eν−1) thus remains on the original integral-Eν .  When Eν−1 is 
sufficiently close to 0

1Eν − , this intersection cannot be degenerate.  Due to the regularity of 
0

1Eν − , H(Eν−1) varies continuously when Eν−1 varies continuously in the neighborhood of 
0

1Eν −  (regularity condition 2), and the intersection of 0
1( )H Eν − and V(x0) is certainly non-

degenerate.  Otherwise, the forms ων+1, … , ωp are linearly independent on 0
1( )H Eν − , 

which cannot be true, since 0pE  lies in 0
1( )H Eν − , and all of the ωi (i = 1, 2, …, p) on 0

pE  

are linearly independent. 
 The intersection of H(Eν−1) and V(x) therefore has the dimension rν + ν – (p – ν); i.e., 
it consists of r pν ν+ −∞  integral-Eν .  If one therefore introduces the expressions for the x, l1, 
l2, …, lν-1 into equations (4) through the parametric variables then for all values of the 
parametric variables that are sufficiently close to (x0, l0) one reduces them to n – p – (rν + 
ν – p) = n – rν − ν independent equations, which can be solved for n – rν − ν of the 
variables l.  These are then holomorphic in the parameters x, l1, l2, …, lν-1 and represented 
in terms of the remaining rν + ν – p quantities lν  (they are, in fact, linear in them). 
 One finds the equations: 

aν-1(x, l1, …, lν-2, lν) = 0 
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amongst (4), and, due to their similarity with (3), the l iν (i > r ν-1 + ν – 1) can be deduced 
as holomorphic functions of the parameters x, l1, …, lν−2 and the remaining l iν, so 
equations (4) render l iν (i > r ν−1 + ν – 1), as well as (rν−1 + ν – 1 − p) − (rν−1 + ν − p) more 
= sν−1 quantities l iν soluble.  For an appropriate ordering of the ωi (rν−1 + ν – 1 ≥ i > p) 
one can assume that they are, in fact, the l iν with rν−1 + ν – 1 ≥ i > r ν-1 + ν.  The theorem 
is thus proved. 
 
 Under the assumption that there is a system of solutions 0 0 0

1( , , , )px l l⋯  that defines a 

regular chain 0 0 0
0 1 pE E E⊂ ⊂ ⊂⋯ , the equations: 

 
ap(x, l1, l2, …, lν) = 0 

 
can be completely solved in the neighborhood of 0 0 0

1( , , , )px l l⋯  by means of the 

successive solution of the partial system: 
 

(5) 

0

1 1

2 1 2

1 2

( ) 0,

( , ) 0,

( , , ) 0,

( , , , , ) 0.p p

x

x l

x l l

x l l l

=
 = =



=

⋯ ⋯

⋯

a

a

a

a

 

 
 Under back-substitution, the foregoing equations reduce to: 
 

aν(x, l1, l2, …, lν) = 0 

 
in the n – rν – n linearly independent equations in terms of the lν .  In light of the fact that 
a0(x) = 0, one therefore has only linear equations to solve at every step.  The numbering 

of the x and the ωi (i > p) and the solution of (5) can be so arranged that the (so-called 
principal) quantities: 
 

xi (i > r 0), l ik (i > r k + k, k = 1, 2, …, p) 
 
appear as holomorphic functions of the remaining (so-called parametric) variables x, l. 
 
 
 3.  Criterion for regular chains.  We will now show that, conversely, if the 
equations: 

ap(x, l1, l2, …, lp) = 0 
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can be solved in the manner that was just described in the neighborhood of the solution 
0 0 0

1( , , , )px l l⋯  then a regular chain of integral elements can be determined from 
0 0 0

1( , , , )px l l⋯ . 

 
 Proof.  We shall let n − ρν – ν (ν = 1, 2, …, p) denote the number of independent lν in 
the equations: 
(6) aν 

0 0 0 0
1 2 1( , , , , , )x l l l lν ν−⋯  = 0, 

 
although we do not know how they are connected with the characteristic numbers r of the 
(possibly non-regular) chain 0 0 0

0 1 pE E E⊂ ⊂ ⊂⋯  that is determined by 0 0 0
1( , , , )px l l⋯ . 

 Since the equations: 
aν−1

0 0 0
1 2( , , , , )x l l lν ν−⋯  = 0 

are generally contained in: 
aν 

0 0 0
1 1( , , , , )x l l lν ν−⋯  = 0, 

 
we can choose the numbering of the ωi (i > p) in such a way that one can find n − ρν – 
ν independent variables l iν (i > ρν+ ν) among the equations (6). 
 Among the equations in a0(x), we select n − ρ0 of them, in which we have denoted the 

dimension of a0(x) = 0 at (x0) by ρ0, such that at (x0) n − ρ0 of the x − say xi (i > ρ0) – can 

be solved holomorphically.  Likewise, we choose n − ρµ – µ corresponding equations 
from: 
 aµ (x, l1, l2, …, lµ−1) = 0 

 
that admit a solution from the l iµ (i > ρµ + µ ) for (x) = (x0), (l1) =

0
1( )l , …, (lµ-1) =

0
1( )lµ − .  

The totality of the equations thus obtained for m = 0, 1, 2, …, n will be denoted by: 
 
(7) ν′a (x, l1, l2, …, lν) = 0. 

 Among the: 
(8) p′a (x, l1, l2, …, lp) = 0 

we then have: 

0

(
p

k

n
=
∑ − ρk – k) 

 
equations that can be solved in the neighborhood of (x0, l0) in terms of just as many 
variables, namely, the “principal” xi (i > ρ0), l ik (i > ρk + k, k = 1, 2, …, p).  The 
statement that we just proved can now be rephrased as: 
 
 By substituting the expressions for the principal x, l that are obtained from (8) into 
ap(x, l1, l2, …, lp) = 0, all of these equations are already satisfied. 
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 In order to show that 0Eν  is regular, we make the following Ansatz for the integral-Eν 

that neighbor 0Eν : 

ωi −
1

ik k
k

l
ν

ω
=
∑ = 0  (p < i ≤ n), 

ωi −
1

ik k
k

l
ν

ω
=
∑ = 0  (ν < i ≤ p). 

 
 Modulo the left-hand side of these equations, one may set: 
 

aν ≡ aν(x, l1, l2, …, lν, λ) ω1ω2 … ων , 

 
such that: 
(9) aν(x, l1, l2, …, lν, λ) = 0 

 
is the condition for the integral-Eν . 
 The first regularity condition for 0Eν  demands that the last system of equations is 

regular for: 
(10) (x) = (x0), (l) = (l0),   (λ) = (0) 
 
(cf. pp. 28). 

 Among the equations (9), let 
0

( )k
k

n k
ν

ρ
=

− −∑  equations: 

 
(11) ν′a (x, l1, l2, …, lν, λ) = 0 

 
be so selected that for (λ) = (0) they go to (7).  By construction, this system is regular for 
the system of values (10).  We shall show that the expressions that are obtained from 
them for the principal x, l as holomorphic functions of the remaining x, l and the λ by 
substitution in (9) already satisfy these equations identically! 
 We now assume that the aforementioned substitution does not make all of the 
expressions aν(x, l, λ) vanish.  There will then be one or more relations between the 

“parametric” variables xi (i ≤ r0), l ik (p < i ≤ ρk + k, k = 1, 2, …, ν) and the λ that are 
satisfied for (λ) = (0), but not generally all values of λ.  This means that the manifold of 
integral-Eν, which satisfies the equations: 
 

(12) ωi −
1

ik k
k

ν

λ ω
=
∑ = 0    (ν < i ≤ p), 

 
has a lower dimension for general values of λ than it does for (λ) = (0), where it has the 
value: 
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Nν = ρ0 +
1

( )k
k

k p
ν

ρ
=

+ −∑ . 

 
 However, this is not the case, since, by (12), there will be at least Nν∞  integral-Eν in 
the neighborhood of 0

pE  that intersect the integral-Ep .  We shall make this conclusion 

more precise: 
 Let xi = xi(x), l ik = l ik(x, l) be the expressions that are determined by ap(x, l) = 0 in the 

manner just described, with all of the x, l in the parametric variables.  The formulas: 
 

xi = xi(x), 

(13) ωi −
1

( , )
p

ik k
k

L x l ω
=
∑ = 0    (p < i ≤ n) 

 
then deliver all of the integral-Ep that neighbor 0

pE .  Along with (12) these formulas 

deliver a collection of integral-Eν whose dimension ( )Nν λ′  is immediately obvious when 

one uses the ωk (k > n), which are expressed in terms of ω1, ω2, …, ων by (12), in (13), 
from which it might arise that: 

ωi −
1

( , )
p

ik k
k

L x l ω
=
∑ = 0   (p < i ≤ n). 

 
( )Nν λ′ = ρ0 is then the rank of the matrix of derivatives of the Lik with respect to the 

parameters x, l.  In any case, this dimension cannot be greater in special cases of λ − e.g., 
(λ) = (0) − than in the general case of λ that lie in the neighborhood of (λ) = (0).  For (λ) 
= (0), however, from (12) and (13) one obtains all of the Eν that are determined from: 
 

aν(x, l1, l2, …, lν) = 0; 

 
i.e., (0)Nν′ = Nν , and therefore ( )Nν λ′  ≥ Nν . 

 What the second regularity condition for 0Eν  entails, as we shall observe next, is that 

for any integral-Eν on which ων+1 = 0 the equations: 
 

 ωi −
1

1
ik k

k

l
ν

ω
+

=
∑ = 0    (p < i ≤ n), 

 

 ωi −
1

1
ik k

k

ν

λ ω
+

=
∑ = 0         (ν + 1 < i ≤ p), 

 
along with the following conditions, which are analogous to (9): 
 
(14) aν+1(x, l1, l2, …, lν+1, l) = 0, 
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collectively deliver 1νρ +∞  integral-Eν+1 that go through them; then, as we have just seen, 
equations (14) can be solved in such a way that the ρν+1 quantities: 
 
 liν+1      (p < i ≤ ρν+1 + ν + 1), 
 λiν+1     (ν + 1 < i ≤ p) 
stay arbitrary. 
 Now the regularity of the system of equations (14) remains valid when one 
transforms it to other direction coordinates,l λ  that enter into the new Pfaffian forms: 
 

1

n

i ik k
k

ω ρ ω
=

=∑  (i = 1, 2, …, n) (| ρik | ≠ 0) 

 
in the same manner as the l, λ do in ω.  If one is careful that the matrix (ρik) is sufficiently 
small compared to the identity matrix then the new equations: 
 

1 1 2 1( , , , , , )x l l lν ν λ+ +⋯a = 0 

 
can be solved in the same way as (14).  In particular, they therefore leave: 
 
 1il ν +     (p < i ≤ ρν+1 + ν + 1), 

 1iνλ +     (ν + 1 < i ≤ p) 

 
arbitrary, and one concludes that 1νρ +∞  integral-Eν+1 go through any Eν that satisfies the 
equation 1νω + = 0.  Due to the fact that the arbitrariness in the choice of 1νω +  is restricted 

only by inequalities, it follows that 1νρ +∞  integral-Eν+1 go through the general integral-Eν 
in the neighborhood of 0Eν , hence, just as many as go through 0Eν  itself. 

 The regularity of the chain that is determined by 0 0 0 0
1 2( , , , , )px l l l⋯ , viz.: 

 
0 0 0 0
0 1 2 pE E E E⊂ ⊂ ⊂ ⊂⋯ , 

is thus proved. 
 The rest follows from ρν = rν (ν = 1, 2, …, p); ρ0 = r0 was clear to begin with. 
 
 
    4.  Another formulation of the criterion.  The question of whether a solution 

0 0 0 0
1 2( , , , , )px l l l⋯  of: 

(16) 0 0 0 0
1 2( , , , , )px l l lν ⋯a = 0 

 
corresponds to a regular chain can sometimes be addressed as follows: 
 One first sees whether (x0) is a simple point of a0 = 0.  If this is the case and r0 is the 

dimension of a0 = 0 at (x0) then one further notes the number of equations in the left-hand 

side of: 
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(16) 0 0 0 0
1 2 1( , , , , , )x l l l lν ν ν−⋯a = 0 

 
that are independent of lν and sets them equal to n − ρν – ν.  Furthermore, let N be the 
dimension of the zero manifold of ap(x, l1, l2, …, lp) in the neighborhood of 

0 0 0 0
1 2( , , , , )px l l l⋯ .  One then always has: 

(17) r0 + ρ 1 + ρ 2 + … − ( 1)

2

p p− ≥ N, 

 
and 0 0 0 0

1 2( , , , , )px l l l⋯  therefore determines one and only one regular chain when one 

demands equality in the latter expression.  In this case, ρν = rν . 
 
 If one chooses n − ρν – ν equations from aν(x, l1, l2, …, lν) = 0 whose left-hand sides 

are independent of lν for: 
(x, l1, …, lν-1) =

0 0 0
1 1( , , , )x l lν −⋯ , 

 
and solves the equations that are thus obtained for ν = 1,2 , …, p then one can 

express
1

(
p

n
ν =
∑ − ρν – ν) of the l in terms of r0, x, and the remaining: 

 

1

(
p

ν
ν

ρ
=
∑ + ν − p) = + ρ 1 + ρ 2 + … + ρ p −

( 1)

2

p p−
 

 
l holomorphically.  It might be that all of the equations aν(x, l1, l2, …, lν) = 0 are already 

satisfied; from the criterion that was just established, 0 0 0
1( , , , )px l l⋯  determines a regular 

chain.  Otherwise, (17) is a strict inequality, and any chain that belongs to 0 0 0
1( , , , )px l l⋯  

is certainly not regular. 
 
 
 5.  Another formulation of the second existence theorem.  Now let ωi = dxi , in 
particular.  The solution 0 0 0

1( , , , )px l l⋯  of ap(x, l1, l2, …, lp) = 0 may determine a regular 

chain, and the quantities: 
 

xi     (i > r 0)            and l ik     (i > r k + k) 
 
become principal, as above. 
 The forms: 

ϑi = dxi − 0

1
ik k

k

l dx
ν

=
∑   (rν+ ν + 1 < i ≤ rν + ν) 

 
then have the properties that were required by the existence theorem on pp. 43. 
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 The equations: 

(18) dxi −
1

0

1
ik k

k

l dx
ν −

=
∑  − l iν dxν  = 0  (p < i ≤ ν), 

 dxi − λiν dxν  = 0  (ν < i ≤ p), 
together with 1): 
(19) aν

0 0 0 0 0
1 2 1( , , , , , , )x l l l lν ν νλ−⋯ = 0, 

 
determine all of the integral-Eν that go through 0

1Eν − , and thus also the polar space 
0

1( )H Eν − .  0
1Eν −  is uniquely determined on 0

1( )H Eν − , as required, by: 

 
(20) dxi = 0    (ν < i ≤ p), 
 ϑi = 0    (p < i ≤ rν + ν), 
since (18) and (20) have: 
 λiν = 0, 
 l iν =

0
il ν     (p < i ≤ rν + ν), 

 
as consequences, and the remaining l iν are uniquely determined by (19). 
 On the basis of the general existence theorems, one thus has: 
 
 The integral manifolds Mp that possess tangent elements that neighbor on 0

pE = 
0 0 0

1( , , , )px l l⋯  may be represented in the form: 

 
xi = f i(x1, x2, …, xp)  (i = p + 1, …, n). 

 
For those xi that have exactly ν parametric “derivatives:” 
 

l ik = i

k

x

x

∂
∂

  (k = 1, 2, …, p) 

the: 
fi(x1, x2, …, xν,

0 0
1, , )px xν + ⋯ , 

 
and, for the parametric xi that have no parametric derivatives, the: 
 

fi
0 0 0
1 2( , , , )px x x⋯ , 

 
can be described arbitrarily.  Therefore, it is assumed that the differences between: 
 

fi
0 0 0
1 2( , , , )px x x⋯  and  0

1x    (i > p) 

 

                                                
 1) These equations go to (9) when one sets all of the liµ (µ < ν) to zero. 
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0

i

k

f

x

 ∂
 ∂ 

and 0
ikl  

are sufficiently small. 
 
 In order to simplify the application in practice, we have made no reference to the 
ordering of the xi (i > p) in these formulas.  We also point out that the solution of the 
equation: 

aν(x, l1, l2, …, lν) = 0 

 

must always be determined in such a way that if l ik = i

k

x

x

∂
∂

is parametric then all of the 

“preceding” derivatives: 

1

ix

x

∂
∂

,
2

ix

x

∂
∂

, …,
1

i

k

x

x −

∂
∂

 

are also parametric. 
 
 
 6.  Setting up the equations aν(x, l1, l2, …, lν) = 0.  Let: 

 
Ψ1, Ψ2, …, Ψh 

 
be homogeneous forms of a that define a basis for this ideal, so that any form Φ of a can 

be represented in the form: 
(21) Φ = Ψ1Φ1 + Ψ2Φ2 + … + ΨhΦh . 
For example: 

θ1, θ2, …, θl, θ1, θ2, …, θl 
define such a basis. 
 One reduces the Ψ modulo the forms: 
 

(22) ωi −
1

p

ik k
k

l ω
=
∑     (i = p + 1, …, n) 

 
so that they are expressed only in terms of the ω1, ω2, …, ωp: 
 

Ψ ≡
1 2 1 2

1 2

, , , q q

q

p

k k k k k k
k k k

b ω ω ω
< < <
∑ ⋯

⋯

⋯ . 

 
By setting all of the coefficients

1 2, , , qk k kb
⋯

that have k1, k2, …, kq ≤ ν equal to zero, one 

obtains a basis for the system of equations aν(x, l1, l2, …, lν) = 0.  Obviously, the 

equations: 
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1 2, , , qk k kb
⋯

= 0  (k1, k2, …, kq ≤ ν) 

 
are found among the aν(x, l) = 0, and, from (21), all of the expressions aν(x, l) will be 

linear combinations of these b. 
 Since the variables lk enter into the forms (22) symmetrically, all of the 
coefficients

1 2, , , qk k kb
⋯

that belong to the same Ψ can be obtained from one of them – say, 

b1,2,…,q = b(x, l1, l2, …, lq) − by permutation of the variables: 
 

1 2 1 2, , , ( , , , , )
q qk k k k k kb b x l l l=

⋯
⋯ . 

 
 

 7.  Prolongation of a system of differential equations.  If one assumes that no 
regular chains intersect: 

ωi = 0  (n < i ≤ p) 
 
on an integral-Ep on which ω1ω2 … ωp ≠ 0 for n = 1, 2, …, p then one next seeks to 
represent Ep as the last link of a regular chain by setting the ω1, ω2, …, ωp equal to 
suitable linear combinations: 

1

p

i ik k
k

ω ρ ω
=

=∑   (i = 1, 2, …, p). 

 
 It can therefore happen that some Ep cannot be reached by any regular chain, at all.  
The integral manifolds Mp, whose tangent-Ep are all singular, in this sense, will not be 
immediately obtained from the existence theorems that were stated above.  In this case, 
which is certainly not rare, one proceeds as follows: 
 As above, let: 

(23) 1

1 2

0 ( 1, , ),

( , , , , ) 0

p

i ik k
k

p

l i p n

x l l lν

ω ω
=


− = = +


 =

∑ ⋯

⋯a

 

 
be the equations that determine the integral-Ep on which ω1ω2 … ωp ≠ 0.  If the situation 
that was just described is the case then one regards (23) as a system of differential 
equations in the variables x, l, and deals with them (the so-called prolonged system of the 
original one) in the same way as with the old system.  If the desired integral manifolds 
are still not attainable then one defines the next prolongation, etc. 
 It remains to be shown that after finitely many steps one will either come to the 
conclusion that there are absolutely no integral-Mp of the desired sort, or obtain a 
prolonged system in which every integral-Mp can be obtained by means of our existence 
theorems 1) 

                                                
 1) See E. Cartan, “Sur la structure des groupes infinis de transformations,” no. 10-12, Ann. de l’Ecole 
Normale (3) 21 (1904). 
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 We incidentally remark that if one takes into account the appearance of new variables 
l then any system of differential equations can be transformed into a system (23) of scalar 
and Pfaff equations. 
 
 
 8.  Rules for calculation in an important special case.  With regard to the 
applications to the theory of systems of partial differential equations (cf. pp. 67, 68) we 
would like to take a closer look at the case for which the basis for a is chosen in such a 

way that except for the scalar equations a0 = 0 it contains only certain Pfaffian forms: 

 
θ1, θ2, …, θh 

 
 and certain forms of degree two of the form: 
 

ψi =
2

p

ik k
k

ϖ ω
=
∑  (i = 1, 2, …, m) (ϖ are Pfaffian forms). 

 
 We therefore assume that (x) = (x0) is a simple point of the manifold a0(x) = 0, and 

that the forms θ1, θ2, …, θh are linearly independent for (x) = (x0); the Pfaffian 
forms ω1, ω2, …, ωp have the same meaning as above. 
 If there exists a linear relation: 
 
(24) ∑ ai ωi + ∑ bi qi ≡ 0 (mod a0) 

 
between the forms θ, ω then it is clear that for any of the desired integral manifolds (on 
which ω1, ω2, …, ωp shall still be linearly independent) we must have: 
 

a1 = 0, a2 = 0, …, ap = 0. 
 
 One then must add the last equation to a0 = 0 and da1, da2, …, dap to the θ.  If (x0) is 

still a simple point of the manifold: 
 

a1 = 0, a2 = 0, …, ap = 0 
 
then one recalls the procedure by which one either establishes that there are no integral 
manifolds of the desired type that go through (x0) or a prolonged system for which (x) = 
(x0) is no longer a simple point of the scalar equations, or one ultimately obtains a system 
for which (x0) is a simple point of a0 = 0 and the equations θ, together with the ω, are 

linearly independent, mod a0.  We would like to pursue this last possibility further.  We 

therefore assume that there are no relations of the form (24), and make the restriction that 
the θ, ω  also remain linearly independent for (x) = (x0). 
 Along with these p + h forms, let there be q = n – p – h more Pfaffian forms: 
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ϖ1, ϖ2, …, ϖq , 
 
which are chosen in such a way that the ω, θ, ϖ  are collectively n linearly independent 
forms at (x) = (x0). 
 According to the general procedure, we make the Ansatz: 
 

θi =
1

p

ik k
k

l ω
=

′∑   (i = 1, 2, …, h) 

ϖi =
1

p

ik k
k

l ω
=
∑   (i = 1, 2, …, q), 

 
in which we can set ikl ′ = 0 from the outset.  Only when we want to simplify the 

comparison with earlier considerations will we introduce the l ′ .  The l and l ′  collectively 
play the role that was previously played by the variables l alone. 
 The equations a1(x, l) = 0 now read: 

 

1il ′ = 0  (i = 1, 2, …, h), 

and when we set: 

ϖik ≡
1

q

ika ρ ρ
ρ

ϖ
=
∑  (mod θ1, θ2, …, θh, ω1, ω2, …, ωp), 

we get: 

il ν′ = 0  (i = 1, 2, …, h), 

 

1

q

ika lρ ρν
ρ =
∑ + … = 0  

1,2, ,

1,2, , 1

i m

j ν
= 

 = − 

⋯

⋯
 

 
for those ν > 1 equations (partial equations, resp.) for which the solution in terms of lν , 
lν′  is at issue. 

 With our previous notation, we thus have: 
 
(25) n − ρ1 – 1 = h 
 n − ρν – ν = h + σ1 + σ2 + … + σν−1, 
  
when σ1 + σ2 + … + σν−1 denotes the rank of the system of homogeneous equations: 
 

aij1 l1ν + aij2 l2ν + … + aijq lqν  = 0 
1,2, ,

1,2, , 1

i m

j ν
= 

 = − 

⋯

⋯
. 

 
 One can also say: σ1 + σ2 + … + σν-1 is the number of forms: 
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1

q

ika ρ ρ
ρ

ϖ
=
∑    

1,2, ,

1,2, , 1

i m

j ν
= 

 = − 

⋯

⋯
 

 
that are linearly independent for (x) = (x0). 
 From (25), one computes: 
 

 
1

(
p

ν
ν

ρ
=
∑ + ν – p) = p(ρ1 + 1 – p) – (p – 1)σ1 – (p – 2)σ1 − … − σp−1 , 

 
or, since q = n – h – p = ρ1 + 1 – p: 
 

 
1

(
p

ν
ν

ρ
=
∑ + ν – p) = pq – (p – 1)σ1 – (p – 2)σ1 − … − σp−1 . 

 
 On the other hand, let: 
 

ψi  ≡
,

ik
k

a ρ
ρ
∑ ϖρ ωk + 1

2
,

ijk
j k

c∑ ωjωk      (mod θ1, …, θh)  (cijk = − cikj). 

 
 We then have that: 
 

(26) 
0

1
2

1

( ) 0,

0,

0

ik

q

ik j ij k ijk

x

l

a l a l cϑ ρ ρ ρ
ρ =


 = ′ =

 − + =

∑

a

    

1,2, ,

1,2, ,

1,2, ,

i h

k p

i m

j k p

= 
 = 

= 
 < ≤ 

⋯

⋯

⋯
 

 
are the equations that were previously notated by ap(x, l) = 0.  Therefore, if N = r0 + M is 

the dimension of the manifold in the space of variables x, l that is described by (26) for 
(x) = (x0) then, from the remarks on pp. 51 one always has the inequality: 
 
(27)  M ≤ pq – (p – 1)σ1 −(p – 2)σ2 − ... − σp−1, 
 
in which the validity of the equality sign is characteristic of the existence of a regular 
chain of the desired type. 
 If the inequality sign is valid then it can just as well happen (cf. pp 53) that by 
replacing the ω1, ω2, …, ωp with other forms 1 2, , , pω ω ω⋯  that are related by: 

 

ωi =
( )

1

p
k

i k
k

u ω
=
∑    (i =  1, 2, …, p) 

 
then for the new numbers σ1, σ2, …, σp-1, M, we have: 
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M = pq – (p – 1)σ1 − (p – 2)σ2 − ... −σp-1. 
 
Obviously, σ1 + σ2 + …+ σν is equal to the number of linearly independent forms 
amongst the: 

( )

,

j
ik k

k

a uρ ρ
ρ

ϖ∑    
1,2, ,

1,2, ,

i m

j ν
= 

 = 

⋯

⋯
. 

 
We summarize the results obtained: 
 
 The basis for the ideal a consists of: 

 
 1.  The scalar equations a0(x) = 0, which define a simple r0-dimensional manifold at 

(x) = (x0); 
 
 2.  The Pfaffian forms: 

θ1, θ2, …, θh , 
 
 which are linearly independent of each other and ω1, ω2, …, ωp at (x) = (x0); 
 
 3.  Certain forms of degree two of the form: 
 

ψi =
2

p

ik k
k

ϖ ω
=
∑    (i = 1, 2, …, m). 

 
By the use of q = n – p – h of the Pfaffian forms ϖ1, ϖ2, …, ϖq , which are  independent 
of ω, θ, one sets: 

ϖik ≡ 
1

q

ika ρ ρ
ρ

ϖ
=
∑  (mod ω, θ) 

 
and computes σ1 as the number of linearly independent Pfaffian forms: 
 

(1)

1 1

q p

ik k
k

a uρ ρ
ρ

ϖ
= =

 
 
 

∑ ∑    (i = 1, 2, …, m), 

 
σ1 + σ2 as the number of linearly independent forms: 
 

(1)

1 1

q p

ik k
k

a uρ ρ
ρ

ϖ
= =

 
 
 

∑ ∑    (i = 1, 2, …, m), 

 
(2)

1 1

q p

ik k
k

a uρ ρ
ρ

ϖ
= =

 
 
 

∑ ∑       
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etc., and finally  σ1 + σ2 + … + σp-1 is the number of linearly independent forms that 
appear in: 

( )

1 1

q p
j

ik k
k

a uρ ρ
ρ

ϖ
= =

 
 
 

∑ ∑    
1,2, ,

1,2, , 1

i m

j p

= 
 = − 

⋯

⋯
 

 
for (x) = (x0).  The ( )j

ku are therefore to be considered to be unknowns. 

 
 One further prolongs the resulting system of differential equations by the Ansatz: 
 

ϖρ =
1

p

k k
k

lρ ω
=
∑    (ρ = 1, 2, …, q) 

 
and lets r0 + M denote the dimension of the manifold that is defined by the scalar 
equations of the new system in the neighborhood of (x) = (x0), with l arbitrary. 
 
 One then always has: 
 

M ≤ pq – (p – 1)σ1 – (p – 2)σ2 − … − σp−1, 
 
and the p-dimensional integral element at (x) = (x0) is representable as the final link in a 
regular chain when and only when one has strict equality. 
 
 In the last case, the general integral manifold that passes through the neighborhood of 
(x) = (x0) depends on: 
 
 s0 = r0 – p – q arbitrary constants, 
 s1 = σ1 “ functions of 1 variable, 
 s2 = σ2 “ “ 2 variables, 

… 
 sp−1 = σp−1 “ “ p – 1  “, 
 rp = q − σ1 − σ2 − ... − σp−1  “ “ p   “. 
 
 In order to define these arbitrarily determined pieces of Mp more precisely, one needs 
only to specify that the ( )k

iu  be constants, in such a way that among the aforementioned 

Pfaffian forms just as many of them are linearly independent as for the undetermined u.  
If one then computes 1 2, , , pω ω ω⋯  from: 

 

ωi =
( )

1

p
k

i k
k

u ω
=
∑   (i = 1, 2, …, p) 

then regular integral-Eν will intersect: 
 

1 2 pν νω ω ω+ += = =⋯ = 0 
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on the integral-Ep with ω1ω2 ...ωp ≠ 0 that goes through (x0).  Therefore, everything has 
been prepared for the application of the existence theorem. 
 One observes that something was not said in the foregoing cases for all of the 
integral-Ep, independently of the direction of the elements, as long as ω1ω2 ...ωp ≠ 0.  It 
consists of the statement that everything is linear in the determination of the l standard 
equations. 
 The procedure that was given then proves to be suitable when one is compelled to go 
to more prolongations of a system (cf. the remarks on pp. 56).  Under prolongation the 
system retains the assumed normal form, and indeed even when one prolongs an arbitrary 
system one arrives at a system for which the considerations that we just presented are 
applicable. 
 With the previous notation (cf. section 7), let: 
 

(23)  1

1 2

0 ( 1, , ),

( , , , , ) 0

p

i ik k
k

p p

l i p n

x l l l

ω ω
=

− = = +

=

∑ ⋯

⋯a

 

 
be the preceding Pfaffian system that is obtained from a system with the ideal a by 

prolongation.  The ideal U that belongs to (23) has a basis that consists of: 

 
 the scalars:  ap(l1, l2, …, lp), 

 the Pfaffian forms: 
 dap(l1, l2, …, lp), 

 

θi = ωi −
1

p

ik k
k

l ω
=
∑   (i = p + 1, …, n), 

 
 the forms of degree two: dθi. 
 
 Since the forms ωi (i =  1, 2, …, n) involve only the variables x, one can represent the 
dωi as linear combinations of the products ωkωl, and by reduction mod θp+1, θp+2,...,θn 
they may even be expressed in terms of the ωkωl (k < l ≤ p) alone.  After these 
transformations, the forms: 

dθi = dωi −
1

p

ik k
k

dl ω
=
∑ −

1

p

ik k
k

l dω
=
∑  

take the desired form: 

ψi =
2

p

ik k
k

ϖ ω
=
∑ , 

 
and, together with ap(x, l1, …, lp), dap(x, l), and the θ, they still define a basis for U.



 

VI.  Applications and Examples 
 

 1.  Theorem on total differentials.  Any differential form ϖ over the ring of 
holomorphic functions at a point0 0

1( , . )nx x⋯ whose derivative vanishes identically is a 

total differential. 
 
 Proof:  By normalization, we set: 
 

  ϖ =
1 2 1 2

1 2

, , , 1 2
, , ,

1
( , , , ) ( , , , )

! q q

q

n

i i i n i i i
i i i

a x x x d x x x
q ∑ ⋯

⋯

⋯ ⋯ , 

 
in which the 

1 2, , , qi i ia
⋯

are skew-symmetric in the indices.  We must determine a form: 

 

θ =
1 2 1 1 2 1

1 2 1

, , ,
, , ,

1
( , , , )

( 1)! q q

q

n

i i i i i i
i i i

v d x x x
q − −

−
− ∑ ⋯

⋯

⋯  

 
  (

1 2 1, , , qi i iv
−⋯

skew-symmetric) 

such that: 
 

 dθ − ϖ =
1 2 1 1 2 1

1 2 1

, , ,
, , ,

1
( , , , )

( 1)! q q

q

i i i i i i
i i i

dv d x x x
q − −

−
− ∑ ⋯

⋯

⋯  

(1)  −
1 2 1 2

1 2

, , ,
, , ,

1
( , , , )

! q q

q

i i i i i i
i i i

a d x x x
q ∑ ⋯

⋯

⋯ = 0 . 

 

 We regard this as a differential equation in the n +
1

n

q

 
 + 

 variables x, v and we can 

formulate our problem in the following way: Determine an n-dimensional integral 
manifold of (1) that is representable in the form: 
 

1 2 1, , , qi i iv
−⋯

=
1 2 1, , , 1 2( , , , )

qi i i nf x x x
−⋯

⋯ . 

 
 To this end, we seek an n-dimensional integral element on which d(x1, x2, …, xn) ≠ 0 
and is such that a regular integral chain intersects: 
 

dxi = 0   (v < i ≤ n) 
for v = 0, 1, 2, …, n – 1. 
 By substitution in (1) for the coefficients 

1 2
( , , , )

qi i id x x x⋯ (up to sign), the Ansatz: 

 

1 2 1 1 2 1, , , , , , ,
1

q q q q

q

n

i i i i i i i i
i

dv l dx
− −

=

=∑⋯ ⋯
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gives the result: 
 
 

1 2 1 2 1 2 1 1 2 , 1 2, , , , , , , , , , , , , , ,q q q q q q qi i i i i i i i i i i i i i iL l l l
− − −

= − − −
⋯ ⋯ ⋯ ⋯

⋯
2 1 1 1 2 ,, , , , , , ,( 1)

q q q

q
i i i i i i il a

−
− + −

⋯ ⋯
, 

 
in which the indices are skew-symmetric. 
 Since d(dθ – ϖ) = 0, by assumption, dθ – ϖ defines a basis for the ideal a, and the 

equations aν(x, l1, …, lν) = 0 are equivalent to: 

 
(2)  

1 2, , , qi i iL
⋯

= 0   (i1 < i2, …, < iq ≤ ν).  

 
 One must regard all of the 

1 2 1, , , ,qi i il ν−⋯
 as the variables lν .  One sees that equations (2) 

differ from the given aν−1(x, l1, …, lν−1) = 0 by the appearance of: 

 

1 2, , , ,qi i iL ν⋯
= 0 (i1 < i2, …, < iq-1 < ν), 

 
and that the latter succeeds in determining the corresponding 

1 2, , , ,qi i il ν⋯
. The regularity of 

the desired chain follows from this and therefore also the existence of an integral 
manifold with the desired properties. 
 It is also easy determine the arbitrary functions that enter into the general solution of 
the problems; however, we would therefore not wish to dwell on this fact, especially 
since the indeterminacy of the solution can be established directly in this case. 
 One has two forms θ1, θ2 for which: 
 

dθ1 = ϖ,  dθ1 = ϖ, 
 
so we have d(θ1 − θ2) = 0, from which, by an application of the theorem that we just 
proved it follows that θ1 and θ2 differ by a total differential.  Conversely, it then follows 
from  θ1 = θ2 + dϑ that dθ1 = dθ2. 
 
 
 2.  Completely integrable Pfaff systems.  A system of differential equations: 
 

θ1 = 0, θ2 = 0, …, θl = 0, 
 
in which the Pfaffian forms in the left-hand side are: 
 

θi =
1

n

ik k
k

a dx
=
∑ , 

 
is called a Pfaffian system, and, in particular, it is called completely integrable when θ1, 
θ2, …, θl already define a basis for the differential ideal that they generate, hence, when: 
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dθi ≡ 0 (mod θ1, θ2, …, θl)  (i =  1, 2, …, l). 
 

 With no loss of generality, we can assume that the q are linearly independent and 
perhaps choose them so that they are linearly independent in the dxi with i > n – l in a 
neighborhood of 0 0

1( , , )nx x⋯ .  Consequently, there can be no integral manifolds of 

dimension higher than n – l, but there is always one of dimension n – l. 
 By substitution in the θi as coefficients of dxν , the Ansatz: 
 

dxi =
1

n l

ik k
k

l dx
−

=
∑  (i > n – l) 

then gives the expressions: 

 Liν = ik k
k n l

a l ν
> −
∑ + aiν , 

 
and the new equations that enter aν(x, l1, …, lν) = 0, when compared to aν−1(x, l1, …, lν−1) 

= 0, are: 
(3) Liν = 0    (i = 1, 2, …, l). 
 
 All lkν are uniquely determined from (3); there are no parametric l ik, and all xi are 
parametric (because we have no equation a0 = 0).  From the remarks on pp. 54, we 

conclude: 
 In the neighborhood of 0 0 0

1 2, , , nx x x⋯  the integral-Mn−l can be represented in the form: 

 
(4) xi = fi(x1, x2, …, xn-l)   (i > n – l) 
 
and they depend on exactly l constants, since the values: 
 

0 0 0
1 2( , , , )n l i n lf x x x− + −⋯ = ci  (i = 1, 2, …, l) 

 
can be assigned arbitrarily.  There is thus exactly one (n – l)-dimensional integral 
manifold through each point in the neighborhood of (x0). 
 As long as the c remain in the neighborhood of the value ci =

0
1n lx − + , the Mn−l depend 

holomorphically on the c; i.e., the right-hand sides of (4), fi(x1, x2, …, xn-l) = fi(x, c) are 
holomorphic functions of c.  Due to the fact that: 
 

fn-l+i(x
0, c) = ci , 

 
 its functional determinant in the c is different from zero.  By solving the equation: 
 
(5) xi − fi(x1, x2, …, xn-l, c1, c2, …, cl) = 0  (i > n – l) 
 
for c, one obtains the equations: 

Fi(x1, x2, …, xn) = ci  (i =1, 2, …, l), 
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in which the left-hand sides represent so-called integrals.  By the “integral” of a 
completely integral Pfaffian system, one generally understands that term to mean a 
function that takes a constant value for any integral manifold. 
 The functions Fi(x1, x2, …, xn) define a complete system of integrals, in the sense that 
any other integral Φ(x1, x2, …, xn) that is holomorphic at (x0) can be expressed as a 
function of the F.  Namely, let ϕ(c1, c2, …, cl) be the holomorphic functions in (c1, c2, …, 
cl) =

0 0
1( , , )n l nx x− + ⋯ that reduce to Φ when one considers (5).  Then: 

 
Φ(x1, x2, …, xn) − ϕ(F1, F2, …, Fl) 

 
is an integral that vanishes on all integral-Mn−l.  However, an integral-Mn−l goes through 
each point in the neighborhood of (x0), from which it follows that: 
 
 Φ(x1, x2, …, xn) = ϕ(F1, F2, …, Fl). 
 
 For every integral Φ one obviously has: 
 

dΦ ≡ 0  (mod θ1, θ2, …, θl). 
 
In particular, one has: 
(6) dFi ≡ 0  (mod θ1, θ2, …, θl) (i =  1, 2, …, l), 
 
and since the dFi are linearly independent, one can use these instead of the θ as a basis for 
the ideal a. 

 Conversely, if one has a system of l linearly independent Pfaffian equations [at (x0)]: 
 
(7) θ1 = 0, θ2 = 0, …, θl = 0,  
 
and l functions F1, F2, …, Fl whose differentials at (x0) are linearly independent and 
satisfy the congruence (6) then (7) is completely integrable.  One then has: 
 
 θi ≡ 0 (mod dF1, dF2, …, dFl), 
from which it follows that: 
 dθi ≡ 0(mod θ1, θ2, …, θl). 
 
 One must ultimately remember that systems of ordinary differential equations are also 
obtained from completely integrable systems (for l = n – 1). 
 
 
 3.  Differential equations for the characteristic surfaces in spaces of two complex 
variables.  In four-dimensional space R4 , when the two complex variables: 
 

x = x1 + ix2,  y = x3 + ix4 
 
are two-dimensional integral manifolds of the system: 
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(8) d(x, y) = 0, ( , )d x y = 0  1 2

3 4

x x ix

y x ix

= − 
 = − 

 

or: 
d(x1, x3) − d(x2, x4) = 0, d(x1, x4) − d(x2, x3) = 0 

 
they are precisely the characteristic surfaces, i.e., surfaces that are representable as the 
null hypersurface of a holomorphic function F(x, y) = 0. 
 From (8), it follows that one cannot also have d(x, )x = 0 for a two-dimensional 
integral element E2; therefore, let dx = dx  = 0.  Otherwise, all three 
differentials , ,dx dy dzof dx will be linearly dependent on E2.  As long as one is not 
dealing with the integral manifold: 
 

x = const., x = const., 
 

one can therefore make the Ansatz: 
 
  y = f(x, )x , 
 y = g(x, )x  
 
for the integral-M2, and one obtains from (2): 
 

f

x

∂
∂

= 0, 
g

x

∂
∂

= 0, 

and therefore: 
y = f(x), ( )y f x=     Q.E.D. 

 
 Every vector E1 in R4 is an integral element, and exactly one integral-E2 goes through 
every E1.  If z1, z2, z3, z4 are the direction components of E1 then: 
 
   z1 ∆x3 − z3 ∆x1 − z2 ∆x4 + z4 ∆x2 = 0, 

z1 ∆x4 − z4 ∆x1 − z2 ∆x3 + z3 ∆x2 = 0 
 
are the equations a2(x, z, ∆z) = 0 for the polar element H(E1).  Only for  z1 = z2 = z3 = z4 = 
0 are they linearly dependent.  One therefore always has r2 + 2 = 2; i.e., r2 = 0. 
 With the help of the first existence theorem (pp. 29) we then state the following 
theorem, which is due to Levi-Civita: exactly one characteristic surface goes through any 
regular analytical curve segment. 
 
 
 4.  Partial differential equations.  The true significance of the theory that we just 
developed is clear from the remark that any system of partial differential equations in 
arbitrarily many unknowns and arbitrarily many equations can be handled by the calculus 
of differential forms. 
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 We then consider, perhaps, the case of a system of h partial differential equations of 
second order: 
 

2 2 2

1 2 2 2
1 1 1 2

, , , , , , , , , , , ,i n
n n

z z z z z
F x x x z

x x x x x x

 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 

⋯ ⋯ ⋯ = 0 (i = 1, 2, …, h) 

 
in the unknowns z(x1, …, xn). 
 The integration of these systems is equivalent to the problem of determining all of the 
n-dimensional integral manifolds that are representable in the form: 
 
 z  = ϕ (x1, …, xn), 
 pi = ϕi (x1, …, xn), 

r ik = ϕik(x1, …, xn) 
 
for the systems of differential equations that are composed of the h equations of degree 0: 
 

Fi(x1, x2, …, xn, z, p1, …, pn, r11, r12, …, rnn) = 0 (i = 1, 2, …, h) 
 

and the n + 1 Pfaff equations: 

(9) 1

1

0,

0

n

k k
k

n

i ik k
k

dz p dx

dp r dx

=

=

− =

− =

∑

∑
  (i = 1, 2, …, n). 

 
 In this way, any system of partial differential equations turns into to a system of 
scalar and Pfaff equations. 
 The previously-remarked situation that it is sometimes impossible to represent the 
integral-Ep in the form (9) as the final link of a regular chain corresponds precisely to the 
well-known fact that a system of partial differential equations can lead to the given 
independent equations by restating the integrability conditions. 



 

Appendix. 
 

The Main Theorems of Lie Group Theory. 
 

 1.  Definition of a Lie group.  An r-parameter Lie group germ is a collection of 
elements that can be represented by symbols: 
 

1 2, , , ra a aS
⋯

 

 
with r real or complex numbers a1, a2, …, ar as indices, and between which relations of 
the following type exist: 
 
 1.  An element, perhaps: 

S0 = S0,0,…,0 , 
 
is distinguished as the so-called identity element. 
 
 2.  One assumes that when the systems of values (a1, a2, …, ar), (b1, b2, …, br) lie in a 
certain neighborhood U of the system of values (0, 0, …, 0) there is a multiplication of 
both elements: 

Sa =
1 2, , , ra a aS
⋯

, Sb = 
1 2, , , rb b bS
⋯

 

 
that is defined, and which leads to a uniquely determined element: 
 

1 2, , , rc c cS
⋯

= Sa Sb . 

 
 The multiplication law will be described by: 
 

cν = ϕν(a1, a2, …, ar; b1, b2, …, br) (ν = 1, 2, …, r) 
 
in which the ϕν(a, b) are analytical functions that are holomorphic for all (a), (b) in U. 
 
 3.  We have: 

Sa S0 = S0 Sa = Sa , 
i.e.: 

ϕν(a1, a2, …, ar; 0, 0, …, 0) = ϕν(0, …, 0, a1, a2, …, ar) = aν (ν =1, 2, …, r), 
and: 

1

1 2

( ( , ), , ( , ))

( , , , )
r

r

a b a b

a a a

ϕ ϕ∂
∂

⋯

⋯
≠ 0 

for (a) = (b) = (0). 
 
 4.  The associativity law: 

Sa(Sb Sc) = (Sa Sb) Sc 
 
holds when all of the elements being multiplied satisfy condition 2. 
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 According to 3, the equation: 
Sx Sb = Sc 

 
can be solved for Sx only when (b) and (c) are sufficiently close to (0), and the solution is 
uniquely determined when one further assumes that (x) lies in a fixed, sufficiently small 
neighborhood of the system of values (0).  In particular, we can solve: 
 

Sx Sa = S0 , 
and by equating: 

Sa (Sx Sa) = (Sa Sx) Sa = Sa 
with: 

S0 Sa = Sa , 
 
it then follows for sufficiently small a that: 
 

Sx Sa = S0 , 
 
due to the uniqueness of the solution Sy of: 
 

Sy Sa = Sa . 
 
 There is therefore an inverse Sx =

1
aS−  with the property: 

 
1

aS− Sa = Sa 
1

aS− = S0 . 

 The equation: 
Sa Sx = Sc  

can then be uniquely solved for: 
Sx =

1
aS− Sc , 

 
which one can easily conclude from the fact that: 
 

1 2

1 2

( , , , )

( , , , )
r

rb b b

ϕ ϕ ϕ∂
∂

⋯

⋯
≠ 0 

for (a) = (b) = (0). 
 In the sequel, we will assume for all of the elements with which we will be concerned 
that the parameters (= indices) lie in a sufficiently small neighborhood of (a) = (0).  
Furthermore, we will simplify the phrase “group germ” to “group.” 
 
 
 2.  The invariant Pfaffian forms ω.  Structure constants.  Let Sa+ da be an element 
that corresponds to the parameter values: 
 

a1 + da1, a2 + da2, …, ar + dar, 
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in which we understand da1, da2, …, dar to mean that all of the computations will be 
regarded as infinitesimal quantities in which all of the products that they define of second 
and higher order will be ignored. 
 For the element: 

Sc =
1

aS−  Sa+ da , 

one then computes: 
ϕν(a, c) = aν + daν  (ν = 1, 2, …, r), 

from which it follows tht: 
cν = ων(a, da)   (ν = 1, 2, …, r), 

 
when one understands ων(a, da) to mean the linear form in the da that is defined by: 
 

(1) daν =
1

0

( , )r

c

a c

c
ν

µ µ

ϕ
= =

 ∂
  ∂ 

∑  ωµ(a, da). 

 
 The expressions ων(a, da) are regarded as Pfaffian forms over the ring R of 
holomorphic functions of a1, a2, …, ar at (a) = (0) and play an important role in the 
theory of Lie groups. 
 Let Sk =

1 2, , , rk k kS
⋯

be an arbitrary element of the group.  Due to the fact that: 

 
 1

aS− Sa+da  = (Sk Sa)
−1Sk Sa+ da 

and: 
 Sk Sa  = Sϕ (k, a) , 

 Sk Sa+ da = Sϕ (k, a)+dϕ (k, a)   (dϕν(k,a) =
( , )k a

da
a

ν
µ

µ µ

ϕ ∂
  ∂ 

∑ ), 

we have: 
 ων(a, da) = ων(ϕ(k, a), dϕ(k, a)); 
 
i.e., the Pfaffian forms: 

ω1(a, da), ω2(a, da), …, ωr(a, da) 
 
remain invariant under the substitutions: 
 
(2) aν → ϕν(k1, …, kr; a1, …, ar)  (ν = 1, 2, …, r). 
 
 We thus determine all of the forms in the ring of differential forms over R that remain 
invariant under the latter substitution!  Let: 
 

Φ =
1 2 1 2

1 2

, , ,
, , ,

r p

p

r

i i i i i i
i i i

g da da da∑ ⋯

⋯

⋯  

 
be such a differential form of degree p.  From (1), one can also express it in the form: 
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(3) Φ =
1 2 1 2

1 2

, , , p p

p

r

i i i i i i
i i i

h ω ω ω
< < <
∑ ⋯

⋯

⋯ . 

 
 Due to the invariance and the linear independence of the product of the ω’s, the 
coefficients 

1 2, , , pi i ih
⋯

 must remain separately invariant when such an expression undergoes 

the substitution (2).  For each of these coefficients h, one thus has: 
 

h(a1, a2, …, ar) = h(ϕ1( k, a), ϕ2( k, a), …, ϕr( k, a)), 
 
from which it follows for (a) = (0) that: 
 

h(0, 0, …, 0) = h(k1, k2, …, kr) 
 
when one regards ϕν(kν , 0); i.e., h is a constant. 
 
 With this, in order for a differential form Φ to remain invariant under the substitution 
(2) it is necessary and sufficient that when it is expressed in the form (3) it has nothing 
but constant coefficients. 
 
 In particular, the constant linear combinations of the ω: 
 

h1ω1 + h2ω2 + … + hrωr  
 
are characterized as the Pfaffian forms that are invariant under (2). 
 Due to their invariance under the substitutions (2), the differential forms: 
 

dω1, dω2, …, dωr  
 
go to products ωiωk that are linear combinations with constant coefficients.  We write: 
 
(4) dων = 1

2
,

cρσ
ν ρ σ

ρ σ
ω ω∑   (cρσ

ν = −cσρ
ν ). 

 
 For reasons that we shall explain, the constants cρσ

ν  that appear in this expression are 

called the structure constants of the group.  They satisfy certain quadratic relations that 
one obtains by differentiating (4): 
 

d dων = 1
2

,

c dρσ
ν ρ σ

ρ σ
ω ω∑ − 1

2
,

c dρσ
ν ρ σ

ρ σ
ω ω∑  

or: 
c dρσ

ν ρ σ
ρ

ω ω∑ = 0. 

 
 By taking (4) into account, one then has: 
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1
2

, , , 1

r

c cρσ αβ
ν ρ α β γ

ρ α β γ
ω ω ω

=
∑ = 0 

or: 

(5) 
1

( )
r

c c c c c cαβ ργ βγ ρα γα ρβ
ρ ν ρ ν ρ ν

ρ =

+ +∑ = 0 (ν, α, β, γ = 1, 2, …, r). 

 
 
 3.  Determination of multiplication formulas from the forms ω.  The substitutions 
(2) are characterized by the property that they leave the forms ω1, ω2, …, ωr invariant. 
 
 Proof:  Let 1 2, , , rω ω ω⋯  be the same forms as ω1, ω2, …, ωr, only with 1, , ra a⋯ ( 

1, , rda da⋯ , resp.) written in place of a1, …, ar (da1, …, dar, resp.). 

 The Pfaffian system: 
(6) νω − ων = 0  (ν = 1, 2, …, r) 

 
in the 2r variables a, a  is completely integrable, since: 
 

d νω − dων = 1
2 ( )cρσ

ν ρ σ ρ σω ω ω ω−∑ ≡ 0  (mod 1ω − ω1, …, rω − ωr). 

 
 The left-hand sides are linearly independent in the 1da ,…, rda , and thus there is a 
solution of the form: 

aν = fν(a1, …, ar)  (ν = 1, 2, …, r) 
 
that is holomorphic at the point (a) = (0) and takes arbitrary (sufficiently small) values k1, 
…, kr for (a) = (0).  Since this solution is uniquely determined by the initial data, and, on 
the other hand, since the functions: 
 
(7) aν = ϕν(k1, k2, …, kr; a1, …, ar) (ν = 1, 2, …, r) 
 
satisfy the differential equations (6) and the same initial conditions, they give the general 
solution of (6).  Q.E.D. 
 
 
 4.  Isomorphisms.  Two r-parameter Lie groups G andG are called isomorphic when 
their elements: 

Sa =
1 1, , , ra a aS
⋯

 (
1 1, , , ra a a aT T=
⋯

, resp.) 

 
can be related to each other with the help of a transformation that is biholomorphic in the 
neighborhood of (a) = (0), ( )a = (0): 
 

aν = 1 2( , , , )rg a a aν ⋯  ↔  1( ,a g aν ν= a2, …, ar) 
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(gν(0, 0, …, 0) = 0, ν = 1, 2, …, r) 
 
in such a way that from: 

Sa Sb = Sc 
one infers the relations: 

( ) ( ) ( )g a g b g cT T T= , 

and conversely, from: 

a cbT T T=  

one infers that: 

( ) ( )( )g a g cg b
S S S= . 

 
 If we let ( , )a daνω denote the Pfaffian forms that are defined by: 

 
1

( , )a a da a daT T Tω
−

+ =  

then from the fact that: 
1
( ) ( ) ( ) ( ( , ))g a g a dg a g a daS S S ω

−
+ =
ɶ

 

we conclude that: 

(8) 
1

( ( ), ( )) ( , )
r

g a dg a h a daν νµ µ
µ

ω ω
=

=∑            (ν = 1, 2, …, r). 

 
 The determinant that is formed from the constants hνµ is non-zero, since it is equal to: 
 

1 2

1 2 0

( , , , )

( , , , )
r

r a

g g g

a a a
=

 ∂
 ∂ 

⋯

⋯
. 

 
 Due to the invariance of the differential ring operations, the Pfaffian forms on the 
left-hand side of (8) have the same derivatives: 
 

dων = 1
2

,

cρσ
ν ρ σ

ρ σ
ω ω∑  

as the original ω’s.  One thus has: 
 

1
2

, , ,

d h c h hρσ
νµ µ ν ρα σβ α β

µ ρ σ α β
ω ω ω

 
= 

 
∑ ∑ , 

 
and from this it follows that: 

1
2d cαβ

λ ν α βω ω ω= ∑ , 

with: 
(9)        

, ,

c c h h hαβ ρσ ν
λ ν λ ρα σβ

ν ρ σ
= ∑ , 
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in which ( )k
ih  denotes the inverse matrix to (hik): 

 
h hν

λ νµ = δλµ . 
 
 For isomorphic groups G and G  the structure constants c,c have the relation to each 
other that is expressed by (9). 
 Conversely, the isomorphism of the groups G and G  follows from the existence of 
relation (9). 
 
 Proof: From earlier remarks, one can obtain the multiplication formula in G: 
 

Sa Sb = Sϕ (a,b) 
in such a way that the substitutions: 
 
(10) aν → ϕν(k1, …, kr, a1, …, ar) (n = 1, 2, …, r) 
 
leave the ω1, ω2, …, ωr invariant and the system of values (0, 0, …, 0) goes to (k1, …, kr).  
Correspondingly, if ϕ are the functions that appear in: 
 

( , )a b a b
T T Tϕ=  

under the substitution:  

1 1( , , , , , )r ra k k a aν νϕ→ ⋯ ⋯  

 
then the 1 2, , , rω ω ω⋯ , or – what amounts to the same thing – the forms: 

 

1

( , ) ( , )
r

a da h a daν νµ µ
µ

θ ω
=

=∑   (ν = 1, 2, …, r) 

 
are left unchanged, and the condition( ,0)k kν νϕ = is satisfied. 

 Since one has, from (9), that: 
dθν = 1

2
,

cρσ
ν ρ σ

ρ σ
θ θ∑ , 

the Pfaffian system: 
( , )a daνθ − ων(a, da) = 0  (ν = 1, 2, …, r) 

is completely integrable: 
 

d(θν – ων) = 1
2

,

( )cρσ
ν ρ σ ρ σ

ρ σ
θ θ ω ω−∑ ≡ 0  (mod θ1 – ω1, …, θr – ωr). 

 
 There is therefore a solution: 
 
(11) 1( ,a g aν ν= a2, …, ar) (ν = 1, 2, …, r) 
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with: 
(0,gν 0, …, 0) = 0, 

 
and this comes about by means of a biholomorphic transformation that takes the systems 
of forms: 

ω1, ω2, …, ωr; θ1, θ2, …, θr 
into each other. 
 The substitutions that are defined by: 
 

( )g aν → ( ( ), ( ))g k g aνϕ  

 
therefore leave theω1, ω2, …, ωr invariant and take (0)gν to: 

 
( ( ), (0)) ( ( ),0) ( )g k g g k g kν ν νϕ ϕ= = , 

 
and therefore take (0, 0, …, 0) to (k1, k2, …, kr).  They thus represent the same 
substitution as (10), and it follows that: 
 

( ( ), ( )) ( ( , ))g k g a g k aν νϕ ϕ= . 

 In other words; from: 
Sa Sb = Sϕ (a,b) 

it follows that: 

( ) ( ) ( ( , ))g k g a g k aT T T ϕ= . 

 
 Due to the invertibility of the transformation (11), we also have the invertibility of 
this relation, and the isomorphism of the groups G and G  is proved. 
 
 
 5.  Determination of a group with given structure constants.  Not every system of 

21
2 ( 1)r r − constants cρσ

ν  can be occur as the system of structure constants of an r-

parameter Lie group; in any case, relation (5) must be satisfied.  However, the existence 
of this relation is, as we shall see, already sufficient for the existence of an associated Lie 
group. 
 
 If the 21

2 ( 1)r r −  constants: 

 
cρσ

ν  (ν, ρ, σ = 1, 2, …, r, cρσ
ν = −cσρ

ν ) 

satisfy the relations: 

(12) 
1

( )
r

c c c c c cαβ ργ βγ ρα γα ρβ
ρ ν ρ ν ρ ν

ρ =

+ +∑ = 0      (α, β, γ, ν = 1, 2, …, r) 

 
then there are r linearly independent Pfaffian forms: 
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ων = 1
1

( ,
r

b aνµ
µ =
∑ a2, …, ar) daµ 

whose derivatives are: 
(13)  dων = 1

2
,

cρσ
ν ρ σ

ρ σ
ω ω∑ . 

 Proof: If one starts with: 

ων =
1

r

bνµ
µ =
∑ daµ 

in (13) then one obtains: 
 

θλ = 1
2

, , ,

db da c b b da daρσ
λβ β λ ρα σβ α β

β ρ σ α β
−∑ ∑ = 0          (λ = 1, 2, …, r). 

 
 We regard this as a system of r differential equations of degree two in the r + r 2 
variables a, b.  We must then concern ourselves with finding r-dimensional integral 
manifolds for this system that can be represented in the form: 
 

bαβ = fαβ (a1, a2, …, ar). 
 
 If one takes relations (12) into account then one easily computes that: 
 

dθα ≡ 0  (mod θ1, θ2, …, θr). 
 
 The ideal a that is associated with the system: 

 
θ1 = 0, θ2 = 0, …, θr = 0 

 
thus has θ1, θ2, …, θr as a basis already. 
 From the general procedures (cf. pp. 45-55) we make the Ansatz: 
 

dbλβ = lλβα
α
∑ daα  (λ, β = 1, 2, …, r) 

 
and substitute this in the forms θλ .  We then get the following expressions for the 
coefficients of d(aα, aβ) (up to sign): 
 

Lλαβ = lλαβ − lλβα − 1
2

,

( )c b b b bρσ
λ ρα αβ ρβ σα

ρ σ
−∑  

(Lλαβ = − Lλβα). 
 
 If one therefore seeks the r-dimensional integral elements, on which da1, da2, …, dar 
are linearly independent and whose intersections with: 
 

daν+1 = daν+2 = … = dar = 0 
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will be regular integral-Eν , then the equations: 
 

(14)  Lλαβ = 0 
1,2, ,rλ

α β ν
= 

 < ≤ 

⋯
 

 
define a basis for the equations that we previously denoted by: 
 

aν(x, l1, l2, …, lν) = 0. 

 
 The quantities lλαβ with β = ν take over the role of lν . 
 Equations (14) are soluble in terms of the quantities: 
 

lλαβ    with α < ν, 
 
and the totality of equations (14), when taken for ν = 2, 3, …, r, succeed in expressing all 
of these lλαβ (α < ν) in terms of the remaining ones lλαβ (α ≥ ν). 
 From this, one speaks of the quantities lλαβ with α < ν as principal, and the other ones 
as parametric derivatives.  All of the assumptions in the existence theorems are satisfied, 
as well as the assumption that along with: 
 

lλαβ =
b

a
λα

β

∂
∂

   (α ≥ β) 

 
all of the preceding derivatives lλα1, lλα2, …, lλα,β−1  shall also be parametric, and we 
conclude the existence of solutions: 
 

bλα = fλα(a1, a2, …, ar)  (λ, α = 1, 2, …, r), 
in which the section: 

fλα(a1, a2, …, aα, 0, 0, …, 0) 
 
can be arbitrarily prescribed.  In any case, one can therefore reach the conclusion that the 
Pfaffian forms: 

ωλ = 1
1

( ,
r

f aλα
α =
∑ a2, …, ar) daα 

 
that one constructs in the neighborhood of (a) = (0) are linearly independent.  Q.E.D. 
 
 Once the Pfaffian forms have been determined, by integrating a completely integrable 
system (cf. sec. 3), one then computes the substitutions: 
 

aν → ϕν(k, a) 
 
that leave ω1, ω2, …, ωr invariant and take (a) = (0) to (a) = (k).  Then, by way of: 
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Sa Sb = Sϕ (a, b) 
 
one will state the multiplication laws of a Lie group whose structure constants will be 
precisely the given cρσ

ν .  For two arbitrary systems of values: 

 
(k1, k2, …, kr), (l1, l2, …, lr) 

 
that are sufficiently close to (0, 0, …, 0) one likewise has: 
 

ϕ(k, ϕ(l, a)) = ϕ( ϕ(k, l), a), 
because: 

aν → ϕν(k, ϕ(l, a)) 

is the substitution that leaves ω1, ω2, …, ωr fixed and takes (a) = (0) to aν = ϕν(k, ϕ(l, 0)) 
= ϕν(k, l).  We therefore have associativity, and one immediately sees that the remaining 
characteristic properties of a group germ will also satisfy: 
 
 The 21

2 ( 1)r r −  constants: 

cρσ
ν                            (ν, ρ, σ  = 1, 2, …, r, cρσ

ν = −cσρ
ν ) 

 
are structure constants of an r-parameter Lie group when and only when the satisfy the 
relations: 

1

( )
r

c c c c c cαβ ργ βγ ρα γα ρβ
ρ ν ρ ν ρ ν

ρ =

+ +∑  = 0      (α, β, γ, ν = 1, 2, …, r). 

 
 
 6.  Representation of a Lie group by substitutions or transformations.  Let G be a 
Lie group with the parameters a1, a2, …, ar.  Furthermore, let: 
 

fi(x, a) = fi(x1, x2, …, xn, a1, a2, …, ar)  (i = 1, 2, …, n) 
 
be analytical functions of x, a that are holomorphic in the neighborhood of, say: 
 

(x) = (c), (a) = (0) 
and reduce to: 

fi(x,0) = xi 
for (a) = (0). 
 When these functions satisfy the functional equations: 
 
(15)   fi(f1(x, b), …, fn(x, b), a1, a2, …, ar) = fi(x1, …, xn, ϕ1(a, b), …, ϕr(a, b)) 

(i = 1, 2, …, n) 
 
one says that they provide a representation of G as a substitution group.  On the other 
hand, if they satisfy the relations: 
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(16)   fi(f1(x, a), …, fn(x, a), b1, b2, …, br) = fi(x1, …, xn, ϕ1(a, b), …, ϕr(a, b)) 
(i = 1, 2, …, n) 

 
then they provide a representation of G as a transformation group.  In fact, the 
replacement: 
(17) xi →  fi(x, a)  (i = 1, 2, …, n) 
 
can be regarded as a substitution in the first case and, in the second case, a transformation 
to a group Γ that is homomorphic to G.  Naturally, the existence of (16) and (17) is 
required only for sufficiently small (a), (b), and for a neighborhood of (x) = (c).  Strictly 
speaking, we are therefore dealing with only a germ of a substitution (transformation, 
resp.). 
 Due to the fact that: 

ϕ(k, ϕ(l, a)) = ϕ(ϕ(k, l), a), 
the substitution: 

aν → ϕν(k, a) 
 
provides a representation of G as a substitution group if the transformed variables are a1, 
a2, …, ar.  Likewise, by means of: 

aν → ϕν(a, k) 
 
we can define a representation of G as a transformation group.  One calls the group thus 
defined the parameter group of G. 
 In the sequel, we will always regard the replacement: 
 
(18) xi → fi(x, a)  (i = 1, 2, …, n) 
 
as a substitution, and briefly denote it by Sa, in which we observe that various elements of 
G: Sa, Sb, …, can be indexed quite well by the same substitution. 
 We denote the function that results from the holomorphic function F(x1, x2, …, xn) at 
(x) = (x0) by an application of (18), namely: 
 

F(f1(x, a), f2(x, a), …, fn(x, a)) 
by: 
(19) F(x1, x2, …, ) aS

nx . 

 Let: 

xi +
1

r

aν
ν =
∑ ξνi(x1, x2, …, xn) + … 

 
be the leading terms in the development of fi(x, a) as a power series in a.  The 
development of (19) then leads to the following: 
 

F(x1, x2, …, ) aS
nx = F(x1, x2, …, xn) + 

1

r

aν
ν =
∑ Xν F + … 
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when one understands Xν to mean the operator: 
 

Xν = 
1

n

i=
∑ ξνi(x1, x2, …, xn)

ix

∂
∂

. 

 
 These operators and their linear combinations: 
 

  ∑ λν Xν 
 
are called the infinitesimal operators of the group.  One also speaks − if imprecisely − of 
infinitesimal substitutions (transformations, resp.). 
 
 
 7.  Determination of a substitution group from its infinitesimal operators.  From: 
 

fi(x, a) =
1( )a a da a da aS S S S

i ix x
−

+ += = fi(x, a +
1 1( )) a a daS Sda

− −
+  

 
and the readily apparent relation: 
 

1 1( )a a daS S− −
+ = S−ω (a, da), 

it follows that: 

dfi(x, a) =
( , ) ( , )i i

k
k kk

f x a f x a
dx da

x a ν
ν

∂ ∂
+

∂ ∂∑ ∑ = 0 

 
when the Pfaffian forms: 

θi = dxi +
1

r

ν
ν

ω
=
∑ (a, da) ξνi(x1, x2, …, xn)  (i = 1, 2, …, n) 

 
vanish.  Otherwise, one deduces that: 
 
 dfi(x, a) ≡ 0 (mod θ1, θ2, …, θn). 
 
 Due to the fact that fi(x, 0) = xi , the differentials dfi(x, a) are linearly independent, so 
one also has, conversely, that: 
 
 θi ≡ 0  (mod df1, df2, …, dfn), 
 
from which it then follows that: 
 
(20) θi ≡ 0  (mod θ1, θ2, …, θn) (i = 1, 2, …, n). 
 
The Pfaffian system: 
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(21) dxi +
1

r

ν
ν

ω
=
∑ (a, da) ξνi(x1, x2, …, xn) = 0 (i = 1, 2, …, n) 

 
is thus completely integrable, and the functions: 
 

fi(x, a) = fi(x1, x2, …, xn, a1, a2, …, ar)  (i = 1, 2, …, n) 
 
are integrals that take the values0ix (i =1, 2, …, n) on the integral manifolds that go 

through the point 1) x1 =
0
ix , …, xn =

0
nx ,  a1 = a2 = …= aν = 0. 

 
 This theorem makes it possible to determine the substitutions fi(x, a) when the 
infinitesimal operators and the ων(a, da) are given. 
 The problem of finding all representations of a Lie group that is described by the 
Pfaffian forms ων(a, da) (ν = 1, 2, …, r) as a substitution group is equivalent to the 
problem of determining all systems of operators: 
 

Xv =
1

n

i=
∑ ξνi(x1, x2, …, xn)

ix

∂
∂

   (i = 1, 2, …, r) 

 
in such a way that the Pfaff system that is constructed from these ξνi is completely 
integrable.  There are then n independent integrals: 
 
  fi(x, a) = fi(x1, x2, …, xn, a1, a2, …, ar) (i = 1, 2, …, n) 
 
that reduce to0

1x ( 0
2x , …, 0

nx , resp.) on  the integral manifolds M that go through (x) = (x0), 

(a) = (0).  Since the Pfaff forms ων remain invariant under the substitutions: 
 

aν → ϕν(k, a)   (i = 1, 2, …, r), 
the functions: 
  fi(x1, …, xn, ϕ1(k, a), …, ϕr(k, a))  (i = 1, 2, …, n) 
 
are also integrals of (21), and due to the fact that ϕν(k, 0) = 0 they reduce to: 
 
(22)  fi(

0
1x , …, 0

nx , k1, k2, …, kr) (i = 1, 2, …, n) 

 
on the integral manifold M.  On the other hand, the: 
 
  fi(f1(k, a), …, fn(k, a), k1, k2, …, kr) (i = 1, 2, …, n) 
 
are integrals of (21) that take the same values (22) on M.  One therefore has (cf. pp. 65): 
 

                                                
 1) We assume that 0 0

1( , , )nx x⋯  is a system of values that lies in a neighborhood of (c1, c2, …, cn). 
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fi(f1(k, a), …, fn(k, a), k1, k2, …, kr) = fi(x1, …, xn, ϕ1(k, a), …, ϕr(k, a)) 
 

(i = 1, 2, …, n) 
 
for an arbitrary system of values for the variables x, a, k in the neighborhood of (x) = (c) 
((a) = (0), (k) = (0), resp.), and these functional equations express the fact that a 
representation of G as a substitution group is given by: 
 

xi → fi(x, a). 
 
 In order to obtain the conditions for complete integrability of the system (21), we 
summarize the forms θ with the help of an arbitrary (holomorphic at (x) = (c)) function 
F(x1, …, xn) by the expressions: 
 

1 1

n r

i
i i

F
dF X F

x ν ν
ν

θ ω
= =

∂ = +
∂∑ ∑ . 

 
 The complete integrability of (21) is then obviously equivalent to the condition: 
 

d(dF +
1

r

X Fν ν
ν

ω
=
∑ ) ≡ 0 (mod θ1, θ2, …, θn) 

for arbitrary F. 
 From the identity: 
 
(23) dF + X Fν νω∑  ≡ 0  (mod θ1, θ2, …, θn) 

 
and the observation that: 
 

dθi ≡ 0  (mod θ1, θ2, …, θn), 
 
differentiation gives the relation: 
 
(24) d X Fν νω∑ − dX Fν νω∑  ≡ 0 (mod θ). 

 
By applying (23) to Xν F instead of F, one obtains: 
 
 dXν F ≡ − X X Fµ µ ν

µ
ω∑  (mod θ), 

 
such that (24) can also be written as: 
 
 d X Fν νω∑ − 1

2
,

ρ σ
ρ σ

ω ω∑ (Xρ  Xσ F − Xσ Xρ F) ≡ 0 (mod θ). 

 



Introduction to the theory of systems of differential equations 84 

 Only the differentials da appear in the left-hand side of this congruence, although a 
dxi must necessarily appear in any differential form of the form: 
 

Ω1θ1 + Ω2θ2 + … + Ωnθn   (the Ω are Pfaffian forms) 
 

that does not vanish identically.  One thus has: 
 
(25)  d Xν νω∑ − 1

2
,

ρ σ
ρ σ

ω ω∑ (Xρ  Xσ) = 0, 

 
in which (Xρ  Xσ) means the well-known bracket operation: 
 

(Xρ  Xσ) = Xρ  Xσ − Xσ Xρ . 
 
 Due to the linear independence of the ω, by substituting: 
 

dων = 1
2 cρσ

ν ρ σω ω∑  

 
in (25) one obtains the so-called composition formulas: 
 

(Xρ  Xσ) =
1

r

c Xρσ
ν ν

ν =
∑    (ρ, σ = 1, 2, …, r).  

 This shows that: 
 
 The r operators: 

Xv =
1

n

i=
∑ ξνi(x1, x2, …, xn)

ix

∂
∂

   (i = 1, 2, …, r) 

 
correspond to a representation of G as a substitution group when and only when the 
composition formulas: 

(26)  (X� Xσ) =
1

r

c Xυσ
ν ν

ν =
∑   (ρ, σ = 1, 2, …, r) 

are satisfied. 
 
 From this, the cρσ

ν  are the structure constants of the group G. 

 
 
 8.  Linear dependence of infinitesimal operators.  Let s < r of the operators Xν be 
linearly independent.  Choose any s independent linear combinations: 
 

Yµ =
1

r

h Xµν ν
ν =
∑    (µ = 1, 2, …, s) 
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(with constant h), and, conversely, let: 
 

Xν =
1

s

g Yνµ ν
µ=
∑    (ν = 1, 2, …, r). 

Correspondingly, if one sets: 

(Yρ Yσ) =
1

s

Yρσ
λ λ

µ
γ

=
∑  

1

r

gνµ
ν =
∑ ων(a, da) = τµ(a, da)  (µ = 1, 2, …, s). 

Then, from: 
∑ dων Xν − 1

2
,

ρ σ
ρ σ

ω ω∑ (Xρ  Xσ) = 0 

it follows that: 
  ∑ dων Xν − 1

2
,

ρ σ
ρ σ

ω ω∑ (Xρ  Xσ) = 0, 

or:  
1

(
S

d λ
λ

τ
=
∑ − 1

2
,

)ρσ
λ ρ σ

ρ σ
γ τ τ∑ Xλ = 0, 

which has the relations: 
(27)  dτλ = 1

2
ρσ
λ ρ σγ τ τ∑   (λ = 1, 2, ..., s) 

 
as a consequence, due to the linear independence of the Y. 
 Thus, the system of s linearly independent Pfaff equations at (a) = (0): 
 

τλ (a, da) = 0   (λ = 1, 2, …, s) 
 
is completely integrable.  In addition to the s independent integrals of this system that are 
holomorphic at (a) = (0): 

bν(a1, a2, …, ar)    (ν = 1, 2, …, s), 
 

which might possibly vanish for (a) = (0), one chooses, when s < r, any r – s more 
holomorphic functions that vanish at (a) = (0): 
 

bν(a1, a2, …, ar)    (ν = s+1, …, r), 
in such a way that: 

bν = bν(a1, a2, …, ar)   (ν = 1, 2, …, r) 
 
defines a biholomorphic transformation in the neighborhood of (a) = (0).  By introducing 
the variables b instead of the a, the forms: 
 

τν(a, da) =πν(b, db) 
 
depend upon only the differentials dbν with ν ≤ s: 
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(28)  πν =
1

s

λµ
µ

ψ
=
∑ (b1, b2, …, br) dbµ. 

 The equation: 
(29)  dπν = 1

2
ρσ
λ ρ σγ π π∑   (λ = 1, 2, ..., s), 

 
which follows from (27), then shows, when one introduces (28) here, that one must have: 
 

b
λµ

ν

ψ∂
∂

= 0   (ν = s+1, …, r), 

 
i.e., the forms π1, π2, …, πs depend upon only the variables b1, b2, … bs. 
 By using the b instead of the a, the differential equations (21) take the simple form: 
 

dxi +
1

s

ν
ν

π
=
∑ (b, db)ηνi(x1, x2, …, xn) 

ix

∂
∂

  (i = 1, 2, …, n), 

in which we have set: 

Yν =
1

n

i
i

νη
=
∑ (x1, x2, …, xn) 

ix

∂
∂

 . 

 We see that the integrals: 
fi(x1, x2, …, xn, a1, a2, … ar) 

 
can also be written in the form: 
 

gi(x1, x2, …, xn, b1(a), b2(a), … br(a)), 
 
such that when s < r only s of the parameters in the substitution group: 
 
(30)   xi →  fi(x, a) 
 
are essential.  They can also be regarded as a representation of the s-parameter Lie group 
g with structure constants ρσ

λγ (ν , ρ, σ = 1, 2, …, s) that is determined by: 

 
   π1, π2, …, πs . 
 
 If the operators X1, X2, …, Xr are linearly independent then the substitution (30) is a 
one-to-one correspondence with the elements of G; one has a so-called faithful 
representation of G.  Both parameter groups give faithful representations of G as 
substitution (transformation, resp.) groups. 
 
 
 9.  The invariant Pfaffian form ϖ.  Up till now, our considerations were based on 
the Pfaffian forms ω1, ω2, …, ωr that were introduced as the parameters of the 
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infinitesimal substitution 1
a a daS S−

+ .  Instead of these forms, one can reach the same 

conclusions by starting with the forms: 
 
(31)  ϖ1(a, da), ϖ2(a, da), …, ϖr(a, da), 
which are defined by: 

1 2

1
, , , ra da aS S Sϖ ϖ ϖ

−
+ =

⋯
. 

 
 One then easily establishes that the forms (31) are invariant under the substitutions: 
 

aν → ϕν(a1, a2, … ar, k1, k2, … kr)  (ν = 1, 2, …, r). 
 
 Likewise, their derivatives naturally have constant coefficients; however, in order to 
comprehend their relationship with the ρσ

λγ , it is expedient to first interpret the 

considerations of sec. 7 in the foregoing case.  One immediately infers that the functions: 
 

gi(x1, x2, …, xn, a1, a2, … ar)   (i = 1, 2, …, n) 
 
that correspond to the substitutions1aS− : 

xi → gi(x, a) 
are integrals of the Pfaffian system: 
 
(32) ϑi = dxi – ∑ϖν(a, da)ξνi(x1, x2, …, xn) = 0 (i = 1, 2, …, n). 
 
 One obtains the functions fi(x, a) by determining those solutions: 
 

xi = f i(
0 0
1 2,x x , …, 0

nx , a1, a2, … ar)   (i = 1, 2, …, n) 

 
that reduce to (0 0

1 2,x x , …, 0
nx ) for (a) = (0).  From the complete integrability of the 

system (32), one infers (just as one did for the derivatives of equations (25)) the relations: 
 
(33)  ∑ dϖν  Xν + 1

2
,

ρ σ
ρ σ

ω ω∑ (Xρ  Xσ) = 0, 

from which, by (26), one has: 
 

  1
2

1 ,

( )
r

d cρσ
ν ν ρ σ

ν ρ σ
ϖ ϖ ϖ

=

+∑ ∑  Xν = 0. 

 
 These formulas are true for any representation of G; in particular, they are true for a 
faithful representation, for which the operators Xν are certainly independent.  One thus 
has: 
(34)   dϖν  = − 1

2
,

cρσ
ν ρ σ

ρ σ
ϖ ϖ∑  (ν = 1, 2, …, r). 
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